Science.gov

Sample records for advanced separation methods

  1. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  2. NOVEL CONCEPTS, METHODS AND ADVANCED TECHNOLOGY IN PARTICULATE/GAS SEPARATION

    EPA Science Inventory

    This paper discusses presentations made during a symposium on novel concepts, methods, and advanced technology in particulate/gas separation. The symposium, held at the University of Notre Dame and sponsored by the National Science Foundation and the Environmental Protection Agen...

  3. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  4. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  5. Efficient method development strategy for challenging separation of pharmaceutical molecules using advanced chromatographic technologies.

    PubMed

    Xiao, Kang Ping; Xiong, Yuan; Liu, Fang Zhu; Rustum, Abu M

    2007-09-01

    In this paper, we describe a strategy that can be used to efficiently develop a high-performance liquid chromatography (HPLC) separation of challenging pharmaceutical molecules. This strategy involves use of advanced chromatographic technologies, such as a computer-assisted chromatographic method development tool (ChromSword) and an automated column switching system (LC Spiderling). This process significantly enhances the probability of achieving adequate separations and can be a large time saver for bench analytical scientists. In our study, the ChromSword was used for mobile phase screening and separation optimization, and the LC Spiderling was used to identify the most appropriate HPLC columns. For proof of concept, the analytes employed in this study are the structural epimers betamethylepoxide and alphamethylepoxide (also known as 16-beta methyl epoxide and 16-alpha methyl epoxide). Both of these compounds are used in the synthesis of various active pharmaceutical ingredients that are part of the steroid pharmaceutical products. While these molecules are relatively large in size and contain various polar functional groups and non-polar cyclic carbon chains, their structures differ only in the orientation of one methyl group. To our knowledge, there is no reported HPLC separation of these two molecules. A simple gradient method was quickly developed on a 5 cm YMC Hydrosphere C(18) column that separated betamethylepoxide and alphamethylepoxide in 10 min with a resolution factor of 3.0. This high resolution provided a true baseline separation even when the concentration ratio between these two epimers was 10,000:1. Although outside of the scope of this paper, stability-indicating assay and impurity profile methods for betamethylepoxide and for alphamethylepoxide have also been developed by our group based on a similar method development strategy. PMID:17628579

  6. Advanced negative detection method comparable to silver stain for SDS-PAGE separated proteins detection.

    PubMed

    Wang, Xu; Hwang, Sun-Young; Cong, Wei-Tao; Jin, Li-Tai; Choi, Jung-Kap

    2016-10-01

    In order to achieve an easy, rapid and sensitive protocol to detect proteins in polyacrylamide gel, an advanced negative detection method comparable to silver stain is described. When a gel was incubated with Phloxine B and followed by the development in acidic solution, the zones where forming protein-dye complex were selectively transparent, unlike opaque gel background. Within 50 min after electrophoresis, down to 0.1-0.4 ng of gel-separated proteins (similar with silver stain) could be observed, without labor-intensive and time-consuming procedure. Comparing with the most common negative stain method, Imidazole-zinc stain, Phloxine B stain has been shown higher sensitivity and distinct contrast between the transparent protein bands/spots and opaque background than those; furthermore, it is no longer necessary to concern about retention time of observation. This technique may provide a sensitive and practical choice for proteomics researches. PMID:27430933

  7. Advanced Separation Consortium

    SciTech Connect

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  8. Advances in electrophoretic separations

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Rhodes, P. H.

    1984-01-01

    Free fluid electrophoresis is described using laboratory and space experiments combined with extensive mathematical modeling. Buoyancy driven convective flows due to thermal and concentration gradients are absent in the reduced gravity environment of space. The elimination of convection in weightlessness offers possible improvements in electrophoresis and other separation methods which occur in fluid media. The mathematical modeling suggests new ways of doing electrophoresis in space and explains various phenomena observed during past experiments. The extent to which ground based separation techniques are limited by gravity induced convection is investigated and space experiments are designed to evaluate specific characteristics of the fluid/particle environment. A series of experiments are proposed that require weightlessness and apparatus is developed that can be used to carry out these experiments in the near future.

  9. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  10. Advanced inorganic separators for alkaline batteries and method of making the same

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1983-01-01

    A flexible, porous battery separator includes a coating applied to a porous, flexible substrate. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte, (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group, and (3) a mixture of polar particulate filler materials which are unreactive with the electrode. The mixture comprises at least one first filler material having a surface area of greater than 25 sq meters/gram, at last one second filler material having a surface area of 10 to 25 sq meters/gram. The volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder. The filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle.

  11. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    DOEpatents

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  12. Center for Advanced Separation Technology

    SciTech Connect

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  13. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  14. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  15. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  16. Acoustophoresis separation method

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor)

    1993-01-01

    A method and apparatus are provided for acoustophoresis, i.e., the separation of species via acoustic waves. An ultrasonic transducer applies an acoustic wave to one end of a sample container containing at least two species having different acoustic absorptions. The wave has a frequency tuned to or harmonized with the point of resonance of the species to be separated. This wave causes the species to be driven to an opposite end of the sample container for removal. A second ultrasonic transducer may be provided to apply a second, oppositely directed acoustic wave to prevent undesired streaming. In addition, a radio frequency tuned to the mechanical resonance and coupled with a magnetic field can serve to identify a species in a medium comprising species with similar absorption coefficients, whereby an acoustic wave having a frequency corresponding to this gyrational rate can then be applied to sweep the identified species to one end of the container for removal.

  17. METHOD OF SEPARATION

    DOEpatents

    Boyd, G.E.

    1958-08-26

    A process is presented fer separating uranium, plutonium, and fission products ions from uranyl nitrate solutions having a pH value between 1 and 3 obtained by dissolving neutron irradiated uranium. The method consists in passing such solutions through a bed of cation exchange resin, which may be a sulfonated phenol formaidehyde type. Following the adsorption step the resin is first treated with a solution of 0.2M to 0.3M sulfuric acid to desorb the uranium. Fission product ions are then desorbed by treating the resin in phosphoric acid and 1M in nitric acid. Lastly, the plutonium may be desorbed by treating the resin with a solution approximately 0.8M in phosphoric acid and 1M in nitric acid.

  18. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  19. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  20. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  1. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  2. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    necessary for commercial fuel processing supporting transmutation of transplutonium elements. This research project continued basic themes investigated by this research group during the past decade. In the Fuel Cycle Research and Development program at DOE, the current favorite process for accomplishing the separation of trivalent actinides from fission product lanthanides is the TALSPEAK process. TALSPEAK is a solvent extraction method (developed at Oak Ridge National Lab in the 1960s) based on the combination of a cation exchanging extractant (e.g., HDEHP), an actinide-selective aminopolycarboxylate complexing agent (e.g., DTPA), and a carboxylic acid buffer to control pH in the range of 3-4. Considerable effort has been expended in this research group during the past 8 years to elaborate the details of TALSPEAK in the interest of developing improved approaches to the operation of TALSPEAK-like systems. In this project we focused on defining aggregation phenomena in conventional TALSPEAK separations, on supporting the development of Advanced TALSPEAK processes, on profiling the aqueous complexation kinetics of lanthanides in TALSPEAK relevant aqueous media, on the design of new diglycolamide and N-donor extractants, and on characterizing cation-cation complexes of pentavalent actinides.

  3. METHOD OF SEPARATING NEPTUNIUM

    DOEpatents

    Seaborg, G.T.

    1961-10-24

    plutonium in an aqueous solution containing sulfate ions. The process consists of contacting the solution with an alkali metal bromate, digesting the resulting mixture at 15 to 25 deg C for a period of time not more than that required to oxidize the neptunium, adding lanthanum ions and fluoride ions, and separating the plutonium-containing precipitate thus formed from the supernatant solution. (AEC)

  4. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  5. Advances in microfluidic cell separation and manipulation

    PubMed Central

    Jackson, Emily L; Lu, Hang

    2014-01-01

    Cellular separations are required in many contexts in biochemical and biomedical applications for the identification, isolation, and analysis of phenotypes or samples of interest. Microfluidics is uniquely suited for handling biological samples, and emerging technologies have become increasingly accessible tools for researchers and clinicians. Here, we review advances in the last few years in techniques for microfluidic cell separation and manipulation. Applications such as high-throughput cell and organism phenotypic screening, purification of heterogeneous stem cell populations, separation of blood components, and isolation of rare cells in patients highlight some of the areas in which these technologies show great potential. Continued advances in separation mechanisms and understanding of cellular systems will yield further improvements in the throughput, resolution, and robustness of techniques. PMID:24701393

  6. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  7. DRY FLUORINE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-05-19

    Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)

  8. PARTICLE SEPARATION METHOD

    DOEpatents

    Anderson, N.G.

    1963-01-29

    An improved method of sedimentation is described. A series of spaced surfaces of powdered material positioned normal to the centrifugal field concentrates the larger, slower moving molecules of a liquid and hastens sedimentation. (AEC)

  9. Recent advances in polyethylene separator technology

    NASA Astrophysics Data System (ADS)

    Weighall, M. J.

    The well known technical and production benefits of polyethylene separator materials over other separator materials have prompted a dramatic increase in polyethylene separator usage in recent years. Separator trends in the United States from 1980 to 1996, and in Europe from 1987 to 1992, are shown. The manufacturing process for polyethylene separators is outlined, with particular emphasis on the latest advances in manufacturing technology. These improvements have resulted in a higher quality product, and also benefit the environment because of the sophisticated oil extraction and solvent recovery system. The product quality improvements resulting from the latest manufacturing technology include consistent conformance to dimensional specifications, low electrical resistance, close control of residual oil content, virtual elimination of pinholes, and good running properties on the battery manufacturers' plate enveloping machines. The material can also be manufactured with a very thin backweb to reduce electrical resistance still further.

  10. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  11. Recent Advances in Microfluidic Cell Separations

    PubMed Central

    Gao, Yan; Li, Wenjie; Pappas, Dimitri

    2013-01-01

    The isolation and sorting of cells has become an increasingly important step in chemical and biological analyses. As a unit operation in more complex analyses, isolating a phenotypically pure cell population from a heterogeneous sample presents unique challenges. Microfluidic systems are ideal platforms for performing cell separations, enabling integration with other techniques and enhancing traditional separation modalities. In recent years there have been several techniques that use surface antigen affinity, physical interactions, or a combination of the two to achieve high separation purity and efficiency. This review discusses methods including magnetophoretic, acoustophoretic, sedimentation, electric, and hydrodynamic methods for physical separations. We also discuss affinity methods, including magnetic sorting, flow sorting, and affinity capture. PMID:23778244

  12. 32 CFR 842.149 - Separate advance payment claims.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Separate advance payment claims. 842.149 Section... LITIGATION ADMINISTRATIVE CLAIMS Advance Payments (10 U.S.C. 2736) § 842.149 Separate advance payment claims. Every person suffering injury or property loss may submit a separate request for an advance payment....

  13. Advanced flight hardware for organic separations

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1997-01-01

    Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT fabricated and integrated the ADSEP flight hardware for a commercially-driven flight experiment as the initial step in marketing space processing services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  14. Method to blend separator powders

    DOEpatents

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  15. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  16. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, E.

    1996-04-09

    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs.

  17. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, Eliel

    1996-01-01

    A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

  18. Dispersoid separation method and apparatus

    DOEpatents

    Winsche, Warren E.

    1980-01-01

    Improved separation of heavier material from a dispersoid of gas and heavier material entrained therein is taught by the method of this invention which advantageously uses apparatus embodied in an inertial separator having rotary partition means comprising wall members dividing a housing into a plurality of axially-extending through passages arranged in parallel. Simultaneously with the helical transit of a moving stream of the dispersoid through the parallel arrangement of axially-extending through passages at a constant angular velocity, the heavier material is driven radially to the collecting surfaces of the rotational wall members where it is collected while the wall members are rotating at the same angular velocity as the moving stream. The plurality of wall members not only provides an increased area of collecting surfaces but the positioning of each of the wall members according to the teaching of this invention also results in a shortened time-of-flight to the collecting surfaces.

  19. Rapid actinide-separation methods

    SciTech Connect

    Maxwell, S.L. III

    1997-12-31

    New high-speed actinide-separation methods have been developed by the Savannah River Site Central Laboratory that can be applied to nuclear materials process samples, waste solutions and environmental samples. As part of a reengineering effort to improve efficiencies and reduce operating costs, solvent extraction methods (TTA, Hexone, TBP and TIOA) used for over thirty years in the SRS Central Laboratory were replaced with new rapid extraction column methods able to handle a variety of difficult sample matrices and actinide levels. Significant costs savings were realized and costly mixed-waste controls were avoided by using applied vacuum and 50-100 micron particle-size resins from Eichrom Industries. TEVA Resin{reg_sign}, UTEVA Resin{reg_sign}, and TRU Resin{reg_sign} columns are used with flow rates of approximately two to three milliliters per minute to minimize sample turnaround times. Single-column, dual-column and sequential-cartridge methods for plutonium, uranium, neptunium, americium and curium were developed that enable rapid, cost-effective separations prior to alpha-particle counting, thermal ionization and inductively coupled plasma mass spectrometry, and laser phosphorescence measurements.

  20. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  1. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  2. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  3. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  4. METHOD OF SEPARATING HYDROGEN ISOTOPES

    DOEpatents

    Salmon, O.N.

    1958-12-01

    The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.

  5. Apparatus and method for separating constituents

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    A centrifugal separator apparatus and method for improving the efficiency of the separation of constituents in a fluid stream. A cyclone separator includes an assembly for separately discharging both constituents through the same end of the separator housing. A rotary separator includes a rotary housing having a baffle disposed therein for minimizing the differential rotational velocities of the constituents in the housing, thereby decreasing turbulence, and increasing efficiency. The intensity of the centrifugal force and the time which the constituents reside within the housing can be independently controlled to improve efficiency of separation.

  6. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H.; Law, Jack D.; Garn, Troy G.; Todd, Terry A.; Macaluso, Lawrence L.

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  7. Integration of advanced nuclear materials separation processes

    SciTech Connect

    Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D.; Buelow, S.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.

  8. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate.

  9. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.

  10. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  11. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  12. Centrifugal separators and related devices and methods

    DOEpatents

    Meikrantz, David H.; Law, Jack D.; Garn, Troy G.; Macaluso, Lawrence L.; Todd, Terry A.

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  13. Automated Methods to Maintain Aircraft Separation

    NASA Technical Reports Server (NTRS)

    Lauderdale, Todd

    2011-01-01

    The air traffic control system in the United States has a great track-record for safety. As more aircraft enter the system at a given time, the situation becomes more complex though. Researchers at NASA are attempting to leverage advances in many fields including optimization, data mining, and numerical modeling of systems to improve the air-transportation system maintaining safety while increasing throughput and reducing delays. This talk will give a brief overview of the research at NASA towards modernizing the air-transportation system. It will then focus on the specific area of automation tools for maintaining physical separation between aircraft known as Separation Assurance.

  14. A method for a separator for cells

    NASA Technical Reports Server (NTRS)

    Takakaki, T.; Tsujino, Y.

    1982-01-01

    A method is presented for manufacturing a separator for cells which is characterized by the fact that the spaces or small holes in the porous body are made even smaller, and therefore the porous body is made physically stronger.

  15. METHOD OF SEPARATING FROTHS FROM LIQUIDS

    DOEpatents

    Monet, G.P.

    1958-01-21

    A method for separating solids and precipitates from liquids is described. The method is particularly adapted for and valuable in processing highly radioactive solutions. It consists in essence, in employing the principles of froth flotation to effect the separation of approximately 99% of the solids present. An apparatus, consisting of a system of pipes, valves and vessels, for carrying out the process of this patent is also described therein.

  16. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution

    SciTech Connect

    Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; Shehee, Thomas C.; Hobbs, David T.

    2015-03-11

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.

  17. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution.

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt

    2015-03-01

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. The utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.

  18. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution

    DOE PAGESBeta

    Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; Shehee, Thomas C.; Hobbs, David T.

    2015-03-11

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent hasmore » not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.« less

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  20. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  1. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  2. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  3. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  4. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  5. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  6. Methods of separating particulate residue streams

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, J. Richard

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  7. The linear separability problem: some testing methods.

    PubMed

    Elizondo, D

    2006-03-01

    The notion of linear separability is used widely in machine learning research. Learning algorithms that use this concept to learn include neural networks (single layer perceptron and recursive deterministic perceptron), and kernel machines (support vector machines). This paper presents an overview of several of the methods for testing linear separability between two classes. The methods are divided into four groups: Those based on linear programming, those based on computational geometry, one based on neural networks, and one based on quadratic programming. The Fisher linear discriminant method is also presented. A section on the quantification of the complexity of classification problems is included. PMID:16566462

  8. Advancing the scientific basis of trivalent actinide-lanthanide separations

    SciTech Connect

    Nash, K.L.

    2013-07-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  9. Method for improved gas-solids separation

    DOEpatents

    Kusik, Charles L.; He, Bo X.

    1990-01-01

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.

  10. Method for improved gas-solids separation

    DOEpatents

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  11. Advances in recombinant battery separator mat (RBSM) separators for lead-acid batteries—a review

    NASA Astrophysics Data System (ADS)

    Zguris, G. C.

    Microglass separators have been used in lead-acid batteries for more than 20 years with excellent results. This type of separator (known as recombinant battery separator mat (RBSM)) has allowed valve-regulated lead-acid (VRLA) battery technology to become a commercial reality. When the concept of the VRLA battery was developed, the requirements of the RBSM separator were not fully known nor appreciated. In many cases, the direction charted for the separator has not been the most beneficial path to follow for separator performance and battery life. In some cases, such as the density of the separator media, experience has shown that the most correct path (low density) does not give rise to long battery life. As VRLA battery technology matures, greater pressure on cost and quality has arisen, especially with the proposed transition to 42 V automotive applications. This paper reviews some of the advances and changes in the RBSM separator made over the last 20 years, and provides some thoughts on future directions for this essential component of the VRLA battery.

  12. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  13. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  14. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  15. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  16. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  17. Advancement of isotope separation for the production of reference standards

    SciTech Connect

    Jared Horkley; Christopher McGrath; Andrew Edwards; Gaven Knighton; Kevin Carney; Jacob Davies; James Sommers; Jeffrey Giglio

    2012-03-01

    Idaho National Laboratory (INL) operates a mass separator that is currently producing high purity isotopes for use as internal standards for high precision isotope dilution mass spectrometry (IDMS). In 2008, INL began the revival of the vintage 1970’s era instrument. Advancements thus far include the successful upgrading and development of system components such as the vacuum system, power supplies, ion-producing components, and beam detection equipment. Progress has been made in the separation and collection of isotopic species including those of Ar, Kr, Xe, Sr, and Ba. Particular focuses on ion source improvements and developments have proven successful with demonstrated output beam currents of over 10 micro-amps 138Ba and 350nA 134Ba from a natural abundance source charge (approximately 2.4 percent 134Ba). In order to increase production and collection of relatively high quantities (mg levels) of pure isotopes, several advancements have been made in ion source designs, source material introduction, and beam detection and collection. These advancements and future developments will be presented.

  18. Advanced chemical separations in support of the clean option strategy

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Diamond, H.; Leonard, R.A.; Rogers, R.D.

    1993-09-01

    The objective of the Clean Option Strategy is to reduce the volume of waste from Hanford Storage tanks that must be vitrified and subsequently buried in a deep geologic repository to less than 1000 canisters (1) Advanced chemical separations in support of the Clean Option Strategy comprise a series of novel processes that are designed to extract and recover U, TRUs (Np, Pu, Am, Cm), {sup 90}Sr, {sup 99}Tc and {sup 137}Cs from dissolved sludge waste obtained from Hanford storage tanks. All inert constituents and the balance of the fission products, including barium and the lanthanides (Ln), will remain in the raffinates and effluent streams generated in these processes. The aim of the advanced chemical processes is to reduce the complexity and cost of the chemical pretreatment of the dissolved sludge from the single- and double-shelled tanks. To achieve this goal, Hanford must minimize the number of processes to extract U, TRUs, {sup 90}Sr, {sup 99}Tc and {sup 137}Cs, minimize the number of times that the initial volume of dissolved sludge must be handled, and concentrate product streams to reduce the scale of operation. To meet the requirements of advanced chemical separation processes, all systems must: Readily achieve the desired decontamination factors, have good chemical and radiolytic stability, not use highly hazardous substances, not significantly increase the volume of feed or waste and lend themselves to easy engineering scale-up.

  19. Method for isotope separation by photodeflection

    DOEpatents

    Bernhardt, Anthony F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.

  20. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials. PMID:26939357

  1. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  2. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, David A.; Duncan, James B.; Jensen, George A.

    1995-01-01

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained.

  3. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, D.A.; Duncan, J.B.; Jensen, G.A.

    1995-09-19

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained. 1 fig.

  4. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  5. Organic ion exchange resin separation methods evaluation

    SciTech Connect

    Witwer, K.S.

    1998-05-27

    This document describes testing to find effective methods to separate Organic Ion Exchange Resin (OIER) from a sludge simulant. This task supports a comprehensive strategy for treatment and processing of K-Basin sludge. The simulant to be used resembles sludge that has accumulated in the 105KE and 105KW Basins in the 1OOK area of the Hanford Site. The sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt, and other minor amounts of organic matter.

  6. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  7. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  8. Advanced probabilistic method of development

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1987-01-01

    Advanced structural reliability methods are utilized on the Probabilistic Structural Analysis Methods (PSAM) project to provide a tool for analysis and design of space propulsion system hardware. The role of the effort at the University of Arizona is to provide reliability technology support to this project. PSAM computer programs will provide a design tool for analyzing uncertainty associated with thermal and mechanical loading, material behavior, geometry, and the analysis methods used. Specifically, reliability methods are employed to perform sensitivity analyses, to establish the distribution of a critical response variable (e.g., stress, deflection), to perform reliability assessment, and ultimately to produce a design which will minimize cost and/or weight. Uncertainties in the design factors of space propulsion hardware are described by probability models constructed using statistical analysis of data. Statistical methods are employed to produce a probability model, i.e., a statistical synthesis or summary of each design variable in a format suitable for reliability analysis and ultimately, design decisions.

  9. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky

  10. Method and apparatus for separating material

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2006-10-24

    An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor, a mechanism for removing particles from the inside of the comminutor which are intermediate in size between the feed to the comminutor and the product of comminution, a mechanism for either discharging particles taken from the comminutor to a reject stream or providing them to a size classification apparatus such as screening, a mechanism for returning the oversize particles to the comminutor or for discharging them to the reject stream, an electric mechanism for separating particles with an electrical force disposed adjacent to a magnet mechanism, a mechanism for providing the particles to the magnet mechanism and the electric mechanism and for providing triboelectric and capacitive charges to the particles, and a mechanism for returning one of the products of electric and magnetic separation to the comminutor while discharging the other to the reject stream. A method for sorting particles composed of a mixture of particles with differing physical and chemical characteristics.

  11. Method of separating and purifying gadolinium-153

    DOEpatents

    Bray, Lane A [Richland, WA; Corneillie, Todd M [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  12. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  13. Device for hydrogen separation and method

    DOEpatents

    Paglieri, Stephen N.; Anderson, Iver E.; Terpstra, Robert L.

    2009-11-03

    A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

  14. Method of magnetic separation and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Oder, Robin R. (Inventor)

    1991-01-01

    An apparatus for magnetically separating and collecting particulate matter fractions of a raw sample according to relative magnetic susceptibilities of each fraction so collected is disclosed. The separation apparatus includes a splitter which is used in conjunction with a magnetic separator for achieving the desired fractionation.

  15. Advanced vehicle separation apparatus. [automatic positioning of models for studies involving separation of aerodynamic shapes

    NASA Technical Reports Server (NTRS)

    Ospring, M. J.; Mancini, R. E.

    1979-01-01

    A method of obtaining test data from two independent models or bodies in a conventional wind tunnel is described. The system makes efficient use of wind tunnel test time with computer control performing complex coordinate transformations necessary for model positioning. The apparatus is designed to be used in any of the three Unitary Wind Tunnels at NASA-Ames Research Center. Mechanical design details and a brief description of the control system for the separation apparatus are presented.

  16. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for

  17. Method for separating disparate components in a fluid stream

    DOEpatents

    Meikrantz, David H.

    1990-01-01

    The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.

  18. 41 CFR 302-2.22 - May I receive a travel advance for separation relocation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May I receive a travel advance for separation relocation? 302-2.22 Section 302-2.22 Public Contracts and Property Management... General Rules Advancement of Funds § 302-2.22 May I receive a travel advance for separation...

  19. 41 CFR 302-2.22 - May I receive a travel advance for separation relocation?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false May I receive a travel advance for separation relocation? 302-2.22 Section 302-2.22 Public Contracts and Property Management... General Rules Advancement of Funds § 302-2.22 May I receive a travel advance for separation...

  20. Method and apparatus for biological material separation

    DOEpatents

    Robinson, Donna L.

    2005-05-10

    There has been invented an apparatus comprising a separation barrier for excluding denser cell materials from less dense cell materials after centrifuging of the cells so that selected materials can be withdrawn from the less dense cell materials without inclusion of the denser cell materials or clogging of sampling equipment with denser cell materials. Cells from which selected material is to be withdrawn are centrifuged, either as cells or cells in media. Once the denser cell materials are isolated in a layer by centrifugal force, an invention screen or seive is submerged in the less dense cell material to a level above the layer of denser cell materials to isolate the denser cell materials from the less dense cell materials, preventing mixing of the denser cell materials back into the less dense cell materials when the cells or the cells in media are no longer being centrifuged and to prevent clogging of sampling equipment with denser cell materials. In a particularly useful application of the invention method and apparatus, plasmid DNA can be withdrawn from less dense cell materials without contamination or interference with denser cell materials.

  1. Method and means for separating and classifying superconductive particles

    DOEpatents

    Park, Jin Y.; Kearney, Robert J.

    1991-01-01

    The specification and drawings describe a series of devices and methods for classifying and separating superconductive particles. The superconductive particles may be separated from non-superconductive particles, and the superconductive particles may be separated by degrees of susceptibility to the Meissner effect force. The particles may also be simultaneously separated by size or volume and mass to obtain substantially homogeneous groups of particles. The separation techniques include levitation, preferential sedimentation and preferential concentration. Multiple separation vector forces are disclosed.

  2. Single-molecule methods to quantify adsorptive separations (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Landes, Christy

    2015-08-01

    Interfacial adsorption and transport are the chemical and physical processes that underlie separations. Although separations technology accounts for hundreds of billions of dollars in the global economy, the process is not well-understood at the mechanistic level and instead is almost always optimized empirically. One of the reasons is that access to the underlying molecular phenomena has only been available recently via single-molecule methods. There are still interesting challenges because adsorption, desorption, and transport are all dynamic processes, whereas much of the advances in super-resolution imaging have focused on imaging static materials. Our lab has focused in recent years on developing and optimizing data analysis methods for quantifying the dynamics of adsorption and transport in porous materials at nanometer-resolution spatial scales. Our methods include maximizing information content in dynamic single-molecule data and developing methods to detect change-points in binned data. My talk will outline these methods, and will address how and when they can be applied to extract dynamic details in heterogeneous materials such as porous membranes.

  3. Advances and problems in plasma-optical mass-separation

    SciTech Connect

    Bardakov, V. M.; Ivanov, S. D.; Strokin, N. A.

    2014-03-15

    This paper presents a short review of plasma-optical mass-separation and defines the fields for its possible application. During theoretical studies, numerical simulations, and experiments, the effect of the azimuthator finite size and of the vacuum conditions on the mass separator characteristics was revealed, as well as the quality of different-mass ion separation. The problems, solving which may lead to a successful end of the mass-separation plasma-optical technique implementation, were specified.

  4. PRECIPITATION METHOD OF SEPARATION OF NEPTUNIUM

    DOEpatents

    Magnusson, L.B.

    1958-07-01

    A process is described for the separation of neptunium from plutonium in an aqueous solution containing neptunium ions in a valence state not greater than +4, plutonium ioms in a valence state not greater than +4, and sulfate ions. The Process consists of adding hypochlorite ions to said solution in order to preferentially oxidize the neptunium and then adding lanthanum ions and fluoride ions to form a precipitate of LaF/sub 3/ carrying the plutonium, and thereafter separating the supernatant solution from the precipitate.

  5. Advanced separation technology for flue gas cleanup. Topical report

    SciTech Connect

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S.

    1995-01-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. The process will generate only marketable by-products. Our approach is to reduce the capital cost by using high-efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. Our novel chemistry for scrubbing NO{sub x} will consist of water-soluble phthalocyanine compounds invented by SRI as well as polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. The final novelty of our approach is the arrangement of the absorbers in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This arrangement is possible only because of the high efficiency of the hollow fiber scrubbing devices, as indicated by our preliminary laboratory data. This arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used. Because we have separate scrubbers, we will have separate liquor loops and simplify the chemical complexity of simultaneous SO{sub 2}/NO{sub x} scrubbing.

  6. Recent advances in nanotechnology-based detection and separation of circulating tumor cells.

    PubMed

    Myung, Ja Hye; Tam, Kevin A; Park, Sin-jung; Cha, Ashley; Hong, Seungpyo

    2016-01-01

    Although circulating tumor cells (CTCs) in blood have been widely investigated as a potential biomarker for diagnosis and prognosis of metastatic cancer, their inherent rarity and heterogeneity bring tremendous challenges to develop a CTC detection method with clinically significant specificity and sensitivity. With advances in nanotechnology, a series of new methods that are highly promising have emerged to enable or enhance detection and separation of CTCs from blood. In this review, we systematically categorize nanomaterials, such as gold nanoparticles, magnetic nanoparticles, quantum dots, graphenes/graphene oxides, and dendrimers and stimuli-responsive polymers, used in the newly developed CTC detection methods. This will provide a comprehensive overview of recent advances in the CTC detection achieved through application of nanotechnology as well as the challenges that these existing technologies must overcome to be directly impactful on human health. PMID:26296639

  7. Method and apparatus for separating material

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2004-11-23

    An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor or a pulverizer for reducing the size of the particles. The apparatus includes a mechanism for separating undesired material from desired material.

  8. Methods for separating a fluid, and devices capable of separating a fluid

    DOEpatents

    TeGrotenhuis, Ward E; Humble, Paul H; Caldwell, Dustin D

    2013-05-14

    Methods and apparatus for separating fluids are disclosed. We have discovered that, surprisingly, providing an open pore structure between a wick and an open flow channel resulted in superior separation performance. A novel and compact integrated device components for conducting separations are also described.

  9. Advanced accelerator methods: The cyclotrino

    SciTech Connect

    Welch, J.J.; Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.

    1987-04-01

    Several new and unusual, advanced techniques in the small cyclotron are described. The cyclotron is run at low energy, using negative ions and at high harmonics. Electrostatic focusing is used exclusively. The ion source and injection system is in the center, which unfortunately does not provide enough current, but the new system design should solve this problem. An electrostatic extractor that runs at low voltage, under 5 kV, and a microchannel plate detector which is able to discriminate low energy ions from the /sup 14/C are used. The resolution is sufficient for /sup 14/C dating and a higher intensity source should allow dating of a milligram size sample of 30,000 year old material with less than 10% uncertainty.

  10. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  11. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    SciTech Connect

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ and ex

  12. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  13. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    SciTech Connect

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel.

  14. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics

    PubMed Central

    Yang, Chenxi; Zhong, Xuefei; Li, Lingjun

    2016-01-01

    Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enables comprehensive profiling of the phosphoproteome and facilitates deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009–2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis. PMID:24687451

  15. Advanced reliability methods - A review

    NASA Astrophysics Data System (ADS)

    Forsyth, David S.

    2016-02-01

    There are a number of challenges to the current practices for Probability of Detection (POD) assessment. Some Nondestructive Testing (NDT) methods, especially those that are image-based, may not provide a simple relationship between a scalar NDT response and a damage size. Some damage types are not easily characterized by a single scalar metric. Other sensing paradigms, such as structural health monitoring, could theoretically replace NDT but require a POD estimate. And the cost of performing large empirical studies to estimate POD can be prohibitive. The response of the research community has been to develop new methods that can be used to generate the same information, POD, in a form that can be used by engineering designers. This paper will highlight approaches to image-based data and complex defects, Model Assisted POD estimation, and Bayesian methods for combining information. This paper will also review the relationship of the POD estimate, confidence bounds, tolerance bounds, and risk assessment.

  16. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  17. A method for experimental modal separation

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1977-01-01

    A method is described for the numerical simulation of multiple-shaker modal survey testing using simulated experimental data to optimize the shaker force-amplitude distribution for the purpose of isolating individual modes of vibration. Inertia, damping, stiffness, and model data are stored on magnetic disks, available by direct access to the interactive FORTRAN programs which perform all computations required by this relative force amplitude distribution method.

  18. Advanced Sorbents as a Versatile Platform for Gas Separation

    SciTech Connect

    Neil Stephenson

    2003-09-30

    The program objective was to develop materials and processes for industrial gas separations to reduce energy use and enable waste reduction. The approach chosen combined novel oxygen selective adsorbents and pressure swing adsorption (PSA) processes. Preliminary materials development and process simulation results indicated that oxygen selective adsorbents could provide a versatile platform for industrial gas separations. If fully successful, this new technology offered the potential for reducing the cost of producing nitrogen/oxygen co-products, high purity nitrogen, argon, and possibly oxygen. The potential energy savings for the gas separations are appreciable, but the end users are the main beneficiaries. Lowering the cost of industrial gases expands their use in applications that can employ them for reducing energy consumption and emissions.

  19. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  20. Recent advances in lattice Boltzmann methods

    SciTech Connect

    Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.

    1998-12-31

    In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.

  1. Method of filling a microchannel separation column

    DOEpatents

    Arnold, Don W.

    2002-01-01

    A method for packing a stationary phase into a small diameter fluid passageway or flow channel. Capillary action is employed to distribute a stationary phase uniformly along both the length and diameter of the flow channel. The method disclosed here: 1) eliminates the need for high pressure pumps and fittings and the safety hazards associated therewith; 2) allows the use of readily available commercial microparticles, either coated or uncoated, as the stationary phase; 3) provides for different types of particles, different particle sizes, and different particle size distributions to be packed in sequence, or simultaneously; 4) eliminates the need for plugging the flow channel prior to adding the stationary phase to retain the packing particles; and 5) many capillaries can be filled simultaneously.

  2. Secondary battery containing zinc electrode with modified separator and method

    DOEpatents

    Poa, D.S.

    1984-02-16

    A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.

  3. Secondary battery containing zinc electrode with modified separator and method

    DOEpatents

    Poa, David S.; Yao, Neng-Ping

    1985-01-01

    A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.

  4. Method for packed column separations and purifications

    DOEpatents

    Holman, David A.; Bruckner-Lea, Cynthia J.; Brockman, Fred J.; Chandler, Darrell P.

    2006-08-15

    The invention encompasses a method of packing and unpacking a column chamber. A mixture of a fluid and a matrix material are introduced through a column chamber inlet so that the matrix material is packed within a column chamber to form a packed column. The column chamber having the column chamber inlet or first port for receiving the mixture further has an outlet port and an actuator port. The outlet port is partially closed for capturing the matrix material and permitting the fluid to flow therepast by rotating relative one to the other of a rod placed in the actuator port. Further rotation relative one to the other of the rod and the column chamber opens the outlet and permits the matrix material and the fluid to flow therethrough thereby unpacking the matrix material from the column chamber.

  5. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  6. Grouped actinide separation in advanced nuclear fuel cycles

    SciTech Connect

    Glatz, J.P.; Malmbeck, R.; Ougier, M.; Soucek, P.; Murakamin, T.; Tsukada, T.; Koyama, T.

    2013-07-01

    Aiming at cleaner waste streams (containing only the short-lived fission products) a partitioning and transmutation (P-T) scheme can significantly reduce the quantities of long-lived radionuclides consigned to waste. Many issues and options are being discussed and studied at present in view of selecting the optimal route. The choice is between individual treatment of the relevant elements and a grouped treatment of all actinides together. In the European Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), grouped separation options derived from an aqueous extraction or from a dry pyroprocessing route were extensively investigated. Successful demonstration tests for both systems have been carried out in the frame of this project. The aqueous process called GANEX (Grouped Actinide Extraction) is composed of 2 cycles, a first one to recover the major part of U followed by a co-extraction of Np, Pu, Am, and Cm altogether. The pyro-reprocessing primarily applicable to metallic fuels such as the U-Pu-Zr alloy originally developed by the Argonne National Laboratory (US) in the mid 1980s, has also been applied to the METAPHIX fuels containing up to 5% of minor actinides and 5% of lanthanides (e.g. U{sub 60}Pu{sub 20}-Zr{sub 10}Am{sub 2}Nd{sub 3.5}Y{sub 0.5}Ce{sub 0.5}Gd{sub 0.5}). A grouped actinide separation has been successfully carried out by electrorefining on solid Al cathodes. At present the recovery of the actinides from the alloy formed with Al upon electrodeposition is under investigation, because an efficient P-T cycle requires multiple re-fabrication and re-irradiation. (authors)

  7. Recent advances on separation and characterization of human milk oligosaccharides.

    PubMed

    Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola

    2016-06-01

    Free human milk oligosaccharides (HMOs) are unique due to their highly complex nature and important emerging biological and protective functions during early life such as prebiotic activity, pathogen deflection, and epithelial and immune cell modulation. Moreover, four genetically determined heterogeneous HMO secretory groups are known to be based on their structure and composition. Over the years, several analytical techniques have been applied to characterize and quantitate HMOs, including nuclear magnetic resonance spectroscopy, high-performance liquid chromatography (HPLC), high pH anion-exchange chromatography, off-line and on-line mass spectrometry (MS), and capillary electrophoresis (CE). Even if these techniques have proven to be efficient and simple, most glycans have no significant UV absorption and derivatization with fluorophore groups prior to separation usually results in higher sensitivity and an improved chromatographic/electrophoretic profile. Consequently, the analysis by HPLC/CE of derivatized milk oligosaccharides with different chromophoric active tags has been developed. However, UV or fluorescence detection does not provide specific structural information and this is a key point in particular related to the highly complex nature of the milk glycan mixtures. As a consequence, for a specific determination of complex mixtures of oligomers, analytical separation is usually required with evaluation by means of MS, which has been successfully applied to HMOs, resulting in efficient compositional analysis and profiling in various milk samples. This review aims to give an overview of the current state-of-the-art techniques used in HMO analysis. PMID:26801168

  8. METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON

    DOEpatents

    Jenkins, F.A.

    1958-05-01

    Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.

  9. Method for preparing membranes with adjustable separation performance

    DOEpatents

    Peterson, Eric S.; Orme, Christopher J.; Stone, Mark L.

    1995-01-01

    Methods for adjustable separation of solutes and solvents involve the combination of the use of a maximally swollen membrane and subsequent vacuum depressurization exerted on the permeate side of that membrane. By adjusting the extent of depressurization it is possible to separate solvent from solutes and solutes from each other. Improved control of separation parameters as well as improved flux rates characterize the present invention.

  10. Method for preparing membranes with adjustable separation performance

    DOEpatents

    Peterson, E.S.; Orme, C.J.; Stone, M.L.

    1995-01-31

    Methods for adjustable separation of solutes and solvents involve the combination of the use of a maximally swollen membrane and subsequent vacuum depressurization exerted on the permeate side of that membrane. By adjusting the extent of depressurization it is possible to separate solvent from solutes and solutes from each other. Improved control of separation parameters as well as improved flux rates characterize the present invention. 2 figs.

  11. Closed cyclone FCC catalyst separation method and apparatus

    SciTech Connect

    Haddad, J.H.; Owen, H.; Schatz, W.

    1991-08-13

    This patent describes a method of fluid catalytic cracking of a hydrocarbon feed. It comprises passing a mixture of the hydrocarbon feed and a catalyst as a suspension, through a riser conversion zone and cracking the hydrocarbon feed in the riser conversion zone; passing the mixture from the riser conversion zone through a first enclosed conduit to a riser cyclone separator; separating at least a portion of the catalyst from the mixture in the riser cyclone separator; passing gaseous effluent from the riser cyclone separator through a second conduit to a primary cyclone separator; passing cracked hydrocarbons, as an effluent from the primary cyclone separator, to a downstream fractionation apparatus; contacting the separated catalyst from the riser cyclone separator and from the primary cyclone separator in a stripping zone with a stripping gas to strip hydrocarbons from the separated catalyst; and removing stripping gas and stripped hydrocarbons removed from the catalyst by the stripping gas from the reactor vessel, and passing the separated catalyst from the stripping zone to a regeneration vessel.

  12. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future. PMID:26032605

  13. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W. Thor

    1998-01-01

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.

  14. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W.T.

    1998-06-02

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.

  15. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  16. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    SciTech Connect

    Pope, N.G.; Yarbro, S.L.; Schreiber, S.B.; Day, R.S.

    1992-03-01

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas.

  17. 41 CFR 302-3.517 - May we issue travel advances for separation relocation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May we issue travel advances for separation relocation? 302-3.517 Section 302-3.517 Public Contracts and Property Management... SPECIFIC TYPE Agency Responsibilities Ses Separation for Retirement § 302-3.517 May we issue...

  18. 41 CFR 302-3.517 - May we issue travel advances for separation relocation?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false May we issue travel advances for separation relocation? 302-3.517 Section 302-3.517 Public Contracts and Property Management... SPECIFIC TYPE Agency Responsibilities Ses Separation for Retirement § 302-3.517 May we issue...

  19. Systems and methods for separating a multiphase fluid

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M. (Inventor); Thomas, Evan A. (Inventor); Graf, John C. (Inventor)

    2011-01-01

    Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.

  20. Application of a Plasma Mass Separator to Advanced LWR Spent Fuel Reprocessing

    SciTech Connect

    Freeman, Richard; Miller, Robert; Papay, Larry; Wagoner, John; Ahlfeld, Charles; Czerwinski, Ken

    2006-07-01

    The US Department of Energy (DOE) is investigating spent fuel reprocessing for the purposes of increasing the effective capacity of a deep geological repository, reducing the radiotoxicity of waste placed in the repository and conserving nuclear fuel resources. DOE is considering hydro-chemical processing of the spent fuel after cutting the fuel cladding and fuel dissolution in nitric acid. The front end process, known as UREX, is largely based on the PUREX process and extracts U, Tc as well as fission product gases. A number of additional processing steps have become known as UREX+. One of the steps includes a further chemical treatment of remove Cs and Sr to reduce repository heat load. Other steps include successive extraction of the actinides from residual fission products, including the lanthanides. The additional UREX+ processing renders the actinides suitable for burning as reactor fuel in an advanced reactor to convert actinides to shorter-lived fission products and to produce power. New methods for separating groups of elements by their atomic mass have been developed and can be exploited to enhance spent fuel reprocessing. These physical processes dry the waste streams so that they can be vaporized and singly ionized in plasma that is contained in longitudinal magnetic and perpendicular electric fields. Proper configuration of the fields causes the plasma to rapidly rotate and expel heavier mass ions at the center of the machine. Lower mass ions form closed orbits within the cylindrical plasma column and are transported to either end of the machine. This plasma mass separator was originally developed to reduce the mass of material that must be immobilized in borosilicate glass from DOE defense waste at former weapons production facilities. The plasma mass separator appears to be well-suited for processing the UREX raffinate and solids streams by exploiting the large atomic mass gap that exists between lanthanides (< {approx}180 amu) and actinides

  1. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  2. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, Edward S.; Koutny, Lance B.; Hogan, Barry L.; Cheung, Chan K.; Ma, Yinfa

    1993-03-09

    A means and method for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  3. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, E.S.; Koutny, L.B.; Hogan, B.L.; Cheung, C.K.; Yinfa Ma.

    1993-03-09

    A means and method are described for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  4. Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures.

    PubMed

    Jutten, Christian; Karhunen, Juha

    2004-10-01

    In this paper, we review recent advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixing models. After a general introduction to BSS and ICA, we discuss in more detail uniqueness and separability issues, presenting some new results. A fundamental difficulty in the nonlinear BSS problem and even more so in the nonlinear ICA problem is that they provide non-unique solutions without extra constraints, which are often implemented by using a suitable regularization. In this paper, we explore two possible approaches. The first one is based on structural constraints. Especially, post-nonlinear mixtures are an important special case, where a nonlinearity is applied to linear mixtures. For such mixtures, the ambiguities are essentially the same as for the linear ICA or BSS problems. The second approach uses Bayesian inference methods for estimating the best statistical parameters, under almost unconstrained models in which priors can be easily added. In the later part of this paper, various separation techniques proposed for post-nonlinear mixtures and general nonlinear mixtures are reviewed. PMID:15593377

  5. A dry-surface coating method for visualization of separation

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.

    1981-01-01

    A simple and reasonably accurate dry-surface coating method for the visualization of the separation line on a bluff body is described. This method is not restricted to any particular Reynolds-number range and it supplies a clear permanent record of good photographic quality. Examination of this technique in visualizing the separation angle on a circular cylinder indicated that it is accurate within about + or - 4 percent.

  6. Covalently functionalized carbon nanostructures and methods for their separation

    DOEpatents

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.

  7. Methods for selective functionalization and separation of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  8. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  9. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  10. Advanced method for making vitreous waste forms

    SciTech Connect

    Pope, J.M.; Harrison, D.E.

    1980-01-01

    A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed.

  11. Development of Advanced Membranes Technology Platform for Hydrocarbon Separations

    SciTech Connect

    Kalthod, Dr Dilip

    2010-03-01

    Virtually all natural gas is dehydrated during its production, transmission and storage, mostly by absorption processes. Membranes offer many potential advantages over absorption, including smaller footprints, lighter-weight packages, packaging flexibility, minimal electrical power duty, amenability to expansion due to system modularity, reduced maintenance costs, reduced emissions of heavy hydrocarbons, no liquid waste streams, and amenability to unmanned operation. The latter is particularly valuable because new natural gas sources are generally located in remote onshore and offshore sites. Most commercially-available membranes for natural gas upgrading involve high capital costs, high methane loss and performance degradation from operational upsets – all of which are barriers to their widespread adoption by the industry. The original focus of the project was to develop and demonstrate robust, high-performance membranes for natural gas dehydration. The first task completed was a user needs-and-wants study to 1) clarify the expectations of system fabricators and end users of the new separations equipment, and 2) establish the required technical and commercial targets for the membrane products. Following this, membrane system modeling and membrane development in the lab proceeded in parallel. Membrane module diameter and length, as well as and the fiber outer and inner fiber diameter, were optimized from a mathematical model that accounts for the relevant fluid dynamics and permeation phenomena. Module design was evaluated in the context of overall system design, capital costs and energy consumption, including the process scheme (particularly sweep generation), feed pretreatment, system layout, and process control. This study provided targets for membrane permeation coefficients and membrane geometry in a commercial offering that would be competitive with absorption systems. A commercially-available polymer with good tensile strength and chemical resistance was

  12. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  13. Orbiter Repair Maneuver Contingency Separation Methods and Analysis

    NASA Technical Reports Server (NTRS)

    Machula, Michael

    2005-01-01

    Repairing damaged thermal protection system tile requires the Space Shuttle to be oriented such that repair platform access from the International Space Station (ISS) is possible. To do this, the Space Shuttle uses the Orbiter Repair Maneuver (ORM), which utilizes the Shuttle Remote Manipulator System (SRMS) to rotate the Space Shuttle in relation to the ISS, for extended periods of time. These positions cause difficulties and challenges to performing a safe separation (no collision or thruster plume damage to sensitive ISS structures) should an inadvertent release occur or a contingency procedure require it. To help protect for an SRMS failure or other failures, a method for separating without collision and the ability to redock to ISS from the ORM configuration was needed. The contingency ORM separation solution elegantly takes advantage of orbital mechanics between ISS and the separating Space Shuttle. By pitching the ISS down approximately 45 degrees, in a majority of the ORM repair positions, the altitude difference between the ISS and Space Shuttle center of gravity is maximized. This altitude difference results in different orbital energies (orbital periods) causing objects to separate from each other without requiring translational firings. Using this method, a safe contingency ORM separation is made possible in many odd positions even though some separation positions point high powered thrusters directly at fragile ISS and Soyuz solar arrays. Documented in this paper are the development simulations and procedures of the contingency ORM separation and the challenges encountered with large constraints to work around. Lastly, a method of returning to redock with the ISS to pick up the stranded crew members (or transfer the final crew members) is explained as well as the thruster and ISS loads analysis.

  14. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  15. Advanced Characterization of Molecular Interactions in TALSPEAK-like Separations Systems

    SciTech Connect

    Nash, Kenneth; Guelis, Artem; Lumetta, Gregg J.; Sinkov, Sergey

    2015-10-21

    Combining unit operations in advanced aqueous reprocessing schemes brings obvious process compactness advantages, but at the same time greater complexity in process design and operation. Unraveling these interactions requires increasingly sophisticated analytical tools and unique approaches for adequate analysis and characterization that probe molecular scale interactions. Conventional slope analysis methods of solvent extraction are too indirect to provide much insight into such interactions. This project proposed the development and verification of several analytical tools based on studies of TALSPEAK-like aqueous processes. As such, the chemistry of trivalent fission product lanthanides, americium, curium, plutonium, neptunium and uranium figure prominently in these studies. As the project was executed, the primary focus fell upon the chemistry or trivalent lanthanides and actinides. The intent of the investigation was to compare and contrast the results from these various complementary techniques/studies to provide a stronger basis for predicting the performance of extractant/diluent mixtures as media for metal ion separations. As many/most of these techniques require the presence of metal ions at elevated concentrations, it was expected that these studies would take this investigation into the realm of patterns of supramolecular organization of metal complexes and extractants in concentrated aqueous/organic media. We expected to advance knowledge of the processes that enable and limit solvent extraction reactions as a result of the application of fundamental chemical principles to explaining interactions in complex media.

  16. [Methods of advanced purification-the challenge for biosynthetic antibiotics industry].

    PubMed

    Oniscu, C; Caşcaval, D; Galaction, Anca-Irina

    2002-01-01

    Reactive extraction, permeation through liquid membranes and direct extraction are some of the new techniques applied for separation and advanced purification of biosynthetic antibiotics. Compared with the conventional separation techniques, the main advantages of these extraction methods are: high separation efficiency, the avoidance of antibiotics chemical and thermal inactivation, high purity of obtained antibiotics. Furthermore, using reactive extraction or permeation through liquid membrane, the antibiotics can be selective separated from their biosynthesis precursors or from the secondary biosynthetic compounds. This paper is a review on separation of Penicillins and Erythromycin by means of these extraction techniques, being underlined their advantages, applications and problems concerning the separation process scale-up. PMID:12638304

  17. Article separation apparatus and method for unit operations

    SciTech Connect

    Pardini, Allan F.; Gervais, Kevin L.; Mathews, Royce A.; Hockey, Ronald L.

    2010-06-22

    An apparatus and method are disclosed for separating articles from a group of articles. The apparatus includes a container for containing one or more articles coupled to a suitable fluidizer for suspending articles within the container and transporting articles to an induction tube. A portal in the induction tube introduces articles singly into the induction tube. A vacuum pulls articles through the induction tube separating the articles from the group of articles in the container. The apparatus and method can be combined with one or more unit operations or modules, e.g., for inspecting articles, assessing quality of articles, or ascertaining material properties and/or parameters of articles, including layers thereof.

  18. Method and apparatus for component separation using microwave energy

    DOEpatents

    Morrow, Marvin S.; Schechter, Donald E.; Calhoun, Jr., Clyde L.

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  19. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  20. Mode separation of Lamb waves based on dispersion compensation method.

    PubMed

    Xu, Kailiang; Ta, Dean; Moilanen, Petro; Wang, Weiqi

    2012-04-01

    Ultrasonic Lamb modes typically propagate as a combination of multiple dispersive wave packets. Frequency components of each mode distribute widely in time domain due to dispersion and it is very challenging to separate individual modes by traditional signal processing methods. In the present study, a method of dispersion compensation is proposed for the purpose of mode separation. This numerical method compensates, i.e., compresses, the individual dispersive waveforms into temporal pulses, which thereby become nearly un-overlapped in time and frequency and can thus be extracted individually by rectangular time windows. It was further illustrated that the dispersion compensation also provided a method for predicting the plate thickness. Finally, based on reversibility of the numerical compensation method, an artificial dispersion technique was used to restore the original waveform of each mode from the separated compensated pulse. Performances of the compensation separation techniques were evaluated by processing synthetic and experimental signals which consisted of multiple Lamb modes with high dispersion. Individual modes were extracted with good accordance with the original waveforms and theoretical predictions. PMID:22501050

  1. Advanced Bayesian Method for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Center, Julian

    2015-01-01

    Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.

  2. Recent advances in nuclear physics through on-line isotope separation

    NASA Astrophysics Data System (ADS)

    Jenkins, David Gareth

    2014-12-01

    Nuclear physics is advancing rapidly at the precision frontier, where measurements of nuclear observables are challenging state-of-the-art nuclear models. A major contribution is associated with the increasing availability of accelerated beams of radioactive ions produced using the isotope separation on-line technique. These advances have come hand in hand with significant progress in the development of high-efficiency detector systems and improved target technologies which are invaluable in exploiting these beams to their full advantage. This article reviews some of the recent highlights in the field of nuclear structure profiting from these technological advances.

  3. Method and apparatus for physical separation of different sized nanostructures

    DOEpatents

    Roberts, Christopher B.; Saunders, Steven R.

    2012-07-10

    The present application provides apparatuses and methods for the size-selective fractionation of ligand-capped nanoparticles that utilizes the tunable thermophysical properties of gas-expanded liquids. The nanoparticle size separation processes are based on the controlled reduction of the solvent strength of an organic phase nanoparticle dispersion through increases in concentration of the antisolvent gas, such as CO.sub.2, via pressurization. The method of nanomaterial separation contains preparing a vessel having a solvent and dispersed nanoparticles, pressurizing the chamber with a gaseous antisolvent, and causing a first amount of the nanoparticles to precipitate, transporting the solution to a second vessel, pressurizing the second vessel with the gaseous antisolvent and causing further nanoparticles to separate from the solution.

  4. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  5. Separation methods and chemical and nutritional characteristics of tomato pomace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato processing generates a large amount of pomace as a low value by-product primarily used as livestock feed or disposed. The objectives of this research were to investigate the chemical and nutritional characteristics and determine effective separation methods of peel and seed of commercial toma...

  6. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  7. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    ERIC Educational Resources Information Center

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to extracting pigments by a…

  8. Advanced Analysis Methods in High Energy Physics

    SciTech Connect

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  9. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  10. Method and apparatus for detecting laminar flow separation and reattachment

    NASA Technical Reports Server (NTRS)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)

    1990-01-01

    The invention is a method and apparatus for simultaneously detecting laminar separation and reattachment of a fluid stream such as an airstream from and to the upper surface of an airfoil by simultaneously sensing and comparing a plurality of output signals. Each signal represents the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of the airfoil that extends parallel to the airstream. The output signals are simultaneously compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment.

  11. Separability criteria and method of measurement for entanglement

    SciTech Connect

    Mohd, Siti Munirah; Idrus, Bahari; Mukhtar, Muriati

    2014-06-19

    Quantum computers have the potentials to solve certain problems faster than classical computers. In quantum computer, entanglement is one of the elements beside superposition. Recently, with the advent of quantum information theory, entanglement has become an important resource for Quantum Information and Computation. The purpose of this paper is to discuss the separability criteria and method of measurement for entanglement. This paper is aimed at viewing the method that has been proposed in previous works in bipartite and multipartite entanglement. The outcome of this paper is to classify the different method that used to measure entanglement for bipartite and multipartite cases including the advantage and disadvantage of each method.

  12. Methods of separation of variables in turbulence theory

    NASA Technical Reports Server (NTRS)

    Tsuge, S.

    1978-01-01

    Two schemes of closing turbulent moment equations are proposed both of which make double correlation equations separated into single-point equations. The first is based on neglected triple correlation, leading to an equation differing from small perturbed gasdynamic equations where the separation constant appears as the frequency. Grid-produced turbulence is described in this light as time-independent, cylindrically-isotropic turbulence. Application to wall turbulence guided by a new asymptotic method for the Orr-Sommerfeld equation reveals a neutrally stable mode of essentially three dimensional nature. The second closure scheme is based on an assumption of identity of the separated variables through which triple and quadruple correlations are formed. The resulting equation adds, to its equivalent of the first scheme, an integral of nonlinear convolution in the frequency describing a role due to triple correlation of direct energy-cascading.

  13. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, Richard D.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

  14. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  15. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  16. Method and apparatus for detecting laminar flow separation and reattachment

    NASA Technical Reports Server (NTRS)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)

    1989-01-01

    The invention is a method and apparatus for detecting laminar flow separation and flow reattachment of a fluid stream by simultaneously sensing and comparing a plurality of output signals, each representing the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of an airfoil or the like that extends parallel to the fluid stream. The output signals are concurrently compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment. The novelty in this invention is the discovery and use of the phase reversal phenomena to detect laminar separation and attachment of a fluid stream from any surface such as an airfoil supported therein.

  17. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, King Cheung

    1993-01-27

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed non-destructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  18. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, K.C.

    1992-01-01

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis (CE) was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed nondestructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  19. Novel Detection Method of Liquid-Liquid Phase Separation

    NASA Astrophysics Data System (ADS)

    Kato, Hitoshi; Katayanagi, Hideki; Koga, Yoshikata; Nishikawa, Keiko

    2004-12-01

    A novel method of determining a liquid-liquid phase boundary was developed. This method is based on our discovery that a nascent low-density phase is attracted to the center of a Rankine vortex at the onset of phase separation. Thus a liquid-liquid phase boundary is detected easily, rapidly, and accurately. The phase diagrams of the ternary systems NaCl-H2O-1-propanol and NaCl-H2O-1-butanol were obtained by this method. The results matched well with literature values.

  20. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER)

    SciTech Connect

    1995-05-19

    {open_quotes}Evaluation Engineering and Development of Advanced Cyclone Processes{close_quotes} is one of the DOE-PETC sponsored advanced coal cleaning projects, which share a number of specific goals. These goals are to produce a 6% ash product, reject 85% of the parent coal`s pyritic sulfur, recover 85% of the parent coal`s Btu value, and provide products that are less than 30% moisture. The process in this project, as the name implies, relies on a cyclone or cyclonic separator to achieve physical beneficiation based on the gravimetric differences between clean coal and its impurities. Just as important as the cyclonic separator, if not more so, is the selection of a parting liquid or medium for use in the separator. Selection of a separating medium is regarded as a significant portion of the project because it has a profound impact on the required unit operations, the performance of the separator, and economics of the process. The choice of medium especially influences selection of media recovery system(s), and the characteristics of clean coal and refuse products. Since medium selection is such an important aspect of the project, portions of the project are dedicated to the study, evaluation, and selection of the most desirable medium. Though separators are an important component, this project initially focused on media study, rather than the separators themselves. In coal processing, discussion of media requires description of the handling and recovery system(s), separation performance, interaction with coal, cost, and health, environmental and safety issues. In order to be effective, a candidate must perform well in all of these categories.

  1. Separation and/or sequestration apparatus and methods

    DOEpatents

    Rieke, Peter C; Towne, Silas A; Coffey, Greg W; Appel, Aaron M

    2015-02-03

    Apparatus for separating CO.sub.2 from an electrolyte solution are provided. Example apparatus can include: a vessel defining an interior volume and configured to house an electrolyte solution; an input conduit in fluid communication with the interior volume; an output conduit in fluid communication with the interior volume; an exhaust conduit in fluid communication with the interior volume; and an anode located within the interior volume. Other example apparatus can include: an elongated vessel having two regions; an input conduit extending outwardly from the one region; an output conduit extending outwardly from the other region; an exhaust conduit in fluid communication with the one region; and an anode located within the one region. Methods for separating CO.sub.2 from an electrolyte solution are provided. Example methods can include: providing a CO.sub.2 rich electrolyte solution to a vessel containing an anode; and distributing hydrogen from the anode to acidify the electrolyte solution.

  2. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  3. A Method to Separate Stochastic and Deterministic Information from Electrocardiograms

    NASA Astrophysics Data System (ADS)

    Gutiérrez, R. M.; Sandoval, L. A.

    2005-01-01

    In this work we present a new idea to develop a method to separate stochastic and deterministic information contained in an electrocardiogram, ECG, which may provide new sources of information with diagnostic purposes. We assume that the ECG has information corresponding to many different processes related with the cardiac activity as well as contamination from different sources related with the measurement procedure and the nature of the observed system itself. The method starts with the application of an improved archetypal analysis to separate the mentioned stochastic and deterministic information. From the stochastic point of view we analyze Renyi entropies, and with respect to the deterministic perspective we calculate the autocorrelation function and the corresponding correlation time. We show that healthy and pathologic information may be stochastic and/or deterministic, can be identified by different measures and located in different parts of the ECG.

  4. Method for sequential injection of liquid samples for radioisotope separations

    DOEpatents

    Egorov, Oleg B.; Grate, Jay W.; Bray, Lane A.

    2000-01-01

    The present invention is a method of separating a short-lived daughter isotope from a longer lived parent isotope, with recovery of the parent isotope for further use. Using a system with a bi-directional pump and one or more valves, a solution of the parent isotope is processed to generate two separate solutions, one of which contains the daughter isotope, from which the parent has been removed with a high decontamination factor, and the other solution contains the recovered parent isotope. The process can be repeated on this solution of the parent isotope. The system with the fluid drive and one or more valves is controlled by a program on a microprocessor executing a series of steps to accomplish the operation. In one approach, the cow solution is passed through a separation medium that selectively retains the desired daughter isotope, while the parent isotope and the matrix pass through the medium. After washing this medium, the daughter is released from the separation medium using another solution. With the automated generator of the present invention, all solution handling steps necessary to perform a daughter/parent radionuclide separation, e.g. Bi-213 from Ac-225 "cow" solution, are performed in a consistent, enclosed, and remotely operated format. Operator exposure and spread of contamination are greatly minimized compared to the manual generator procedure described in U.S. patent application Ser. No. 08/789,973, now U.S. Pat. No. 5,749,042, herein incorporated by reference. Using 16 mCi of Ac-225 there was no detectable external contamination of the instrument components.

  5. Advanced flight hardware for organic separations using aqueous two-phase partitioning

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1996-03-01

    Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  6. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2009-11-09

    A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

  7. Matched filtering method for separating magnetic anomaly using fractal model

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming; Zhang, Henglei

    2016-05-01

    Fractal/scaling distribution of magnetization in the crust has found with growing body of evidences from spectral analysis of borehole susceptibility logs and magnetic field data, and fractal properties of magnetic sources have already been considered in processing magnetic data such as the Spector and Grant method for depth determination. In this study, the fractal-based matched filtering method is presented for separating magnetic anomalies caused by fractal sources. We argue the benefits of considering fractal natures of source distribution for data processing in magnetic exploration: the first is that the depth determination can be improved by using multiscaling model to interpret the magnetic data power spectrum; the second is that the matched filtering can be reconstructed by employing the difference in scaling exponent together with the corrected depth and amplitude estimates. In the application of synthetic data obtained from fractal modeling and real aeromagnetic data from the Qikou district of China, the proposed fractal-based matched filtering method obtains more reliable depth estimations as well as improved separation between local anomalies (caused by volcanic rocks) and regional field (crystalline basement) in comparison with the conventional matched filtering method.

  8. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge.

    PubMed

    Wilcox, Jennifer; Haghpanah, Reza; Rupp, Erik C; He, Jiajun; Lee, Kyoungjin

    2014-01-01

    Reducing CO2 in the atmosphere and preventing its release from point-source emitters, such as coal and natural gas-fired power plants, is a global challenge measured in gigatons. Capturing CO2 at this scale will require a portfolio of gas-separation technologies to be applied over a range of applications in which the gas mixtures and operating conditions will vary. Chemical scrubbing using absorption is the current state-of-the-art technology. Considerably less attention has been given to other gas-separation technologies, including adsorption and membranes. It will take a range of creative solutions to reduce CO2 at scale, thereby slowing global warming and minimizing its potential negative environmental impacts. This review focuses on the current challenges of adsorption and membrane-separation processes. Technological advancement of these processes will lead to reduced cost, which will enable subsequent adoption for practical scaled-up application. PMID:24702296

  9. 7 CFR 27.92 - Method of payment; advance deposit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of payment; advance deposit. 27.92 Section 27... Micronaire § 27.92 Method of payment; advance deposit. Any payment or advance deposit under this subpart...,” and may not be made in cash except in cases where the total payment or deposit does not exceed...

  10. Soil separator and sampler and method of sampling

    DOEpatents

    O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID

    2010-02-16

    A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.

  11. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    1959-08-01

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  12. Advanced electromagnetic methods for aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-06-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  13. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories. PMID:26220303

  14. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  15. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  16. RAMSES: Applied research on separation methods using space electrophoresis

    NASA Astrophysics Data System (ADS)

    Jamin Changeart, F.; Faure, F.; Sanchez, V.; Schoot, B.; Simonis, M.; Renard, A.; Collete, J. P.; Perez, D.; Val, J. M.; de Olano, A. l.

    Eight european industrial companies, the CNRS and University Paul Sabatier and CNES/ Centre National d'Etudes Spatiales collaborate on the SBS (Space Bio Separation) project which aims at demonstrating the possibility of preparing high-purity biomaterials under microgravity conditions. As a first step of SBS, the proposal of a cooperative flight of the RAMSES facility on board Spacelab during the IML-2 mission, scheduled January 1993, has been selected by NASA. RAMSES allows basic and applied research on free flow zone electrophoresis, in order to assess the influence of a low-gravity environment on the purification of biological products. Experiments will be performed by European and American scientists. The facility will be integrated in a Spacelab single rack. Using in situ diagnostics with a U.V. photometer and a cross illuminator, RAMSES investigates a wide variety of transport phenomena to better understand the basic mechanisms which govern electrophoresis method. RAMSES should be a basis for a more complete facility dedicated to the purification of biomaterials, associating various separation methods. This paper will provide an overview of this space facility RAMSES with emphasis on continuous flow zone electrophoresis technique, scientific back-ground, RAMSES experimental program, RAMSES main functions and an overall description of the RAMSES main units.

  17. A separable shadow Hamiltonian hybrid Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Sweet, Christopher R.; Hampton, Scott S.; Skeel, Robert D.; Izaguirre, Jesús A.

    2009-11-01

    Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's performance is limited by the need to generate momenta for the MD step from a nonseparable shadow Hamiltonian. We introduce the separable shadow Hamiltonian hybrid Monte Carlo (S2HMC) method based on a formulation of the leapfrog/Verlet integrator that corresponds to a separable shadow Hamiltonian, which allows efficient generation of momenta. S2HMC gives the acceptance rate of a fourth order integrator at the cost of a second-order integrator. Through numerical experiments we show that S2HMC consistently gives a speedup greater than two over HMC for systems with more than 4000 atoms for the same variance. By comparison, SHMC gave a maximum speedup of only 1.6 over HMC. S2HMC has the additional advantage of not requiring any user parameters beyond those of HMC. S2HMC is available in the program PROTOMOL 2.1. A Python version, adequate for didactic purposes, is also in MDL (http://mdlab.sourceforge.net/s2hmc).

  18. Effects of substrate and separation method on acrosin amidase measurements.

    PubMed

    Breden, T G; Berg, R; Plotka, E D

    1996-01-01

    The purpose of this study was to increase the accuracy and reproducibility of the acrosin amidase assay and to assess the effects of different methods of sperm isolation on total sperm acrosin activity. Specific acrosin activity was measured by the procedure described by Kennedy et al (1989) comparing the usual substrate, N-alpha-benzoyl-DL-arginine-p-nitroanalide hydrochloride (DL-BAPNA) with the L-(L-BAPNA) and D-(D-BAPNA) isomers. Activity measurements were also compared on sperm isolated by methods: (1) centrifugation through buffered Ficoll, (2) method 1 plus an additional wash in buffered Ficoll, (3) back addition of supernatant from method 1 to spermatozoa isolated by method 2, and (4) swim-up into synthetic human tubal fluid media (mHTF) and using L-BAPNA. The specific activity of acrosin was dependent on substrate concentration up to 2.1 mM DL-BAPNA and 2 mM L-BAPNA. The maximum reliable solubility of DL-BAPNA was approximately 2.1 mM in 10% dimethylsulfoxide (DMSO):90% detergent buffer. There were no solubility constraints for L-BAPNA through 6.3 mM (> 5 times Km). D-BAPNA (1 mM) was not hydrolyzed by acrosin. Mean specific acrosin activity was higher using 6.3 mM L-BAPNA (159 +/- 11.4 microIU/10(6) sperm) than with 2.1 mM DL-BAPNA (81.4 +/- 10.9 microIU/10(6) sperm; P < 0.001, n = 16). Sperm isolated by methods 2 and 4 had higher specific acrosin activity than sperm isolated by method 1 (P = 0.002). Sperm treated per method 3 had similar acrosin activity as sperm isolated by method 1 (140 +/- 14.1 vs. 149 +/- 13.8 microIU/10(6) sperm). The K(m) for acrosin, calculated through 6.3 mM L-BAPNA, was 0.6 microIU/10(6) sperm. L-BAPNA is superior to DL-BAPNA as substrate for a clinical acrosin assay, increasing the reproducibility and accuracy of the assay. Simple Ficoll separation is not completely effective at removing acrosin inhibitors and additional separation steps may be necessary to assess true acrosin activity. PMID:8889708

  19. Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Stewart, M. K.

    2015-06-01

    Understanding and modelling the relationship between rainfall and runoff has been a driving force in hydrology for many years. Baseflow separation and recession analysis have been two of the main tools for understanding runoff generation in catchments, but there are many different methods for each. The new baseflow separation method presented here (the bump and rise method or BRM) aims to accurately simulate the shape of tracer-determined baseflow or pre-event water. Application of the method by calibrating its parameters, using (a) tracer data or (b) an optimising method, is demonstrated for the Glendhu Catchment, New Zealand. The calibrated BRM algorithm is then applied to the Glendhu streamflow record. The new recession approach advances the thesis that recession analysis of streamflow alone gives misleading information on catchment storage reservoirs because streamflow is a varying mixture of components of very different origins and characteristics (at the simplest level, quickflow and baseflow as identified by the BRM method). Recession analyses of quickflow, baseflow and streamflow show that the steep power-law slopes often observed for streamflow at intermediate flows are artefacts due to mixing and are not representative of catchment reservoirs. Applying baseflow separation before recession analysis could therefore shed new light on water storage reservoirs in catchments and possibly resolve some current problems with recession analysis. Among other things it shows that both quickflow and baseflow reservoirs in the studied catchment have (non-linear) quadratic characteristics.

  20. Materials and methods for the separation of oxygen from air

    DOEpatents

    MacKay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2003-07-15

    Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: O.sub.5+z where: x and x' are greater than 0; y and y' are greater than 0; x+x' is equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B" is Co or Mg, with the exception that when B" is Mg, A' and A" are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.

  1. ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES

    DOEpatents

    Hyde, E.K.; Raby, B.A.

    1959-02-10

    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  2. NEW COLUMN SEPARATION METHOD FOR EMERGENCY URINE SAMPLES

    SciTech Connect

    Maxwell, S; Brian Culligan, B

    2007-08-28

    The Savannah River Site Environmental Bioassay Lab participated in the 2007 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2007. A new rapid column separation method was applied directly to the NRIP 2007 emergency urine samples, with only minimal sample preparation to reduce preparation time. Calcium phosphate precipitation, previously used to pre-concentrate actinides and Sr-90 in NRIP 2006 urine and water samples, was not used for the NRIP 2007 urine samples. Instead, the raw urine was acidified and passed directly through the stacked resin columns (TEVA+TRU+SR Resins) to separate the actinides and strontium from the NRIP urine samples more quickly. This improvement reduced sample preparation time for the NRIP 2007 emergency urine analyses significantly. This approach works well for small volume urine samples expected during an emergency response event. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and strontium-90 analyses for NRIP 2007 urine samples.

  3. Method of separation of yttrium-90 from strontium-90

    DOEpatents

    Bray, L.A.; Wester, D.W.

    1996-04-30

    A method is described for purifying Y-90 from a Sr-90/Y-90 ``cow`` wherein raw Sr-90/Y-90 source containing impurities is obtained from nuclear material reprocessing. Raw Sr-90/Y-90 source is purified to a fresh Sr-90/Y-90 source ``cow`` by removing impurities by addition of sodium hydroxide and by removing Cs-137 by further addition of sodium carbonate. The ``cow`` is set aside to allow ingrowth. An HDEHP organic extractant is obtained from a commercial supplier and further purified by saturation with Cu(II), precipitation with acetone, and washing with nitric acid. The ``cow`` is then dissolved in nitric acid and the purified HDEHP is washed with nitric acid and scrubbed with either nitric or hydrochloric acid. The dissolved ``cow`` and scrubbed HDEHP are combined in an organic extraction, separating Y-90 from Sr-90, resulting in a Sr-90/Y-90 concentration ratio of not more than 10(E-7), and a metal impurity concentration of not more than 10 ppm per curie of Y-90. The separated Y-90 may then be prepared for delivery. 1 fig.

  4. Method of separation of yttrium-90 from strontium-90

    DOEpatents

    Bray, Lane A.; Wester, Dennis W.

    1996-01-01

    A method for purifying Y-90 from a Sr-90/Y-90 "cow" wherein raw Sr-90/Y-90 source containing impurities is obtained from nuclear material reprocessing. Raw Sr-90/Y-90 source is purified to a fresh Sr-90/Y-90 source "cow" by removing impurities by addition of sodium hydroxide and by removing Cs-137 by further addition of sodium carbonate. The "cow" is set aside to allow ingrowth. An HDEHP organic extractant is obtained from a commercial supplier and further purified by saturation with Cu(II), precipitation with acetone, and washing with nitric acid. The "cow" is then dissolved in nitric acid and the purified HDEHP is washed with nitric acid and scrubbed with either nitric or hydrochloric acid. The dissolved "cow" and scrubbed HDEHP are combined in an organic extraction, separating Y-90 from Sr-90, resulting in a Sr-90/Y-90 concentration ratio of not more than 10(E-7), and a metal impurity concentration of not more than 10 ppm per curie of Y-90. The separated Y-90 may then be prepared for delivery.

  5. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    SciTech Connect

    Xiao, X.; Kit Heung, L.; Sessions, H.T.

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  6. Recent advances in coupling capillary electrophoresis based separation techniques to ESI and MALDI MS

    PubMed Central

    Zhong, Xuefei; Zhang, Zichuan; Jiang, Shan; Li, Lingjun

    2014-01-01

    Coupling capillary electrophoresis (CE) based separation techniques to mass spectrometry creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with the recently developed CE-MS platforms are also highlighted. PMID:24170529

  7. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  8. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    SciTech Connect

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-09-02

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge.

  9. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGESBeta

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  10. Separator for alkaline batteries and method of making same

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The preparation of membranes suitable for use as separators in concentrated alkaline battery cells by selective solvolysis of copolymers of methacrylate esters with acrylate esters followed by addition of a base and to the resultant products is described. The method of making copolymers by first copolymerizing a methacrylate ester (or esters) with a more readily hydrolyzable ester, followed by a selective saponification whereby the methacrylate ester moieties remain essentially intact and the readily hydrolyzable ester moiety is suponified and to the partial or complete neutralization of the relatively brittle copolymer acid with a base to make membranes which are sufficiently flexible in the dry state so that they may be wrapped around electrodes without damage by handling is described.

  11. CE-ESI-MS for bottom-up proteomics: Advances in separation, interfacing and applications.

    PubMed

    Heemskerk, Anthonius A M; Deelder, André M; Mayboroda, Oleg A

    2016-01-01

    With the development of more sensitive hyphenation strategies for capillary electrophoresis-electrospray-mass spectrometry the technique has reemerged as technique with high separation power combined with high sensitivity in the analysis of peptides and protein digests. This review will discuss the newly developed hyphenation strategies for CE-ESI-MS and their application in bottom-up proteomics as well as the applications in the same time span, 2009 to present, using co-axial sheathliquid. Subsequently all separate aspects in the development of a CE-ESI-MS method for bottom-up proteomics shall be discussed, highlighting certain applications and discussing pros and cons of the various choices. The separation of peptides in a capillary electrophoresis system is discussed including the great potential for modeling of this migration of peptides due to the simple electrophoretic separation process. Furthermore, the technical aspects of method development are discussed, namely; background electrolyte choice, coating of the separation capillary and chosen loading method. Finally, conclusions and an outlook on future developments in the field of bottom-up proteomics by CE-ESI-MS will be provided. PMID:24852088

  12. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    SciTech Connect

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  13. Why Video? How Technology Advances Method

    ERIC Educational Resources Information Center

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  14. Methods for separating oxygen from oxygen-containing gases

    DOEpatents

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  15. RAPID SEPARATION METHOD FOR EMERGENCY WATER AND URINE SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.

    2008-08-27

    The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared to NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.

  16. Graphical Methods for Separating Beam and Target Fragmentation Regions

    NASA Astrophysics Data System (ADS)

    Londergan, J. T.; Mathieu, V.; Szczepaniak, A. P.; Joint Physics Analysis Center Collaboration

    2015-10-01

    For reactions involving three or more final-state particles, graphical methods can help to elucidate the dominant reaction mechanism. Van Hove introduced a longitudinal phase space plot, which categorizes reaction products in terms of their longitudinal moments. We review the construction of such plots, and show how they are useful in separating beam and target fragmentation regimes. We summarize the information that can be obtained from Van Hove plots, and use these plots to analyze reactions with three or four strongly-interacting particles in the final state. As an example, we apply these methods to simulated data for the reaction π- + p -->π- + η (η ') + p . We show how cuts in the Van Hove plot can be utilized to isolate various two-body processes that contribute to this reaction. We also show how the dominant reaction processes change with the beam energy. VM and APS supported by US DOE, Grants DE-AC05-06OR23177 and DE-FG0287-ER40365; JTL by NSF-PHY-1205019.

  17. Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics

    SciTech Connect

    Shen, Yufeng; Smith, Richard D.

    2005-06-01

    We review recent development in separations and mass spectrometric instrumentation for sensitive and high-throughput proteomic analyses. These efforts have been primarily focused on the development of high-efficiency (separation peak capacity of ~103) nanoscale liquid chromatography (nanoLC; e.g., flow rates extending down to ~20 nL/min at optimal separation linear velocities through narrow packed capillaries) in combination with advanced mass spectrometry (MS), including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS. This technology enables MS analysis of low nanogram-level proteomic samples (i.e., nanoscale proteomics) with individual protein identification sensitivity at the low zeptomole-level. The resultant protein measurement dynamic range can reach 106 for nanogram-sized proteomic samples, while more abundant proteins can be detected from complex sub-picogram size proteome samples. The average proteome identification throughput using MS/MS is >200 proteins/h for a ~3 h analysis. These qualities provide the foundation for proteomics studies of single or small populations of cells. The instrumental robustness required for automation and providing high quality routine performance nanoscale proteomic analyses is also discussed.

  18. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  19. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  20. Gas-liquid separator and method of operation

    DOEpatents

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  1. NATO PILOT STUDY ON ADVANCED CANCER RISK ASSESSMENT METHODS

    EPA Science Inventory

    NCEA scientists are participating in a study of advanced cancer risk assessment methods, conducted under the auspices of NATO's Committee on the Challenges of Modern Society. The product will be a book of case studies that illustrate advanced cancer risk assessment methods, avail...

  2. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  3. Comparison of several methods for predicting separation in a compressible turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Gerhart, P. M.; Bober, L. J.

    1974-01-01

    Several methods for predicting the separation point for a compressible turbulent boundary layer were applied to the flow over a bump on a wind-tunnel wall. Measured pressure distributions were used as input. Two integral boundary-layer methods, three finite-difference boundary-layer methods, and three simple methods were applied at five free-stream Mach numbers ranging from 0.354 to 0.7325. Each of the boundary-layer methods failed to explicitly predict separation. However, by relaxing the theoretical separation criteria, several boundary-layer methods were made to yield reasonable separation predictions, but none of the methods accurately predicted the important boundary-layer parameters at separation. Only one of the simple methods consistently predicted separation with reasonable accuracy in a manner consistent with the theory. The other methods either indicated several possible separation locations or only sometimes predicted separation.

  4. Method and Apparatus for Separating Particles by Dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Pant, Kapil (Inventor); Wang, Yi (Inventor); Bhatt, Ketan (Inventor); Prabhakarpandian, Balabhasker (Inventor)

    2014-01-01

    Particle separation apparatus separate particles and particle populations using dielectrophoretic (DEP) forces generated by one or more pairs of electrically coupled electrodes separated by a gap. Particles suspended in a fluid are separated by DEP forces generated by the at least one electrode pair at the gap as they travel over a separation zone comprising the electrode pair. Selected particles are deflected relative to the flow of incoming particles by DEP forces that are affected by controlling applied potential, gap width, and the angle linear gaps with respect to fluid flow. The gap between an electrode pair may be a single, linear gap of constant gap, a single linear gap having variable width, or a be in the form of two or more linear gaps having constant or variable gap width having different angles with respect to one another and to the flow.

  5. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  6. Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report

    SciTech Connect

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  7. Method for Monitored Separation and Collection of Biological Materials

    NASA Technical Reports Server (NTRS)

    Jackson, George William (Inventor); Willson, Richard Coale (Inventor); Fox, George Edward (Inventor)

    2014-01-01

    A device for separating and purifying useful quantities of particles comprises: (a) an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; (b) a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; (c) a power supply connected to the anode and to the cathode; (d) a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; (e) a light source; (f) a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; (g) a photo detector; (h) a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and (i) an ion-exchange membrane in the anolyte reservoir.

  8. Separating acetic acid from furol (furfural) by electrodialysis method

    SciTech Connect

    Guan, S.F.; Li, C.S. Ye, S.T.; Shen, S.Y.; Wang, Y.T.; Yu, S.H.

    1981-01-01

    Furfural production by hydrolysis of fibrous plant materials is accompanied by formation of acetic acid in amounts depending on the material used. The amount of acetic formed in the hydrolysis of the fruit shell of oil-tea camellia (Camellia oleosa) (an oilseed-bearing tree) is equal to the amount of furfural. The acetic acid can be separated from the furfural and concentrated to 10% by electrodialysis. A smaller amount of furfural is separated with acetic acid.

  9. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  10. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  11. Advanced verification methods for OVI security ink

    NASA Astrophysics Data System (ADS)

    Coombs, Paul G.; McCaffery, Shaun F.; Markantes, Tom

    2006-02-01

    OVI security ink +, incorporating OVP security pigment* microflakes, enjoys a history of effective document protection. This security feature provides not only first-line recognition by the person on the street, but also facilitates machine-readability. This paper explores the evolution of OVI reader technology from proof-of-concept to miniaturization. Three different instruments have been built to advance the technology of OVI machine verification. A bench-top unit has been constructed which allows users to automatically verify a multitude of different banknotes and OVI images. In addition, high speed modules were fabricated and tested in a state of the art banknote sorting machine. Both units demonstrate the ability of modern optical components to illuminate and collect light reflected from the interference platelets within OVI ink. Electronic hardware and software convert and process the optical information in milliseconds to accurately determine the authenticity of the security feature. Most recently, OVI ink verification hardware has been miniaturized and simplified providing yet another platform for counterfeit protection. These latest devices provide a tool for store clerks and bank tellers to unambiguously determine the validity of banknotes in the time period it takes the cash drawer to be opened.

  12. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  13. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    PubMed

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies. PMID:26946023

  14. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOEpatents

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  15. Advances in methods for deepwater TLP installations

    SciTech Connect

    Wybro, P.G.

    1995-10-01

    This paper describes a method suitable for installing deepwater TLP structures in water depths beyond 3,000 ft. An overview is presented of previous TLP installation, wherein an evaluation is made of the various methods and their suitability to deepwater applications. A novel method for installation of deepwater TLP`s is described. This method of installation is most suitable for deepwater and/or large TLP structures, but can also be used in moderate water depth as well. The tendon installation method utilizes the so-called Platform Arrestor Concept (PAC), wherein tendon sections are transported by barges to site, and assembled vertically using a dynamically position crane vessel. The tendons are transferred to the platform where they are hung off until there are a full complement of tendons. The hull lock off operation is performed on all tendons simultaneously, avoiding dangerous platform resonant behavior. The installation calls for relatively simple installation equipment, and also enables the use of simple tendon tie-off equipment, such as a single piece nut.

  16. Detection system for electro-separation analytical methods.

    PubMed

    Stohl, Radek; Glovinová, Eliska; Pospíchal, Jan

    2005-08-01

    The paper provides information about the on-line monitoring of components analysed by capillary electrophoresis. For this purposes we developed a whole-capillary transverse scanning detection system, which helps to improve and control the separation processes. A picture from a colour line scanner was used as a source of basic information for autonomous control of the separation process by regulation of the high voltage source. The application and algorithms for machine vision were designed in the progressive graphic development system LabVIEW. Real-time control of the separation process was implemented in a compact control process logic controller. The performance of the detection system was evaluated and the function of the overall system was tested by performing isotachophoretic analysis of a model mixture. PMID:16138688

  17. Separator for alkaline electric batteries and method of making

    NASA Technical Reports Server (NTRS)

    Pfluger, H. L. (Inventor); Hoyt, H. E.

    1970-01-01

    Battery separator membranes of high electrolytic conductivity comprising a cellulose ether and a compatible metallic salt of water soluble aliphatic acids and their hydroxy derivatives are described. It was found that methyl cellulose can be modified by another class of materials, nonpolymeric in nature, to form battery separator membranes of low electrolytic resistance but which have the flexibility of membranes made of unmodified methyl cellulose, and which in many cases enhance flexibility over membranes made with unmodified methyl cellulose. Separator membranes for electrochemical cells comprising a cellulose ether and a modified selected from the group consisting of metallic salts of water soluble alphatic acids and their hydroxy derivatives and to electrochemical cells utilizing said membranes are described.

  18. Advanced reliability method for fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Wirsching, P. H.

    1984-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) may become extremely difficult or very inefficient. This study suggests using a simple and easily constructed second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  19. Transonic wing analysis using advanced computational methods

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Hicks, R. M.

    1978-01-01

    This paper discusses the application of three-dimensional computational transonic flow methods to several different types of transport wing designs. The purpose of these applications is to evaluate the basic accuracy and limitations associated with such numerical methods. The use of such computational methods for practical engineering problems can only be justified after favorable evaluations are completed. The paper summarizes a study of both the small-disturbance and the full potential technique for computing three-dimensional transonic flows. Computed three-dimensional results are compared to both experimental measurements and theoretical results. Comparisons are made not only of pressure distributions but also of lift and drag forces. Transonic drag rise characteristics are compared. Three-dimensional pressure distributions and aerodynamic forces, computed from the full potential solution, compare reasonably well with experimental results for a wide range of configurations and flow conditions.

  20. VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES

    DOEpatents

    Britten, R.J.

    1957-12-31

    A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

  1. Method and apparatus for separation of heavy and tritiated water

    DOEpatents

    Lee, Myung W.

    2001-01-01

    The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.

  2. Method for reprocessing and separating spent nuclear fuels

    DOEpatents

    Krikorian, Oscar H.; Grens, John Z.; Parrish, Sr., William H.

    1983-01-01

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  3. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  4. Mass transfer apparatus and method for separation of gases

    DOEpatents

    Blount, Gerald C.

    2015-10-13

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  5. Isotope Separation and Advanced Manufacturing Technology. ISAM semiannual report, Volume 3, Number 1, October 1993--March 1994

    SciTech Connect

    Carpenter, J.; Kan, T.

    1994-10-01

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (I) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (II) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  6. Magnetic separator having a multilayer matrix, method and apparatus

    DOEpatents

    Kelland, David R.

    1980-01-01

    A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.

  7. Isotopes Separation Method using Physical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Javed Akhtar, S. M.; Saleem, M.; Mahmood, Nasir

    2010-02-01

    An isotope separation technique using effusive emission of vapors from the heated molybdenum boat is presented. The technique is applied for the separation of the lithium isotopes. Lithium fluoride with natural isotopic abundance was chosen for evaporation and it was achieved by resistive heating of the molybdenum boat with an exit orifice in the center that provides a point source emission. Glass substrates were placed in a semi-circle around the source of evaporation at different positions of peripheral region to deposit the evaporated material. A non-commercial laboratory developed linear Time of Flight (TOF) mass spectrometer was used for isotopic abundance measurements of lithium in the deposited thin films. The dependence of the size of exit orifice on the separation is also studied for the three exit orifices with diameters of 0.3, 0.6 and 1.0 mm. The separation factors of the isotopes as a function of different peripheral locations are calculated and presented. The abundance of the 6Li isotope has been increased up to 16% on the peripheral positions.

  8. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  9. Separator for alkaline electric cells and method of making

    NASA Technical Reports Server (NTRS)

    Pfluger, H. L.; Hoyt, H. E. (Inventor)

    1970-01-01

    Modified cellulose ether films having an increased electrolytic conductivity and a useable flexibility and in certain instances an increased flexibility are presented. Battery separator membranes comprising a cellulose ether and a minor proportion of a compatible water soluble base selected from the group consisting of alkali metal and ammonium hydroxides, aliphatic amines, and aliphatic hydroxyamines are used.

  10. Method of making a partial interlaminar separation composite system

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1981-01-01

    An interlaminar separation system for composites is disclosed a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes. Laminae adherence takes place through the perforations and a composite structure with improved physical property characteristics is produced.

  11. Advancing-layers method for generation of unstructured viscous grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.

  12. Direct Separation of Molybdenum from Solid Uranium Matrices Employing Pyrohydrolysis, a Green Separation Method, and Its Determination by Ion Chromatography.

    PubMed

    Mishra, Vivekchandra G; Thakur, Uday K; Shah, Dipti J; Gupta, Neeraj K; Jeyakumar, Subbiah; Tomar, Bhupendra S; Ramakumar, Karanam L

    2015-11-01

    Pyrohydrolysis is a well-established separation method, and it is being used as a sample preparation method for several materials for further determination of non-metals such as halogens, boron, and sulfur. Analytes are retained in a diluted solution that is suitable for carrying out analysis by several determination techniques and minimizing the use of concentrated reagents. Pyrohydrolysis separation of metals has not been reported yet. The present study demonstrates the pyrohydrolysis separation of Mo as MoO4(2-) from uranium materials and its subsequent determination using ion chromatography coupled with suppressed conductivity detector. With use of TGA and XRD the volatilization behavior of Mo was studied. Important parameters for the pyrohydrolysis method required for the quantitative separation of Mo were evaluated. The precision of the method was better than 5% at 25 ppm of Mo. The accuracy was evaluated by analysis of a CRM (U3O8-ILCE-IV). The method was applied to determine Mo in ammonium diuranate samples, where the conventional methods suffer from the loss of Mo. PMID:26465172

  13. Advanced Electromagnetic Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos

    1999-01-01

    The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed

  14. 40 CFR 246.202-4 - Recommended procedures: Methods of separation and storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... separation and storage. 246.202-4 Section 246.202-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.202-4 Recommended procedures: Methods of separation and storage. The method selected...

  15. 40 CFR 246.202-4 - Recommended procedures: Methods of separation and storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... separation and storage. 246.202-4 Section 246.202-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.202-4 Recommended procedures: Methods of separation and storage. The method selected...

  16. 40 CFR 246.202-4 - Recommended procedures: Methods of separation and storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... separation and storage. 246.202-4 Section 246.202-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.202-4 Recommended procedures: Methods of separation and storage. The method selected...

  17. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  18. Advances in organometallic synthesis with mechanochemical methods.

    PubMed

    Rightmire, Nicholas R; Hanusa, Timothy P

    2016-02-14

    Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations. PMID:26763151

  19. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    SciTech Connect

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  20. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  1. Advances in LC: bioanalytical method transfer.

    PubMed

    Wright, Patricia; Wright, Adrian

    2016-09-01

    There are three main reasons for transferring from an existing bioanalytical assay to an alternative chromatographic method: speed, cost and sensitivity. These represent a challenge to the analyst in that there is an interplay between these three considerations and one factor is often improved at the expense of another. These three factors act as drivers to encourage technology development and support its uptake. The more recently introduced chromatographic technologies may show significant improvements against one of more of these factors relative to conventional 4.6-mm id reversed-phase HPLC. In this article, some of these new chromatographic approaches will be considered in terms of what they can offer the bioanalysts. PMID:27491842

  2. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  3. Current methods and advances in bone densitometry.

    PubMed

    Guglielmi, G; Gluer, C C; Majumdar, S; Blunt, B A; Genant, H K

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis. PMID:11539928

  4. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  5. A method and apparatus for sizing and separating warp yarns

    SciTech Connect

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1997-12-01

    A slashing process for preparing warp yarns for weaving operations includes the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  6. Investigation of the Photochemical Method for Uranium Isotope Separation

    DOE R&D Accomplishments Database

    Urey, H. C.

    1943-07-10

    To find a process for successful photochemical separation of isotopes several conditions have to be fulfilled. First, the different isotopes have to show some differences in the spectrum. Secondly, and equally important, this difference must be capable of being exploited in a photochemical process. Parts A and B outline the physical and chemical conditions, and the extent to which one might expect to find them fulfilled. Part C deals with the applicability of the process.

  7. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  8. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  9. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Choi, Jachoon; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Birtcher, Craig R.

    1990-01-01

    High- and low-frequency methods to analyze various radiation elements located on aerospace vehicles with combinations of conducting, nonconducting, and energy absorbing surfaces and interfaces. The focus was on developing fundamental concepts, techniques, and algorithms which would remove some of the present limitations in predicting radiation characteristics of antennas on complex aerospace vehicles. In order to accomplish this, the following subjects were examined: (1) the development of techniques for rigorous analysis of surface discontinuities of metallic and nonmetallic surfaces using the equivalent surface impedance concept and Green's function; (2) the effects of anisotropic material on antenna radiation patterns through the use of an equivalent surface impedance concept which is incorporated into the existing numerical electromagnetics computer codes; and (3) the fundamental concepts of precipitation static (P-Static), such as formulations and analytical models. A computer code was used to model the P-Static process on a simple structure. Measurement techniques were also developed to characterized the electrical properties at microwave frequencies. Samples of typical materials used in airframes were tested and the results are included.

  10. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  11. Multi-component machine monitoring and fault diagnosis using blind source separation and advanced vibration analysis

    NASA Astrophysics Data System (ADS)

    Mahvash Mohammadi, Ali

    In this dissertation, two approaches are studied for the case of bearing anomaly detection. One approach is to regard it as a blind source separation (cocktail party) problem and take advantage of statistical and mathematical methods developed for this purpose, primarily independent component analysis (ICA), to separate signals coming from different sources. The other approach is to avoid making the effort to 'separate' the signals and relate them to different components (sources) and instead make use of the specification and characteristics of vibration signals produced by the different components in normal and faulty conditions. In the first approach, a common difficulty with applying blind source separation techniques (or, in general any mathematical methods) to separation of vibration sources is that no standard measure exists to assess the quality of separation and validate the results. In fact, for an ideal assessment the true original signals produced by each component must be available as a prerequisite. This requires gathering signals from each component in strict isolation during operation in a lab environment which, if not impossible, is very costly and difficult. To alleviate this difficulty, a novel method is developed that presents the distribution of vibration energy with regard to the respective locations of vibration sources and sensors, and takes into consideration the mechanical attributes of the structure. This method uses some key concepts from statistical energy analysis (SEA) to support the fact that each sensor collects a different version of the oscillations produced in the system with respect to its location in the system. Therefore, by comparing the spectral signature of the vibration signals and making use of a priori knowledge of the spatial distribution of sensors and components, a schematic representation of the spectral signature of the vibration sources are obtained. This method is verified using a series of experiments with

  12. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  13. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  14. Advanced Ablative Insulators and Methods of Making Them

    NASA Technical Reports Server (NTRS)

    Congdon, William M.

    2005-01-01

    Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.

  15. Development and Applications of Advanced Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Bell, Franziska

    This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most

  16. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  17. 40 CFR 246.201-5 - Recommended procedures: Methods of separation and collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... separation and collection. 246.201-5 Section 246.201-5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201-5 Recommended procedures: Methods of separation and collection....

  18. 40 CFR 246.201-5 - Recommended procedures: Methods of separation and collection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... separation and collection. 246.201-5 Section 246.201-5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201-5 Recommended procedures: Methods of separation and collection....

  19. 40 CFR 246.201-5 - Recommended procedures: Methods of separation and collection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... separation and collection. 246.201-5 Section 246.201-5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201-5 Recommended procedures: Methods of separation and collection....

  20. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  1. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  2. A new method for separating first row transition metals and actinides from synthetic melt glass

    DOE PAGESBeta

    Roman, Audrey Rae; Bond, Evelyn M.

    2016-01-14

    A new method was developed for separating Co, Fe, and Sc from complex debris matrices using the extraction chromatography resin DGA. The activation products Co-58, Mn-54, and Sc-46 were used to characterize the separation of the synthetic melt glass solutions. In the separation scheme that was developed, Au, Co, Cu, Fe, Sc, and Ti were separated from the rest of the sample constituents. In this paper, the synthetic melt glass separation method, efficiency, recoveries, and the length of procedure will be discussed. In conclusion, batch contact adsorption studies for Na and Sc for DGA resin are discussed as well.

  3. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  4. Comparison of tracer and traditional baseflow separation methods: Are they looking at the same thing?

    NASA Astrophysics Data System (ADS)

    Stewart, Michael

    2016-04-01

    Traditional baseflow separation of streamflow has been important for over a hundred years as a way of identifying direct runoff by subtraction and relating it to the causative rainfall. Baseflow is generally regarded as sourced from groundwater discharging into streams. A wide variety of mainly graphical methods of baseflow separation have been used and continue to be used in practical and modelling applications. These methods are usually not based on real knowledge of baseflow variations and can be inconvenient to apply to long records. More convenient recent methods of this type are recursive digital filters that can be applied to the streamflow record to extract baseflow hydrographs. The introduction of tracer separation of components 40 years ago gave actual data-based separations for the first time. They produced a shift in thinking about runoff generation since they showed that baseflow responds rapidly to rainfall just like quickflow, and can even dominate storm runoff events in addition to the low flow periods between events. Separating streamflow into its components is valuable for understanding the sources and flowpaths of water and solutes in catchments, and in particular determining nutrient flowpaths. Tracers give an objective basis for separating hydrographs, but tracer data is usually quite limited in time even if available for a catchment. A new separation method (the bump and rise method or BRM) gives a filter that mimics tracer separations and can be applied to the whole streamflow record. This work compares two- and three-component hydrograph separations obtained from tracer studies in the literature with traditional baseflow separation methods and recursive digital filter methods, including the BRM filter. Eight two-component tracer studies were examined from catchments with a wide variety of climatic settings, areas, topography, soils and vegetation. Different methods could be fitted to the tracer separations with different goodnesses, and the

  5. Bioinformatics Methods and Tools to Advance Clinical Care

    PubMed Central

    Lecroq, T.

    2015-01-01

    Summary Objectives To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. Method We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. Results The selection and evaluation process of this Yearbook’s section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. Conclusions The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their

  6. PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS

    DOEpatents

    Thompson, S.G.

    1960-04-26

    A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

  7. Compressive Source Separation: Theory and Methods for Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Golbabaee, Mohammad; Arberet, Simon; Vandergheynst, Pierre

    2013-12-01

    With the development of numbers of high resolution data acquisition systems and the global requirement to lower the energy consumption, the development of efficient sensing techniques becomes critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like inter-channel correlations, that are not taken into account in the classical CS scheme. In this paper we exploit the linear mixture of sources model, that is the assumption that the multichannel signal is composed of a linear combination of sources, each of them having its own spectral signature, and propose new sampling schemes exploiting this model to considerably decrease the number of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower bounds on the number of measurements required to perform reconstruction of both the multichannel signal and its sources. We also proposed optimization algorithms and extensive experimentation on our target application which is HSI, and show that our approach recovers HSI with far less measurements and computational effort than traditional CS approaches.

  8. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  9. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  10. A promising method of liquid separation in orbital station's life support systems

    NASA Astrophysics Data System (ADS)

    Kapitsa Anna, A.

    2012-11-01

    A combined method of liquid separation from a gas-liquid flow is presented based on an analysis of existing methods of separation and experience gained from the Russian space stations Salut, Mir and the International Space Station. This method combines the advantages of both water-holding materials and semi-permeable membranes. The paper describes an actual device as well as laboratory test results for materials and the separator. The separator described has successfully been in experimental operation on the ISS since the 1st of September 2009.

  11. Method of separating bacteria from free living amoebae

    DOEpatents

    Tyndall, Richard L.

    1994-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  12. Separation methods that are capable of revealing blood-brain barrier permeability.

    PubMed

    Dash, Alekha K; Elmquist, William F

    2003-11-25

    The objective of this review is to emphasize the application of separation science in evaluating the blood-brain barrier (BBB) permeability to drugs and bioactive agents. Several techniques have been utilized to quantitate the BBB permeability. These methods can be classified into two major categories: in vitro or in vivo. The in vivo methods used include brain homogenization, cerebrospinal fluid (CSF) sampling, voltametry, autoradiography, nuclear magnetic resonance (NMR) spectroscopy, positron emission tomography (PET), intracerebral microdialysis, and brain uptake index (BUI) determination. The in vitro methods include tissue culture and immobilized artificial membrane (IAM) technology. Separation methods have always played an important role as adjunct methods to the methods outlined above for the quantitation of BBB permeability and have been utilized the most with brain homogenization, in situ brain perfusion, CSF sampling, intracerebral microdialysis, in vitro tissue culture and IAM chromatography. However, the literature published to date indicates that the separation method has been used the most in conjunction with intracerebral microdialysis and CSF sampling methods. The major advantages of microdialysis sampling in BBB permeability studies is the possibility of online separation and quantitation as well as the need for only a small sample volume for such an analysis. Separation methods are preferred over non-separation methods in BBB permeability evaluation for two main reasons. First, when the selectivity of a determination method is insufficient, interfering substances must be separated from the analyte of interest prior to determination. Secondly, when large number of analytes is to be detected and quantitated by a single analytical procedure, the mixture must be separated to each individual component prior to determination. Chiral separation in particular can be essential to evaluate the stereo-selective permeation and distribution of agents into the

  13. A behavioral method for separation of house fly (Diptera: Muscidae) larvae from processed pig manure.

    PubMed

    Cicková, Helena; Kozánek, Milan; Morávek, Ivan; Takác, Peter

    2012-02-01

    A behavioral method applicable in biodegradation facilities for separation of house fly (Musca domestica L.) larvae from processed pig manure is presented. The method is based on placing a cover over the larval rearing tray, while escaping larvae are collected in collection trays. Separation units must be placed in a dark room to avoid negative phototactic responses of the larvae. After 24 h of separation, over 70% of the larvae escaped from processed manure and were collected in collection trays. Most of the larvae pupated within 48 h after separation. Mean weight of pupae recovered from manure residue was not significantly different from mean weight of pupae of separated individuals. Eclosion rate of pupae recovered from manure residue was significantly lower than eclosion of separated individuals, and was strongly related to separation success. Factors responsible for escape behavior of larvae are discussed. PMID:22420256

  14. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  15. Method of making formulated plastic separators for soluble electrode cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A method making a membrane comprised of a hydrochloric acid-insoluble sheet of a mixture of a rubber and a powdered ion transport material is disclosed. The sheet can be present as a coating upon a flexible and porous substrate. These membranes can be used in oxidation-reduction electrical accumulator cells wherein the reduction of one member of a couple is accompained by the oxidation of the other member of the couple on the other side of the cell and this must be accompained by a change in chloride ion concentration in both sides. The method comprises preparing a mixture of fine rubber particles, a solvent for the rubber and a powdered ion transport material. The mixture is formed into a sheet and dried to produce a microporous sheet. The ion transport material includes particles ranging from about 0.01 to 10 microns in size and comprises from 20 to 50 volume percent of the microporous sheet.

  16. Methods of using adsorption media for separating or removing constituents

    DOEpatents

    Tranter, Troy J.; Herbst, R. Scott; Mann, Nicholas R.; Todd, Terry A.

    2011-10-25

    Methods of using an adsorption medium to remove at least one constituent from a feed stream. The method comprises contacting an adsorption medium with a feed stream comprising at least one constituent and removing the at least one constituent from the feed stream. The adsorption medium comprises a polyacrylonitrile (PAN) matrix and at least one metal hydroxide homogenously dispersed therein. The adsorption medium may comprise from approximately 15 wt % to approximately 90 wt % of the PAN and from approximately 10 wt % to approximately 85 wt % of the at least one metal hydroxide. The at least one metal hydroxide may be selected from the group consisting of ferric hydroxide, zirconium hydroxide, lanthanum hydroxide, cerium hydroxide, titanium hydroxide, copper hydroxide, antimony hydroxide, and molybdenum hydroxide.

  17. Systems and methods for preparation and separation of products

    SciTech Connect

    Gilliam, Ryan J.; Boggs, Bryan; Self, Kyle; Leclerc, Margarete K.; Gorer, Alexander; Weiss, Michael J.; Miller, John H.; Mohanta, Samaresh

    2015-12-01

    There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.

  18. Methods for separation/purification utilizing rapidly cycled thermal swing sorption

    DOEpatents

    Tonkovich, Anna Lee Y.; Monzyk, Bruce F.; Wang, Yong; VanderWiel, David P.; Perry, Steven T.; Fitzgerald, Sean P.; Simmons, Wayne W.; McDaniel, Jeffrey S.; Weller, Jr., Albert E.

    2004-11-09

    The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.

  19. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  20. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    EPA Science Inventory

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  1. Radiochemical separation methods for preparation of biomedical cyclotron radionuclides

    NASA Astrophysics Data System (ADS)

    Zaitseva, N. G.; Dmitriev, S. N.

    1999-01-01

    A short review of the radiochemical methods for preparation of widely used or promising cyclotronproduced radionuclides for nuclear medicine and biomedical or environmental studies is given. The presented data include the current status of the production of some gamma-emitters (97Ru, 111In, 123I, 201Tl), generator-pairs (68Ge/68Ga, 82Sr/82Rb, 128Ba/128Cs, 178W/178Ta), radioisotopes for metabolism studies (26Al, 67Cu, 237Pu) and actinides tracers for environmental researches (235Np, 236Np, 236Pu). The conditions for preparation of high-purity isotopes have been investigated and procedures including target chemistry design were developed.

  2. FY-2011 Status Report for Thermodynamics and Kinetics of Advanced Separations Systems

    SciTech Connect

    Leigh R. Martin; Peter R. Zalupski; Travis S. Grimes

    2011-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2011 at the INL. On the thermodynamic front, investigations of liquid-liquid distribution of lanthanides at TALSPEAK-related conditions continued in FY11. It has been determined that a classical ion-exchanging phase transfer mechanism, where three HDEHP dimers solvate the metal ion in the organic phase, dominates metal extraction for systems that contain up to 0.1 M free lactate in solution. The correct graphical interpretation of the observed data in those regions relied on incorporating corrections for non-ideal behavior of HDEHP dimer in aliphatic diluents as well as sodium extraction equilibria. When aqueous conditions enter the complex regions of high lactate concentrations, slope analysis is no longer possible. When normalized metal distribution ratios were studied along the increasing concentration of free lactate, a slope of -1 was apparent. Such dependency either indicates aqueous complexing competition from lactate, or, a more likely scenario, a participation of lactate in the extracted metal complex. This finding agrees with our initial assessment of postulated changes in the extraction mechanism as a source of the lactate-mediated loss of extraction efficiency. The observed shape in the lanthanide distribution curve in our studies of TALSPEAK systems was the same for solutions containing no lactate or 2.3 M lactate. As such we may conclude that the mechanism of phase transfer is not altered dramatically and remains similarly sensitive to effective charge density of the metal ion. In addition to these thermodynamics studies, this report also summarizes the first calorimetric determination of heat of extraction of 248Cm in a bi-phasic system. The heat of extraction measured by isothermal titration calorimetry is compared to that determined using van't Hoff

  3. Advanced separator construction for long life valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Stevenson, P. R.

    The performance of absorptive glass mat separators in valve-regulated lead-acid (VRLA) batteries is strongly influenced by the diameter of the fibres from which they are made. Coarser diameter fibres are beneficial for the compressive properties of separators while finer fibres maintain the uniform distribution of the electrolyte. Studies of cell compression and electrolyte stratification are reported using separators manufactured with segregated layers of fine and coarse fibres incorporated into a single sheet. This construction locates the different classes of fibre at their location of maximum effectiveness. Improvements in battery life in both cyclic and float charge applications are recorded, and compared with single layer separators.

  4. Advanced signal separation and recovery algorithms for digital x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahmoud, Imbaby I.; El Tokhy, Mohamed S.

    2015-02-01

    X-ray spectroscopy is widely used for in-situ applications for samples analysis. Therefore, spectrum drawing and assessment of x-ray spectroscopy with high accuracy is the main scope of this paper. A Silicon Lithium Si(Li) detector that cooled with a nitrogen is used for signal extraction. The resolution of the ADC is 12 bits. Also, the sampling rate of ADC is 5 MHz. Hence, different algorithms are implemented. These algorithms were run on a personal computer with Intel core TM i5-3470 CPU and 3.20 GHz. These algorithms are signal preprocessing, signal separation and recovery algorithms, and spectrum drawing algorithm. Moreover, statistical measurements are used for evaluation of these algorithms. Signal preprocessing based on DC-offset correction and signal de-noising is performed. DC-offset correction was done by using minimum value of radiation signal. However, signal de-noising was implemented using fourth order finite impulse response (FIR) filter, linear phase least-square FIR filter, complex wavelet transforms (CWT) and Kalman filter methods. We noticed that Kalman filter achieves large peak signal to noise ratio (PSNR) and lower error than other methods. However, CWT takes much longer execution time. Moreover, three different algorithms that allow correction of x-ray signal overlapping are presented. These algorithms are 1D non-derivative peak search algorithm, second derivative peak search algorithm and extrema algorithm. Additionally, the effect of signal separation and recovery algorithms on spectrum drawing is measured. Comparison between these algorithms is introduced. The obtained results confirm that second derivative peak search algorithm as well as extrema algorithm have very small error in comparison with 1D non-derivative peak search algorithm. However, the second derivative peak search algorithm takes much longer execution time. Therefore, extrema algorithm introduces better results over other algorithms. It has the advantage of recovering and

  5. Domain Decomposition By the Advancing-Partition Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  6. Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance

    NASA Technical Reports Server (NTRS)

    Stern, Martin O.

    1992-01-01

    This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.

  7. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  8. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  9. Advances in subtyping methods of foodborne disease pathogens.

    PubMed

    Boxrud, Dave

    2010-04-01

    Current subtyping methods for the detection of foodborne disease outbreaks have limitations that reduce their use by public health laboratories. Recent advances in subtyping of foodborne disease pathogens utilize techniques that identify nucleic acid polymorphisms. Recent methods of nucleic acid characterization such as microarrays and mass spectrometry (MS) may provide improvements such as increasing speed and data portability while decreasing labor compared to current methods. This article discusses multiple-locus variable-number tandem-repeat analysis, single-nucleotide polymorphisms, nucleic acid sequencing, whole genome sequencing, variable absent or present loci, microarrays and MS as potential subtyping methods to enhance our ability to detect foodborne disease outbreaks. PMID:20299203

  10. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  11. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  12. Fracture Toughness in Advanced Monolithic Ceramics - SEPB Versus SEVENB Methods

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2005-01-01

    Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent, and stable crack growth determined using back-face strain gaging.

  13. Chromatographic methods for the isolation, separation and characterisation of dissolved organic matter.

    PubMed

    Sandron, Sara; Rojas, Alfonso; Wilson, Richard; Davies, Noel W; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Kelleher, Brian P; Paull, Brett

    2015-09-01

    This review presents an overview of the separation techniques applied to the complex challenge of dissolved organic matter characterisation. The review discusses methods for isolation of dissolved organic matter from natural waters, and the range of separation techniques used to further fractionate this complex material. The review covers both liquid and gas chromatographic techniques, in their various modes, and electrophoretic based approaches. For each, the challenges that the separation and fractionation of such an immensely complex sample poses is critically reviewed. PMID:26290053

  14. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  15. Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel

    SciTech Connect

    Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

    2006-02-01

    The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

  16. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  17. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    SciTech Connect

    Shamsuddin Ilias

    2005-02-03

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  18. Method and system for producing hydrogen using sodium ion separation membranes

    DOEpatents

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  19. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOEpatents

    Smith, H.M.; Bohnert, G.W.; Olson, R.B.; Hand, T.E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in a liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic. 3 figs.

  20. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOEpatents

    Smith, Henry M.; Bohnert, George W.; Olson, Ronald B.; Hand, Thomas E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in as liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic.

  1. A New Method of Separating 210Pb from Ra-DEF for a Radioactive Equilibrium Experiment.

    ERIC Educational Resources Information Center

    Wai, C. M.; Lo, J. M.

    1984-01-01

    Background information, procedures, and results are provided for an experiment in which lead-210 is separated from bismuth-210 and polonium-210 by means of solvent extraction of their diethyldithiocarbamate complexes. The method involves a simple extraction procedure which allows complete separation of lead-210 from commercially available…

  2. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  3. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  4. A Simple Method to Find out when an Ordinary Differential Equation Is Separable

    ERIC Educational Resources Information Center

    Cid, Jose Angel

    2009-01-01

    We present an alternative method to that of Scott (D. Scott, "When is an ordinary differential equation separable?", "Amer. Math. Monthly" 92 (1985), pp. 422-423) to teach the students how to discover whether a differential equation y[prime] = f(x,y) is separable or not when the nonlinearity f(x, y) is not explicitly factorized. Our approach is…

  5. Method and apparatus for centrifugal separation of dispersed phase from a continuous liquid phase

    SciTech Connect

    Ryan, D.G.

    1986-12-16

    A method is described of treating a hydrocarbon oil mixture boiling in the lubricating oil range and containing wax particles, for separating wax particles from the oil mixture, comprising the steps of: centrifugating the oil mixture to be treated in a centrifugal separation device, for separating a quantity of the wax particles from the oil mixture; introducing free excess charge which is net unipolar into the oil mixture, whereby charge transfers to wax particles in the oil mixture; and collecting charged wax particles, for separation from the oil mixture.

  6. Advanced preservation methods and nutrient retention in fruits and vegetables.

    PubMed

    Barrett, Diane M; Lloyd, Beate

    2012-01-15

    Despite the recommendations of international health organizations and scientific research carried out around the world, consumers do not take in sufficient quantities of healthy fruit and vegetable products. The use of new, 'advanced' preservation methods creates a unique opportunity for food manufacturers to retain nutrient content similar to that found in fresh fruits and vegetables. This review presents a summary of the published literature regarding the potential of high-pressure and microwave preservation, the most studied of the 'advanced' processes, to retain the natural vitamin A, B, C, phenolic, mineral and fiber content in fruits and vegetables at the time of harvest. Comparisons are made with more traditional preservation methods that utilize thermal processing. Case studies on specific commodities which have received the most attention are highlighted; these include apples, carrots, oranges, tomatoes and spinach. In addition to summarizing the literature, the review includes a discussion of postharvest losses in general and factors affecting nutrient losses in fruits and vegetables. Recommendations are made for future research required to evaluate these advanced process methods. PMID:22102258

  7. A simple separation method for downstream biochemical analysis of aquatic microbes.

    PubMed

    Garrison, Cody E; Bochdansky, Alexander B

    2015-04-01

    In order to study the chemical composition of aquatic microbes it is necessary to obtain completely separated fractions of subpopulations. Size separation by filtration is usually unsuccessful because the smaller group of organisms contaminates the larger fractions due to being trapped on filter surfaces of nominally much larger pore sizes. Here we demonstrate that a simple sucrose density separation method allowed us to separate microorganisms of even subtle size differences and to determine their bulk biochemical composition (proteins, polysaccharides+nucleic acids, and lipids). Both autotrophs and heterotrophs (through anaplerotic pathways) were labeled with (14)C-bicarbonate for biochemical fractionation. We provided proof of concept that eukaryotic microbes could be cleanly separated from prokaryotes in cultures and in field samples, enabling detection of differences in their biochemical makeup. We explored methodological issues regarding separation mechanisms, fixation, and pre-concentration via tangential flow filtration of oligotrophic marine waters where abundances of microorganisms are comparably low. By selecting an appropriate centrifugal force, two processes (i.e., isopycnal and rate-zonal separation) can be exploited simultaneously resulting in finely-separated density fractions, which also resulted in size separation. Future applications of this method include exploration of the stoichiometric, biochemical and genetic differences among subpopulations of microbes in a wide variety of aquatic environments. PMID:25655777

  8. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation.

    PubMed

    Ma, Qinglang; Cheng, Hongfei; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2016-04-27

    The increasing number of oil spill accidents have a catastrophic impact on our aquatic environment. Recently, special wettable materials used for the oil/water separation have received significant research attention. Due to their opposing affinities towards water and oil, i.e., hydrophobic and oleophilic, or hydrophilic and oleophobic, such materials can be used to remove only one phase from the oil/water mixture, and simultaneously repel the other phase, thus achieving selective oil/water separation. Moreover, the synergistic effect between the surface chemistry and surface architecture can further promote the superwetting behavior, resulting in the improved separation efficiency. Here, recently developed materials with special wettability for selective oil/water separation are summarized and discussed. These materials can be categorized based on their oil/water separating mechanisms, i.e., filtration and absorption. In each section, representative studies will be highlighted, with emphasis on the materials wetting properties and innovative aspects. Finally, challenges and future research directions in this emerging and promising research field will be briefly described. PMID:27000640

  9. Modified Separator Using Thin Carbon Layer Obtained from Its Cathode for Advanced Lithium Sulfur Batteries.

    PubMed

    Liu, Naiqiang; Huang, Bicheng; Wang, Weikun; Shao, Hongyuan; Li, Chengming; Zhang, Hao; Wang, Anbang; Yuan, Keguo; Huang, Yaqin

    2016-06-29

    The realization of a practical lithium sulfur battery system, despite its high theoretical specific capacity, is severely limited by fast capacity decay, which is mainly attributed to polysulfide dissolution and shuttle effect. To address this issue, we designed a thin cathode inactive material interlayer modified separator to block polysulfides. There are two advantages for this strategy. First, the coating material totally comes from the cathode, thus avoids the additional weights involved. Second, the cathode inactive material modified separator improve the reversible capacity and cycle performance by combining gelatin to chemically bond polysulfides and the carbon layer to physically block polysulfides. The research results confirm that with the cathode inactive material modified separator, the batteries retain a reversible capacity of 644 mAh g(-1) after 150 cycles, showing a low capacity decay of about 0.11% per circle at the rate of 0.5C. PMID:27267483

  10. Flow Solution for Advanced Separate Flow Nozzles Response A: Structured Grid Navier-Stokes Approach

    NASA Technical Reports Server (NTRS)

    Kenzakowski, D. C.; Shipman, J.; Dash, S. M.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    NASA Glenn Research Center funded a computational study to investigate the effect of chevrons and tabs on the exhaust plume from separate flow nozzles. Numerical studies were conducted at typical takeoff power with 0.28 M flight speed. Report provides numerical data and insights into the mechanisms responsible for increased mixing.

  11. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries.

    PubMed

    Zhou, Guangmin; Li, Lu; Wang, Da-Wei; Shan, Xu-Yi; Pei, Songfeng; Li, Feng; Cheng, Hui-Ming

    2015-01-27

    A flexible Li-S battery based on an integrated structure of sulfur and graphene on a separator is developed. The internal graphene current collector offers a continuous conductive pathway, a modified interface with sulfur, and a good barrier to and an effective reservoir for dissolved polysulfides, consequently improving the capacity and cyclic life of the Li-S battery. PMID:25377991

  12. Advanced Refractory and Anti-Wearing Technology of Cyclone Separator in CFB Boiler

    NASA Astrophysics Data System (ADS)

    Chen, H. P.; Shen, Y. Q.; Wang, X. H.; Dai, X. M.; Xue, H. Y.; Liu, D. C.

    The circulating fluidized bed is playing more and more vital role in the electric power field. Cyclone separator as the heart of the circulating fluidized bed combustion boiler, the technology of fire-resistant anti-wear layer in cyclone separator is the guarantee for the long-life and working safety of CFB unit. Based on the comparison of insulation-cyclone and water-cooled cyclone, a novel technology of Anchor bricks use in the cyclone separator was put forward. The temperature of Anchor brick surface is just 80˜90°C, much lower than conventional technology. The problems caused by conventional Y-shaped hook welding were overcome, such as fire-resistant anti-wear layer burned, fire-resistant anti-wear layer rupture, the high temperature of separator's surface, a large number of heat dissipation and etc. Simultaneously, three types of Anchor brick were designed for the different parts of cyclone. It was applied successfully in Thermal Power Plant in Shaoguan Iron and Steel Company. The life time and the operation cycle of the fire-resistant anti-wear layer of the cyclone were prolonged, and the number of boiler off was reduced greatly. Hence, the continuous operation time of boiler was extended. It played a key role in improving the overall economic efficiency of power plant. It is great for the utilization and development of CFB technology.

  13. Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems

    NASA Astrophysics Data System (ADS)

    Slater, Paul B.

    2010-05-01

    We seek to derive the probability—expressed in terms of the Hilbert-Schmidt (Euclidean or flat) metric—that a generic (nine-dimensional) real two-qubit system is separable, by implementing the well-known Peres-Horodecki test on the partial transposes (PTs) of the associated 4 × 4 density matrices (ρ). But the full implementation of the test—requiring that the determinant of the PT be nonnegative for separability to hold—appears to be, at least presently, computationally intractable. So, we have previously implemented—using the auxiliary concept of a diagonal-entry-parameterized separability function (DESF)—the weaker implied test of nonnegativity of the six 2 × 2 principal minors of the PT. This yielded an exact upper bound on the separability probability of \\frac{1024}{135 \\pi ^2} \\approx 0.768\\,54. Here, we piece together (reflection-symmetric) results obtained by requiring that each of the four 3 × 3 principal minors of the PT, in turn, be nonnegative, giving an improved/reduced upper bound of \\frac{22}{35} \\approx 0.628\\,571. Then, we conclude that a still further improved upper bound of \\frac{1129}{2100} \\approx 0.537\\,619 can be found by similarly piecing together the (reflection-symmetric) results of enforcing the simultaneous nonnegativity of certain pairs of the four 3 × 3 principal minors. Numerical simulations—as opposed to exact symbolic calculations—indicate, on the other hand, that the true probability is certainly less than \\frac{1}{2}. Our analyses lead us to suggest a possible form for the true DESF, yielding a separability probability of \\frac{29}{64} \\approx 0.453\\,125, while the absolute separability probability of \\frac{6928-2205 \\pi }{2^{9/2}} \\approx 0.034\\,8338 provides the best exact lower bound established so far. In deriving our improved upper bounds, we rely repeatedly upon the use of certain integrals over cubes that arise. Finally, we apply an independence assumption to a pair of DESFs that comes

  14. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    SciTech Connect

    Shamsuddin Ilias

    2004-02-17

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  15. Numerical computation of unsteady laminar boundary layers with separation using two-parameter integral method

    NASA Astrophysics Data System (ADS)

    Akamatsu, T.; Matsushita, M.; Murata, S.

    1985-11-01

    A two-parameter integral method is presented which is applicable even to separated boundary layers. The governing equation system, which consists of three moment equations of the boundary layer equation, is shown to be classifiable as a quasi-linear hyperbolic system under the assumed velocity profile function. The governing system is numerically solved by a dissipative finite difference scheme in order to capture a discontinuous solution associated with the singularity of unsteady separation. The spontaneous generation of singularity associated with unsteady separation is confirmed as the focusing of characteristics. The starting flows of a circular and an elliptic cylinder are considered as definite examples. This method is found to give excellent results in comparison with exact methods, not only for practically important boundary layer quantities such as displacement thickness or skin friction coefficient, but also for generation of separation singularity.

  16. Optimization of biomolecule separation by combining microscale filtration and design-of-experiment methods.

    PubMed

    Kazemi, Amir S; Kawka, Karina; Latulippe, David R

    2016-10-01

    There is considerable interest in developing microscale (i.e., high-throughput) methods that enable multiple filtration experiments to be run in parallel with smaller sample amounts and thus reduce the overall required time and associated cost to run the filtration tests. Previous studies to date have focused on simply evaluating the filtration capacity, not the separation performance. In this work, the stirred-well filtration (SWF) method was used in combination with design-of-experiment (DOE) methods to optimize the separation performance for three binary mixtures of bio-molecules: protein-protein, protein-polysaccharide, and protein-DNA. Using the parallel based format of the SWF method, eight constant-flux ultrafiltration experiments were conducted at once to study the effects of stirring conditions, permeate flux, and/or solution conditions (pH, ionic strength). Four separate filtration tests were conducted for each combination of process variables; in total, over 100 separate tests were conducted. The sieving coefficient and selectivity results are presented to match the DOE design format and enable a greater understanding of the effects of the different process variables that were studied. The method described herein can be used to rapidly determine the optimal combination of process factors that give the best separation performance for a range of membrane-based separations applications and thus obviate the need to run a large number of traditional lab-scale tests. Biotechnol. Bioeng. 2016;113: 2131-2139. © 2016 Wiley Periodicals, Inc. PMID:27563852

  17. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  18. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, K. D.

    1985-01-01

    A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  19. An effective calculation method in theory of non-LTE stellar atmospheres - linearization separation technique.

    NASA Astrophysics Data System (ADS)

    Wu, G. Q.; Huang, R. Q.

    1994-06-01

    This paper introduces a new calculation method of non-LTE stellar atmospheres. This method is based on the combination of the advantages of the complete linearization method by Auer and Mihalas (1969) and the separated-iteration technique. First, the equation of radiative transfer and constraints are linearized respectively, then the linearized equation of the radiative transfer and the linearized constraints are solved, separately. It overcomes the disadvantages of requiring the simultaneous solution of the corresponding equations by the complete linearization. The applicability of this method by calculating a small sample of H-He atmospheres and H line formations is demonstrated.

  20. Recent advances in the preparation and application of monolithic capillary columns in separation science.

    PubMed

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and "click chemistry", are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. PMID:27282747

  1. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    SciTech Connect

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of

  2. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  3. Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance.

    PubMed

    Fang, Jason; Kelarakis, Antonios; Lin, Yueh-Wei; Kang, Chi-Yun; Yang, Ming-Huan; Cheng, Cheng-Liang; Wang, Yue; Giannelis, Emmanuel P; Tsai, Li-Duan

    2011-08-28

    We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO(2) nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively. PMID:21731963

  4. VSP wave field separation: An optimization method based on block relaxation and singular value thresholding

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Chen, Wenchao; Wang, Baoli; Gao, Jinghuai

    2014-05-01

    In this paper, we present a high-fidelity new method for wave field separation of vertical seismic profiling (VSP) data. The method can keep the characteristics of waveform and amplitude variation along with the wave propagation. As a basic assumption, we assume that the wave field data of each event flattened regular wave is a low-rank matrix. Then, we construct an optimization equation to formulate the VSP wave field separation problem. To solve the equation, we combine block relaxation (BR) with singular value thresholding (SVT) to construct a new algorithm. We apply the method proposed in this paper to both synthetic and real data, and compare the results with that of the median filter based method, which is widely used in engineering practice. We conclude that the method proposed in this paper can offer a wave field separation with higher fidelity and higher signal to noise ratio (SNR).

  5. Single channel speech separation in modulation frequency domain based on a novel pitch range estimation method

    NASA Astrophysics Data System (ADS)

    Mahmoodzadeh, Azar; Abutalebi, Hamid Reza; Soltanian-Zadeh, Hamid; Sheikhzadeh, Hamid

    2012-12-01

    Computational Auditory Scene Analysis (CASA) has been the focus in recent literature for speech separation from monaural mixtures. The performance of current CASA systems on voiced speech separation strictly depends on the robustness of the algorithm used for pitch frequency estimation. We propose a new system that estimates pitch (frequency) range of a target utterance and separates voiced portions of target speech. The algorithm, first, estimates the pitch range of target speech in each frame of data in the modulation frequency domain, and then, uses the estimated pitch range for segregating the target speech. The method of pitch range estimation is based on an onset and offset algorithm. Speech separation is performed by filtering the mixture signal with a mask extracted from the modulation spectrogram. A systematic evaluation shows that the proposed system extracts the majority of target speech signal with minimal interference and outperforms previous systems in both pitch extraction and voiced speech separation.

  6. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.; Coops, M.S.

    1982-01-19

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A nonoxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel.

  7. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  8. A dry-surface coating method for visualization of separation. [bluff bodies

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.

    1980-01-01

    A relatively simple and reasonably accurate dry-surface coating method for visualization of the separation line on a bluff body was devised and successfully tested. This technique is based on the color reaction of a dry film containing a pH indicator with an appropriate gas released in the body wake. The dry-surface coating method is effective at any Reynolds number and for both incident laminar and turbulent flows. It further supplies a colorful permanent of consistently good photographic quality of the separation line. The effectiveness and accuracy of this technique were tested in visualizing the separation angle on a circular cylinder in both laminar and turbulent crossflows at subcritical Reynolds numbers. Separation angles revealed by the visualization were within + or - 4 percent of their counterparts deduced from the mean wall pressure distribution.

  9. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    SciTech Connect

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  10. Selective separation of patchouli alcohol from the essential oil of Cablin potchouli by inclusion crystalline method.

    PubMed

    Tong, Jian; Yuan, Lei; Guo, Fang; Wang, Zhong-Hua; Jin, Lan; Guo, Wen-Sheng

    2013-01-01

    In this article, we have focused on the application of non-traditional separation approach, the host-guest inclusion method, into the separation of the active component patchouli alcohol from the essential oil of Cablin potchouli Herb. The host molecule 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol (A) was used to selectively recognise the guest molecule patchouli alcohol (B) in the essential oil of Pogostemon cablin (Blanco) Benth through two strong hydrogen bonding. The inclusion compound was structurally determined by the single crystal X-ray diffraction. The separation effect was examined by gas chromatography for the whole essential oil and the inclusion compound, showing that the inclusion crystalline method is simple, rapid and effective for the separation of patchouli alcohol from the essential oil of C. potchouli Herb. PMID:22304229

  11. An analysis method for multi-component airfoils in separated flow

    NASA Technical Reports Server (NTRS)

    Rao, B. M.; Duorak, F. A.; Maskew, B.

    1980-01-01

    The multi-component airfoil program (Langley-MCARF) for attached flow is modified to accept the free vortex sheet separation-flow model program (Analytical Methods, Inc.-CLMAX). The viscous effects are incorporated into the calculation by representing the boundary layer displacement thickness with an appropriate source distribution. The separation flow model incorporated into MCARF was applied to single component airfoils. Calculated pressure distributions for angles of attack up to the stall are in close agreement with experimental measurements. Even at higher angles of attack beyond the stall, correct trends of separation, decrease in lift coefficients, and increase in pitching moment coefficients are predicted.

  12. Evaluation of the Use of Synroc to Solidify the Cesium and Strontium Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel

    SciTech Connect

    Julia Tripp; Vince Maio

    2006-03-01

    This report is a literature evaluation on the Synroc process for determining the potential for application to solidification of the Cs/Sr strip product from advanced aqueous fuel separations activities.

  13. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  14. Flotation of Mineral and Dyes: A Laboratory Experiment for Separation Method Molecular Hitchhikers

    ERIC Educational Resources Information Center

    Rappon, Tim; Sylvestre, Jarrett A.; Rappon, Manit

    2016-01-01

    Flotation as a method of separation is widely researched and is applied in many industries. It has been used to address a wide range of environmental issues including treatment of wastewater, recovery of heavy metals for recycling, extraction of minerals in mining, and so forth. This laboratory attempts to show how such a simple method can be used…

  15. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOEpatents

    Liang, Yong [Richland, WA; Daschbach, John L [Richland, WA; Su, Yali [Richland, WA; Chambers, Scott A [Kennewick, WA

    2003-03-18

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  16. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOEpatents

    Liang, Yong; Daschbach, John L.; Su, Yali; Chambers, Scott A.

    2006-08-22

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  17. ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

    SciTech Connect

    Jack D. Law; Terry A. Todd; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson

    2005-02-01

    Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance.

  18. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  19. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  20. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  1. Structural Analysis and Quantitative Determination of Clevidipine Butyrate Impurities Using an Advanced RP-HPLC Method.

    PubMed

    Zhou, Yuxia; Zhou, Fan; Yan, Fei; Yang, Feng; Yao, Yuxian; Zou, Qiaogen

    2016-03-01

    Eleven potential impurities, including process-related compounds and degradation products, have been analyzed by comprehensive studies on the manufacturing process of clevidipine butyrate. Possible formation mechanisms could also be devised. MS and NMR techniques have been used for the structural characterization of three previously unreported impurities (Imp-3, Imp-5 and Imp-11). To separate and quantify the potential impurities in a simultaneous fashion, an efficient and advanced RP-HPLC method has been developed. In doing so, four major degradation products (Imp-2, Imp-4, Imp-8 and Imp-10) can be observed under varying stress conditions. This analytical method has been validated according to ICH guidelines with respect to specificity, accuracy, linearity, robustness and stability. The method described has been demonstrated to be applicable in routine quality control processes and stability evaluation studies of clevidipine butyrate. PMID:26489435

  2. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation

    SciTech Connect

    Balch, J.; Davidson, J.; Brewer, L.; Gingrich, J.; Koo, J.; Mariella, R.; Carrano, A.

    1995-01-25

    Our efforts to develop novel technology for a rapid DNA sequencer and large fragment analysis system based upon gel electrophoresis are described. We are using microfabrication technology to build dense arrays of high speed micro electrophoresis lanes that will ultimately increase the sequencing rate of DNA by at least 100 times the rate of current sequencers. We have demonstrated high resolution DNA fragment separation needed for sequencing in polyacrylamide microgels formed in glass microchannels. We have built prototype arrays of microchannels having up to 48 channels. Significant progress has also been made in developing a sensitive fluorescence detection system based upon a confocal microscope design that will enable the diagnostics and detection of DNA fragments in ultrathin microchannel gels. Development of a rapid DNA sequencer and fragment analysis system will have a major impact on future DNA instrumentation used in clinical, molecular and forensic analysis of DNA fragments.

  3. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge.

    PubMed

    May, Jody C; McLean, John A

    2016-06-12

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) is becoming the preferred technique for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements used to infer systems-level information. In this article, we describe multidimensional MS configurations as technologies that are big data drivers and review some new and emerging strategies for mining information from large-scale datasets. We discuss the information content that can be obtained from individual dimensions, as well as the unique information that can be derived by comparing different levels of data. Finally, we summarize some emerging data visualization strategies that seek to make highly dimensional datasets both accessible and comprehensible. PMID:27306312

  4. Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation.

    PubMed

    Pauli, Guido F; Pro, Samuel M; Chadwick, Lucas R; Burdick, Thomas; Pro, Luke; Friedl, Warren; Novak, Nick; Maltby, John; Qiu, Feng; Friesen, J Brent

    2015-07-21

    Countercurrent separation (CCS) utilizes the differential partitioning behavior of analytes between two immiscible liquid phases. We introduce the first platform ("CherryOne") capable of real-time monitoring, metering, and control of the dynamic liquid-liquid CCS process. Automated phase monitoring and volumetrics are made possible with an array of sensors, including the new permittivity-based phase metering apparatus (PMA). Volumetric data for each liquid phase are converted into a dynamic real-time display of stationary phase retention (Sf) and eluent partition coefficients (K), which represent critical parameters of CCS reproducibility. When coupled with the elution-extrusion operational mode (EECCC), automated Sf and K determination empowers untargeted and targeted applications ranging from metabolomic analysis to preparative purifications. PMID:26152934

  5. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge

    NASA Astrophysics Data System (ADS)

    May, Jody C.; McLean, John A.

    2016-06-01

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) is becoming the preferred technique for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements used to infer systems-level information. In this article, we describe multidimensional MS configurations as technologies that are big data drivers and review some new and emerging strategies for mining information from large-scale datasets. We discuss the information content that can be obtained from individual dimensions, as well as the unique information that can be derived by comparing different levels of data. Finally, we summarize some emerging data visualization strategies that seek to make highly dimensional datasets both accessible and comprehensible.

  6. Monte Carlo analysis of thermochromatography as a fast separation method for nuclear forensics

    SciTech Connect

    Hall, Howard L

    2012-01-01

    Nuclear forensic science has become increasingly important for global nuclear security, and enhancing the timeliness of forensic analysis has been established as an important objective in the field. New, faster techniques must be developed to meet this objective. Current approaches for the analysis of minor actinides, fission products, and fuel-specific materials require time-consuming chemical separation coupled with measurement through either nuclear counting or mass spectrometry. These very sensitive measurement techniques can be hindered by impurities or incomplete separation in even the most painstaking chemical separations. High-temperature gas-phase separation or thermochromatography has been used in the past for the rapid separations in the study of newly created elements and as a basis for chemical classification of that element. This work examines the potential for rapid separation of gaseous species to be applied in nuclear forensic investigations. Monte Carlo modeling has been used to evaluate the potential utility of the thermochromatographic separation method, albeit this assessment is necessarily limited due to the lack of available experimental data for validation.

  7. Advances in Development of the Fission Product Extraction Process for the Separation of Cesium and Strontium from Spent Nuclear Fuel

    SciTech Connect

    JAck D. Law

    2007-09-01

    The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.

  8. Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes

    PubMed Central

    Iliescu, Ciprian; Tresset, Guillaume; Xu, Guolin

    2009-01-01

    This paper presents a field-flow method for separating particle populations in a dielectrophoretic (DEP) chip with asymmetric electrodes under continuous flow. The structure of the DEP device (with one thick electrode that defines the walls of the microfluidic channel and one thin electrode), as well as the fabrication and characterization of the device, was previously described. A characteristic of this structure is that it generates an increased gradient of electric field in the vertical plane that can levitate the particles experiencing negative DEP. The separation method consists of trapping one population to the bottom of the microfluidic channel using positive DEP, while the other population that exhibits negative DEP is levitated and flowed out. Viable and nonviable yeast cells were used for testing of the separation method. PMID:20216966

  9. An Evaluation of Two Hydrograph Separation Methods of Potential Use in Regional Water Quality Assessment

    SciTech Connect

    Huff, D.D.

    1999-01-01

    Streamflow data are more useful for evaluating hydrologic model results and studying water quality once baseflow and storm runoff have been separated. However, it is important to select an appropriate hydrograph separation method. They examined tow methods and evaluated their conceptual basis, ease of application, cost of data processing, and acceptability of results. they chose the quick flow hydrograph separation method, which is in use at the Coweeta Hydrologic Laboratory, because it gives acceptable results and is easy and inexpensive to use. For regional assessment, they anticipate that the Coweeta program will be useful as an aid in developing general quantitative relationships between changes in land use and the associated changes in surface runoff yield and water quality degradation.

  10. Gearbox coupling modulation separation method based on match pursuit and correlation filtering

    NASA Astrophysics Data System (ADS)

    He, Guolin; Ding, Kang; Lin, Huibin

    2016-01-01

    The vibration signal of faulty gearbox commonly involves complex coupling modulation components. The method of sparse representation has been successfully used for gearbox fault diagnosis, but most of the literatures only focus on the extraction of impact modulation and always neglect the steady modulation representing the distributed faults. This paper presents a new method for separating coupling modulation from vibration signal of gearbox based on match pursuit and correlation filtering. To separate the steady modulation caused by distributed fault and the impact modulation caused by impact fault, two sub-dictionaries are specially designed according to the gearbox operating and structural parameters and the characteristics of vibration signal. The new dictionaries have clear physical meaning and good adaptability. In addition, an amplitude recovery step is conducted to improve the matching accuracy in the match pursuit. Simulation and experimental results show that the proposed method can separate the coupling components of gearbox vibration signal effectively under intensive background noise.

  11. Fully automated objective-based method for master recession curve separation.

    PubMed

    Posavec, Kristijan; Parlov, Jelena; Nakić, Zoran

    2010-01-01

    The fully automated objective-based method for master recession curve (MRC) separation was developed by using Microsoft Excel spreadsheet and Visual Basic for Applications (VBA) code. The core of the program code is used to construct an MRC by using the adapted matching strip method (Posavec et al. 2006). Criteria for separating the MRC into two or three segments are determined from the flow-duration curve and are represented as the probable range of percent of flow rate duration. Successive separations are performed automatically on two and three MRCs using sets of percent of flow rate duration from selected ranges and an optimal separation model scenario, having the highest average coefficient of determination R(2), is selected as the most appropriate one. The resulting separated master recession curves are presented graphically, whereas the statistics are presented numerically, all in separate sheets. Examples of field data obtained from two springs in Istria, Croatia, are used to illustrate its application. The freely available Excel spreadsheet and VBA program ensures the ease of use and applicability for larger data sets. PMID:20100291

  12. Development of a separation method for molybdenum from zirconium, niobium, and major elements of rubble samples.

    PubMed

    Shimada, Asako; Ozawa, Mayumi; Yabuki, Koshi; Kimiyama, Kazuhiro; Sato, Kenji; Kameo, Yutaka

    2014-12-01

    A method for separation of Mo from Zr, Nb, and other major elements of rubble samples from the Fukushima Daiichi Nuclear Power Station (FDNPS) was developed to enable 93Mo assay of the rubble samples. Although (93)Mo analysis has been reported in a few studies, the known separation method is tedious and time consuming, or the target is a simple material. Therefore, a simple and rapid protocol for the separation of a complex material, i.e., the rubble sample, was developed in this study. Firstly, loss of Mo during the digestion of simulated rubble samples was evaluated. Next, weight distribution coefficients (Kd's) of Zr, Nb, and Mo between an extraction chromatographic resin (tetra valent actinide resin, TEVA resin) and acid solutions (HF-HCl and HF-HNO3 solutions) were determined to obtain suitable solution conditions for the separation of Mo from Zr and Nb. Based on the obtained Kd's, a chromatographic separation scheme was designed and applied to the digested solution of the simulated rubble sample. Consequently, Mo was successfully separated from Zr, Nb and other major metal ions of the simulated rubble sample. PMID:25456594

  13. Conflict Prevention and Separation Assurance Method in the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Carreno, Victor A.; Williams, Daniel M.; Munoz, Cesar

    2005-01-01

    A multilayer approach to the prevention of conflicts due to the loss of aircraft-to-aircraft separation which relies on procedures and on-board automation was implemented as part of the SATS HVO Concept of Operations. The multilayer system gives pilots support and guidance during the execution of normal operations and advance warning for procedure deviations or off-nominal operations. This paper describes the major concept elements of this multilayer approach to separation assurance and conflict prevention and provides the rationale for its design. All the algorithms and functionality described in this paper have been implemented in an aircraft simulation in the NASA Langley Research Center s Air Traffic Operation Lab and on the NASA Cirrus SR22 research aircraft.

  14. Numerical Prediction Methods (Reynolds-Averaged Navier-Stokes Simulations of Transonic Separated Flows)

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Lomax, Harvard

    1981-01-01

    During the past five years, numerous pioneering archival publications have appeared that have presented computer solutions of the mass-weighted, time-averaged Navier-Stokes equations for transonic problems pertinent to the aircraft industry. These solutions have been pathfinders of developments that could evolve into a major new technological capability, namely the computational Navier-Stokes technology, for the aircraft industry. So far these simulations have demonstrated that computational techniques, and computer capabilities have advanced to the point where it is possible to solve forms of the Navier-Stokes equations for transonic research problems. At present there are two major shortcomings of the technology: limited computer speed and memory, and difficulties in turbulence modelling and in computation of complex three-dimensional geometries. These limitations and difficulties are the pacing items of the continuing developments, although the one item that will most likely turn out to be the most crucial to the progress of this technology is turbulence modelling. The objective of this presentation is to discuss the state of the art of this technology and suggest possible future areas of research. We now discuss some of the flow conditions for which the Navier-Stokes equations appear to be required. On an airfoil there are four different types of interaction of a shock wave with a boundary layer: (1) shock-boundary-layer interaction with no separation, (2) shock-induced turbulent separation with immediate reattachment (we refer to this as a shock-induced separation bubble), (3) shock-induced turbulent separation without reattachment, and (4) shock-induced separation bubble with trailing edge separation.

  15. Method of preparing porous, rigid ceramic separators for an electrochemical cell

    DOEpatents

    Bandyopadhyay, Gautam; Dusek, Joseph T.

    1981-01-01

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.

  16. Phase discrimination method for simultaneous two-phase separation in time-resolved stereo PIV measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Pothos, S.; Diez, F. J.

    2010-12-01

    A phase discrimination method for two-phase PIV is presented that is capable of simultaneously separating the two phases from time-resolved stereoscopic PIV images taken in a particle-laden jet. The technique developed expands on previous work done by Khalitov and Longmire (Exp Fluids 32:252-268, 2002), where by means of image processing techniques, a raw two-phase PIV image can be separated into two single-phase images according to particle size and intensity distributions. The technique is expanded through the use of three new image processing algorithms to separate particles of similar size (up to an order of magnitude better than published work) for fields of view much larger than previously considered. It also addresses the known problem of noisy background images produced by high-speed CMOS cameras, which makes the particle detection and separation from the noisy background difficult, through the use of a novel fast Fourier transform background filter.

  17. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    DOEpatents

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  18. Method of separating organic contaminants from fluid feedstreams with polyphosphazene membranes

    SciTech Connect

    McCaffrey, R.R.; Cummings, D.G.

    1990-12-31

    A method is provided for separating polar hydrocarbons from a fluid feedstream. The fluid feedstream is flowed across a first surface of a polyphosphazene semipermeable membrane. At least one polar hydrocarbon from the fluid feedstream permeates through the polyphosphazene semipermeable membrane to a second opposed surface of the semipermeable membrane. Then the permeated polar hydrocarbon is removed from the second opposed surface of the polyphosphazene semipermeable membrane. Outstanding and unexpected separation selectivities on the order of 10,000 were obtained for methylene chloride when a methylene chloride in water feedstream was flowed across the polyphosphazene semipermeable membrane in the invented method.

  19. Method of separating organic contaminants from fluid feedstreams with polyphosphazene membranes

    DOEpatents

    McCaffrey, Robert R.; Cummings, Daniel G.

    1991-01-01

    A method is provided for separating halogenated hydrocarbons from a fluid feedstream. The fluid feedstream is flowed across a first surface of a polyphosphazene semipermeable membrane. At least one halogenated hydrocarbon from the fluid feedstream permeates through the polyphosphazene semipermeable membrane to a second opposed surface of the semipermeable membrane. Then the permeated polar hydrocarbon is removed from the second opposed surface of the polyphosphazene semipermeable membrane. Outstanding and unexpected separation selectivities on the order of 10,000 were obtained for methylene chloride when a methylene chloride in water feedstream was flowed across the polyphosphazene semipermeable membrane in the invented method.

  20. Capillary electrophoresis methods for the analysis of antimalarials. Part I. Chiral separation methods.

    PubMed

    Amin, N'cho Christophe; Blanchin, Marie-Dominique; Aké, Michèle; Fabre, Huguette

    2012-11-16

    This paper presents an overview on the current status of enantiomeric and diastereomeric separations of chiral antimalarials and derivatives by capillary electrophoresis (CE). The wide variety of chiral selectors which have been employed to resolve successfully antimalarial enantiomers: oligosaccharides (cyclodextrins, oligomaltodextrins), neutral (amylose, dextrin and dextran) and charged (chondroitin sulfate, heparin, dextran sulfate) polysaccharides and proteins are reviewed. Cyclodextrins were the most employed. Chiral additives added to the background electrolyte often facilitated separations of quinine/quinidine and cinchonine/cinchonidine diastereomers. However, in a few cases, using micellar electrokinetic capillary chromatography or non aqueous CE, resolution of diastereomers could be achieved without additives. Quantitative applications of CE to the quality control of antimalarial drugs and their analysis in biological and food matrices are presented. PMID:23063793

  1. Strategy for selection of methods for separation of bioparticles from particle mixtures.

    PubMed

    van Hee, P; Hoeben, M A; van der Lans, R G J M; van der Wielen, L A M

    2006-07-01

    The desired product of bioprocesses is often produced in particulate form, either as an inclusion body (IB) or as a crystal. Particle harvesting is then a crucial and attractive form of product recovery. Because the liquid phase often contains other bioparticles, such as cell debris, whole cells, particulate biocatalysts or particulate by-products, the recovery of product particles is a complex process. In most cases, the particulate product is purified using selective solubilization or extraction. However, if selective particle recovery is possible, the already high purity of the particles makes this downstream process more favorable. This work gives an overview of typical bioparticle mixtures that are encountered in industrial biotechnology and the various driving forces that may be used for particle-particle separation, such as the centrifugal force, the magnetic force, the electric force, and forces related to interfaces. By coupling these driving forces to the resisting forces, the limitations of using these driving forces with respect to particle size are calculated. It shows that centrifugation is not a general solution for particle-particle separation in biotechnology because the particle sizes of product and contaminating particles are often very small, thus, causing their settling velocities to be too low for efficient separation by centrifugation. Examples of such separation problems are the recovery of IBs or virus-like particles (VLPs) from (microbial) cell debris. In these cases, separation processes that use electrical forces or fluid-fluid interfaces show to have a large potential for particle-particle separation. These methods are not yet commonly applied for large-scale particle-particle separation in biotechnology and more research is required on the separation techniques and on particle characterization to facilitate successful application of these methods in industry. PMID:16570310

  2. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  3. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  4. Exploration of Advanced Probabilistic and Stochastic Design Methods

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    2003-01-01

    The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and

  5. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  6. Advanced air separation for coal gasification-combined-cycle power plants: Final report

    SciTech Connect

    Kiersz, D.F.; Parysek, K.D.; Schulte, T.R.; Pavri, R.E.

    1987-08-01

    Union Carbide Corporation (UCC) and General Electric Company (GE) conducted a study to determine the benefits associated with extending the integration of integrated coal gasification-combined cycle (IGCC) systems to include the air separation plant which supplies oxygen to the gasifiers. This is achieved by extracting air from the gas turbine air compressors to feed the oxygen plant and returning waste nitrogen to the gas turbine. The ''Radiant Plus Convective Design'' (59/sup 0/F ambient temperature case) defined in EPRI report AP-3486 was selected as a base case into which the oxygen plant-gas turbine integration was incorporated and against which it was compared. General Electric Company's participation in evaluating gas turbine and power block performance ensured consistency between EPRI report AP-3486 and this study. Extending the IGCC integration to include an integrated oxygen plant-gas turbine results in a rare combination of benefits - higher efficiency and lower capital costs. Oxygen plant capital costs are over 20% less and the power requirement is reduced significantly. For the IGCC system, the net power output is higher for the same coal feed rate; this results in an overall improvement in heat rate of about 2% coupled with a reduction in capital costs of 2 to 3%. 6 refs., 11 figs., 7 tabs.

  7. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    NASA Astrophysics Data System (ADS)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  8. Advanced oxygen-separation membranes. Topical report, April 1989-September 1990

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1990-09-01

    The value of oxygen in improving the economics of high-temperature, natural-gas-fired processes is calculated, and the size and characteristics of the markets where oxygen-enhanced combustion could improve natural gas utilization are analyzed. Next, the cost of existing oxygen-separation processes is surveyed. Together, these define an economic target which any new production technology must meet if it is to be accepted. The bulk of the report analyzes three membrane based processes for oxygen production: polymeric membranes, porous ceramic membranes, and oxygen ion conducting membranes. Polymeric membranes are a commercially available technology limited to the production of oxygen-enriched air (OEA). Porous ceramic membranes have higher fluxes, higher costs, and are also limited to the production of OEA. Solid electrolyte, oxygen ion conductors produce pure oxygen, are applicable at both the very small and very large scales, and can potentially be less expensive than current technologies. In order to achieve this, better oxygen ion conductors and/or thinner membranes are required and membrane costs must be reduced. Improved conductors and thinner membranes are a target for fundamental research, while reduced costs will come both from improved materials and the general growth of the high-performance ceramics industry.

  9. Use of the electro-separation method for improvement of the utility value of winter rapeseeds

    NASA Astrophysics Data System (ADS)

    Kovalyshyn, S. J.; Shvets, O. P.; Grundas, S.; Tys, J.

    2013-12-01

    The paper presents the results of a study of the use of electro-separation methods for improvement of the utility value of 5 winter rapeseed cultivars. The process of electro-separation of rapeseed was conducted on a prototype apparatus built at the Laboratory of Application of Electro-technologies in Agriculture, Lviv National Agriculture University. The process facilitated separation of damaged, low quality seeds from the sowing material. The initial mean level of mechanically damaged seeds in the winter rapeseed cultivars studied varied within the range of 15.8-20.1%. Verification of the amount of seeds with mechanical damage was performed on X-ray images of seeds acquired by means of a digital X-ray apparatus. In the course of analysis of the X-ray images, it was noted that the mean level of mechanical damage to the seeds after the electro-separation was in the range of 2.1-3.8%. The application of the method of separation of rapeseeds in the corona discharge field yielded a significant reduction of the level of seeds with mechanical damage. The application of the method in practice may effectively contribute to improvement of the utility value of sowing material or seed material for production of edible oil.

  10. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  11. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  12. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOEpatents

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  13. Investigation of supersonic turbulent boundary-layer separation on a compression ramp by an integral method

    NASA Technical Reports Server (NTRS)

    Patel, D. K.; Czarnecki, K. R.

    1977-01-01

    An investigation was made to determine the feasibility of using a boundary layer integral method to study the separation of a turbulent boundary layer on a two dimensional ramp at supersonic speeds. The numerical calculations were made for a free stream Mach number of 3, a Reynolds number of 10 million, and over a ramp angle range from 0 deg to 30 deg. For ramp angles where no flow separation was indicated, theoretical calculations were in reasonable agreement with experimental data except for a somewhat belated rise in pressure. For larger ramp angles, where separation was present, the investigation produced results that were not in agreement with experiment or with results calculated by time dependent Navier-Stokes methods. This apparently was true because no provision had been made for a proper shock boundary layer interaction where strong normal pressure gradients are induced within the boundary layer under the shock independent of surface curvature effects.

  14. ADVANCES IN SAMPLING, SEPARATION, DETECTION AND IDENTIFICATION THAT ADDRESS UNMET NEEDS OF OSWER AND THE REGIONS

    EPA Science Inventory

    The Office of Solid Waste and Emergency Response (OSWER) has identified the development of improved methods for measuring, monitoring, and characterizing complex wastes in soils, sediments, biota, and groundwater as a priority under GOAL 3: LAND PRESERVATION AND RESTORATION:Prese...

  15. Balancing precision and risk: should multiple detection methods be analyzed separately in N-mixture models?

    PubMed

    Graves, Tabitha A; Royle, J Andrew; Kendall, Katherine C; Beier, Paul; Stetz, Jeffrey B; Macleod, Amy C

    2012-01-01

    Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps (systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model components for each detection method. If both methods sample the same population, the use of either data set alone should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4) improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection. However, the single-method analyses identified different variables and the resulting predicted abundances had different spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of individual heterogeneity between detection methods in N-mixture models, along with consideration of detection probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the population. The benefits of increased precision should be weighed against

  16. Balancing precision and risk: should multiple detection methods be analyzed separately in N-mixture models?

    USGS Publications Warehouse

    Graves, Tabitha A.; Royle, J. Andrew; Kendall, Katherine C.; Beier, Paul; Stetz, Jeffrey B.; Macleod, Amy C.

    2012-01-01

    Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps (systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model components for each detection method. If both methods sample the same population, the use of either data set alone should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4) improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection. However, the single-method analyses identified different variables and the resulting predicted abundances had different spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of individual heterogeneity between detection methods in N-mixture models, along with consideration of detection probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the population. The benefits of increased precision should be weighed against

  17. Method for separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    DOEpatents

    Malek, John M.

    1978-04-18

    A method of improving the quality of slurry products taken from coal liquefaction reactors comprising subjecting the slurry to treatment with an alkaline compound such as caustic soda in the presence of steam in order to decompose the phenolic and acidic materials present in the slurry, and to also lower the slurry viscosity to allow separation of solid particles by sedimentation.

  18. Method for forming an extraction agent for the separation of actinides from lanthanides

    DOEpatents

    Klaehn, John R.; Harrup, Mason K.; Law, Jack D.; Peterman, Dean R.

    2010-04-27

    An extraction agent for the separation of trivalent actinides from lanthanides in an acidic media and a method for forming same are described, and wherein the methodology produces a stable regiospecific and/or stereospecific dithiophosphinic acid that can operate in an acidic media having a pH of less than about 7.

  19. 40 CFR 246.200-5 - Recommended procedures: Methods of separation and collection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-top system, recyclable paper is placed by the generator in a container on his desk, while other waste... recommended system is the desk-top system because it is designed to maximize recovery of high value material... desk-top system has been designed to minimize these problems. (d) The precise method of separation...

  20. 40 CFR 246.200-5 - Recommended procedures: Methods of separation and collection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-top system, recyclable paper is placed by the generator in a container on his desk, while other waste... recommended system is the desk-top system because it is designed to maximize recovery of high value material... desk-top system has been designed to minimize these problems. (d) The precise method of separation...

  1. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  2. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    SciTech Connect

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  3. Ramsey's method of separated oscillating fields and its application to gravitationally induced quantum phase shifts

    SciTech Connect

    Abele, H.; Jenke, T.; Leeb, H.; Schmiedmayer, J.

    2010-03-15

    We propose to apply Ramsey's method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a horizontal mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schroedinger wave packet bouncing off a hard surface in the gravitational field of the Earth. Measurements with ultracold neutrons will offer a sensitivity to Newton's law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.

  4. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect

    Keiser, J. R.; Wang, D.; Bischoff, B.; Ciora,; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  5. Implementing an advanced waste separation step in an MBT plant: assessment of technical, economic and environmental impacts.

    PubMed

    Meirhofer, Martina; Piringer, Gerhard; Rixrath, Doris; Sommer, Manuel; Ragossnig, Arne Michael

    2013-10-01

    Heavy fractions resulting from mechanical treatment stages of mechanical-biological waste treatment plants are posing very specific demands with regard to further treatment (large portions of inert and high-caloric components). Based on the current Austrian legal situation such a waste stream cannot be landfilled and must be thermally treated. The aim of this research was to evaluate if an inert fraction generated from this waste stream with advanced separation technologies, two sensor-based [near-infrared spectroscopy (NIR), X-ray transmission (XRT)] and two mechanical systems (wet and dry) is able to be disposed of. The performance of the treatment options for separation was evaluated by characterizing the resulting product streams with respect to purity and yield. Complementing the technical evaluation of the processing options, an assessment of the economic and global warming effects of the change in waste stream routing was conducted. The separated inert fraction was evaluated with regard to landfilling. The remaining high-caloric product stream was evaluated with regard to thermal utilization. The results show that, in principal, the selected treatment technologies can be used to separate high-caloric from inert components. Limitations were identified with regard to the product qualities achieved, as well as to the economic expedience of the treatment options. One of the sensor-based sorting systems (X-ray) was able to produce the highest amount of disposeable heavy fraction (44.1%), while having the lowest content of organic (2.0% C biogenic per kg waste input) components. None of the high-caloric product streams complied with the requirements for solid recovered fuels as defined in the Austrian Ordinance on Waste Incineration. The economic evaluation illustrates the highest specific treatment costs for the XRT (€ 23.15 per t), followed by the NIR-based sorting system (€ 15.67 per t), and the lowest costs for the air separation system (€ 10.79 per t

  6. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  7. Electric arc furnace dust treatment: investigation on mechanical and magnetic separation methods.

    PubMed

    Sekula, R; Wnek, M; Selinger, A; Wróbel, M

    2001-08-01

    Electric arc furnace dust (EAFD) is a major issue for processing technologies: Several million tons per year are generated, it contains both valuable and hazardous metals and yet no available treatment process has proven to be superior to all others. Processes currently applied or being developed are either of hydro- or pyrometallurgical type, which are very costly. In the paper testing of some physical separation methods of electric arc furnace dust from Polish steel industry were investigated. SEM, EDX analyses as well as grain size observations of dust particles were additionally performed. All investigations confirmed a possibility of effective magnetic and mechanical separation of EAFD particles. PMID:11720260

  8. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  9. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  10. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  11. New advanced control methods for doubly salient permanent magnet motor

    SciTech Connect

    Blaabjerg, F.; Christensen, L.; Rasmussen, P.O.; Oestergaard, L.; Pedersen, P.

    1995-12-31

    High performance and high efficiency in adjustable speed drives are needed and new motor constructions are world wide investigated and analyzed. This paper deals with advanced control of a recently developed Doubly Salient Permanent Magnet (DSPM) motor. The construction of the DSPM motor is shown and a dynamical model of the motor is used for simulations. As supply to the DSPM motor, a power converter with a split capacitor is used to reduce the number of devices, and a basic control method for this converter is explained. This control method will cause an unequal voltage distribution across the capacitors because the motor is asymmetrical and a decrease in efficiency and a poorer dynamic performance are the results. To minimize the problems with the unequal load of the capacitors in the converter, a new charge control strategy is developed. The efficiency of the motor can also be improved by using a power minimizing scheme based on changing the turn-on and turn-off angles of the current. The two different strategies are implemented in an adjustable-speed drive, and it is concluded that both control strategies improve the performance of the drive.

  12. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    NASA Astrophysics Data System (ADS)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  13. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    PubMed Central

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  14. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.

    PubMed

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  15. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N

    2014-02-04

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  16. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N.

    2016-01-12

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  17. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    DOEpatents

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  18. Method for concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    SciTech Connect

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2012-09-04

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  19. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    PubMed

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-01

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. PMID:26014901

  20. CARBONATE METHOD OF SEPARATION OF TETRAVALENT PLUTONIUM FROM FISSION PRODUCT VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    It has been found that plutonium forms an insoluble precipitate with carbonate ion when the carbonate ion is present in stoichiometric proportions, while an excess of the carbonate ion complexes plutonium and renders it soluble. A method for separating tetravalent plutonium from lanthanum-group rare earths has been based on this discovery, since these rare earths form insoluble carbonates in approximately neutral solutions. According to the process the pH is adjusted to between 5 and 7, and approximately stoichiometric amounts of carbonate ion are added to the solution causing the formation of a precipitate of plutonium carbonate and the lanthanum-group rare earth carbonates. The precipitate is then separated from the solution and contacted with a carbonate solution of a concentration between 1 M and 3 M to complex and redissolve the plutonium precipitate, and thus separate it from the insoluble rare earth precipitate.

  1. Base flow separation: A comparison of analytical and mass balance methods

    NASA Astrophysics Data System (ADS)

    Lott, Darline A.; Stewart, Mark T.

    2016-04-01

    Base flow is the ground water contribution to stream flow. Many activities, such as water resource management, calibrating hydrological and climate models, and studies of basin hydrology, require good estimates of base flow. The base flow component of stream flow is usually determined by separating a stream hydrograph into two components, base flow and runoff. Analytical methods, mathematical functions or algorithms used to calculate base flow directly from discharge, are the most widely used base flow separation methods and are often used without calibration to basin or gage-specific parameters other than basin area. In this study, six analytical methods are compared to a mass balance method, the conductivity mass-balance (CMB) method. The base flow index (BFI) values for 35 stream gages are obtained from each of the seven methods with each gage having at least two consecutive years of specific conductance data and 30 years of continuous discharge data. BFI is cumulative base flow divided by cumulative total discharge over the period of record of analysis. The BFI value is dimensionless, and always varies from 0 to 1. Areas of basins used in this study range from 27 km2 to 68,117 km2. BFI was first determined for the uncalibrated analytical methods. The parameters of each analytical method were then calibrated to produce BFI values as close to the CMB derived BFI values as possible. One of the methods, the power function (aQb + cQ) method, is inherently calibrated and was not recalibrated. The uncalibrated analytical methods have an average correlation coefficient of 0.43 when compared to CMB-derived values, and an average correlation coefficient of 0.93 when calibrated with the CMB method. Once calibrated, the analytical methods can closely reproduce the base flow values of a mass balance method. Therefore, it is recommended that analytical methods be calibrated against tracer or mass balance methods.

  2. Advanced separation technology for flue gas cleanup. Final report, February 1998

    SciTech Connect

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Tagg, T.; Riggs, T.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1998-06-01

    The objective of this work by SRI International was to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. High efficiency, hollow fiber contactors (HFCs) were proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system would be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process would generate only marketable by-products, if any (no waste streams are anticipated). The major cost item in existing technology is capital investment. Therefore, the approach was to reduce the capital cost by using high-efficiency, hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. The authors also introduced new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. The process and progress in its development are described.

  3. Smoothing methods comparison for CMB E- and B-mode separation

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Fan; Wang, Kai; Zhao, Wen

    2016-04-01

    The anisotropies of the B-mode polarization in the cosmic microwave background radiation play a crucial role in the study of the very early Universe. However, in real observations, a mixture of the E-mode and B-mode can be caused by partial sky surveys, which must be separated before being applied to a cosmological explanation. The separation method developed by Smith (2006) has been widely adopted, where the edge of the top-hat mask should be smoothed to avoid numerical errors. In this paper, we compare three different smoothing methods and investigate leakage residuals of the E-B mixture. We find that, if less information loss is needed and a smaller region is smoothed in the analysis, the sin- and cos-smoothing methods are better. However, if we need a cleanly constructed B-mode map, the larger region around the mask edge should be smoothed. In this case, the Gaussian-smoothing method becomes much better. In addition, we find that the leakage caused by numerical errors in the Gaussian-smoothing method is mostly concentrated in two bands, which is quite easy to reduce for further E-B separations.

  4. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 4

    SciTech Connect

    Gottschlich, D.; Bhown, A.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumik, D.

    1993-04-01

    The objective of this work is to develop a novel system for regenerable S0{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (a) a novel method for regeneration of spent S0{sub 2} scrubbing liquor and (b) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the S0{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO(x) and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). The major cost item in existing technology is capital investment. Therefore, our approach is to reduce the capital cost by using high efficiency hollow fiber devices for absorbing and desorbing the S0{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize stationary well-known problems with S0{sub 2} and NO{sub x} absorption and desorption. For example, we will extract the S0{sub 2} from the aqueous scrubbing liquor into an oligomer of dimethylaniline to avoid the problem of organic liquid losses in the regeneration of the organic liquid. Our novel chemistry for scrubbing NO{sub x} will consist of water soluble phthalocyanine compounds invented by SRI and also of polymeric forms of Fe{sup ++} complexes similar to traditional NO(x) scrubbing media described in the open literature. Our past work with the phthalocyanine compounds, used as sensors for NO and N0{sub 2} in flue gases, shows that these compounds bind NO and N0{sub 2} reversibly and with no interference from 0{sub 2}, C0{sub 2}, S0{sub 2}, or other components of flue gas.

  5. Nonlinearity error separation and self-correction methods for time grating displacement sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xiaokang; Peng, Donglin; Wang, Xianquan; Yang, Wei

    2006-11-01

    A novel type of displacement sensor named time grating is introduced for measuring space with time. Multi-position probes measuring method is used to separate the non-linearity error of time grating, and Fourier series harmonic wave correction method is proposed to correct the error by software. Experiment results coming out from applications conform the remarkable effectiveness of these methods. A time grating displacement sensor with accuracy of +/-0.8" is developed. Test results show that high-precision measurement is achieved without high-precision manufacture. The realization of error self-correction endows time grating sensor with intelligence.

  6. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  7. Recent applications of capillary electromigration methods to separation and analysis of proteins.

    PubMed

    Štěpánová, Sille; Kašička, Václav

    2016-08-24

    This review article describes the significant recent developments in analysis of proteins by capillary electromigration (CE) methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography and electrochromatography) during the period 2011-2015. Improvements in sample preparation, preconcentration, suppression of adsorption and control of electroosmotic flow, separations by particular CE methods, and the detection schemes used in the analysis of proteins are discussed. Innovative applications of the above CE methods for quality control of protein biopharmaceuticals, protein determination in complex biomatrices, peptide mapping of proteins, and determination of physicochemical parameters of proteins are presented. PMID:27496994

  8. Surface hot-film method for the measurement of transition, separation and reattachment points

    NASA Astrophysics Data System (ADS)

    Nakayama, Akihiko; Stack, John P.; Lin, John C.; Valarezo, Walter O.

    1993-07-01

    A real-time method of determining positions of laminar-to-turbulent transition region, separation and reattachment points and stagnation points using an array of simultaneously operated surface-mounted hot-film sensors has been developed and applied to a wind-tunnel test of a multielement airfoil model. Determination of various types of transitions and flow directions in various regimes of flows seen on multielement airfoils are possible without precise sensor calibration or laborious post-test data analysis. The results agree with established method and theoretical methods, but determination of turbulent reattachment points are not yet satisfactory.

  9. A facile method to fabricate functionally integrated devices for oil/water separation

    NASA Astrophysics Data System (ADS)

    An, Qi; Zhang, Yihe; Lv, Kaikai; Luan, Xinglong; Zhang, Qian; Shi, Feng

    2015-02-01

    In this paper, we present a facile method for the fabrication of a functionally integrated device, which has the multi-functions of the oil-containment boom, oil-sorption material, and water/oil-separating film, through a single immersion step in an ethanol solution of stearic acid. During the simple immersion process, the two dominant factors of superhydrophobicity, surface roughness and low-surface-energy coatings, could be accomplished simultaneously. The as-prepared functionally integrated device with superhydrophobicity/superoleophilicity displayed a lower density than that of water, such that it could float on water and act as an oil-containment boom; an efficient oil-absorbing property, which was attributed to the capillary effect caused by micrometer-sized pore structures and could be used as oil-sorption materials; a high oil/water separating efficiency which was suitable for water/oil-separating film. In this way, the functions of oil collection, absorption, and water/oil separation are integrated into a single device, and these functions could work independently, reducing the cost in terms of energy consumption and being versatile for a wide range of applications.In this paper, we present a facile method for the fabrication of a functionally integrated device, which has the multi-functions of the oil-containment boom, oil-sorption material, and water/oil-separating film, through a single immersion step in an ethanol solution of stearic acid. During the simple immersion process, the two dominant factors of superhydrophobicity, surface roughness and low-surface-energy coatings, could be accomplished simultaneously. The as-prepared functionally integrated device with superhydrophobicity/superoleophilicity displayed a lower density than that of water, such that it could float on water and act as an oil-containment boom; an efficient oil-absorbing property, which was attributed to the capillary effect caused by micrometer-sized pore structures and could be

  10. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    PubMed Central

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  11. Methods for integrating optical fibers with advanced aerospace materials

    NASA Astrophysics Data System (ADS)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  12. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    SciTech Connect

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A; Popov, Emilian L

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.

  13. Quantifying hydrate solidification front advancing using method of characteristics

    NASA Astrophysics Data System (ADS)

    You, Kehua; DiCarlo, David; Flemings, Peter B.

    2015-10-01

    We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation from gas injection into brine-saturated sediments within the hydrate stability zone. Our solution includes fully coupled multiphase and multicomponent flow and the associated advective transport in a homogeneous system. Our solution shows that hydrate saturation is controlled by the initial thermodynamic state of the system and changed by the gas fractional flow. Hydrate saturation in gas-rich systems can be estimated by 1-cl0/cle when Darcy flow dominates, where cl0 is the initial mass fraction of salt in brine, and cle is the mass fraction of salt in brine at three-phase (gas, liquid, and hydrate) equilibrium. Hydrate saturation is constant, gas saturation and gas flux decrease, and liquid saturation and liquid flux increase with the distance from the gas inlet to the hydrate solidification front. The total gas and liquid flux is constant from the gas inlet to the hydrate solidification front and decreases abruptly at the hydrate solidification front due to gas inclusion into the hydrate phase. The advancing velocity of the hydrate solidification front decreases with hydrate saturation at a fixed gas inflow rate. This analytical solution illuminates how hydrate is formed by gas injection (methane, CO2, ethane, propane) at both the laboratory and field scales.

  14. Electrochemical test methods for advanced battery and semiconductor technology

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  15. Advanced Signal Processing Methods Applied to Digital Mammography

    NASA Technical Reports Server (NTRS)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases

  16. Nonnegative matrix factorization: a blind sources separation method to extract content of fluorophores mixture media

    NASA Astrophysics Data System (ADS)

    Zhou, Kenneth J.; Chen, Jun

    2014-03-01

    The fluorophores of malignant human breast cells change their compositions that may be exposed in the fluorescence spectroscopy and blind source separation method. The content of the fluorophores mixture media such as tryptophan, collagen, elastin, NADH, and flavin were varied according to the cancer development. The native fluorescence spectra of these key fluorophores mixture media excited by the selective excitation wavelengths of 300 nm and 340 nm were analyzed using a blind source separation method: Nonnegative Matrix Factorization (NMF). The results show that the contribution from tryptophan, NADH and flavin to the fluorescence spectra of the mixture media is proportional to the content of each fluorophore. These data present a possibility that native fluorescence spectra decomposed by NMF can be used as potential native biomarkers for cancer detection evaluation of the cancer.

  17. Method and apparatus for holding two separate metal pieces together for welding

    NASA Technical Reports Server (NTRS)

    Mcclure, S. R. (Inventor)

    1980-01-01

    A method of holding two separate metal pieces together for welding is described including the steps of overlapping a portion of one of the metal pieces on a portion of the other metal piece, encasing the overlapping metal piece in a compressible device, drawing the compressible device into an enclosure, and compressing a portion of the compressible device around the overlapping portions of the metal pieces for holding the metal pieces under constant and equal pressure during welding. The preferred apparatus for performing the method utilizes a support mechanism to support the two separate metal pieces in an overlapping configuration; a compressible device surrounding the support mechanism and at least one of the metal pieces, and a compressing device surrounding the compressible device for compressing the compressible device around the overlapping portions of the metal pieces, thus providing constant and equal pressure at all points on the overlapping portions of the metal pieces.

  18. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F., Jr.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  19. Effective simulation for robust inverse lithography using convolution-variation separation method

    NASA Astrophysics Data System (ADS)

    Lv, Wen; Liu, Shiyuan; Zhou, Xinjiang; Wei, Haiqing

    2014-03-01

    As critical dimension shrinks, pattern density of integrated circuits gets much denser and lithographic process variations become more pronounced. In order to synthesize masks that are robust to process variations, the average wafer performance with respect to process fluctuations is optimized. This approach takes into account process variations explicitly. However, it needs to calculate a large number of optical images under different process variations during its optimizing process and thus significantly increases the computational burden. Most recently, we proposed a convolutionvariation separation (CVS) method for modeling of optical lithography, which separates process variables from the coordinate system and hence enables fast computation of optical images through a wide range of process variations. In this work, we detail the formulation of robust inverse lithography making use of the CVS method, and further investigate the impacts of arbitrary statistical distribution of process variations on the synthesized mask patterns.

  20. Novel method of separating macroporous arrays from p-type silicon substrate

    NASA Astrophysics Data System (ADS)

    Bobo, Peng; Fei, Wang; Tao, Liu; Zhenya, Yang; Lianwei, Wang; Fu, Ricky K. Y.; Chu, Paul K.

    2012-04-01

    This paper presents a novel method to fabricate separated macroporous silicon using a single step of photo-assisted electrochemical etching. The method is applied to fabricate silicon microchannel plates in 100 mm p-type silicon wafers, which can be used as electron multipliers and three-dimensional Li-ion microbatteries. Increasing the backside illumination intensity and decreasing the bias simultaneously can generate additional holes during the electrochemical etching which will create lateral etching at the pore tips. In this way the silicon microchannel can be separated from the substrate when the desired depth is reached, then it can be cut into the desired shape by using a laser cutting machine. Also, the mechanism of lateral etching is proposed.

  1. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  2. Method for the concentration and separation of actinides from biological and environmental samples

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1989-01-01

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting.

  3. Method for the concentration and separation of actinides from biological and environmental samples

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1989-05-30

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs.

  4. METHOD OF SEPARATING URANIUM, PLUTONIUM AND FISSION PRODUCTS BY BROMINATION AND DISTILLATION

    DOEpatents

    Jaffey, A.H.; Seaborg, G.T.

    1958-12-23

    The method for separation of plutonium from uranium and radioactive fission products obtained by neutron irradiation of uranlum consists of reacting the lrradiated material with either bromine, hydrogen bromide, alumlnum bromide, or sulfur and bromine at an elevated temperature to form the bromides of all the elements, then recovering substantlally pure plutonium bromide by dlstillatlon in combinatlon with selective condensatlon at prescribed temperature and pressure.

  5. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  6. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  7. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  8. Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology

    NASA Astrophysics Data System (ADS)

    Wolberg, William H.; Mangasarian, Olvi L.

    1990-12-01

    Multisurface pattern separation is a mathematical method for distinguishing between elements of two pattern sets. Each element of the pattern sets is comprised of various scalar observations. In this paper, we use the diagnosis of breast cytology to demonstrate the applicability of this method to medical diagnosis and decision making. Each of 11 cytological characteristics of breast fine-needle aspirates reported to differ between benign and malignant samples was graded 1 to 10 at the time of sample collection. Nine characteristics were found to differ significantly between benign and malignant samples. Mathematically, these values for each sample were represented by a point in a nine-dimensional space of real variables. Benign points were separated from malignant ones by planes determined by linear programming. Correct separation was accomplished in 369 of 370 samples (201 benign and 169 malignant). In the one misclassified malignant case, the fine-needle aspirate cytology was so definitely benign and the cytology of the excised cancer so definitely malignant that we believe the tumor was missed on aspiration. Our mathematical method is applicable to other medical diagnostic and decision-making problems.

  9. Some Remarks on the Riccati Equation Expansion Method for Variable Separation of Nonlinear Models

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Peng; Dai, Chao-Qing

    2015-10-01

    Based on the Riccati equation expansion method, 11 kinds of variable separation solutions with different forms of (2+1)-dimensional modified Korteweg-de Vries equation are obtained. The following two remarks on the Riccati equation expansion method for variable separation are made: (i) a remark on the equivalence of different solutions constructed by the Riccati equation expansion method. From analysis, we find that these seemly independent solutions with different forms actually depend on each other, and they can transform from one to another via some relations. We should avoid arbitrarily asserting so-called "new" solutions; (ii) a remark on the construction of localised excitation based on variable separation solutions. For two or multi-component systems, we must be careful with excitation structures constructed by all components for the same model lest the appearance of some un-physical structures. We hope that these results are helpful to deeply study exact solutions of nonlinear models in physical, engineering and biophysical contexts.

  10. Multicoil Dixon chemical species separation with an iterative least-squares estimation method.

    PubMed

    Reeder, Scott B; Wen, Zhifei; Yu, Huanzhou; Pineda, Angel R; Gold, Garry E; Markl, Michael; Pelc, Norbert J

    2004-01-01

    This work describes a new approach to multipoint Dixon fat-water separation that is amenable to pulse sequences that require short echo time (TE) increments, such as steady-state free precession (SSFP) and fast spin-echo (FSE) imaging. Using an iterative linear least-squares method that decomposes water and fat images from source images acquired at short TE increments, images with a high signal-to-noise ratio (SNR) and uniform separation of water and fat are obtained. This algorithm extends to multicoil reconstruction with minimal additional complexity. Examples of single- and multicoil fat-water decompositions are shown from source images acquired at both 1.5T and 3.0T. Examples in the knee, ankle, pelvis, abdomen, and heart are shown, using FSE, SSFP, and spoiled gradient-echo (SPGR) pulse sequences. The algorithm was applied to systems with multiple chemical species, and an example of water-fat-silicone separation is shown. An analysis of the noise performance of this method is described, and methods to improve noise performance through multicoil acquisition and field map smoothing are discussed. PMID:14705043

  11. A new two-dimensional chromatographic method for separation of saponins from steamed Panax notoginseng.

    PubMed

    Lelu, Jimmy K; Liu, Qi; Alolga, Raphael N; Fan, Yong; Xiao, Wei-Lie; Qi, Lian-Wen; Li, Ping

    2016-06-01

    The root and rhizome of Panax notoginseng (PNG) are used as folk medicine. Recent studies have reported PNG to possess immunomodulatory, cardioprotective, hepatoprotective, anti-diabetic and anticancer activities among a host of other pharmacological effects. The main active constituents responsible for these pharmacological effects are saponins. It has also been proven that the chemical constituents of steamed PNG differs from the raw form. Traditional methods of separating individual components in crude extracts are usually tedious, almost irreproducible and time-consuming. In this study, an automated multi-step preparative separation system, known as Sepbox afforded a quick, reproducible and fast separation of saponins from PNG. With Sepbox, a total of 11 saponins of high purity were obtained in a short period of time. The separated compounds were identified as notoginsenosides R1, T5, ginsenosides Rb1, Rg1, Rg2, Rh1, Rh4, Rd, 20 (S) -Rg3 and a mixture of ginsenosides Rk1 and Rg5. PMID:27107214

  12. Simplified Estimating Method for Shock Response Spectrum Envelope of V-Band Clamp Separation Shock

    NASA Astrophysics Data System (ADS)

    Iwasa, Takashi; Shi, Qinzhong

    A simplified estimating method for the Shock Response Spectrum (SRS) envelope at the spacecraft interface near the V-band clamp separation device has been established. This simplified method is based on the pyroshock analysis method with a single degree of freedom (D.O.F) model proposed in our previous paper. The parameters required in the estimating method are only geometrical information of the interface and a tension of the V-band clamp. According to the use of these parameters, a simplified calculation of the SRS magnitude at the knee frequency is newly proposed. By comparing the estimation results with actual pyroshock test results, it was verified that the SRS envelope estimated with the simplified method appropriately covered the pyroshock test data of the actual space satellite systems except some specific high frequency responses.

  13. Calculation Method for Flight Limit Load of V-band Clamp Separation Shock

    NASA Astrophysics Data System (ADS)

    Iwasa, Takashi; Shi, Qinzhong

    A simplified calculation method for estimating a flight limit load of the V-band clamp separation shock was established. With this method, the flight limit load is estimated through addition of an appropriate envelope margin to the results acquired with the simplified analysis method proposed in our previous paper. The envelope margin used in the method was calculated based on the reviews on the differences observed between the results of a pyroshock test and the analysis. Using the derived envelope margin, a calculating formula of the flight limit load, which envelopes the actual pyroshock responses with a certain probability, was developed. Based on the formula, flight limit loads for several actual satellites were estimated and compared to the test results. The comparative results showed that the estimated flight limit loads appropriately envelope the test results, which confirmed the effectiveness of the proposed method.

  14. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  15. Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2013-01-01

    Extravehicular activities (EVAs) require high-pressure, high-purity oxygen. Shuttle EVAs use oxygen that is stored and transported as a cryogenic fluid. EVAs on the International Space Station (ISS) presently use the Shuttle cryo O2, which is transported to the ISS using a transfer hose. The fluid is compressed to elevated pressures and stored as a high-pressure gas. With the retirement of the shuttle, NASA has been searching for ways to deliver oxygen to fill the highpressure oxygen tanks on the ISS. A method was developed using low-pressure oxygen generated onboard the ISS and released into ISS cabin air, filtering the oxygen from ISS cabin air using a pressure swing absorber to generate a low-pressure (high-purity) oxygen stream, compressing the oxygen with a mechanical compressor, and transferring the high-pressure, high-purity oxygen to ISS storage tanks. The pressure swing absorber (PSA) can be either a two-stage device, or a single-stage device, depending on the type of sorbent used. The key is to produce a stream with oxygen purity greater than 99.5 percent. The separator can be a PSA device, or a VPSA device (that uses both vacuum and pressure for the gas separation). The compressor is a multi-stage mechanical compressor. If the gas flow rates are on the order of 5 to 10 lb (.2.3 to 4.6 kg) per day, the compressor can be relatively small [3 16 16 in. (.8 41 41 cm)]. Any spacecraft system, or other remote location that has a supply of lowpressure oxygen, a method of separating oxygen from cabin air, and a method of compressing the enriched oxygen stream, has the possibility of having a regenerable supply of highpressure, high-purity oxygen that is compact, simple, and safe. If cabin air is modified so there is very little argon, the separator can be smaller, simpler, and use less power.

  16. Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

    PubMed

    Fitz, Brian D; Mannion, Brandyn C; To, Khang; Hoac, Trinh; Synovec, Robert E

    2015-05-01

    Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace. PMID:25814332

  17. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  18. Pseudophasic extraction method for the separation of ultra-fine minerals

    DOEpatents

    Chaiko, David J.

    2002-01-01

    An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.

  19. Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method.

    PubMed

    Luo, Tao; Wang, Zhien; Ferrare, Richard A; Hostetler, Chris A; Yuan, Renmin; Zhang, Damao

    2015-06-01

    This paper developed a new retrieval framework of external mixing of the dust and non-dust aerosol to predict the lidar ratio of the external mixing aerosols and to separate the contributions of non-spherical aerosols by using different depolarization ratios among dust, sea salt, smoke, and polluted aerosols. The detailed sensitivity tests and case study with the new method showed that reliable dust information could be retrieved even without prior information about the non-dust aerosol types. This new method is suitable for global dust retrievals with satellite observations, which is critical for better understanding global dust transportation and for model improvements. PMID:26072778

  20. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  1. Mass spectrometric characterization of gentamicin components separated by the new European Pharmacopoeia method.

    PubMed

    Li, B; Van Schepdael, A; Hoogmartens, J; Adams, E

    2011-04-28

    Liquid chromatography combined with pulsed electrochemical detection (LC-PED) is the method of choice in the European Pharmacopoeia for the determination of gentamicin and its related substances. A recently approved improved LC-PED method, with a reversed-phase C(18) column and a mobile phase consisting of trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), sodium hydroxide and acetonitrile, showed better separation and more sensitive detection of the gentamicin components than the previous method using a polymer column. More unknown peaks can be separated from the main components and from each other. As the LC-PED method cannot be directly coupled to a mass spectrometer (MS), the unknown substances were collected after the LC column, desalted and analyzed by MS. The structures of the unknown compounds were deduced based on comparison of their fragmentation patterns with those of reference substances investigated by MS(n) experiments using an electrospray ion trap mass spectrometer. A comparison was also made with an already previously published LC-MS method using a volatile mobile phase. PMID:21316176

  2. Processing of alnico permanent magnets by advanced directional solidification methods

    DOE PAGESBeta

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  3. Processing of alnico permanent magnets by advanced directional solidification methods

    NASA Astrophysics Data System (ADS)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  4. Connection method of separated luminal regions of intestine from CT volumes

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Hirooka, Yoshiki; Goto, Hidemi; Mori, Kensaku

    2015-03-01

    This paper proposes a connection method of separated luminal regions of the intestine for Crohn's disease diagnosis. Crohn's disease is an inflammatory disease of the digestive tract. Capsule or conventional endoscopic diagnosis is performed for Crohn's disease diagnosis. However, parts of the intestines may not be observed in the endoscopic diagnosis if intestinal stenosis occurs. Endoscopes cannot pass through the stenosed parts. CT image-based diagnosis is developed as an alternative choice of the Crohn's disease. CT image-based diagnosis enables physicians to observe the entire intestines even if stenosed parts exist. CAD systems for Crohn's disease using CT volumes are recently developed. Such CAD systems need to reconstruct separated luminal regions of the intestines to analyze intestines. We propose a connection method of separated luminal regions of the intestines segmented from CT volumes. The luminal regions of the intestines are segmented from a CT volume. The centerlines of the luminal regions are calculated by using a thinning process. We enumerate all the possible sequences of the centerline segments. In this work, we newly introduce a condition using distance between connected ends points of the centerline segments. This condition eliminates unnatural connections of the centerline segments. Also, this condition reduces processing time. After generating a sequence list of the centerline segments, the correct sequence is obtained by using an evaluation function. We connect the luminal regions based on the correct sequence. Our experiments using four CT volumes showed that our method connected 6.5 out of 8.0 centerline segments per case. Processing times of the proposed method were reduced from the previous method.

  5. Apparatus and methods for high resolution separation of sample components on microfabricated channel devices

    DOEpatents

    Mathies, Richard A.; Paegel, Brian; Simpson, Peter C.; Hutt, Lester

    2005-07-05

    Sample component separation apparatus and methods are described. An exemplary sample component separation apparatus includes a separation channel having a turn portion configured to reduce band-broadening caused by passage of a sample through the turn portion. To reduce band broadening caused by passage of a sample through a turn portion, the turn portion may be constructed and arranged to have a sample transport characteristic that is different from the corresponding sample transport characteristic of a substantially straight portion of the separation channel. For example, the turn portion may be configured with an effective channel width that is smaller than the effective channel widths of the substantially straight portion of the separation channel. The actual channel width of the turn portion may be smaller than the channel widths of the substantially straight portion; the effective channel width of the turn portion may be reduced by placing one or more sample transport barriers or constrictions in the turn portion of the channel. Alternatively, the sample velocity through the turn portion may be controlled so as to reduce band broadening. For example, sample transport barriers may be disposed in the turn portion so that sample components of a given band travel through the turn portion at substantially the same effective rate, whereby the band orientation remains substantially aligned along radial directions characteristic of the turn portion. Other a sample transport characteristics, such as electrical resistance or fluid flow resistance, of the turn portion may be adapted to reduce band broadening caused by passage of the sample through the turn portion.

  6. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    PubMed

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups. PMID:22767355

  7. A simple pharmacokinetic method for separating the three acetylation phenotypes: a preliminary report.

    PubMed Central

    Lee, E J; Lee, L K

    1982-01-01

    1 Until recently, phenotyping the N-acetyltransferase enzyme had been restricted to distinguishing the slow acetylators from the rapid. Further separation of the heterozygous rapid phenotype from the homozygous rapid phenotype has only been possible by detailed pharmacokinetic studies using sulphadimidine and necessitating prolonged plasma sampling. 2 A simple method of deriving the basic pharmacokinetic parameters is presented. In this study of ten healthy volunteers, one urine sample and hourly plasma sampling over only 5 h enabled calculation of the total body (TBC) and metabolic clearances (MC) wih enough accuracy to distinguish the three (slow, intermediate and rapid) acetylator phenotypes. The spread of the distribution for the elimination rate constant was however too wide to enable their clear separation. PMID:7059437

  8. Device and method for automated separation of a sample of whole blood into aliquots

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.

    1989-01-01

    A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.

  9. Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

    NASA Astrophysics Data System (ADS)

    Scheibe, Blazej; Rümmeli, Mark H.; Borowiak-Palen, Ewa; Kalenczuk, Ryszard J.

    2011-04-01

    This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).

  10. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  11. A computation method of dual-material separation based on dual-energy CT imaging

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Chen, Ming; Zhao, Jintao; Lv, Hanyu; Hu, Xiaodong

    2015-10-01

    Dual-energy x-ray technique, which consists in combining two radiographs acquired at two kilovoltage, can improve the identity of the compositions of object over regular CT, or at least improve image contrast. Dual-energy equations can be easily written and solved for ideally monochromatic x-ray source and perfect detector, but become complex when considering polychromatic x-ray source, detector sensitivity, and system non-linearity. In this paper, a new dual-energy algorithm which employed the basis material decomposition method was investigated for improving material separation capability. Studies by using computer-simulated data were performed to validate and evaluate the algorithm. The preliminary results of the study show that, with the proposed algorithm, separated "material specific" images of dual-material object could be obtained. Also monochromatic image can be acquired at arbitrary desired energy which could enhance image contrast in comparison with conventional reconstructed image.

  12. Advanced Methods of Observing Surface Plasmon Polaritons and Magnons

    NASA Astrophysics Data System (ADS)

    Moghaddam, Abolghasem Mobaraki

    Available from UMI in association with The British Library. Requires signed TDF. The primary objectives of this thesis are the investigation of the theoretical and experimental aspects of the design and construction of advanced techniques for the excitation of surface plasmon-polaritons, surface magneto -plasmon-polaritons and surface magnons. They involve on -line observation of these phenomena and to accomplish these goals, analytical studies of the characteristic behaviour of these phenomena have been undertaken. For excitations of surface plasmon- and surface magneto-plasmon-polaritons the most robust and conventional configuration, namely Prism-Medium-Air, coupled to a novel angle scan (prism spinning) method was employed. The system to be described here can automatically measure the reflectivity of a multilayer system over a range of angles that includes the resonance angle in an Attenuated Total Reflection (ATR) experiment. The computer procedure that controls the system is quite versatile so that it allows any right-angle prism of different angle or refractive index to be utilised. It also provided probes to check for optical alignment within the system. Moreover, it performs the angular scan many times and then averages the results in order to reduce the environmental and other possible sources of noise within the system. The mechanical side of the system is unique and could eventually be adopted as a marketable piece of equipment. It consists of a turntable for holding the prism-sample assembly and a drive motor in conjunction with a servo-potentiometer whose output not only operates the turntable but also sends a signal to a computer to measure accurately its position. The interface unit enables a computer to control automatically an angular scan ATR experiment for measuring the resonance reflectivity spectrum of a multilayer system. The interface unit uses an H-bridge switch formed by four bipolar power transistor and two small signal MOSFETs to convert

  13. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  14. A novel separation and calibration method for DVL and compass error in dead reckoning navigation systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yanshun; Guo, Yajing; Yang, Tao; Li, Chunyu; Wang, Zhanqing

    2016-06-01

    The scale factor error δ C of the Doppler velocity log (DVL) and the heading angle error δ \\psi of a compass are so integrated in dead reckoning (DR) navigation systems that it is difficult to separate them. This paper aims to solve this problem by putting forward an online separation and calibration method for δ C and δ \\psi based on an ‘arc and linear’ trajectory. This method introduces the high-accuracy location information of a long base line (LBL) acoustic positioning system. At first, the relationship between the displacements on the ‘arc’ trajectory in directions of east and north, output by the LBL and DR systems, serves to judge the carrier direction and calibrate δ C . And then by compensating δ C , the displacement on the ‘linear’ trajectory is used to calibrate δ \\psi . Finally, a semi-physical simulation experiment is conducted to test and verify this calibration method to see how effective and accurate it is. Experimental results show that after calibration the residual error ratios of δ C and δ \\psi are 8.24% and 3.70% respectively. Therefore, online calibration of δ C and δ \\psi is realized effectively. What’s more, when the DR system is working alone in 400 s, this method reduces position error by up to 93.39%, from 18.91 m to 1.25 m.

  15. a Quick and Practical Experimental Method for Separating Wheel and Track Contributions to Rolling Noise

    NASA Astrophysics Data System (ADS)

    FRID, A.

    2000-03-01

    A rapid and inexpensive experimental method for the breakdown of wayside rolling noise into direct and indirect wheel and track components has been developed. “Direct” in this context refers to the sound radiation from the outside of wheel and track. “Indirect” refers to sound radiation from inside wheel/track parts which is first reflected in the running gear, vehicle subframe and ballast before being radiated to the wayside. The separation method requires simultaneous measurements with a close range highly directive parabolic reflector microphone and a microphone on the track bed. The method gives the sound power for the above-mentioned components in 1/3-octave bands. For validation, synthesized wayside sound pressure time histories in 1/3-octave bands are compared with measured ones at 5 and 25 m distance from the track. The acoustic model for the source separation also allows a rough assessment on the efficiency of noise reduction measures like shielding, wheel damping, bogie absorption, etc., to be made. The method is demonstrated on pass-bys of X2000 trains and the potential benefit of damping, absorption and shielding is discussed.

  16. A novel method for retinal exudate segmentation using signal separation algorithm.

    PubMed

    Imani, Elaheh; Pourreza, Hamid-Reza

    2016-09-01

    Diabetic retinopathy is one of the major causes of blindness in the world. Early diagnosis of this disease is vital to the prevention of visual loss. The analysis of retinal lesions such as exudates, microaneurysms and hemorrhages is a prerequisite to detect diabetic disorders such as diabetic retinopathy and macular edema in fundus images. This paper presents an automatic method for the detection of retinal exudates. The novelty of this method lies in the use of Morphological Component Analysis (MCA) algorithm to separate lesions from normal retinal structures to facilitate the detection process. In the first stage, vessels are separated from lesions using the MCA algorithm with appropriate dictionaries. Then, the lesion part of retinal image is prepared for the detection of exudate regions. The final exudate map is created using dynamic thresholding and mathematical morphologies. Performance of the proposed method is measured on the three publicly available DiaretDB, HEI-MED and e-ophtha datasets. Accordingly, the AUC of 0.961 and 0.948 and 0.937 is achieved respectively, which are greater than most of the state-of-the-art methods. PMID:27393810

  17. Identification and Separation of Geochemical Distribution Patterns using Fractal/Multifractal Methods

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Cheng, Qiuming

    2015-04-01

    Identification and separation of anomalies from background for mineral exploration or environmental assessment is a fundamental issue in the field of exploration geochemistry. Traditionally, geochemical data are usually considered to follow normal or lognormal distributions, this scenario might lead to the extreme values cannot be detected by ordinary statistic methods, because the data of interest cannot meet the prerequisites of some typical statistic methods, and usually it is hard to separate geochemical anomalies from background, especially when weak anomalies are hidden in high background or the difference between anomaly and background is feeble. Cheng (2000) demonstrated that background values of geochemical data typically followed normal or lognormal distributions, and and anomalous values usually followed fractal/multifractal distributions. West and Shlesinger (1990) investigated the relationships of normal/lognormal distributions with Pareto distributions, the results indicated that the natural system was gradually tend to complexity from normal distributions to lognormal distributions, and then to Pareto distributions. Pareto distributions describe the most complex natural system, showing stronger fractal/multifractal characteristics. From the perspective of ore-forming processes, ore formation is the result of complex physical and chemical processes, there are considerable overlaps between igneous and hydrothermal and between sedimentary and hydrothermal, as a result, complex ore-forming processes might result in fractal/multifractal pattern. In the present study, a case study of anomaly identification of REE mineralization- related La and Y concentration values from 1617 stream sediment samples in the Nanling belt, South China, is used to demonstrate the application of two fractal/multifractal methods, singularity analysis and concentration-area (C-A) fractal method. First, singularity analysis is used to identify weak anomalies hidden within

  18. Polyacrylamide-Polydivinylbenzene Decorated Membrane for Sundry Ionic Stabilized Emulsions Separation via a Facile Solvothermal Method.

    PubMed

    Zhang, Weifeng; Liu, Na; Cao, Yingze; Chen, Yuning; Zhang, Qingdong; Lin, Xin; Qu, Ruixiang; Li, Haifang; Feng, Lin

    2016-08-24

    Aiming to solve the worldwide challenge of stabilized oil-in-water emulsion separation, a PAM-PDVB decorated nylon membrane is fabricated via a facile solvothermal route in our group. The main composition is PAM, while the PDVB plays a role as cross-linker in order to improve the interaction between the polymer and the substrate. By the combination of the superhydrophilic and underwater superoleophobic wettability of the PAM polymer with the micropore size of the substrate, the as-prepared material is able to achieve the separation of various stabilized oil-in-water emulsions including cationic type, nonionic type, and anionic type. Compared with previous works, the emulsions used in this case are more stable and can stay for several days. Besides, the solvothermal method is facile, cost saving, and relatively environmentally friendly in this experiment. Moreover, the PAM-PDVB modified membrane exhibits excellent pH stability, recyclability, and high separation efficiency (above 99%), which can be scaled up and used in the practical industrial field. PMID:27494174

  19. A Time Scale Separation Method for the Coordination of Voltage Controls for SVC and SVR

    NASA Astrophysics Data System (ADS)

    Yorino, Naoto; Miki, Takahiro; Yamato, Yuuki; Zoka, Yoshifumi; Sasaki, Hiroshi

    A time scale separation (TSS) method is proposed for the coordination of voltage controls of different time scales. The method is applied to a design of voltage regulator for static var compensator (SVC) which will be used with a step voltage regulator (SVR) in a distribution system. A simple filter, an input filter to the conventional SVC, is developed for the coordination with SVR controllers. The proposed filter can also be used as an input filter to AVR of the dispersed generators for the coordination controls with the conventional tap control devices. Effectiveness of the proposed method is demonstrated through numerical simulations in a distribution system having a large disturbance source of a wind power generator.

  20. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures.

    PubMed

    Goudriaan, Andrea; Camargo, Nutabi; Carney, Karen E; Oliet, Stéphane H R; Smit, August B; Verheijen, Mark H G

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedited technique for separation of neurons from co-cultured astrocytes. Our newly established method makes use of cold jet, which exploits different adhesion characteristics of subpopulations of cells (Jirsova etal., 1997), and is rapid, performed under ice-cold conditions and avoids protease-mediated isolation of astrocytes or time-consuming centrifugation, yielding intact astrocyte mRNA with approximately 90% of neuronal RNA removed. Using this purification method, we executed genome-wide profiling in which RNA derived from astrocyte-only cultures was compared with astrocyte RNA derived from differentiating neuron-astrocyte co-cultures. Data analysis determined that many astrocytic mRNAs and biological processes are regulated by neuronal interaction. Our results validate the cold jet as an efficient method to separate astrocytes from neurons in co-culture, and reveals that neurons induce robust gene-expression changes in co-cultured astrocytes. PMID:24523672

  1. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    PubMed

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous. PMID:21214032

  2. Research of beam control system component simulation and separation method of the kinematics coupling

    NASA Astrophysics Data System (ADS)

    Yue, Yufang; Xie, Xiaogang; Zhang, Jianzhu; An, Jianzhu; Zhang, Feizhou

    2015-02-01

    EasyLaser is component-based laser system simulation software. Beam control system simulation is a main part of EasyLaser, which can be used for systems with multi-optical paths, multi-wavelength beams, and multi-controllers. A new numerical method about general kinematics separation is proposed for beam control system simulation. It provides axis rotation conversion relationships due to orientation data of apparatus of system, such as gimal, sensor and optical mirror. It gives their coupling and uncoupling matrixes in kinematics and controller model. The matrixes could change every iterative time automatically during the dynamic tracking process. The main advantage of the method is more suitable to solve the problems that the gimbal movement and geometry optical transmission are considered simultaneously. By using the method, sensor images and undershoot data are updated automatically. And further the kinematic driver or controller signals are separated automatically. Therefore the tracking and beam control can be designed without consideration of the system kinematical composition. Then the beam control system simulation has the virtues of generality, flexibility, and usability. No matter what kinds of gimbal and optical path, designer needs only to consider tracking and beam control aspects. In addition, a union beam control example for atmosphere transmission correction is given. It includes tracking tilt mirror and adaptive optics system. Simulation results show that the low-frequency fluctuation is restrained effectively and the high-frequency fluctuation is corrected obviously.

  3. Light scattering by multilayered axisymmetric particles: Solution of the problem by the separation of variables method

    NASA Astrophysics Data System (ADS)

    Farafonov, V. G.; Vinokurov, A. A.

    2008-08-01

    A new solution to the problem of light scattering by multilayered particles possessing axial symmetry is obtained. Two methods are applied for this purpose. One is the separation of variables method with expansion of fields in terms of spherical wave functions, and the other is a novel approach based on the separation of fields into axisymmetric and nonaxisymmetric parts and on the choice of specific scalar potentials for each of them. A specific feature of the new solution is that the dimension of truncated linear algebraic systems used for determining unknown expansion coefficients of fields does not increase with an increasing number of layers. Using double-and three-layer spheroidal and Chebyshev particles of different shape and size as examples, the domain of applicability of the solution presented is compared with that of the solution previously obtained by the extended boundary conditions method. Except for nearly spherical particles, the solution presented is shown to be more favorable than the previously obtained solution.

  4. Dry-surface coating method for visualization of separation on a bluff body

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.

    1981-01-01

    A simple and relatively accurate dry-surface coating method for visualization of the flow separation on a circular cylinder (or any bluff body) during wind tunnel tests is described. The technique consists of (1) application of a thin coating composed of an indicator and a paint carrier; (2) drying of the film; (3) conditioning of the coating with an acidic solution to ensure a suitable color reaction; (4) release into the body wake of a gas able to produce a base through chemical reaction with the solvent of the conditioning solution; and (5) color reaction according to pH.

  5. METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM

    DOEpatents

    Wiswall, R.H.

    1958-06-24

    A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.

  6. Development of Cesium and Strontium Separation and Immobilization Technologies in Support of an Advanced Nuclear Fuel Cycle

    SciTech Connect

    Jack D. Law; Troy G. Garn; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Terry A. Todd; Julie L. Tripp

    2006-02-01

    As part of the Advanced Fuel Cycle Initiative, two solvent extraction technologies are being developed at the Idaho National Laboratory to simultaneously separate cesium and strontium from dissolved spent nuclear fuel. The chlorinated cobalt dicarbollide/polyethylene glycol (CCD/PEG) process utilizes a solvent consisting of chlorinated cobalt dicarbollide for the extraction of Cs and polyethylene glycol for the synergistic extraction of Sr in a phenyltrifluoromethyl sulfone diluent. Countercurrent flowsheets have been designed and tested on simulated and actual spent nuclear fuel feed streams with both cesium and strontium removal efficiencies of greater than 99%. The Fission Product Extraction (FPEX) process is based on two highly-specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) for the extraction of Sr and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6) for the extraction of Cs. Laboratory test results of the FPEX process, using simulated feed solution spiked with radiotracers, indicate good Cs and Sr extraction and stripping performance. A preliminary solvent extraction flowsheet for the treatment of spent nuclear fuel with the FPEX process has been developed, and testing of the flowsheet with simulated spent nuclear fuel solutions is planned in the near future. Steam reforming is currently being developed for stabilization of the Cs/Sr product stream because it can produce a solid waste form while retaining the Cs and Sr in the solid, destroy the nitrates and organics present in these aqueous solutions, and convert the Cs and Sr into leach resistant aluminosilicate minerals. A bench-scale steam reforming pilot plant has been operated with several potential feed compositions and steam reformed product has been generated and analyzed.

  7. Application of advanced filtering methods to the determination of the interplanetary orbit of Mariner '71.

    NASA Technical Reports Server (NTRS)

    Rourke, K. H.; Jordan, J. F.

    1972-01-01

    This paper presents the results of the applications of advanced filtering methods to the determination of the interplanetary orbit of the Mariner '71 spacecraft. The advanced techniques are specific extensions of the Kalman filter. The special problems associated with applying these techniques are discussed and the particular algorithmic implementations are outlined. The advanced methods are compared against the weighted least squares filters of conventional application. The results reveal that relatively simple advanced filter configurations yield solutions superior to those of the conventional methods when applied to the Mariner '71 radio measurements.

  8. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining

  9. Advanced materials and methods for next generation spintronics

    NASA Astrophysics Data System (ADS)

    Siegel, Gene Phillip

    The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic

  10. Repeatability, Reproducibility, Separative Power and Subjectivity of Different Fish Morphometric Analysis Methods.

    PubMed

    Takács, Péter; Vitál, Zoltán; Ferincz, Árpád; Staszny, Ádám

    2016-01-01

    We compared the repeatability, reproducibility (intra- and inter-measurer similarity), separative power and subjectivity (measurer effect on results) of four morphometric methods frequently used in ichthyological research, the "traditional" caliper-based (TRA) and truss-network (TRU) distance methods and two geometric methods that compare landmark coordinates on the body (GMB) and scales (GMS). In each case, measurements were performed three times by three measurers on the same specimen of three common cyprinid species (roach Rutilus rutilus (Linnaeus, 1758), bleak Alburnus alburnus (Linnaeus, 1758) and Prussian carp Carassius gibelio (Bloch, 1782)) collected from three closely-situated sites in the Lake Balaton catchment (Hungary) in 2014. TRA measurements were made on conserved specimens using a digital caliper, while TRU, GMB and GMS measurements were undertaken on digital images of the bodies and scales. In most cases, intra-measurer repeatability was similar. While all four methods were able to differentiate the source populations, significant differences were observed in their repeatability, reproducibility and subjectivity. GMB displayed highest overall repeatability and reproducibility and was least burdened by measurer effect. While GMS showed similar repeatability to GMB when fish scales had a characteristic shape, it showed significantly lower reproducability (compared with its repeatability) for each species than the other methods. TRU showed similar repeatability as the GMS. TRA was the least applicable method as measurements were obtained from the fish itself, resulting in poor repeatability and reproducibility. Although all four methods showed some degree of subjectivity, TRA was the only method where population-level detachment was entirely overwritten by measurer effect. Based on these results, we recommend a) avoidance of aggregating different measurer's datasets when using TRA and GMS methods; and b) use of image-based methods for morphometric

  11. Repeatability, Reproducibility, Separative Power and Subjectivity of Different Fish Morphometric Analysis Methods

    PubMed Central

    Takács, Péter

    2016-01-01

    We compared the repeatability, reproducibility (intra- and inter-measurer similarity), separative power and subjectivity (measurer effect on results) of four morphometric methods frequently used in ichthyological research, the “traditional” caliper-based (TRA) and truss-network (TRU) distance methods and two geometric methods that compare landmark coordinates on the body (GMB) and scales (GMS). In each case, measurements were performed three times by three measurers on the same specimen of three common cyprinid species (roach Rutilus rutilus (Linnaeus, 1758), bleak Alburnus alburnus (Linnaeus, 1758) and Prussian carp Carassius gibelio (Bloch, 1782)) collected from three closely-situated sites in the Lake Balaton catchment (Hungary) in 2014. TRA measurements were made on conserved specimens using a digital caliper, while TRU, GMB and GMS measurements were undertaken on digital images of the bodies and scales. In most cases, intra-measurer repeatability was similar. While all four methods were able to differentiate the source populations, significant differences were observed in their repeatability, reproducibility and subjectivity. GMB displayed highest overall repeatability and reproducibility and was least burdened by measurer effect. While GMS showed similar repeatability to GMB when fish scales had a characteristic shape, it showed significantly lower reproducability (compared with its repeatability) for each species than the other methods. TRU showed similar repeatability as the GMS. TRA was the least applicable method as measurements were obtained from the fish itself, resulting in poor repeatability and reproducibility. Although all four methods showed some degree of subjectivity, TRA was the only method where population-level detachment was entirely overwritten by measurer effect. Based on these results, we recommend a) avoidance of aggregating different measurer’s datasets when using TRA and GMS methods; and b) use of image-based methods for

  12. Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics

    DOEpatents

    Jody, Bassam J.; Arman, Bayram; Karvelas, Dimitrios E.; Pomykala, Jr., Joseph A.; Daniels, Edward J.

    1997-01-01

    An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.

  13. Rapid Filtration Separation-Based Sample Preparation Method for Bacillus Spores in Powdery and Environmental Matrices

    PubMed Central

    Isabel, Sandra; Boissinot, Maurice; Charlebois, Isabelle; Fauvel, Chantal M.; Shi, Lu-E; Lévesque, Julie-Christine; Paquin, Amélie T.; Bastien, Martine; Stewart, Gale; Leblanc, Éric; Sato, Sachiko

    2012-01-01

    Authorities frequently need to analyze suspicious powders and other samples for biothreat agents in order to assess environmental safety. Numerous nucleic acid detection technologies have been developed to detect and identify biowarfare agents in a timely fashion. The extraction of microbial nucleic acids from a wide variety of powdery and environmental samples to obtain a quality level adequate for these technologies still remains a technical challenge. We aimed to develop a rapid and versatile method of separating bacteria from these samples and then extracting their microbial DNA. Bacillus atrophaeus subsp. globigii was used as a simulant of Bacillus anthracis. We studied the effects of a broad variety of powdery and environmental samples on PCR detection and the steps required to alleviate their interference. With a benchmark DNA extraction procedure, 17 of the 23 samples investigated interfered with bacterial lysis and/or PCR-based detection. Therefore, we developed the dual-filter method for applied recovery of microbial particles from environmental and powdery samples (DARE). The DARE procedure allows the separation of bacteria from contaminating matrices that interfere with PCR detection. This procedure required only 2 min, while the DNA extraction process lasted 7 min, for a total of <10 min. This sample preparation procedure allowed the recovery of cleaned bacterial spores and relieved detection interference caused by a wide variety of samples. Our procedure was easily completed in a laboratory facility and is amenable to field application and automation. PMID:22210204

  14. PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG

    PubMed Central

    Bigdely-Shamlo, Nima; Mullen, Tim; Robbins, Kay

    2016-01-01

    Independent component analysis (ICA) is a class of algorithms widely applied to separate sources in EEG data. Most ICA approaches use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of individual observations. We propose a method of mapping real signals into a complex vector space that takes into account the temporal order of signals and enforces certain mixing stationarity constraints. The resulting procedure, which we call Pairwise Complex Independent Component Analysis (PWC-ICA), performs the ICA in a complex setting and then reinterprets the results in the original observation space. We examine the performance of our candidate approach relative to several existing ICA algorithms for the blind source separation (BSS) problem on both real and simulated EEG data. On simulated data, PWC-ICA is often capable of achieving a better solution to the BSS problem than AMICA, Extended Infomax, or FastICA. On real data, the dipole interpretations of the BSS solutions discovered by PWC-ICA are physically plausible, are competitive with existing ICA approaches, and may represent sources undiscovered by other ICA methods. In conjunction with this paper, the authors have released a MATLAB toolbox that performs PWC-ICA on real, vector-valued signals. PMID:27340397

  15. Separating the spectra of binary stars I. A simple method: Secondary reconstruction

    NASA Astrophysics Data System (ADS)

    Ferluga, S.; Floreano, L.; Bravar, U.; Bedalo, C.

    1997-01-01

    We present a practical method for the analysis of spectroscopic binaries, reconstructing the lines of the two components of the system. We show that the problem of the separation of binary spectra can be solved in an easy way, under most common conditions. One pair of observations may be sufficient, if taken at different orbital phases of the system, preferably at opposite quadratures. The separation procedure is discussed analytically, and a technique is described, which allows to restore the secondary lines in few steps. An algorithm is also provided, which derives the radial velocity of the secondary star, by directly analysing a difference line-profile obtained from the two input spectra. The efficiency of the method is tested, by reconstructing artificial line-profiles and simulated binary spectra as well. Then the procedure is applied to the eclipsing binary IZ Per, revealing for the first time its faint secondary spectrum. Based on observations performed at the Observatoire de Haute Provence (OHP), and made available through the Trieste-Aurelie-Archive (TAA).

  16. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  17. Computational study of supersonic turbulent-separated flows using partially averaged Navier-stokes method

    NASA Astrophysics Data System (ADS)

    Luo, Dahai; Yan, Chao; Wang, Xiaoyong

    2015-02-01

    Separation commonly exists in the flows around flight vehicles and also in the internal combustor flows. Simulation of high-speed turbulent-separated flows using a reliable computational design tool is crucial for the development of supersonic and hypersonic vehicles. In this paper, we present the computational results of supersonic base and ramped-cavity flows at high Reynolds numbers using the partially averaged Navier-Stokes (PANS) method. The current PANS models are based on the Menter SST turbulence model and also the Wilcox k-ω model. Results from PANS simulations are compared in detail with the available experimental data. The effect of the resolution control parameter fk (the ratio of unresolved-to-total kinetic energy) relevant to the PANS method is investigated. More turbulent flow structures are resolved as expected with decreasing fk, but it does not mean better results can be obtained. Spatially varying and dynamically updated fk in PANS simulations has been performed. Results from variable fk PANS simulations show good agreement with the experiment and great improvement when compared to Reynolds averaged Navier-Stokes (RANS) computation and constant fk PANS simulations.

  18. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    ERIC Educational Resources Information Center

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  19. Comparison of production methods of a spiral inertial microfluidic cell separation device

    NASA Astrophysics Data System (ADS)

    Robinson, Mitchell; Marks, Haley; Coté, Gerard L.

    2016-03-01

    From the miniaturization of large sample processing machines to the creation of handheld point-of-care devices, microfluidics has the potential to be a powerful tool in the advancement of diagnostic technologies. Here, we compare different prototyping modalities towards the generation of an inertial microfluidic blood filter: i.e. a 'centrifuge-on-a-chip'. While photolithography is currently the method of choice for soft lithography mold fabrication, offering high design fidelity, we believe simpler methods, such as milling or 3D printing, will soon become equally viable options in the field of microfluidic device fabrication. Three modalities for optofluidic PDMS chip fabrication were compared: micromachining, 3D printing, and SU8 photolithography. The filtration efficiency of the chips were tested with whole blood and compared spectroscopically by monitoring the outlet absorbance at the 540 nm peak intrinsic to oxyhemoglobin at the outlet of each filter chip.

  20. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.