Science.gov

Sample records for advanced silicon space

  1. Further advances in silicon solar cell technology for space application

    NASA Technical Reports Server (NTRS)

    Lillington, D. R.; Kukulka, J. R.

    1986-01-01

    Recent improvements relating to the design of high efficiency cells are presented. A conceptual design using passivation techniques is discussed, which potentially increases the open circuit voltage to approximately 650 mV. This concept is supported by experimental data using only silicon passivation beneath contacts. The use of thin thermal oxides of silicon for passivation between contacts is also discussed. A number of novel structures have also been fabricated to investigate reduction in the thermal alpha of planar and sculptured cells. It is shown that this may be as low as 0.63 on glassed gridded back cells, and that the IR rejection beyond 1.1 microns may approach 100 percent if the backside is AR coated. Finally, experimental data is given to support the existence of free electron absorption in heavily doped emitters on sculptured cells.

  2. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  3. Advances in Single and Multijunction III-V Photovoltaics on Silicon for Space Power

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fitzgerald, Eugene A.; Ringel, Steven A.

    2005-01-01

    A collaborative research effort at MIT, Ohio State University and NASA has resulted in the demonstration of record quality gallium arsenide (GaAs) based single junction photovoltaic devices on silicon (Si) substrates. The ability to integrate highly efficient, radiation hard III-V based devices on silicon offers the potential for dramatic reductions in cell mass (approx.2x) and increases in cell area. Both of these improvements offer the potential for dramatic reductions in the cost of on-orbit electrical power. Recently, lattice matched InGaP/GaAs and metamorphic InGaP/InGaAs dual junction solar cells were demonstrated by MBE and OMVPE, respectively. Single junction GaAs on Si devices have been integrated into a space flight experiment (MISSES), scheduled to be launched to the International Space Station in March of 2005. I-V performance data from the GaAs/Si will be collected on-orbit and telemetered to ground stations daily. Microcracks in the GaAs epitaxial material, generated because of differences in the thermal expansion coefficient between GaAs and Si, are of concern in the widely varying thermal environment encountered in low Earth orbit. Ground based thermal life cycling (-80 C to + 80 C) equivalent to 1 year in LEO has been conducted on GaAs/Si devices with no discernable degradation in device performance, suggesting that microcracks may not limit the ability to field GaAs/Si in harsh thermal environments. Recent advances in the development and testing of III-V photovoltaic devices on Si will be presented.

  4. Design and fabrication of a large vertical travel silicon inchworm microactuator for advanced segmented silicon space telescope (ASSIST)

    NASA Technical Reports Server (NTRS)

    Yang, E.; Dekany, R.; Padin, S.

    2003-01-01

    The goal of this research is to develop inchworm motor systems capable of simultaneously providing nanometer resolution, high stiffness, large output force, long travel range, and compactness for ultraprecision positioning applications in space.

  5. Advanced silicon on insulator technology

    NASA Technical Reports Server (NTRS)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  6. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  7. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  8. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  9. Space Environment Effects on Silicone Seal Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Daniels, Christopher C.; Dever, Joyce A.; Miller, Sharon K.; Waters, Deborah L.; Finkbeiner, Joshua R.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2010-01-01

    A docking system is being developed by the NASA to support future space missions. It is expected to use redundant elastomer seals to help contain cabin air during dockings between two spacecraft. The sealing surfaces are exposed to the space environment when vehicles are not docked. In space, the seals will be exposed to temperatures between 125 to -75 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). Silicone rubber is the only class of space flight-qualified elastomeric seal material that functions across the expected temperature range. NASA Glenn has tested three silicone elastomers for such seal applications: two provided by Parker (S0899-50 and S0383-70) and one from Esterline (ELA-SA-401). The effects of atomic oxygen (AO), UV and electron particle radiation, and vacuum on the properties of these three elastomers were examined. Critical seal properties such as leakage, adhesion, and compression set were measured before and after simulated space exposures. The S0899-50 silicone was determined to be inadequate for extended space seal applications due to high adhesion and intolerance to UV, but both S0383-70 and ELA-SA-401 seals were adequate.

  10. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  11. Silicon-micromachined accelerometers for space inertial systems

    NASA Astrophysics Data System (ADS)

    Saha, I.; Islam, R.; Kanakaraju, K.; Jain, Yashwant K.; Alex, T. K.

    1999-11-01

    Accelerometers are key components of various motion control systems ranging in use from inertial guidance of rockets and satellite launch vehicles to safety applications in the automotive industry. The accelerometers that are used for spare inertial systems are characterized by high resolution, small bandwidth, large working range and excellent linearity. Current advances in this field are based on silicon micromachining. Silicon bulk and surface micromachined accelerometers offer advantages of reduced size and weight, less power consumption and the use of a fabrication process derived form an already well established semiconductor fab technology. Of the various approaches to silicon micromachined accelerometers, two are in a well advanced state of development. The first is the capacitive force balanced type and the second the piezoresistive type. The capacitive approach has the advantage of higher stability and resolution and lower temperature coefficients. But it requires proximal detection circuitry to prevent parasitics to overwhelm the circuit. A new approach reported recently uses a silicon micromachined cantilever beam which acts as a Fabry Perot interferometer when light form an optical fiber is impinged on it. In this paper we overview all the approaches and try to select a suitable candidate for use in space borne inertial systems.

  12. Advances in space robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio

    1989-01-01

    The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.

  13. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  14. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  15. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  16. Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.

    2015-01-01

    NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).

  17. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  18. Advanced automation for space missions

    SciTech Connect

    Freitas, R.A., Jr.; Healy, T.J.; Long, J.E.

    1982-01-01

    A NASA/ASEE summer study conducted at the University of Santa Clara in 1980 examined the feasibility of using advanced artificial intelligence and automation technologies in future NASA space missions. Four candidate applications missions were considered: an intelligent earth-sensing information system; an autonomous space exploration system; an automated space manufacturing facility; and a self-replicating, growing lunar factory. The study assessed the various artificial intelligence and machine technologies which must be developed if such sophisticated missions are to become feasible by the century's end. 18 references.

  19. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  20. Temperature compensated silicon resonators for space applications

    NASA Astrophysics Data System (ADS)

    Rais-Zadeh, Mina; Thakar, Vikram A.; Wu, Zhengzheng; Peczalski, Adam

    2013-03-01

    This paper presents piezoelectric transduction and frequency trimming of silicon-based resonators with a center frequency in the low megahertz regime. The temperature coefficient of frequency (TCF) of the resonators is reduced using both passive and active compensation schemes. Specifically, a novel technique utilizing oxide-refilled trenches is implemented to achieve efficient temperature compensation while maintaining compatibility with wet release processes. Using this method, we demonstrate high-Q resonators having a first-order TCF as low as 3 ppm/°C and a turnover temperature of around 90 °C, ideally suited for use in ovenized platforms. Using active tuning, the temperature sensitivity of the resonator is further compensated around the turnover temperature, demonstrating frequency instability of less than 400 ppb. Such devices are ideally suited as timing units in space applications where size, power consumption, and temperature stability are of critical importance.

  1. Space to Space Advanced EMU Radio

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic

  2. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  3. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  4. Thermoregulation of silicon photomultipliers for space

    NASA Astrophysics Data System (ADS)

    Baldazzi, G.; Foschi, E.; Laurenti, G.; Levi, G.; Guandalini, C.; Lanconelli, N.; Quadrani, L.; Rossi, P.; Sbarra, C.; Zuffa, M.

    2009-10-01

    The silicon photomultiplier (SiPM) has been recently studied in the INFN laboratories of Bologna for Time of Flight (TOF) detectors in space missions. Low consumption, low cost, low weight, resistance to radiation damage and insensitivity to magnetic fields are the advantages that lead to the choice of the SiPM to be used in conjunction with optical fibres for detecting the scintillation light of a space counter. The SiPM response to various light intensities has been studied in laboratory and it was compared to the PM response in order to use it for scintillation light instead of a photomultiplier. The results were confirmed by a Monte Carlo. Nevertheless the SiPM gain depends on temperature and thermal stabilization of the device turns out to be necessary. A hybrid front-end circuit that amplifies the signal while controlling and stabilizing the device temperature has been developed and some tests are shown. A thermal electric cooler (TEC) module based on Peltier cell has been modeled. The TEC module operating in atmosphere showed it can stabilize the temperature of the SiPM to the chosen set-point (9±3 K) in a few seconds.

  5. Silicon carbide optics for space and ground based astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  6. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  7. Simulated space flight testing of commercial terrestrial silicon cells

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Miyahira, T. F.

    1982-01-01

    Low cost silicon solar cells manufactured for the terrestrial market are examined for possible space flight use. The results of preliminary space environmental testing are reported and discussed. In addition, a number of possible obstacles to the use of these cells is examined. It is concluded that the terrestrial industry could provide an extremely low cost and reliable cell for space use.

  8. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  9. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  10. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  11. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  12. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  13. Silicon photomultipliers for next generation high-energy space telescopes

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Knödlseder, J.; Delaigue, S.; Galliano, M.; Houret, B.; Ramon, P.; Rouaix, G.; Virmontois, C.

    2015-08-01

    Photon detection is a central element of any high-energy astronomy instrumentation. One classical setup that has proven successful in many missions is the combination of photomultiplier tubes (PMTs) with scintillators, converting incoming high-energy photons into visible light, which in turn is converted in an electrical impulse. Although being extremely sensitive and rapid, PMTs have the drawback of being bulky, fragile, and are requiring a high-voltage power supply of up to several thousand volts. Recent technological advances in the development of silicon photomultipliers (SiPM) make them a promising alternative to PMTs in essentially all their applications. We have started an R and D program to assess the possibility of using SiPMs for space-based applications in the domain of high-energy astronomy. We have setup a test bench using a vacuum vessel to reproduce a space-representative environment in our lab. We will present our test bench as well as first results of a characterization campaign of SiPM detectors from 3 different suppliers. We have planned to select after the characterization campaign one baseline detector for which we will design a dedicated front-end electronics and mechanical system. Furthermore, we plan to develop a specific low noise voltage power supply that ensures the stability of the SiPMs. Our ultimate goal is to qualify the system for a Technical Readiness Level of 5.

  14. Light Weight Silicon Mirrors for Space Instrumentation

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T.; Hill, Peter C.; Hagopian, John G.; Strojay, Carl R.; Miller, Timothy

    2012-01-01

    Each mirror is a monolithic structure from a single crystal of silicon. The mirrors are light weighted after the optical surface is ground and polished. Mirrors made during the initial phase of this work were typically 1/50 lambda or better (RMS at 633 n m)

  15. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  16. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.; Mangels, J. A.

    1986-01-01

    The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.

  17. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  18. Hybrid silicon free-space source with integrated beam steering

    NASA Astrophysics Data System (ADS)

    Doylend, J. K.; Heck, M. J. R.; Bovington, J. T.; Peters, J. D.; Davenport, M. L.; Coldren, L. A.; Bowers, J. E.

    2013-02-01

    Free-space beam steering using optical phase arrays are desirable as a means of implementing Light Detection and Ranging (LIDAR) and free-space communication links without the need for moving parts, thus alleviating vulnerabilities due to vibrations and inertial forces. Implementing such an approach in silicon photonic integrated circuits is particularly desirable in order to take advantage of established CMOS processing techniques while reducing both device size and packaging complexity. In this work we demonstrate a free-space diode laser together with beam steering implemented on-chip in a silicon photonic circuit. A waveguide phased array, surface gratings, a hybrid III-V/silicon laser and an array of hybrid III/V silicon amplifiers were fabricated on-chip in order to achieve a fully integrated steerable free-space optical source with no external optical inputs, thus eliminating the need for fiber coupling altogether. The chip was fabricated using a modified version of the hybrid silicon process developed at UCSB, with modifications in order to incorporate diodes within the waveguide layer as well as within the III-V gain layer. Beam steering across a 12° field of view with +/-0.3° accuracy and 1.8°x0.6° beam width was achieved, with background peaks suppressed 7 dB relative to the main lobe within the field of view for arbitrarily chosen beam directions.

  19. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.

    1986-01-01

    Silicon nitride is a high temperature material currently under consideration for heat engine and other applications. The objective is to improve the net shape fabrication technology of Si3N4 by injection molding. This is to be accomplished by optimizing the process through a series of statistically designed matrix experiments. To provide input to the matrix experiments, a wide range of alternate materials and processing parameters was investigated throughout the whole program. The improvement in the processing is to be demonstrated by a 20 percent increase in strength and a 100 percent increase in the Weibull modulus over that of the baseline material. A full characterization of the baseline process was completed. Material properties were found to be highly dependent on each step of the process. Several important parameters identified thus far are the starting raw materials, sinter/hot isostatic pressing cycle, powder bed, mixing methods, and sintering aid levels.

  20. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Harry C.; Fang, Ho T.

    1991-01-01

    The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.

  1. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.

    1985-01-01

    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.

  2. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  3. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    SciTech Connect

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  4. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  5. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  6. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  7. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  8. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  9. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  10. Advanced space program studies, overall executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Multidisciplined advanced planning studies were conducted that involve space operations and the associated system elements, identification of potential low cost system techniques, vehicle design, cost synthesis techniques, DoD technology forecasting, and the development of near and far term space initiatives with emphasis on domestic and military use commonality. Specific areas studied include: (1) manned systems utilization; (2) STS users; (3) vehicle cost/performance; (4) space vehicle applications to future national needs; (5) STS spin stabilized upper stage; and (6) technology assessment and forecast.

  11. Advanced transponders for deep space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Kayalar, Selahattin; Yeh, Hen-Geul; Kyriacou, Charles

    1993-01-01

    Three architectures for advanced deep space transponders are proposed. The architectures possess various digital techniques such as fast Fourier transform (FFT), digital phase-locked loop (PLL), and digital sideband aided carrier detection with analog or digital turn-around ranging. Preliminary results on the design and conceptual implementation are presented. Modifications to the command detector unit (CDU) are also presented.

  12. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  13. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  14. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  15. Electrical behaviour of a silicone elastomer under simulated space environment

    NASA Astrophysics Data System (ADS)

    Roggero, A.; Dantras, E.; Paulmier, T.; Tonon, C.; Balcon, N.; Rejsek-Riba, V.; Dagras, S.; Payan, D.

    2015-04-01

    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around Tg in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell-Wagner-Sillars relaxation phenomenon.

  16. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  17. Advanced science and applications space platform

    NASA Technical Reports Server (NTRS)

    White, J.; Runge, F. C.

    1981-01-01

    Requirements for and descriptions of the mission equipment, subsystems, configuration, utilities, and interfaces for an Advanced Science and Applications Space Platform (ASASP) are developed using large space structure technology. Structural requirements and attitude control system concepts are emphasized. To support the development of ASASP requirements, a mission was described that would satisfy the requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. Platform subsystems are defined which support the payload requirements and a physical platform concept is developed. Structural system requirements which include utilities accommodation, interface requirements, and platform strength and stiffness requirements are developed. An attitude control system concept is also described. The resultant ASASP is analyzed and technological developments deemed necessary in the area of large space systems are recommended.

  18. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  19. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  20. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  1. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  2. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  3. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  4. Advanced space power PEM fuel cell systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.

    1989-01-01

    A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.

  5. Advanced Embedded Active Assemblies for Extreme Space Applications

    NASA Technical Reports Server (NTRS)

    DelCastillo, Linda; Moussessian, Alina; Mojarradi, Mohammad; Kolawa, Elizabeth

    2009-01-01

    This work describes the development and evaluation of advanced technologies for the integration of electronic die within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible liquid crystal polymer (LCP), using gold thermo-compression flip chip bonding, and embedding them within the material. Daisy chain LCP assemblies were thermal cycled from -135 to +85degC (Mars surface conditions for motor control electronics). The LCP assembly method was further utilized to embed an operational amplifier designed for operation within the Mars surface ambient. The embedded op-amp assembly was evaluated with respect to the influence of temperature on the operational characteristics of the device. Applications for this technology range from multifunctional, large area, flexible membrane structures to small-scale, flexible circuits that can be fit into tight spaces for flex to fit applications.

  6. Thermal blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Pusch, Richard H.

    1985-01-01

    The feasibility of weaving Nextel ceramic and Nicalon silicon carbide yarns into integrally woven, three dimensional fluted core fabrics was demonstrated. Parallel face fabrics joined with woven fabric ribs to form triangular cross section flutes between the faces were woven into three single and one double layer configuration. High warp yarn density in the double layer configuration caused considerable yarn breakage during weaving. The flutes of all four fabrics were filled with mandrels made from Q-Fiber Felt and FRCI-20-12 to form candidate insulation panels for advanced Space Transportation Systems. Procedures for preparing and inserting the mandrels were developed. Recommendations are made on investigating alternate methods for filling the flutes with insulation, and for improving the weaving of these types of fabrics.

  7. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  8. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  9. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  10. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  11. Advanced materials for space nuclear power systems

    SciTech Connect

    Titran, R.H.; Grobstein, T.L. . Lewis Research Center); Ellis, D.L. )

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  12. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  13. Advanced Silicon Solar Cell Device Physics and Design

    NASA Astrophysics Data System (ADS)

    Deceglie, Michael Gardner

    A fundamental challenge in the development and deployment of solar photovoltaic technology is a reduction in cost enabling direct competition with fossil-fuel-based energy sources. A key driver in this cost reduction is optimized device efficiency, because increased energy output leverages all photovoltaic system costs, from raw materials and module manufacturing to installation and maintenance. To continue progress toward higher conversion efficiencies, solar cells are being fabricated with increasingly complex designs, including engineered nanostructures, heterojunctions, and novel contacting and passivation schemes. Such advanced designs require a comprehensive and unified understanding of the optical and electrical device physics at the microscopic scale. This thesis focuses on a microscopic understanding of solar cell optoelectronic performance and its impact on cell optimization. We consider this in three solar cell platforms: thin-film crystalline silicon, amorphous/crystalline silicon heterojunctions, and thin-film cells with nanophotonic light trapping. The work described in this thesis represents a powerful design paradigm, based on a detailed physical understanding of the mechanisms governing solar cell performance. Furthermore, we demonstrate the importance of understanding not just the individual mechanisms, but also their interactions. Such an approach to device optimization is critical for the efficiency and competitiveness of future generations of solar cells.

  14. Preliminary study of silicon photomultipliers for space missions

    NASA Astrophysics Data System (ADS)

    Bindi, V.; Del Guerra, A.; Levi, G.; Quadrani, L.; Sbarra, C.

    2007-03-01

    The new photodetector Silicon Photomultiplier (SiPM) promises to meet the needs of a space particle physics experiment: these are low weight, low consumption, resistance to radiation damage, constant performance for a long time and, for spectrometry applications, insensitivity to magnetic fields. Samples of SiPM have been studied in laboratory, by means of the same characterization methods adopted to calibrate the 192 PMTs of the AMS Time Of Flight (TOF). A detailed simulation was made in order to model the SiPM response for the various experimental conditions. The results of the measurements and simulation are shown. A comparison between SiPM and photomultiplier performances supports the use of these new detectors in conjunction with scintillators in TOF techniques for future space missions.

  15. Path to meter class single crystal silicon (SCSi) space optics

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.

    2012-03-01

    With the global financial crisis affecting funding for space systems development, customers are calling for lower cost systems. Yet, at the same time, these lower cost systems must have increased thermal response to operational environments and load survivability. We submit that single crystal silicon (SCSi) meets both of these requirements. This paper will highlight some key SCSi material properties, discuss the opportunities that led to the development of McCarter processing methods, and present the latest steps in the manufacturing path of McCarter Mirrors using SCSi, GFB (glass frit bonding) and MSF (McCarter super finish), including the concept drawing of a one meter SCSi lightweight mirror, which together sets up the last step toward a lower cost, high performing one meter SCSi space optic.

  16. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    SciTech Connect

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  17. Advanced energy storage for space applications: A follow-up

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1994-01-01

    Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.

  18. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  19. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  20. RUBIN Microsatellites for Advanced Space Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    The first new space technology demonstration payload BIRD-RUBIN was developed by OHB- System in co-operation with students from the University of Applied Sciences, Bremen, and was successfully launched July 15th, 2000 together with the scientific satellites CHAMP and MITA onboard a COSMOS 3M launcher. The BIRD-RUBIN mission has tested the telematics technology in space via ORBCOMM network. Small data packages were sent by the hatbox sized system to the ORBCOMM satellite net, then transmitted further on to the ground stations and from that point entered into the internet. The payload user could retrieve the data direct via email account and was able to send commands back to payload in orbit. The next micro satellite RUBIN-2 for advanced space technology demonstration will be launched at the end of 2002 as "secondary" payload on the Russian launcher DNEPR. The RUBIN-2 micro satellite platform will use again the inter-satellite communication mode via Orbcomm network and offers an orbital testbed with low cost, bi-directional and near real-time Internet access. In parallel to the further inter satellite link experiments using Orbcomm, several additional leading edge technology experiments will be done onboard Rubin-2 (electrical propulsion, two loop miniaturized thermal control system, GPS navigation, LI-Ion Battery, etc.). This paper provides an overview of RUBIN micro satellites for advanced space technology demonstrations. The main results of the first BIRD-RUBIN experiment and the goals of the second Rubin-2 mission are described. The potential of low cost technology demonstration missions using Internet and inter satellite communication technology via commercial satellite systems and the piggyback flight opportunities on Russian launchers are discussed.

  1. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-28

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  2. MSFC's Advanced Space Propulsion Formulation Task

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Gerrish, Harold P.; Robinson, Joel W.; Taylor, Terry L.

    2012-01-01

    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible.

  3. Space Qualification Test of a-Silicon Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.

    2004-01-01

    The basic requirements of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore, this qualifications test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs. Parameters that were evaluated included performance dependence on: illuminating angles, terrestrial temperatures, lifetime, as well as impact landing conditions. Our qualification efforts were limited to these most critical areas of concern. Most of the tested solar cell modules have met the requirements of the program except the impact tests. Surprisingly, one of the two single PIN 2 x 1 amorphous solar cell modules continued to function even after the 80000G impact tests. The output power parameters, Pout, FF, Isc and Voc, of the single PIN amorphous solar cell module were found to be 3.14 mW, 0.40, 9.98 mA and 0.78 V, respectively. These parameters are good enough to consider the solar module as a possible power source for the microprobe seismometer. Some recommendations were made to improve the usefulness of the amorphous silicon solar cell modules in space terrestrial applications, based on the results obtained from the intensive short term lab test effort.

  4. Development of tailorable advanced blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Calamito, Dominic P.

    1987-01-01

    Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented.

  5. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  6. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  7. Space water electrolysis: Space Station through advance missions

    NASA Astrophysics Data System (ADS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-09-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  8. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  9. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  10. Assessment of the advanced clay bonded silicon carbide candle filter materials. Topical report, September 1995

    SciTech Connect

    Alvin, M.A.

    1995-07-01

    Advancements have been made during the past five years to not only increase the strength of the as-manufactured clay bonded silicon carbide candle filter materials, but also to improve their high temperature creep resistance properties. This report reviews these developments, and describes the results of preliminary qualification testing which has been conducted at Westinghouse prior to utilizing the advanced clay bonded silicon carbide filters in high temperature, pressurized, coal-fired combustion and/or gasification applications.

  11. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  12. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  13. Monocrystalline silicon gradiometer for gravity experiments in space

    NASA Technical Reports Server (NTRS)

    Richard, Jean-Paul

    1987-01-01

    A very important research effort has been made in the last decade in the field of high precision measurement with laser instrumentation. The development of a space borne gradiometer operating at a high sensitivity level using laser measurement of the distance between proof mass over a short base line of order one meter is discussed. Two aspects of laser technology make it a promising tool for gradiometry measurements: quantum limited accuracy and absolute distance measurements. The quantum limit associated with laser instrumentation was formulated. The relevant quantum and classical sources of errors in laser measurements were reviewed and corresponding laser performance requirements for gradient measurements were evaluated. Some mechanical quality factor measurements were made on simple resonant monocrystalline silicon suspensions. It was discovered that the use of zero derivative restoring forces to position the gradiometer test masses will dramatically reduce the gradiometer temperature control requirements. A laser beam side injection scheme was discovered which permits rejection of common mode accelerations. These concepts are briefly discussed.

  14. Advanced space transportation systems, BARGOUZIN booster

    NASA Astrophysics Data System (ADS)

    Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, André; Couteau, Jean-Noël

    2008-07-01

    In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

  15. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  16. Advanced planar array development for space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of the Advanced Planar Array Development for the Space Station contract are presented. The original objectives of the contract were: (1) to develop a process for manufacturing superstrate assemblies, (2) to demonstrate superstrate technology through fabrication and test, (3) to develop and analyze a preliminary solar array wing design, and (4) to fabricate a wing segment based on wing design. The primary tasks completed were designing test modules, fabricating, and testing them. LMSC performed three tasks which included thermal cycle testing for 2000 thermal cycles, thermal balance testing at the Boeing Environmental Test Lab in Kent, Washington, and acceptance testing a 15 ft x 50 in panel segment for 100 thermal cycles. The surperstrate modules performed well during both thermal cycle testing and thermal balance testing. The successful completion of these tests demonstrate the technical feasibility of a solar array power system utilizing superstrate technology. This final report describes the major elements of this contract including the manufacturing process used to fabricate modules, the tests performed, and the results and conclusions of the tests.

  17. Review of silicon photonics: history and recent advances

    NASA Astrophysics Data System (ADS)

    Ye, Winnie N.; Xiong, Yule

    2013-09-01

    Silicon photonics has attracted tremendous attention and research effort as a promising technology in optoelectronic integration for computing, communications, sensing, and solar harvesting. Mainly due to the combination of its excellent material properties and the complementary metal-oxide semiconductor (CMOS) fabrication processing technology, silicon has becoming the material choice for photonic and optoelectronic circuits with low cost, ultra-compact device footprint, and high-density integration. This review paper provides an overview on silicon photonics, by highlighting the early work from the mid-1980s on the fundamental building blocks such as silicon platforms and waveguides, and the main milestones that have been achieved so far in the field. A summary of reported work on functional elements in both passive and active devices, as well as the applications of the technology in interconnect, sensing, and solar cells, is identified.

  18. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  19. Amorphous silicon thin films: The ultimate lightweight space solar cell

    NASA Technical Reports Server (NTRS)

    Vendura, G. J., Jr.; Kruer, M. A.; Schurig, H. H.; Bianchi, M. A.; Roth, J. A.

    1994-01-01

    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.

  20. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  1. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  2. Advanced Mating System Development for Space Applications

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2004-01-01

    This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.

  3. Space applications of Silicon photomultipliers: ground characterizations and measurements on board the International Space Station

    NASA Astrophysics Data System (ADS)

    Casolino, M.; Lazio-Si-Pm Team

    Silicon Photomultipliers Si-PM consist of an array of semiconductor photodiodes joint on the common substrate and operating in limited Geiger mode For their linearity low voltage and small dimensions they are particularly suited for space applications The first application of Si-PM in space has been on board of the International Space Station by some of our group as part of the Lazio-Sirad measurement campaign in May 2005 The good performance of the system an array of 16 detectors each consisting of a 1 mm 2 detector coupled to a 3 times 3 cm 2 scintillator via an optical fiber will be discussed A new generation of Si-PM is currently under test in INFN Rome Tor Vergata facilities they consist of a 5625 element 3 times 3 mm 2 array with an improved light response These elements have been characterized gain light response quantum efficiency in static and dynamic stimuli configuration Also results using cosmic ray and beam test data will be presented In addition a functional model of the Si-PM has been developed this will be used in a VLSI development of front-end electronics

  4. Advances in food systems for space flight.

    PubMed

    Bourland, C T

    1998-01-01

    Food for space has evolved from cubes and tubes to normal Earth-like food consumed with common utensils. U.S. space food systems have traditionally been based upon the water supply. When on-board water was abundant (e.g., Apollo and Shuttle fuel cells produced water) then dehydrated food was used extensively. The International Space Station will have limited water available for food rehydration so there is little advantage for using dehydrated foods. Experience from Skylab and the Russian Mir space station emphasizes that food variety and quality are important elements in the design of food for closed systems. The evolution of space food has accentuated Earth-like foods, which should be a model for closed environment food systems.

  5. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  6. Advances in food systems for space flight.

    PubMed

    Bourland, C T

    1998-01-01

    Food for space has evolved from cubes and tubes to normal Earth-like food consumed with common utensils. U.S. space food systems have traditionally been based upon the water supply. When on-board water was abundant (e.g., Apollo and Shuttle fuel cells produced water) then dehydrated food was used extensively. The International Space Station will have limited water available for food rehydration so there is little advantage for using dehydrated foods. Experience from Skylab and the Russian Mir space station emphasizes that food variety and quality are important elements in the design of food for closed systems. The evolution of space food has accentuated Earth-like foods, which should be a model for closed environment food systems. PMID:11540467

  7. Space transfer vehicle avionics advanced development needs

    NASA Technical Reports Server (NTRS)

    Huffaker, C. F.

    1990-01-01

    The assessment of preliminary transportation program options for the exploration initiative is underway. The exploration initiative for the Moon and Mars is outlined by mission phases. A typical lunar/Mars outpost technology/advanced development schedule is provided. An aggressive and focused technology development program is needed as early as possible to successfully support these new initiatives. The avionics advanced development needs, plans, laboratory facilities, and benefits from an early start are described.

  8. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications

    SciTech Connect

    Kang, S.; Selverian, J.H.; Kim, H.; O'Niel, D.; Kim, K. )

    1990-04-01

    This report summarizes the results of Phase I of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650 and 950{degree}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA), using ABAQUS code, were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing and service. Finally, the FEA results were compared with experiments using an idealized strength relationship. The results showed that the measured strength of the joint reached 30--90% of the strength by predicted by FEA. Overall results demonstrated that FEA is an effective tool for designing the geometries of ceramic-metal joints and that joining by brazing is a relevant method for advanced heat engine applications. 33 refs., 54 figs., 36 tabs.

  9. Advances in high energy astronomy from space

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1972-01-01

    Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.

  10. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    SciTech Connect

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  11. Direct glass bonded high specific power silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Rand, J. A.; Cummings, J. R.; Lampo, S. M.; Shreve, K. P.; Barnett, Allen M.

    1991-01-01

    A lightweight, radiation hard, high performance, ultra-thin silicon solar cell is described that incorporates light trapping and a cover glass as an integral part of the device. The manufacturing feasibility of high specific power, radiation insensitive, thin silicon solar cells was demonstrated experimentally and with a model. Ultra-thin, light trapping structures were fabricated and the light trapping demonstrated experimentally. The design uses a micro-machined, grooved back surface to increase the optical path length by a factor of 20. This silicon solar cell will be highly tolerant to radiation because the base width is less than 25 microns making it insensitive to reduction in minority carrier lifetime. Since the silicon is bonded without silicone adhesives, this solar cell will also be insensitive to UV degradation. These solar cells are designed as a form, fit, and function replacement for existing state of the art silicon solar cells with the effect of simultaneously increasing specific power, power/area, and power supply life. Using a 3-mil thick cover glass and a 0.3 g/sq cm supporting Al honeycomb, a specific power for the solar cell plus cover glass and honeycomb of 80.2 W/Kg is projected. The development of this technology can result in a revolutionary improvement in high survivability silicon solar cell products for space with the potential to displace all existing solar cell technologies for single junction space applications.

  12. Thin single-crystalline silicon solar cells for space applications

    NASA Astrophysics Data System (ADS)

    Nijs, J.; Caymax, M.; Acke, P.; Roggen, J.; Lambrechts, M.; Gravesen, P.

    1986-11-01

    A technology to perform etching after the formation of the solar cell, using epitaxial deposition of the active layer of the cell combined with an etch stop technique is proposed. This can result in highly efficient silicon solar cells with thicknesses down to 10 microns.

  13. A Silicon d-spacing Mapping Measurement System With Resolution of 10-9

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Sugiyama, Hiroshi; Fugimoto, Hiroyuki; Waseda, Atsushi; Takatomi, Toshikazu

    2010-06-01

    For determination of the Avogadro's number, a self-referenced lattice comparator established at the Photon Factory to deal with a d-spacing mapping measurement over the cross section of a 4 ˜ 5 inches FZ silicon rod. For uncertainty of 1×10-8 of the unit cell volume, it is necessary to measure lattice parameter of silicon with resolution of 3×10-9 at least. In this paper, we report the principle of our lattice comparator, characterize our measurement system, and show some mapping measurement results of FZ silicon with resolution of 3×10-9.

  14. Advanced technology for America's future in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.

  15. Effects of Atomic Oxygen and Grease on Outgassing and Adhesion of Silicone Elastomers for Space Applications

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Puleo, Bernadette J.; Steinetz, Bruce M.

    2012-01-01

    An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pretreatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.

  16. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  17. Application of advanced technology to space automation

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  18. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  19. Last Advances in Silicon-Based Optical Biosensors

    PubMed Central

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.

    2016-01-01

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105

  20. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  1. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  2. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  3. Space data systems: Advanced flight computers

    NASA Technical Reports Server (NTRS)

    Benz, Harry F.

    1991-01-01

    The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: technology challenges; state-of-the-art assessment; program description; relationship to external programs; and cooperation and coordination effort.

  4. Advanced space storable propellants for outer planet exploration

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.

    2004-01-01

    An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.

  5. Advanced Learning Space as an Asset for Students with Disabilities

    ERIC Educational Resources Information Center

    Císarová, Klára; Lamr, Marián; Vitvarová, Jana

    2015-01-01

    The paper describes an e-learning system called Advanced Learning Space that was developed at the Technical University of Liberec. The system provides a personalized virtual work space and promotes communication among students and their teachers. The core of the system is a module that can be used to automatically record, store and playback…

  6. Advanced optical modelling of dynamically deposited silicon nitride layers

    NASA Astrophysics Data System (ADS)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  7. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  8. Recent advances in reaction bonded silicon carbide optics and optical systems

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Schwartz, Jay; Landry, David; Glenn, William; Rider, Brian; Chung, Michael

    2005-08-01

    SSG Precision Optronics, Inc. (SSG) has recently developed a number of Reaction Bonded (RB) Silicon Carbide (SiC) optical systems for space-based remote sensing and astronomical observing applications. RB SiC's superior material properties make it uniquely well suited to meet the image quality and long term dimensional stability requirements associated with these applications. An overview of the RB SiC manufacturing process is presented, along with a summary description of recently delivered RB SiC flight hardware. This hardware includes an RB SiC telescope and Pointing Mirror Assembly (PMA) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) mission and an imaging telescope for the Long-Range Reconnaissance Imager (LORRI) mission. SSG continues to advance the state-of-the-technology with SiC materials and systems. A summary of development activities related to a low-cost, fracture tough, fiber reinforced RB SiC material formulation, novel tooling to produce monolithic, partially closed back mirror geometries, and extension of the technology to large aspheric mirrors is also provided.

  9. Towards nanometer-spaced silicon contacts to proteins

    NASA Astrophysics Data System (ADS)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  10. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  11. Advances in Pharmacotherapeutics of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi

    2006-01-01

    Space Motion Sickness (SMS) is common occurrence in the U.S. manned space flight program and nearly 2/3 of Shuttle crewmembers experience SMS. Several drugs have been prescribed for therapeutic management of SMS. Typically, orally-administered SMS medications (scopolamine, promethazine) have poor bioavailability and often have detrimental neurocognitive side effects at recommended doses. Intramuscularly administered promethazine (PMZ) is perceived to have optimal efficacy with minimal side effects in space. However, intramuscular injections are painful and the sedating neurocognitive side effects of promethazine, significant in controlled ground testing, may be masked in orbit because injections are usually given prior to crew sleep. Currently, EVAs cannot be performed by symptomatic crew or prior to flight day three due to the lack of a consistently efficacious drug, concern about neurocognitive side effects, and because an in-suit vomiting episode is potentially fatal. NASA has long sought a fast acting, consistently effective anti-motion sickness medication which has only minor neurocognitive side effects. Development of intranasal formulations of scopolamine and promethazine, the two commonly used SMS drugs at NASA for both space and reduced gravity environment medical operations, appears to be a logical alternative to current treatment modalities for SMS. The advantages are expected to be fast absorption, reliable and high bioavailability, and probably reduced neurocognitive side effects owing to dose reduction. Results from clinical trials with intranasal scopolamine gel formulation and pre-clinical testing of a prototype microcapsule intranasal gel dosage form of PMZ (INPMZ) will be discussed. These formulations are expected to offer a dependable and effective noninvasive treatment option for SMS.

  12. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  13. Advances in space radiation shielding codes.

    PubMed

    Wilson, John W; Tripathi, Ram K; Qualls, Garry D; Cucinotta, Francis A; Prael, Richard E; Norbury, John W; Heinbockel, John H; Tweed, John; De Angelis, Giovanni

    2002-12-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  14. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  15. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  16. Fabrication of Silicon-on-Nothing Structure by Substrate Engineering Using the Empty-Space-in-Silicon Formation Technique

    NASA Astrophysics Data System (ADS)

    Sato, Tsutomu; Mizushima, Ichiro; Taniguchi, Shuichi; Takenaka, Keiichi; Shimonishi, Satoshi; Hayashi, Hisataka; Hatano, Masayuki; Sugihara, Kazuyoshi; Tsunashima, Yoshitaka

    2004-01-01

    A practical method for the fabrication of a silicon on nothing (SON) structure with the desired size and shape has been developed by using the empty-space-in-silicon (ESS) formation technique. It was found that the SON structure could be precisely controlled by the initial shape and layout of the trenches. The size of ESS is determined by the size of the initial trench. The desired shapes of ESS, such as spherical, pipe-shaped and plate-shaped, can be fabricated by changing the arrangement of the initial trenches. The fabricated SON region over ESS has excellent crystallinity adoptable for ultra-large-scale integrated circuit (ULSI) applications. The SON structure would be a promising substrate structure for various manufacturing technologies, such as the micro-electro-mechanical system (MEMS), photonic crystals and waveguides.

  17. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  18. Advanced Silicon Microring Resonator Devices for Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Masilamani, Ashok Prabhu

    Chip level optical interconnects has gained momentum with recent demonstrations of silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, wavelength division multiplexing (WDM) filters, etc. A fundamental building block that has enabled many of these silicon photonic modules is the compact, high Q factor microring resonator cavity. However, most of these demonstrations have WDM processing components based on simple add-drop filters that cannot realize the dense WDM systems required for the chip level interconnects. Dense WDM filters have stringent spectral shape requirements such as flat-top filter passband, steep band transition etc. Optical filters that can meet these specifications involve precise placement of the poles and zeros of the filter transfer function. Realization of such filters requires the use of multiple coupled microring resonators arranged in complex coupling topologies. In this thesis we have proposed and demonstrated new multiple coupled resonator topologies based on compact microring resonators in SOI material system. First we explored novel microring architectures which resulted in the proposal of two new coupled microring architectures, namely, the general 2D microring array topology and the general cascaded microring network topology. We also developed the synthesis procedures for these two microring architectures. The second part of this thesis focussed on the demonstration of the proposed architectures in the SOI material system. To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab facility. Using this process, ultra-compact single microring filters with microring radii as small as 1mum were demonstrated. Higher order filter demonstration with multiple microrings necessitated post-fabrication microring resonance tuning. We developed additional fabrication steps to install micro heaters on top of the microrings to thermally tune its resonance. Subsequently, a thermally tuned fourth

  19. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  20. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  1. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  2. Plasma cryogenic etching of silicon: from the early days to today's advanced technologies

    NASA Astrophysics Data System (ADS)

    Dussart, R.; Tillocher, T.; Lefaucheux, P.; Boufnichel, M.

    2014-03-01

    The evolution of silicon cryoetching is reported in this topical review, from its very first introduction by a Japanese team to today's advanced technologies. The main advances in terms of the performance and comprehension of the mechanisms are chronologically presented. After presenting the principle of silicon cryoetching, the main defects encountered in cryoetching (such as undercut, bowing and crystal orientation dependent etching) are presented and discussed. Mechanisms involved in SiOxFy passivation layer growth in standard cryoetching are investigated through several in situ characterization experiments. The STiGer process and alternative cryoetching processes for high-aspect-ratio structures are also proposed to enhance the process robustness. The over-passivation regime, which can provide self-organized columnar microstructures, is presented and discussed. Finally, advanced technologies, such as the cryoetching of sub-20 nm features and porous OSG low-k cryoetching, are described.

  3. Advanced space transportation system support contract

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The general focus is on a phase 2 lunar base, or a lunar base during the period after the first return of a crew to the Moon, but before permanent occupancy. The software effort produced a series of trajectory programs covering low earth orbit (LEO) to various node locations, the node locations to the lunar surface, and then back to LEO. The surface operations study took a lunar scenario in the civil needs data base (CNDB) and attempted to estimate the amount of space-suit work or extravehicular activity (EVA) required to set up the base. The maintenance and supply options study was a first look at the problems of supplying and maintaining the base. A lunar surface launch and landing facility was conceptually designed. The lunar storm shelter study examined the problems of radiation protection. The lunar surface construction and equipment assembly study defined twenty surface construction and assembly tasks in detail.

  4. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  5. Advanced Metal Foam Structures for Outer Space

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Johnson, William; Peker, Atakan

    2005-01-01

    A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

  6. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  7. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices.

    PubMed

    Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B

    2012-04-23

    We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states.

  8. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    PubMed

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  9. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  10. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  11. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  12. A program continuation to develop processing procedures for advanced silicon solar cells

    NASA Technical Reports Server (NTRS)

    Avery, J. E.; Scott-Monck, J. A.

    1976-01-01

    Shallow junctions, aluminum back surface fields and tantalum pentoxide (Ta205) antireflection coatings coupled with the development of a chromium-palladium-silver contact system, were used to produce a 2 x 4 cm wraparound contact silicon solar cell. One thousand cells were successfully fabricated using batch processing techniques. These cells were 0.020 mm thick, with the majority (800) made from nominal ten ohm-cm silicon and the remainder from nominal 30 ohm-cm material. Unfiltered, these cells delivered a minimum AMO efficiency at 25 C of 11.5 percent and successfully passed all the normal in-process and acceptance tests required for space flight cells.

  13. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  14. Advanced Solid State Lighting for AES Deep Space Hab Project

    NASA Technical Reports Server (NTRS)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  15. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the areas of crystal growth and device fabrication technology. High quality single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  16. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the area of crystal growth and device fabrication technology. High quality of single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  17. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  18. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  19. Advanced Engineering Environments for Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  20. Advanced technology for space communications, tracking, and robotic sensors

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1989-01-01

    Technological advancements in tracking, communications, and robotic vision sensors are reviewed. The development of communications systems for multiple access, broadband, high data rate, and efficient operation is discussed. Consideration is given to the Tracking and Data Relay Satellite systems, GPS, and communications and tracking systems for the Space Shuttle and the Space Station. The use of television, laser, and microwave sensors for robotics and technology for autonomous rendezvous and docking operations are examined.

  1. Nanomaterials for Advanced Life Support in Advanced Life Support in Space systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Moloney, Padraig; Yowell, Leonard

    2006-01-01

    A viewgraph presentation describing nanomaterial research at NASA Johnson Space Center with a focus on advanced life support in space systems is shown. The topics include: 1) Introduction; 2) Research and accomplishments in Carbon Dioxide Removal; 3) Research and Accomplishments in Water Purification; and 4) Next Steps

  2. Silicon high speed modulator for advanced modulation: device structures and exemplary modulator performance

    NASA Astrophysics Data System (ADS)

    Milivojevic, Biljana; Wiese, Stefan; Whiteaway, James; Raabe, Christian; Shastri, Anujit; Webster, Mark; Metz, Peter; Sunder, Sanjay; Chattin, Bill; Anderson, Sean P.; Dama, Bipin; Shastri, Kal

    2014-03-01

    Fiber optics is well established today due to the high capacity and speed, unrivaled flexibility and quality of service. However, state of the art optical elements and components are hardly scalable in terms of cost and size required to achieve competitive port density and cost per bit. Next-generation high-speed coherent optical communication systems targeting a data rate of 100-Gb/s and beyond goes along with innovations in component and subsystem areas. Consequently, by leveraging the advanced silicon micro and nano-fabrication technologies, significant progress in developing CMOS platform-based silicon photonic devices has been made all over the world. These achievements include the demonstration of high-speed IQ modulators, which are important building blocks in coherent optical communication systems. In this paper, we demonstrate silicon photonic QPSK modulator based on a metal-oxide-semiconductor (MOS) capacitor structure, address different modulator configuration structures and report our progress and research associated with highspeed advanced optical modulation in silicon photonics

  3. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  4. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  5. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  6. Effects of Atomic Oxygen and Grease on Outgassing and Adhesion of Silicone Elastomers for Space Applications

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Puleo, Bernadette J.; Steinetz, Bruce M.

    2011-01-01

    An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Sili-cone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Bray-cote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pre-treatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.

  7. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  8. Absolute Measurement of Lattice Spacing d(220) in Floating Zone Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Nakayama, Kan; Tanaka, Mitsuru; Misawa, Guento

    1995-09-01

    The lattice spacing d220 of a silicon crystal of National Research Laboratory of Metrology has been measured with a new combined X-ray and optical interferometer, with relative uncertainty of 0.16 ppm. This value is in good agreement with other reported values, whereas the ratio of molar mass M to density ρ measured for this crystal shows discrepancy of around 3 ppm from previously reported ratios. It seems that the conventional route to determining the Avogadro constant from M, ρ and d220 will require a new characterization technique to estimate the number of silicon atoms in a unit cell volume.

  9. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a

  10. The Economics of Advanced In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  11. Materials and light thermal structures research for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Starke, Edgar A., Jr.; Herakovich, Carl T.

    1991-01-01

    The Light Thermal Structures Center at the University of Virginia sponsors educational and research programs focused on the development of reliable, lightweight structures to function in hostile thermal environments. Technology advances in materials and design methodology for light thermal structures will contribute to improved space vehicle design concepts with attendant weight savings. This paper highlights current research activities in three areas relevant to space exploration: low density, high temperature aluminum alloys, composite materials, and structures with thermal gradients. Advances in the development of new aluminum-lithium alloys and mechanically alloyed aluminum alloys are described. Material properties and design features of advanced composites are highlighted. Research studies in thermal structures with temperature gradients include inelastic panel buckling and thermally induced unstable oscillations. Current and future research is focused on the integration of new materials with applications to structural components with thermal gradients.

  12. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  13. Thermal degradation study of silicon carbide threads developed for advanced flexible thermal protection systems

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim; Sawko, Paul M.

    1992-01-01

    Silicon carbide (SiC) fiber is a material that may be used in advanced thermal protection systems (TPS) for future aerospace vehicles. SiC fiber's mechanical properties depend greatly on the presence or absence of sizing and its microstructure. In this research, silicon dioxide is found to be present on the surface of the fiber. Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) show that a thin oxide layer (SiO2) exists on the as-received fibers, and the oxide thickness increases when the fibers are exposed to high temperature. ESCA also reveals no evidence of Si-C bonding on the fiber surface on both as-received and heat treated fibers. The silicon oxide layer is thought to signal the decomposition of SiC bonds and may be partially responsible for the degradation in the breaking strength observed at temperatures above 400 C. The variation in electrical resistivity of the fibers with increasing temperature indicates a transition to a higher band gap material at 350 to 600 C. This is consistent with a decomposition of SiC involving silicon oxide formation.

  14. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  15. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  16. Expert systems and advanced automation for space missions operations

    NASA Technical Reports Server (NTRS)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  17. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy. PMID:25362364

  18. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  19. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  20. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  1. Simulated Space Environment Effects on the Blocking Force of Silicone Adhesive

    NASA Technical Reports Server (NTRS)

    Boeder, Paul; Mikatarian, Ron; Koontz, Steve; Albyn, Keith; Finckenor, Miria

    2005-01-01

    The International Space Station (ISS) solar arrays utilize MD-944 diode tape to protect the underlying diodes in the solar array panel circuit and also provide thermal conditioning and mechanical support. The diode tape consists of silicone pressure sensitive adhesive (Dow Coming QC-7725) with a protective Kapton over-layer. On-orbit, the Kapton over-layer will erode under exposure to atomic oxygen (AO) and the underlying exposed silicone adhesive will ultimately convert, under additional AO exposure, to a glass like silicate. The current operational plan is to retract ISS solar array P6 and leave it stored under load for a long duration (6 months or more) during ISS assembly. With the Kapton over-layer eroded away, the exposed silicone adhesive must not cause the solar array to stick to itself or cause the solar array to fail during redeployment. Previous testing by Lockheed-Martin Space Systems (LMSS) characterized silicone blocking following exposure to low energy atomic oxygen (AO) in an asher facility, but this is believed to be conservative. An additional series of tests was performed by the Environmental Effects Group at MSFC under direction from the ISS Program Office Environments Team. This test series included high energy AO (5 eV), near ultraviolet (NUV) radiation and ionizing radiation, singly and in combination. Additional samples were exposed to thermal energy AO (<0.1 ev) for comparison to the LMSS tests. Diode tape samples were exposed to each environment constituent individually, put under preload for seven days and then the resulting blocking force was measured using a tensile machine. Additional samples were exposed to AO, NUV and electrons in series and then put under long term (three to ten months) preload to determine the effect of preload duration on the resulting blocking force of the silicone-to-silicone bond. Test results indicate that high energy AO, ultraviolet radiation and electron ionizing radiation exposure all reduce the blocking

  2. Advanced Fuels Can Reduce the Cost of Getting Into Space

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1998-01-01

    Rocket propellant and propulsion technology improvements can reduce the development time and operational costs of new space vehicle programs, and advanced propellant technologies can make space vehicles safer and easier to operate, and can improve their performance. Five major areas have been identified for fruitful research: monopropellants, alternative hydrocarbons, gelled hydrogen, metallized gelled propellants, and high-energy-density propellants. During the development of the NASA Advanced Space Transportation Plan, these technologies were identified as those most likely to be effective for new NASA vehicles. Several NASA research programs had fostered work in fuels under the topic Fuels and Space Propellants for Reusable Launch Vehicles in 1996 to 1997. One component of this topic was to promote the development and commercialization of monopropellant rocket fuels, hypersonic fuels, and high-energy-density propellants. This research resulted in the teaming of small business with large industries, universities, and Government laboratories. This work is ongoing with seven contractors. The commercial products from these contracts will bolster advanced propellant research. Work also is continuing under other programs, which were recently realigned under the "Three Pillars" of NASA: Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. One of the five areas is described below, and its applications and effect on future missions is discussed. This work is being conducted at the NASA Lewis Research Center with the assistance of the NASA Marshall Space Flight Center. The regenerative cooling of spacecraft engines and other components can improve overall vehicle performance. Endothermic fuels can absorb energy from an engine nozzle and chamber and help to vaporize high-density fuel before it enters the combustion chamber. For supersonic and hypersonic aircraft, endothermic fuels can absorb the high heat fluxes created on the wing leading edges and

  3. Free space optical communication link using a silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2015-03-01

    Many components for free space optical communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Non-mechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. In this paper a small-scale silicon photonic optical phased array is demonstrated for both the transmitter and receiver functions in a free space optical link. The device using an array of thermo-optically controlled waveguide phase shifters and demonstrates one-dimensional steering with a single control electrode. Transmission of a digitized video data stream over the link is shown.

  4. Space charge behavior of silicone rubber nanocomposites with thermal step method

    NASA Astrophysics Data System (ADS)

    Zhang, Ji Wei; Li, Qing Quan; Liu, Hong Shun; Ren, Ang; Li, Jie; Xiao, Meng; Li, Bin; Wang, Hao

    2016-08-01

    In this paper, effects of the space charge behavior of silicone rubber (SiR) nanocomposites with SiO2, Al2O3, and MgO nanoparticles on charge transfer were clarified. To investigate the effects of SiO2, Al2O3, and MgO nanoparticles on space charge profiles, the space charge behavior was measured using a thermal step method system under a dc electric field of 2 to 4 kV/mm. In the case of SiR nanocomposites, a negative packet like charge injection with a peak charge density of more than several hundred C/m3 was measured. The effects of space charge behavior were discussed with the response current associated with the conductivity and permittivity affected by a thermal process. The obtained results showed that the relaxation processes had discrete energy differences with distinct peaks in the response currents of space charge affected by nanoparticles.

  5. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  6. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  7. Advanced actuators for the control of large space structures

    NASA Technical Reports Server (NTRS)

    Downer, James; Hockney, Richard; Johnson, Bruce; Misovec, Kathleen

    1993-01-01

    The objective of this research was to develop advanced six-degree-of-freedom actuators employing magnetic suspensions suitable for the control of structural vibrations in large space structures. The advanced actuators consist of a magnetically suspended mass that has three-degrees-of-freedom in both translation and rotation. The most promising of these actuators featured a rotating suspended mass providing structural control torques in a manner similar to a control moment gyro (CMG). These actuators employ large-angle-magnetic suspensions that allow gimballing of the suspended mass without mechanical gimbals. Design definitions and sizing algorithms for these CMG type as well as angular reaction mass actuators based on multi-degree-of-freedom magnetic suspensions were developed. The performance of these actuators was analytically compared with conventional reaction mass actuators for a simple space structure model.

  8. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  9. Reciprocal space analysis of the microstructure of luminescent and nonluminescent porous silicon films

    SciTech Connect

    Lee, S.R.; Barbour, J.C.; Medernach, J.W.; Stevenson, J.O.; Custer, J.S.

    1994-12-31

    The microstructure of anodically prepared porous silicon films was determined using a novel X-ray diffraction technique. This technique uses double-crystal diffractometry combined with position-sensitive X- ray detection to efficiently and quantitatively image the reciprocal space structure of crystalline materials. Reciprocal space analysis of newly prepared, as well as aged, p{sup {minus}} porous silicon films showed that these films exhibit a very broad range of crystallinity. This material appears to range in structure from a strained, single-crystal, sponge-like material exhibiting long-range coherency to isolated, dilated nanocrystals embedded in an amorphous matrix. Reciprocal space analysis of n{sup +} and p{sup +} porous silicon showed these materials are strained single-crystals with a spatially-correlated array of vertical pores. The vertical pores in these crystals may be surrounded by nanoporous or nanocrystalline domains as small as a few nm in size which produce diffuse diffraction indicating their presence. The photoluminescence of these films was examined using 488 nm Ar laser excitation in order to search for possible correlations between photoluminescent intensity and crystalline microstructure.

  10. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  11. Advanced regenerative-cooling techniques for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Shoji, J. M.

    1975-01-01

    A review of regenerative-cooling techniques applicable to advanced planned engine designs for space booster and orbit transportation systems has developed the status of the key elements of this cooling mode. This work is presented in terms of gas side, coolant side, wall conduction heat transfer, and chamber life fatigue margin considerations. Described are preliminary heat transfer and trade analyses performed using developed techniques combining channel wall construction with advanced, high-strength, high-thermal-conductivity materials (NARloy-Z or Zr-Cu alloys) in high heat flux regions, combined with lightweight steel tubular nozzle wall construction. Advanced cooling techniques such as oxygen cooling and dual-mode hydrocarbon/hydrogen fuel operation and their limitations are indicated for the regenerative cooling approach.

  12. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  13. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  14. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  15. Advanced-to-Revolutionary Space Technology Options - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2013-01-01

    Paper summarizes a spectrum of low TRL, high risk technologies and systems approaches which could massively change the cost and safety of space exploration/exploitation/industrialization. These technologies and approaches could be studied in a triage fashion, the method of evaluation wherein several prospective solutions are investigated in parallel to address the innate risk of each, with resources concentrated on the more successful as more is learned. Technology areas addressed include Fabrication, Materials, Energetics, Communications, Propulsion, Radiation Protection, ISRU and LEO access. Overall and conceptually it should be possible with serious research to enable human space exploration beyond LEO both safe and affordable with a design process having sizable positive margins. Revolutionary goals require, generally, revolutionary technologies. By far, Revolutionary Energetics is the most important, has the most leverage, of any advanced technology for space exploration applications.

  16. Advanced Microbial Check Valve development. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.; Sauer, R. L.

    1981-01-01

    The Microbial Check Valve (MCV) is a flight qualified assembly that provides bacteriologically safe drinking water for the Space Shuttle. The 1-lb unit is basically a canister packed with an iodinated ion-exchange resin. The device is used to destroy organisms in a water stream as the water passes through it. It is equally effective for fluid flow in either direction and its primary method of disinfection is killing rather than filtering. The MCV was developed to disinfect the fuel cell water and to prevent back contamination of stored potable water on the Space Shuttle. This paper reports its potential for space applications beyond the basic Shuttle mission. Data are presented that indicate the MCV is suitable for use in advanced systems that NASA has under development for the reclamation of humidity condensate, wash water and human urine.

  17. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  18. Advances in space technology: the NSBRI Technology Development Team

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  19. Advancing Space Weather Modeling Capabilities at the CCMC

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Kuznetsova, Maria; Boblitt, Justin; Chulaki, Anna; MacNeice, Peter; Mendoza, Michelle; Mullinix, Richard; Pembroke, Asher; Pulkkinen, Antti; Rastaetter, Lutz; Shim, Ja Soon; Taktakishvili, Aleksandre; Wiegand, Chiu; Zheng, Yihua

    2016-04-01

    The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) serves as a community access point to an expanding collection of state-of-the-art space environment models and as a hub for collaborative development on next generation of space weather forecasting systems. In partnership with model developers and the international research and operational communities, the CCMC integrates new data streams and models from diverse sources into end-to-end space weather predictive systems, identifies weak links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will focus on the latest model installations at the CCMC and advances in CCMC-led community-wide model validation projects.

  20. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  1. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  2. Small, short and long fatigue crack growth in an advanced silicon nitride ceramic material

    SciTech Connect

    Zhang, Y.H.; Edwards, L.

    1996-05-15

    In metallic materials, a number of workers have reported that the growth rates of small fatigue cracks cannot be correlated with the stress intensity factor range, {Delta}K. Small cracks normally exhibit faster growth rates than long cracks and often show growth rate minima. This anomalous behavior has been attributed to the failure of the linear elastic fracture mechanics parameter {Delta}K to characterize small, or short fatigue crack growth. Ceramic materials combine a lack of dislocation deformation and a very small grain size and thus the reasons for any observed anomalous small or short crack growth effect are less clear. Previous work on small or short fatigue crack growth in ceramics is limited, and work on silicon nitride which is one of the most promising structural ceramics is particularly sparse. As the majority of the fatigue lifetime of any silicon nitride component will be controlled by the propagation of a preexisting small flaw to a critical size, the presence of any short or small crack effect in this material is of engineering importance. Thus, the objective of the work presented here is to investigate the small, short and long crack growth in an advanced silicon nitride material.

  3. Tailoring the Optical Properties of Silicon with Ion Beam Created Nanostructures for Advanced Photonics Applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen

    In today's fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption in thin film Si solar cells are of great importance and have been the focus of research for a few decades now. Another big issue of technology in this fast-paced world is the computing rate or data transfer rate between components of a chip in ultra-fast processors. Existing electronic interconnects suffering from the signal delays and heat generation issues are unable to handle high data rates. A possible solution to this problem is in replacing the electronic interconnects with optical interconnects which have large data carrying capacity. However, optical components are limited in size by the fundamental laws of diffraction to about half a wavelength of light and cannot be combined with nanoscale electronic components. Tremendous research efforts have been directed in search of an advanced technology which can bridge the size gap between electronic and photonic worlds. An emerging technology of "plasmonics'' which exploits the extraordinary optical properties of metal nanostructures to tailor the light at nanoscale has been considered a potential solution to both of the above-mentioned problems. Research conducted for this dissertation has an overall goal to investigate the optical properties of silicon with metal nanostructures for photovoltaics and advanced silicon photonics applications. The first part of the research focuses on achieving enhanced

  4. Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes.

    PubMed

    Zhu, Jian; Wang, Tao; Fan, Fengru; Mei, Lin; Lu, Bingan

    2016-09-27

    Development of electrode materials with high capability and long cycle life are central issues for lithium-ion batteries (LIBs). Here, we report an architecture of three-dimensional (3D) flexible silicon and graphene/carbon nanofibers (FSiGCNFs) with atomic-scale control of the expansion space as the binder-free anode for flexible LIBs. The FSiGCNFs with Si nanoparticles surrounded by accurate and controllable void spaces ensure excellent mechanical strength and afford sufficient space to overcome the damage caused by the volume expansion of Si nanoparticles during charge and discharge processes. This 3D porous structure possessing built-in void space between the Si and graphene/carbon matrix not only limits most solid-electrolyte interphase formation to the outer surface, instead of on the surface of individual NPs, and increases its stability but also achieves highly efficient channels for the fast transport of both electrons and lithium ions during cycling, thus offering outstanding electrochemical performance (2002 mAh g(-1) at a current density of 700 mA g(-1) over 1050 cycles corresponding to 3840 mAh g(-1) for silicon alone and 582 mAh g(-1) at the highest current density of 28 000 mA g(-1)).

  5. Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes.

    PubMed

    Zhu, Jian; Wang, Tao; Fan, Fengru; Mei, Lin; Lu, Bingan

    2016-09-27

    Development of electrode materials with high capability and long cycle life are central issues for lithium-ion batteries (LIBs). Here, we report an architecture of three-dimensional (3D) flexible silicon and graphene/carbon nanofibers (FSiGCNFs) with atomic-scale control of the expansion space as the binder-free anode for flexible LIBs. The FSiGCNFs with Si nanoparticles surrounded by accurate and controllable void spaces ensure excellent mechanical strength and afford sufficient space to overcome the damage caused by the volume expansion of Si nanoparticles during charge and discharge processes. This 3D porous structure possessing built-in void space between the Si and graphene/carbon matrix not only limits most solid-electrolyte interphase formation to the outer surface, instead of on the surface of individual NPs, and increases its stability but also achieves highly efficient channels for the fast transport of both electrons and lithium ions during cycling, thus offering outstanding electrochemical performance (2002 mAh g(-1) at a current density of 700 mA g(-1) over 1050 cycles corresponding to 3840 mAh g(-1) for silicon alone and 582 mAh g(-1) at the highest current density of 28 000 mA g(-1)). PMID:27462725

  6. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  7. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  8. Development of Advanced Robotic Hand System for space application

    NASA Technical Reports Server (NTRS)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  9. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  10. Environmental impact statement Space Shuttle advanced solid rocket motor program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.

  11. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  12. The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope

    SciTech Connect

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Hirayama, Masaharu; Johnson, R.P.; Kroeger, Wilko; Latronico, Luca; Minuti, Massimo; Nelson, David; Rando, Riccardo; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Spencer, E.N.; Sugizaki, Mutsumi; Tajima, Hiro; Cohen-Tanugi, Johann; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /Maryland U. /UC, Santa Cruz /Padua U. /INFN, Padua

    2006-02-27

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm strips using only 160 W of power, and it achieves close to 100% detection efficiency with noise occupancy sufficiently low to allow it to self trigger. The design of the readout system is described, and results are presented from ground-based testing of the completed detector system.

  13. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  14. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  15. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  16. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  17. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    SciTech Connect

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-06

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as {approx} 16 We/kg and {approx} 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is {approx} 640 m2 and {approx} 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is {approx} 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is {approx} 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  18. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ˜ 16 We/kg and ˜ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ˜ 640 m2 and ˜ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ˜ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ˜ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  19. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  20. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  1. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  2. Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.

    1989-01-01

    An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.

  3. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  4. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  5. Advancements in real-time IR/EO scene generation utilizing the Silicon Graphics Onyx2

    NASA Astrophysics Data System (ADS)

    Simmons, Onda D.; Jacobs, Stephen E.; Makar, Robert J.; Stanley, Frank J.; Joyner, Thomas W.; Theim, Keem B.

    2000-07-01

    This paper describes advances in the development of IR/EO scene generation to support the Infrared Sensor Stimulator system (IRSS) which will be used for installed system testing of avionics electronic combat systems. The IRSS will provide a high frame rate, real-time, reactive, hardware-in-the-loop test capability for the stimulation of current and future infrared and ultraviolet based sensor systems. Scene generation in the IRSS is provided by an enhanced version of the Real-time (IR/EO Scene Simulator (RISS) which was previously developed by Comptek Amherst Systems. RISS utilizes the symmetric multiprocessing environment of the Silicon GraphicsR Onyx2TM to support the generation of IR/EO scenes in real-time. It is a generic scene generation system which can be programmed to accurately stimulate a wide variety of sensors. Significant advancements have been made in IRSS capabilities in the past year. This paper will discuss the addition of new simulation techniques which have been added to the system to better support the high resolution, geospecific testing requirements of a new generation of imaging sensors. IRSS now better supports the use of high resolution databases which contain material maps at photo realistic precision. Other developments which will be discussed include extensive improvements to the database and scenario development tools, advancements in the support for multiple synchronized scene generation channels, and new support for sea and ship models.

  6. Recent advances and issues in development of silicon carbide composites for fusion applications

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.

    2009-04-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  7. Recent advances and issues in development of silicon carbide composites for fusion applications

    SciTech Connect

    Nozawa, Takashi; Hinoki, Tatsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance Lewis; HenagerJr., Charles H.; Hegeman, Hans

    2009-01-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  8. Recent advances and issues in development of silicon carbide composites for fusion applications

    SciTech Connect

    Nozawa, T.; Hinoki, Tetsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance L.; Henager, Charles H.; Hegeman, Hans

    2009-04-30

    Radiation-resistant advanced silicon carbide composites (SiC/SiC) have been developed as a promising candidate of the high-temperature operating advanced fusion DEMO reactor. With the completion of the “proof-of-principle” phase in development of “nuclear-grade” SiC/SiC, the R&D on SiC/SiC is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in 1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, 2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and 3) irradiation effects were specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength were specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  9. Performance Prediction for a Hockey-Puck Silicon Crystal Monochromator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, Zunping; Rosenbaum, Gerd; Navrotski, Gary

    2014-03-01

    One of the Key Performance Parameters of the upgrade of the Advanced Photon Source (APS) is the increase of the storage ring current from 100 to 150 mA. In order to anticipate the impact of this increased heat load on the X-ray optics of the beamlines, the APS has implemented a systematic review, by means of finite element analysis and computational fluid dynamics, of the thermal performance of the different types of monochromators installed at the highest-heat-load insertion device beamlines. We present here simulations of the performance of a directly liquid nitrogen-cooled silicon crystal, the hockey-puck design. Calculations of the temperature and slope error at multiple ring currents under multiple operational conditions, including the influence of power, cooling, and diffraction surface thickness are included.

  10. Optical and Scanning Electron Microscopy of the Materials International Space Station Experiment (MISSE) Spacecraft Silicone Experiment

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; de Groh, Kim K.; Banks, Bruce A.

    2012-01-01

    Under a microscope, atomic oxygen (AO) exposed silicone surfaces are crazed and seen as "islands" separated by numerous crack lines, much analogous to mud-tile cracks. This research characterized and compared the degree of AO degradation of silicones by analyzing optical microscope images of samples exposed to low Earth orbit (LEO) AO as part of the Spacecraft Silicone Experiment. The Spacecraft Silicone Experiment consisted of eight DC 93-500 silicone samples exposed to eight different AO fluence levels (ranged from 1.46 to 8.43 10(exp 21) atoms/sq cm) during two different Materials International Space Station Experiment (MISSE) missions. Image analysis software was used to analyze images taken using a digital camera. To describe the morphological degradation of each AO exposed flight sample, three different parameters were selected and estimated: (1) average area of islands was determined and found to be in the 1000 to 3100 sq mm range; (2) total length of crack lines per unit area of the sample surface were determined and found to be in the range of 27 to 59 mm of crack length per sq mm of sample surface; and (3) the fraction of sample surface area that is occupied by crack lines was determined and found to be in the 25 to 56 percent range. In addition, average crack width can be estimated from crack length and crack area measurements and was calculated to be about 10 mm. Among the parameters studied, the fraction of sample surface area that is occupied by crack lines is believed to be most useful in characterizing the degree of silicone conversion to silicates by AO because its value steadily increases with increasing fluence over the entire fluence range. A series of SEM images from the eight samples exposed to different AO fluences suggest a complex sequence of surface stress due to surface shrinkage and crack formation, followed by re-distribution of stress and shrinking rate on the sample surface. Energy dispersive spectra (EDS) indicated that upon AO

  11. Overview of Advanced Space Propulsion Activities in the Space Environmental Effects Team at MSFC

    NASA Technical Reports Server (NTRS)

    Edwards, David; Carruth, Ralph; Vaughn, Jason; Schneider, Todd; Kamenetzky, Rachel; Gray, Perry

    2000-01-01

    Exploration of our solar system, and beyond, requires spacecraft velocities beyond our current technological level. Technologies addressing this limitation are numerous. The Space Environmental Effects (SEE) Team at the Marshall Space Flight Center (MSFC) is focused on three discipline areas of advanced propulsion; Tethers, Beamed Energy, and Plasma. This presentation will give an overview of advanced propulsion related activities in the Space Environmental Effects Team at MSFC. Advancements in the application of tethers for spacecraft propulsion were made while developing the Propulsive Small Expendable Deployer System (ProSEDS). New tether materials were developed to meet the specifications of the ProSEDS mission and new techniques had to be developed to test and characterize these tethers. Plasma contactors were developed, tested and modified to meet new requirements. Follow-on activities in tether propulsion include the Air-SEDS activity. Beamed energy activities initiated with an experimental investigation to quantify the momentum transfer subsequent to high power, 5J, ablative laser interaction with materials. The next step with this experimental investigation is to quantify non-ablative photon momentum transfer. This step was started last year and will be used to characterize the efficiency of solar sail materials before and after exposure to Space Environmental Effects (SEE). Our focus with plasma, for propulsion, concentrates on optimizing energy deposition into a magnetically confined plasma and integration of measurement techniques for determining plasma parameters. Plasma confinement is accomplished with the Marshall Magnetic Mirror (M3) device. Initial energy coupling experiments will consist of injecting a 50 amp electron beam into a target plasma. Measurements of plasma temperature and density will be used to determine the effect of changes in magnetic field structure, beam current, and gas species. Experimental observations will be compared to

  12. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  13. Small electromagnetically clean satellite platform and advanced space instruments

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Makarov, Oleksander; Belyayev, Serhiy; Lukenyuk, Adolf; Marusenkov, Andriy

    The Ukrainian space program in the branch of space scientific research is based on recent achievements in the development of small microsatellite platforms and advanced onboard instrumentation. The present state of both these activities is outlined in the report. First, the design and composition peculiarities of a new microsatellite platform dedicated to carry the high sensitive electromagnetic sensors and mass-spectrometers are presented. An open nonhermetic construction gives possibilities to divide efficiently service and scientific payload. This feature as well as special measures foreseen by the solar panels and cable harness layout allows electromagnetic interference decreasing and easy introducing of shielding and compensating facilities. Up to 4 booms deployment is foreseen by the platform construction to move away far enough the electromagnetic sensors from the satellite body allow realizing the ultimate sensors sensitivity up to highest international standards. An onboard data collection and processing unit is organized in such a way that it controls efficiently both service and scientific systems. Second, some recent advances are reported in the branch of onboard electromagnetic instrumentation creation. New combined sensor - wave probe - is developed and experimentally tested in laboratory plasma chamber and in spatial experiment. This is a unique device which permits measuring simultaneously in one point three physical values - spatial current density, magnetic field fluctuations and electric potential. Other recent versions of super-light flux-gate and induction coil sensors are described. The performances of both microsatellite platform and mentioned electromagnetic sensors are discussed and the results of experimental verification of their parameters are presented. This works were supported by NSAU contract No 1-02/03 and STCU grant 3165.

  14. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-01-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  15. Space Shuttle Main Engine: Advanced Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Singer, Chirs

    1999-01-01

    The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.

  16. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  17. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  18. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  19. The use of advanced materials in space structure applications

    NASA Astrophysics Data System (ADS)

    Eaton, D. C. G.; Slachmuylders, E. J.

    The last decade has seen the Space applications of composite materials become almost commonplace in the construction of configurations requiring high stiffness and/or dimensional stability, particularly in the field of antennas. As experience has been accumulated, applications for load carrying structures utilizing the inherent high specific strength/stiffness of carbon fibres have become more frequent. Some typical examples of these and their design development criteria are reviewed. As these structures and the use of new plastic matrices emerge, considerable attention has to be given to establishing essential integrity control requirements from both safety and cost aspects. The advent of manned European space flight places greater emphasis on such requirements. Attention is given to developments in the fields of metallic structures with discussion of the advantages and disadvantages of their application. The design and development of hot structures, thermal protection systems and air-breathing engines for future launch vehicles necessitates the use of the emerging metal/matrix and other advanced materials. Some of their important features are outlined. Means of achieving such objectives by greater harmonization within Europe are emphasized. Typical examples of on-going activities to promote such collaboration are described.

  20. New advanced radio diagnostics tools for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Krankowski, A.; Rothkaehl, H.; Atamaniuk, B.; Morawski, M.; Zakharenkova, I.; Cherniak, I.; Otmianowska-Mazur, K.

    2013-12-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities.

  1. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  2. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  3. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 2, Part 2; Space Station Freedom Advanced Development Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.

  4. Slumping monitoring of glass and silicone foils for x-ray space telescopes

    NASA Astrophysics Data System (ADS)

    Mika, M.; Pina, L.; Landova, M.; Sveda, L.; Havlikova, R.; Semencova, V.; Hudec, R.; Inneman, A.

    2011-09-01

    We developed a non-contact method for in-situ monitoring of the thermal slumping of glass and silicone foils to optimize this technology for the production of high quality mirrors for large aperture x-ray space telescopes. The telescope's crucial part is a high throughput, heavily nested mirror array with the angular resolution better than 5 arcsec. Its construction requires precise and light-weight segmented optics with surface micro-roughness on the order of 0.1 nm. Promising materials are glass or silicon foils shaped by thermal forming. The desired parameters can be achieved only through optimizing the slumping process. We monitored the slumping by taking the snapshots of the shapes every five minutes at constant temperature and the final shapes we measured with the Taylor Hobson profilometer. The shapes were parabolic and the deviations from a circle had the peak-to-valley values of 20-30 μm. The observed hot plastic deformation of the foils was controlled by viscous flow. We calculated and plotted the relations between the middle part deflection, viscosity, and heat-treatment time. These relations have been utilized for the development of a numerical model enabling computer simulation. By the simulation, we verify the material's properties and generate new data for the thorough optimization of the slumping process.

  5. Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.; Bean, J. C.

    1984-01-01

    Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.

  6. Silicon-on-sapphire fiber optic transceiver technology for space applications

    NASA Astrophysics Data System (ADS)

    Kuznia, C. P.; Ahadian, J. F.; Pommer, R. J.; Hagan, R.

    2007-09-01

    We present Single Event Upset (SEU) testing of a parallel fiber optic transceiver designed for communicating data using commercial Fibre Channel and GbE protocols at data rates up to 2.5 Gbps per channel (on eight parallel channels). This transceiver was developed for aircraft applications, such as the Joint Strike Fighter (JSF), Raptor and F/A-18 aircraft, that deploy fiber optic networks using multi-mode fiber operating at 850 nm wavelength. However, this transceiver may also have applications in space environments. This paper describes the underlying transceiver component technology, which utilizes complementary metal-oxide semiconductor (CMOS) silicon-onsapphire circuitry and GaAs VCSEL and PIN devices. We also present results of SEU testing of this transceiver using heavy ions at Brookhaven National Labs.

  7. An evaluation of two flat-black silicone paints for space application

    NASA Technical Reports Server (NTRS)

    Clatterbuck, Carroll H.; Scialdone, John J.

    1990-01-01

    Tests were conducted on two flat-black silicone paints suggested for space applications to determine their optical, electrical, and mechanical properties. Three different types of substrate materials were chosen for these paint tests; the application of the paints onto the primed substrates was carried out by spray coating. The adhesion properties were verified by thermal shock and sudden immersion into liquid nitrogen. A controlled thermal vacuum tests was also carried out by varying the temperature of the paint from -100 to 225 C. The measured optical properties included normal and hemispherical emittance, and solar absorption/reflectance. A simultaneous exposure to low-energy proton/UV irradiation in vacuum, and high-energy proton/electron irradiation was carried out. Additional tests of the paints are described.

  8. Development of ultrathin silicon and gallium arsenide solar cell for space application

    SciTech Connect

    Shimodaira, M.; Matsuda, S.

    1983-10-01

    The ultrathin silicon (Si) solar cell and gallium arsenide (Ga As) solar cell for increasing radiation resistance and improving power to mass ratio and improving high energy conversion efficiency, have been developed from 1982. NASDA has almost completed fundemental evaluation of these solar cells and their prospects for space applications. The ultrathin 50..mu..m Si solar cell with maximum efficiency 13.9% (average 13.2%) at Air Mass Zero (AM0) (135.3mW/cm/sup 2/ illumination and at 28/sup 0/C) and the remaining 1sc ratio of 82% after irradiation of 1MeV electron fluences of 1 x 10/sup 15/ e/cm/sup 2/ have been demonstrated.

  9. Note: Silicon Carbide Telescope Dimensional Stability for Space-based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Sanjuah, J.; Korytov, D.; Mueller, G.; Spannagel, R.; Braxmaier, C.; Preston, A.; Livas, J.

    2012-01-01

    Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(exp -1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 C are also shown although the requirements are not met due to temperature fluctuations in the setup.

  10. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  11. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Astrophysics Data System (ADS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  12. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  13. An infrared high resolution silicon immersion grating spectrometer for airborne and space missions

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David

    2014-08-01

    Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.

  14. An Experimental Investigation of Silicone-to-Metal Bond Strength in Composite Space Docking System Seals

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing a new universal docking mechanism for future space exploration missions called the Low Impact Docking System (LIDS). A candidate LIDS main interface seal design is a composite assembly of silicone elastomer seals vacuum molded into grooves in an electroless nickel plated aluminum retainer. The strength of the silicone-tometal bond is a critical consideration for the new system, especially due to the presence of small areas of disbond created during the molding process. In the work presented herein, seal-to-retainer bonds of subscale seal specimens with different sizes of intentional disbond were destructively tensile tested. Nominal specimens without intentional disbonds were also tested. Tension was applied either uniformly on the entire seal circumference or locally in one short circumferential length. Bond failure due to uniform tension produced a wide scatter of observable failure modes and measured load-displacement behaviors. Although the preferable failure mode for the seal-to-retainer bond is cohesive failure of the elastomer material, the dominant observed failure mode under the uniform loading condition was found to be the less desirable adhesive failure of the bond in question. The uniform tension case results did not show a correlation between disbond size and bond strength. Localized tension was found to produce failure either as immediate tearing of the elastomer material outside the bond region or as complete peel-out of the seal in one piece. The obtained results represent a valuable benchmark for comparison in the future between adhesion loads under various separation conditions and composite seal bond strength.

  15. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  16. Advanced methods for light trapping in optically thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption

  17. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  18. The Hubble Space Telescope Advanced Spectral Library Project

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    2015-08-01

    Advanced Spectral Library (ASTRAL) is a Hubble Large Treasury Project, whose aim is to collect high-quality ultraviolet (1150-3100 Å) spectra of bright stars, utilizing the echelle modes of powerful Space Telescope Imaging Spectrograph; with resolution and signal-to-noise rivaling the best that can be achieved at ground-based observatories in the visible. During HST Cycle 18 (2010-2011), ASTRAL was allocated 146 orbits to record eight representative late-type ("cool") stars, including well-known cosmic denizens like Procyon and Betelgeuse. In Cycle 21 (2013-2014), ASTRAL was awarded an additional 230 orbits to extend the project to the hot side of the H-R diagram: 21 targets covering the O-A spectral types, including household favorites Vega and Sirius. The second part of the program was completed in January 2015. I describe the scientific motivations for observing hot and cool stars in the UV; the unique instrumental characteristics of STIS that enabled a broad survey like ASTRAL; progress in the program to date; and prospects for the future.

  19. International Space Station (ISS) Advanced Recycle Filter Tank Assembly (ARFTA)

    NASA Technical Reports Server (NTRS)

    Nasrullah, Mohammed K.

    2013-01-01

    The International Space Station (ISS) Recycle Filter Tank Assembly (RFTA) provides the following three primary functions for the Urine Processor Assembly (UPA): volume for concentrating/filtering pretreated urine, filtration of product distillate, and filtration of the Pressure Control and Pump Assembly (PCPA) effluent. The RFTAs, under nominal operations, are to be replaced every 30 days. This poses a significant logistical resupply problem, as well as cost in upmass and new tanks purchase. In addition, it requires significant amount of crew time. To address and resolve these challenges, NASA required Boeing to develop a design which eliminated the logistics and upmass issues and minimize recurring costs. Boeing developed the Advanced Recycle Filter Tank Assembly (ARFTA) that allowed the tanks to be emptied on-orbit into disposable tanks that eliminated the need for bringing the fully loaded tanks to earth for refurbishment and relaunch, thereby eliminating several hundred pounds of upmass and its associated costs. The ARFTA will replace the RFTA by providing the same functionality, but with reduced resupply requirements

  20. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  1. Evaluation of effect of tray space on the accuracy of condensation silicone, addition silicone and polyether impression materials: an in vitro study.

    PubMed

    Kumar, Varun; Aeran, Himanshu

    2012-09-01

    Optimal thickness of impression materials in the custom tray in order to get the most accurate impression. To investigate the effect of different tray spacer thickness on the accuracy and the dimensional stability of impressions made from monophasic condensation silicone, addition silicone and polyether impression materials. Three different types of elastomeric monophasic impression materials were used for making the impression of a master die with tray having tray spacer thickness of 2, 4 and 6 mm. Each type of impression was poured in die stone after 1 h. Each cast was analyzed by a travelling microscope and compared with the master die. The data was tabulated and subjected to statistical evaluation. The results of the study indicated that the impressions made from 2 to 4 mm spaced trays produced more accurate stone casts when compared to 6 mm spaced tray. No statistical significant differences were observed between the accuracy and dimensional stability of the three materials tested. Minimum changes were observed when the cast was poured after 1 h and the tray space was 2 mm for all the materials tested. It is therefore advisable not to exceed tray space of 2 mm.

  2. Advanced Propulsion Systems for Low-Cost Access to Space

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2004-01-01

    NASA's Space Access Goal Ensure the provision of space access and improve it by increasing safety, reliability, and affordability. (1) The launch phase continues to be the highest risk period of any space mission. (2) Launch costs remain an obstacle to the complete utilization of space for research, exploration, and commercial purposes (3) Improving the Nation's access to space through the application of new technology is one of NASA's primary roles.

  3. Advances in Space Transportation Technology Toward the NASA Goals

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    2000-01-01

    disassembly and inspections required for the Space Shuttle's subsystems, the next generation vehicle's on-board health monitoring systems will could tell the ground crews which systems need replacement before landing. In twenty-five years, vehicles will be re-flown within one with crews numbering less than one hundred. Fully automated ground processing systems must require only a handful of personnel to launch the vehicle. Due to the increased intelligence of on-board systems, only cursory walk-around inspections would be required between flights An assessment of the progress in breakthrough technologies toward these goals by the NASA Advanced Space Transportation Program is presented. These breakthrough technologies include combined rocket and air breathing propulsion, high strength lightweight structures, high temperature materials, vehicle health management, and flight operations.

  4. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants.

    PubMed

    Deshmukh, Rupesh Kailasrao; Vivancos, Julien; Ramakrishnan, Gowsica; Guérin, Valérie; Carpentier, Gabriel; Sonah, Humira; Labbé, Caroline; Isenring, Paul; Belzile, Francois J; Bélanger, Richard R

    2015-08-01

    The controversy surrounding silicon (Si) benefits and essentiality in plants is exacerbated by the differential ability of species to absorb this element. This property is seemingly enhanced in species carrying specific nodulin 26-like intrinsic proteins (NIPs), a subclass of aquaporins. In this work, our aim was to characterize plant aquaporins to define the features that confer Si permeability. Through comparative analysis of 985 aquaporins in 25 species with differing abilities to absorb Si, we were able to predict 30 Si transporters and discovered that Si absorption is exclusively confined to species that possess NIP-III aquaporins with a GSGR selectivity filter and a precise distance of 108 amino acids (AA) between the asparagine-proline-alanine (NPA) domains. The latter feature is of particular significance since it had never been reported to be essential for Si selectivity. Functionality assessed in the Xenopus oocyte expression system showed that NIPs with 108 AA spacing exhibited Si permeability, while proteins differing in that distance did not. In subsequent functional studies, a Si transporter from poplar mutated into variants with 109- or 107-AA spacing failed to import, and a tomato NIP gene mutated from 109 to 108 AA exhibited a rare gain of function. These results provide a precise molecular basis to classify higher plants into Si accumulators or excluders.

  5. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants.

    PubMed

    Deshmukh, Rupesh Kailasrao; Vivancos, Julien; Ramakrishnan, Gowsica; Guérin, Valérie; Carpentier, Gabriel; Sonah, Humira; Labbé, Caroline; Isenring, Paul; Belzile, Francois J; Bélanger, Richard R

    2015-08-01

    The controversy surrounding silicon (Si) benefits and essentiality in plants is exacerbated by the differential ability of species to absorb this element. This property is seemingly enhanced in species carrying specific nodulin 26-like intrinsic proteins (NIPs), a subclass of aquaporins. In this work, our aim was to characterize plant aquaporins to define the features that confer Si permeability. Through comparative analysis of 985 aquaporins in 25 species with differing abilities to absorb Si, we were able to predict 30 Si transporters and discovered that Si absorption is exclusively confined to species that possess NIP-III aquaporins with a GSGR selectivity filter and a precise distance of 108 amino acids (AA) between the asparagine-proline-alanine (NPA) domains. The latter feature is of particular significance since it had never been reported to be essential for Si selectivity. Functionality assessed in the Xenopus oocyte expression system showed that NIPs with 108 AA spacing exhibited Si permeability, while proteins differing in that distance did not. In subsequent functional studies, a Si transporter from poplar mutated into variants with 109- or 107-AA spacing failed to import, and a tomato NIP gene mutated from 109 to 108 AA exhibited a rare gain of function. These results provide a precise molecular basis to classify higher plants into Si accumulators or excluders. PMID:26095507

  6. Ground-Laboratory to In-Space Effective Atomic-Oxygen Fluence Determined for DC 93-500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2005-01-01

    Surfaces on the leading edge of spacecraft in low Earth orbit (e.g., surface facing the velocity direction), such as on the International Space Station, are subject to atomic oxygen attack, and certain materials are susceptible to erosion. Therefore, ground-based laboratory testing of the atomic oxygen durability of spacecraft materials is necessary for durability assessment when flight data are not available. For accurate space simulation, the facility is commonly calibrated on the basis of the mass loss of Kapton (DuPont, Wilmington, DE) as a control sample for effective fluence determination. This is because Kapton has a well-characterized atomic oxygen erosion yield (E(sub y), in cubic centimeters per atom) in the low Earth orbit (LEO) environment. Silicones, a family of commonly used spacecraft materials, do not chemically erode away with atomic oxygen attack like other organic materials that have volatile oxidation products. Instead, silicones react with atomic oxygen and form an oxidized hardened silicate surface layer. Often the loss of methyl groups causes shrinkage of the surface skin and "mud-tile" crazing degradation. But silicones often do not lose mass, and some silicones actually gain mass during atomic oxygen exposure. Therefore, the effective atomic oxygen fluence for silicones in a ground-test facility should not be determined on the basis of traditional mass-loss measurements, as it is with polymers that erode. Another method for determining effective fluence needs to be employed for silicones. A new technique has been developed at the NASA Glenn Research Center for determining the effective atomic oxygen fluence for silicones in ground-test facilities. This technique determines the equivalent amount of atomic oxygen oxidation on the basis of changes in the surface-oxide hardness. The specific approach developed was to compare changes in the surface hardness of ground-laboratory-exposed DC93-500 silicone with DC93-500 exposed to LEO atomic oxygen

  7. Pulmonary Empty Spaces: Silicone Embolism—A Decade of Increased Incidence and Its Histological Diagnosis

    PubMed Central

    Lyapichev, Kirill; Chinea, Felix Manuel; Poveda, Julio; Pereda, Jeniffer; Bejarano, Pablo A.; Garcia-Buitrago, Monica T.

    2016-01-01

    Pulmonary embolism (PE) is a critical complication related to multiple disorders and different medical or cosmetic procedures. This case report presents two patients who were admitted for respiratory symptoms in the setting of previously receiving silicone injections for cosmetic purposes and were diagnosed with silicone pulmonary embolism. The relevance of including questions about all cosmetic procedures as a part of a medical history is highlighted, in particular about silicone injections. The diagnosis is confirmed by histological means. Additionally, our review showed the change of most common sites of silicone injections and a significant increase in cosmetic procedures causing silicone embolism during the past twelve years. PMID:26904340

  8. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  9. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1992-01-01

    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  10. Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization.

  11. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    SciTech Connect

    Kuang, Y.; Lare, M. C. van; Polman, A.; Veldhuizen, L. W.; Schropp, R. E. I.; Rath, J. K.

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  12. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    SciTech Connect

    Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

  13. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1985, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). The progress made by Levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology are described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 9, the Flight Telerobotic Servicer, the Advanced Development Program, and the Data Management System. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  14. Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency.

    PubMed

    Li, Kun; Li, Guangyuan; Xiao, Feng; Lu, Fan; Wang, Zhonghua; Xu, Anshi

    2012-08-13

    A grating coupling scheme from free-space light into silicon waveguide with a remarkable property of wide flat-top angular efficiency is proposed and theoretically investigated. The coupling structure is composed of two cascaded gratings with a proper distance between their peak angular efficiencies. A quantitative semi-analytical theory based on coupled-mode models is developed for performance prediction and validated with the fully vectorial aperiodic Fourier modal method (a-FMM). With the theory, wide flat-top angular response is achieved and the conditions are pointed out. Proof-of-principle demonstrations show that the -1 dB angular width, a figure of merit to evaluate the flat-top performance, is broadened to almost 3 to 4 times, and meanwhile the -3 dB angular width, i.e., angular-full-width-half-maximum (AFWHM), is widened to nearly more than twice, compared with the reference gratings composed of the same number of periodic defects. We believe this work will find applications in biological or chemical sensing and novel optical devices.

  15. Space and military radiation effects in silicon-on-insulator devices

    SciTech Connect

    Schwank, J.R.

    1996-09-01

    Advantages in transient ionizing and single-event upset (SEU) radiation hardness of silicon-on-insulator (SOI) technology spurred much of its early development. Both of these advantages are a direct result of the reduced charge collection volume inherent to SOI technology. The fact that SOI transistor structures do not include parasitic n-p-n-p paths makes them immune to latchup. Even though considerable improvement in transient and single-event radiation hardness can be obtained by using SOI technology, there are some attributes of SOI devices and circuits that tend to limit their overall hardness. These attributes include the bipolar effect that can ultimately reduce the hardness of SOI ICs to SEU and transient ionizing radiation, and charge buildup in buried and sidewall oxides that can degrade the total-dose hardness of SOI devices. Nevertheless, high-performance SOI circuits can be fabricated that are hardened to both space and nuclear radiation environments, and radiation-hardened systems remain an active market for SOI devices. The effects of radiation on SOI MOS devices are reviewed.

  16. Impact of Radiation Hardness and Operating Temperatures of Silicon Carbide Electronics on Space Power System Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1998-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  17. Proton effects on low noise and high responsivity silicon-based photodiodes for space environment

    SciTech Connect

    Pedroza, Guillaume; Gilard, Olivier; Bourqui, Marie-Lise; Bechou, Laurent; Deshayes, Yannick; How, Lip Sun; Rosala, Francois

    2009-01-15

    A series of proton irradiations has been carried out on p-n silicon photodiodes for the purpose of assessing the suitability of these devices for the European Galileo space mission. The irradiations were performed at energies of 60, 100, and 150 MeV with proton fluences ranging from 1.7x10{sup 10} to 1x10{sup 11} protons/cm{sup 2}. Dark current, spectral responsivity, and dark current noise were measured before and after each irradiation step. We observed an increase in both dark current, dark current noise, and noise equivalent power and a drop of the spectral responsivity with increasing displacement damage dose. An analytical model has been developed to investigate proton damage effects through the modeling of the electro-optical characteristics of the photodiode. Experimental degradations were successfully explained taking into account the degradation of the minority carrier diffusion length in the N-region of the photodiode. The degradation model was then applied to assess the end-of-life performance of these devices in the framework of the Galileo mission.

  18. Advanced technology for America's future in space. Executive summary

    NASA Astrophysics Data System (ADS)

    1990-12-01

    This report summarizes the results of a review by a select external technology advisory committee of NASA's recently developed Integrated Technology Plan for the Civil Space Program. This document is the Summary Report from the review by the Space Systems and Technology Advisory Committee (SSTAC), a subcommittee of the NASA Advisory Committee with the assistance of the Space Science and Applications Advisory Committee and the Aerospace Medicine Advisory Committee, and the Aeronautics and Space Engineering Board and Space Studies Board of the National Research Council. The report asks the question 'Why should space technology be a national priority?' The report describes the benefits to the nation as Improving National Competitiveness, Stimulating Quality Science and Engineering Education, Developing Broadly Applicable New Technologies. Specific Benefits for future space endeavors include Improving the Quality for Future U.S. Flight Programs, Reducing the Cost of Access to Space, Increasing Safety and Reliability, Enabling New Space Missions, and Sustaining NASA Expertise. Other improvements and the value of the Integrated Technology Plan are emphasized. Almost uniformly, the review team found that the quality of individual research projects was very high and well integrated with other national efforts.

  19. Advancing automation and robotics technology for the space station and the US economy

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  20. Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2004-01-01

    The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the

  1. Large area sheet task. Advanced dendritic web growth development. [silicon films

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Frantti, E.; Schruben, J.

    1981-01-01

    The development of a silicon dendritic web growth machine is discussed. Several refinements to the sensing and control equipment for melt replenishment during web growth are described and several areas for cost reduction in the components of the prototype automated web growth furnace are identified. A circuit designed to eliminate the sensitivity of the detector signal to the intensity of the reflected laser beam used to measure melt level is also described. A variable speed motor for the silicon feeder is discussed which allows pellet feeding to be accomplished at a rate programmed to match exactly the silicon removed by web growth.

  2. Reliability and qualification of advanced microelectronics for space applications

    NASA Technical Reports Server (NTRS)

    Kayali, S.

    2003-01-01

    This paper provides a discussion of the subject and an approach to establish a reliability and qualification methodology to facilitate the utilization of state-of-the-art advanced microelectronic devices and structures in high reliability applications.

  3. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  4. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report

    SciTech Connect

    Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H.; Kim, K.

    1993-05-01

    This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

  5. Distributed networks enable advances in US space weather operations

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Bouwer, S. Dave

    2011-06-01

    Space weather, the shorter-term variable impact of the Sun’s photons, solar wind particles, and interplanetary magnetic field upon the Earth’s environment, adversely affects our technological systems. These technological systems, including their space component, are increasingly being seen as a way to help solve 21st Century problems such as climate change, energy access, fresh water availability, and transportation coordination. Thus, the effects of space weather on space systems and assets must be mitigated and operational space weather using automated distributed networks has emerged as a common operations methodology. The evolution of space weather operations is described and the description of distributed network architectures is provided, including their use of tiers, data objects, redundancy, and time domain definitions. There are several existing distributed networks now providing space weather information and the lessons learned in developing those networks are discussed along with the details of examples for the Solar Irradiance Platform (SIP), Communication Alert and Prediction System (CAPS), GEO Alert and Prediction System (GAPS), LEO Alert and Prediction System (LAPS), Radiation Alert and Prediction System (RAPS), and Magnetosphere Alert and Prediction System (MAPS).

  6. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  7. Advances in autonomous systems for space exploration missions

    NASA Technical Reports Server (NTRS)

    Smith, B. D.; Gross, A. R.; Clancy, D. J.; Cannon, H. N.; Barrett, A.; Mjolssness, E.; Muscettola, N.; Chien, S.; Johnson, A.

    2001-01-01

    This paper focuses on new and innovative software for remote, autonomous, space systems flight operation, including distributed autonomous systems, flight test results, and implications and directions for future systems.

  8. Vibration suppression of advanced space cryocoolers - an overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    2003-01-01

    This paper provides an overview of the vibration characteristics of typical linear-drive space cryocoolers, outlines the history of development and typical performance of the various active and passive vibration suppression systems being used.

  9. Advanced planning activity. [for interplanetary flight and space exploration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.

  10. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.

  11. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  12. Advances in space biology and medicine. Vol. 1

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L. (Editor)

    1991-01-01

    Topics discussed include the effects of prolonged spaceflights on the human body; skeletal responses to spaceflight; gravity effects on reproduction, development, and aging; neurovestibular physiology in fish; and gravity perception and circumnutation in plants. Attention is also given to the development of higher plants under altered gravitational conditions; the techniques, findings, and theory concerning gravity effects on single cells; protein crystal growth in space; and facilities for animal research in space.

  13. (Video 8 of 8) Omics: Advancing Personalized Medicine from Space to Earth

    NASA Video Gallery

    NASA’s Human Research Program (HRP) is releasing the video “Omics: Advancing Personalized Medicine from Space to Earth”, to highlight its Twins Study, coinciding with National Twins Days. This is t...

  14. High temperature superconductivity technology for advanced space power systems

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Myers, Ira T.; Connolly, Denis J.

    1990-01-01

    In 1987, the Lewis Research center of the NASA and the Argonne National Laboratory of the Department of Energy joined in a cooperative program to identify and assess high payoff space and aeronautical applications of high temperature superconductivity (HTSC). The initial emphasis of this effort was limited, and those space power related applications which were considered included microwave power transmission and magnetic energy storage. The results of these initial studies were encouraging and indicated the need of further studies. A continuing collaborative program with Argonne National Laboratory has been formulated and the Lewis Research Center is presently structuring a program to further evaluate HTSC, identify applications and define the requisite technology development programs for space power systems. This paper discusses some preliminary results of the previous evaluations in the area of space power applications of HTSC which were carried out under the joint NASA-DOE program, the future NASA-Lewis proposed program, its thrusts, and its intended outputs and give general insights on the anticipated impact of HTSC for space power applications of the future.

  15. Materials characterization and fracture mechanics of a space grade dielectric silicone insulation

    NASA Technical Reports Server (NTRS)

    Abdel-Latif, A. I.; Tweedie, A. T.

    1982-01-01

    The present investigation is concerned with the DC 93-500 high voltage silicone insulation material employed to pot the gun and the collector end of a traveling wave tube (TWT) used on the Landsat D Satellite. The fracture mechanics behavior of the silicone resin was evaluated by measuring the slow crack velocity as a function of the opening mode of the stress intensity factor at +25 and -10 C, taking into account various uniaxial discrete strain values. It was found that the silicone resins slow crack growth is faster than that for a high voltage insulation polyurethane material at the same stress intensity factor value and room temperature.

  16. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  17. Advanced transportation concept for round-trip space travel

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1988-01-01

    A departure from the conventional concept of round-trip space travel is introduced. It is shown that a substantial reduction in the initial load required of the Shuttle or other launch vehicle can be achieved by staging the ascent orbit and leaving fuel for the return trip at each stage of the orbit. Examples of round trips from a low-inclination LEO to a high-inclination LEO and from an LEO to a GEO are used to show the merits of the new concept. Potential problem areas and research needed for the development of an efficient space transportation network are discussed.

  18. Using advanced microelectronic test chips to qualify ASIC's for space

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Lin, Y-S.

    1990-01-01

    Qualification procedures for complex integrated circuits are being developed under a U.S. government program known as Qualified Manufacturing Lines (QML). This effort is focused on circuits designed by IC manufacturers and has not addressed application specific IC's (ASIC's) designed at system houses. The qualification procedures described here are intended to be responsive to the needs of system houses who design their own ASIC's and have them fabricated at Silicon foundries. A particular focus of this presentation will be the use of the TID (total Ionizing Dose) Chip to evaluate CMOS foundry processes and to provide parameters for circuit simulators. This chip is under development as a standard chip for qualifying the total dose aspects of ASIC's. The benefits of standardization are that the results will be well understood and easy to interpret. Data is presented and compared for 1.6 micron and 3.0 micron CMOS. The data shows that 1.6 micron CMOS is significantly harder than 3.0 micron CMOS. Two failure modes are explored: (1) the radiation-induced degradation of timing delays; and (2) radiation-induced leakage currents.

  19. Advanced Thin Film Solar Arrays for Space: The Terrestrial Legacy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Hepp, Aloysius; Raffaelle, Ryne; Flood, Dennis

    2001-01-01

    As in the case for single crystal solar cells, the first serious thin film solar cells were developed for space applications with the promise of better power to weight ratios and lower cost. Future science, military, and commercial space missions are incredibly diverse. Military and commercial missions encompass both hundreds of kilowatt arrays to tens of watt arrays in various earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near sun missions and planetary exploration including orbiters, landers, and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. High power missions are particularly attractive for thin film utilization. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the Moon or Mars, space based lasers or radar, or large Earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or potentially beaming power to the Earth itself. This paper will discuss the current state of the art of thin film solar cells and the synergy with terrestrial thin film photovoltaic evolution. It will also address some of the technology development issues required to make thin film photovoltaics a viable choice for future space power systems.

  20. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  1. Technology assessment of advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

  2. Overview of the NASA Advanced In-Space Propulsion Project

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2011-01-01

    In FY11, NASA established the Enabling Technologies Development and Demonstration (ETDD) Program, a follow on to the earlier Exploration Technology Development Program (ETDP) within the NASA Exploration Systems Mission Directorate. Objective: Develop, mature and test enabling technologies for human space exploration.

  3. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1991-01-01

    The objective of the Lockheed experiment is to evaluate the effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites. Two diverse categories are reported: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, CTE, and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicon coatings.

  4. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1992-01-01

    The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.

  5. Space-Data Routers: Advanced data routing protocols for enhancing data exploitation for space weather applications

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Daglis, Ioannis A.; Balasis, George; Papadimitriou, Constantinos; Tsaoussidis, Vassilios; Diamantopoulos, Sotirios

    2014-05-01

    Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The availability of multi-spacecraft distributed observation methods and adaptive mission architectures require computationally intensive analysis methods. Moreover, accurate space weather forecasting and future space exploration far from Earth will be in need of real-time data distribution and assimilation technologies. The FP7-Space collaborative research project "Space-Data Routers" (SDR) relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications. SDR unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable addressing outstanding science questions related to space weather, through the provision of simultaneous real-time data sampling at multiple points in space. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  6. Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.

  7. Space station as a vital focus for advancing the technologies of automation and robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio; Herman, Daniel H.

    1988-01-01

    A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.

  8. Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station - Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Aluminum – 7wt% silicon alloys were directionally solidified in the microgravity environment aboard the International Space Station as part of the “MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions” (MICAST) European led program. Cross-sections of the sample during periods of steady-state growth were metallographically prepared from which the primary dendrite arm spacing (lambda 1) was measured. These spacings were found to be in reasonable agreement with the Hunt-Lu model which assumes a diffusion-controlled, convectionless, environment during controlled solidification. Deviation from the model was found and is attributed to gravity-independent thermocapillary convection where, over short distances, the liquid appears to have separated from the crucible wall.

  9. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  10. Analysis of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Garn, P. A.

    1988-01-01

    An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers.

  11. Report on Advanced Life Support Activities at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2004-01-01

    Plant studies at Kennedy Space Center last year focused on selecting cultivars of lettuce, tomato, and pepper for further testing as crops for near-term space flight applications. Other testing continued with lettuce, onion, and radish plants grown at different combinations of light (PPF), temperature, and CO2 concentration. In addition, comparisons of mixed versus mono culture approaches for vegetable production were studied. Water processing testing focused on the development and testing of a rotating membrane bioreactor to increase oxygen diffusion levels for reducing total organic carbon levels and promoting nitrification. Other testing continued to study composting testing for food wastes (NRA grant) and the use of supplemental green light with red/blue LED lighting systems for plant production (NRC fellowship).

  12. Advanced MCT technologies at LETI for space applications

    NASA Astrophysics Data System (ADS)

    Durand, A.; Destefanis, G.; Gravrand, O.; Rothmann, J.

    This document is a recap of an oral presentation made at Nice during the INSU Astrophysics Detector Workshop 2008. It aims at giving an overview of the achievements and ongoing developments presently carried out at CEA-LETI in the field of Infrared focal plane array. Although most of the research actually performed at LETI is not driven by space oriented application, the excellence and the cutting edge of the outcome is or can be applied to space-dedicated components. This paper focus on features and developments from which astrophysics observation would benefit in the near future on the European market. This encompassed “traditionnal” developments such as format enlargement, low dark current technology such as p/n structure but it also shade light on promising and thrilling development such as avalanche photodiode array. It eventually gives some hints of none MCT technologies processed at LETI.

  13. Advanced Cosmic Ray Composition Experiment for Space Station (ACCESS)

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Wefel, John P.

    1999-01-01

    In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration with the U.S. Department of Energy (DOE). The AMS program was chartered to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments which were evolving from the Office of Space Science. The first such experiment to come forward was ACCESS in 1996. It was proposed as a new mission concept in space physics to place a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's sub-orbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer-review. This process is still on-going and the Accommodation Study presented here will discuss the baseline definition of ACCESS as we understand it today. Further detail on the history, scope, and background of the study is provided in Appendix A.

  14. Advanced development for space robotics with emphasis on fault tolerance

    NASA Technical Reports Server (NTRS)

    Tesar, D.; Chladek, J.; Hooper, R.; Sreevijayan, D.; Kapoor, C.; Geisinger, J.; Meaney, M.; Browning, G.; Rackers, K.

    1995-01-01

    This paper describes the ongoing work in fault tolerance at the University of Texas at Austin. The paper describes the technical goals the group is striving to achieve and includes a brief description of the individual projects focusing on fault tolerance. The ultimate goal is to develop and test technology applicable to all future missions of NASA (lunar base, Mars exploration, planetary surveillance, space station, etc.).

  15. Advanced Deuterium Fusion Rocket Propulsion for Manned Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion can there be refuelled. To obtain a high thrust with high specific impulse favours the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of a propulsion system in space would be very high, but it can also be developed on Earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, making obsolete the ignition of deuterium-tritium with a laser, where 80% of the energy goes into neutrons, this would also mean a breakthrough in fusion research, and therefore would justify the large development costs.

  16. Space dusty plasmas: recent developments, advances, and unsolved problems

    NASA Astrophysics Data System (ADS)

    Popel, Sergey; Zelenyi, Lev

    2016-07-01

    The area of space dusty plasma research is a vibrant subfield of plasma physics that belongs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, and atmospheric science. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust at the Moon, etc. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. The present review covers the main aspects of the area of space dusty plasma research. Emphasis is given to the description of dusty plasmas at the Moon which is important from the viewpoint of the future lunar missions and lunar observatory. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, "Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a).

  17. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  18. Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.

    PubMed

    Rigante, Sara; Scarbolo, Paolo; Wipf, Mathias; Stoop, Ralph L; Bedner, Kristine; Buitrago, Elizabeth; Bazigos, Antonios; Bouvet, Didier; Calame, Michel; Schönenberger, Christian; Ionescu, Adrian M

    2015-05-26

    Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates. We also provide an analytical insight of the concept of sensitivity for the electronic integration of sensors. N-channel fully depleted FinFETs with critical dimensions on the order of 20 nm and HfO2 as a high-k gate insulator have been developed and characterized, showing excellent electrical properties, subthreshold swing, SS ∼ 70 mV/dec, and on-to-off current ratio, Ion/Ioff ∼ 10(6), at room temperature. The same FinFET architecture is validated as a highly sensitive, stable, and reproducible pH sensor. An intrinsic sensitivity close to the Nernst limit, S = 57 mV/pH, is achieved. The pH response in terms of output current reaches Sout = 60%. Long-term measurements have been performed over 4.5 days with a resulting drift in time δVth/δt = 0.10 mV/h. Finally, we show the capability to reproduce experimental data with an extended three-dimensional commercial finite element analysis simulator, in both dry and wet environments, which is useful for future advanced sensor design and optimization.

  19. Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.

    PubMed

    Rigante, Sara; Scarbolo, Paolo; Wipf, Mathias; Stoop, Ralph L; Bedner, Kristine; Buitrago, Elizabeth; Bazigos, Antonios; Bouvet, Didier; Calame, Michel; Schönenberger, Christian; Ionescu, Adrian M

    2015-05-26

    Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates. We also provide an analytical insight of the concept of sensitivity for the electronic integration of sensors. N-channel fully depleted FinFETs with critical dimensions on the order of 20 nm and HfO2 as a high-k gate insulator have been developed and characterized, showing excellent electrical properties, subthreshold swing, SS ∼ 70 mV/dec, and on-to-off current ratio, Ion/Ioff ∼ 10(6), at room temperature. The same FinFET architecture is validated as a highly sensitive, stable, and reproducible pH sensor. An intrinsic sensitivity close to the Nernst limit, S = 57 mV/pH, is achieved. The pH response in terms of output current reaches Sout = 60%. Long-term measurements have been performed over 4.5 days with a resulting drift in time δVth/δt = 0.10 mV/h. Finally, we show the capability to reproduce experimental data with an extended three-dimensional commercial finite element analysis simulator, in both dry and wet environments, which is useful for future advanced sensor design and optimization. PMID:25817336

  20. Advanced technology for Space Shuttle Auxiliary Propellant Valves.

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1972-01-01

    Propellant shutoff valves required for the operation of the pulse modulated gaseous hydrogen/gaseous oxygen rocket engines for the Space Shuttle Auxiliary Propulsion System are specified to operate for one million cycles over a ten-year period with zero maintenance, very fast response, very low leakage, and over a wide temperature range. Based on an analytical leakage and wear model, sealing configurations were conceived, sized, and developed. Two prototype valves featuring different components were designed, built, and evaluated for 100,000 cycles. Design concepts and test results are presented.

  1. Inertial energy storage for advanced space station applications

    NASA Technical Reports Server (NTRS)

    Van Tassel, K. E.; Simon, W. E.

    1985-01-01

    Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.

  2. Advanced microelectronics research for space applications, phase 2

    NASA Technical Reports Server (NTRS)

    Gaertner, W. W.

    1971-01-01

    Negative-resistance circuits with possible space flight applications are discussed. The basic design approach is to use impedance rotation, i.e., the conversion from capacitance to negative resistance, and from resistance to inductance by the phase shift of the transistor current gain at high frequencies. The subjects discussed in detail are the following: hybrid fabrication of VHF and UHF negative-resistance stages with lumped passive elements; formulation of measurement techniques to characterize transistors and to extend the frequency of negative-resistance transistor amplifiers to higher microwave frequencies; and derivation of transistor characteristics required to increase the frequency range of negative-resistance transistor stages.

  3. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Objective of this work is to define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. (1) Large-Aperture, Low Areal Density, High Stiffness Mirrors: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates. (2) Support System:Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error:A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging. (4) Segment Edges:Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture. (5) Segment-to-Segment Gap Phasing:Segment phasing is critical for producing a high-quality temporally stable PSF. (6) Integrated Model Validation:On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models. We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.

  4. HTS Magnets for Advanced Magnetoplasma Space Propulsion Applications

    SciTech Connect

    Carte, M.D.; Chang-Diaz, F.R. Squire, J.P.; Schwenterly, S.W.

    1999-07-12

    Plasma rockets are being considered for both Earth-orbit and interplanetary missions because their extremely high exhaust velocity and ability to modulate thrust allow very efficient use of propellant mass. In such rockets, a hydrogen or helium plasma is RF-heated and confined by axial magnetic fields produced by coils around the plasma chamber. HTS coils cooled by the propellant are desirable to increase the energy efficiency of the system. We describe a set of prototype high-temperature superconducting (HTS) coils that are being considered for the VASIMR ( Variable Specific Impulse Magnetoplasma Rocket) thruster proposed for testing on the Radiation Technology Demonstration (RTD) satellite. Since this satellite will be launched by the Space Shuttle, for safety reasons liquid helium will be used as propellant and coolant. The coils must be designed to operate in the space environment at field levels of 1 T. This generates a unique set of requirements. Details of the overall winding geometry and current density, as well as the challenging thermal control aspects associated with a compact, minimum weight design will be discussed.

  5. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    PubMed

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  6. Response of Silicon-Based Linear Energy Transfer Spectrometers: Implication for Radiation Risk Assessment in Space Flights

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; O'Neill, P. M.

    2001-01-01

    There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.

  7. Advanced Space Nuclear Reactors from Fiction to Reality

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  8. Solid rocket technology advancements for space tug and IUS applications

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  9. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  10. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  11. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  12. Advanced robotics for in-space vehicle processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-extravehicular activity tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for robot services. Similarly, a set of robot primitives is presented that can be used to model robot actions for alternative robot reference configurations. The robot primitives are tied to technologies and used for composing robot operations for an automated refueling scenario. Robotics technology issues and design accommodation guidelines (hooks and scars) for Space Station Freedom are described.

  13. Some advances in U. S. space defense systems

    SciTech Connect

    Rongrui, W.

    1991-12-10

    This article, by way of a simple summary, introduces certain aspects of the U.S. Star Wars program which have undergone developments recently as well as experimentation planned in the future. In 1984, the U.S. Defense Department set up a Strategic Defense authority in order to carry out the Star Wars Program and put vigorous effort into the development of directed energy weapon, kinetic energy weapons, as well as research on a set of technologies such as early warning, aiming, tracking, and target recognition. This article, on the basis of openly published U.S. sources, takes a comprehensive look at the status of several areas of development in U.S. space defense systems.

  14. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concept are summarized.

  15. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  16. Proposed advanced satellite applications utilizing space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  17. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concepts are summarized.

  18. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  19. Advances in polycrystalline thin-film photovoltaics for space applications

    SciTech Connect

    Lanning, B.R.; Armstrong, J.H.; Misra, M.S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 eV and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not `reactor-specific` and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a `substrate configuration` by physical vapor deposition techniques and CdTe cells/modules are fabricated in a `superstrate configuration` by wet chemical methods.

  20. Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Aeronautics Design Program and Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.

  1. Advanced Technologies Demonstrated by the Miniature Integrated Camera and Spectrometer (MICAS) Aboard Deep Space 1

    NASA Astrophysics Data System (ADS)

    Rodgers, David H.; Beauchamp, Patricia M.; Soderblom, Laurence A.; Brown, Robert H.; Chen, Gun-Shing; Lee, Meemong; Sandel, Bill R.; Thomas, David A.; Benoit, Robert T.; Yelle, Roger V.

    2007-04-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80 185 nm), two high-resolution visible imagers (10 20 μrad/pixel, 400 900 nm), and a short-wavelength infrared imaging spectrometer (1250 2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85 140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to ˜50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly

  2. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

    USGS Publications Warehouse

    Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.-S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V.

    2007-01-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The

  3. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  4. Space station as a vital focus for advancing the technologies of automation and robotics

    NASA Astrophysics Data System (ADS)

    Varsi, Giulio; Herman, Daniel H.

    A major guideline for the design of the United States's Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial laboratories in space and the efficient management of the Space Station itself: the largest space asset. For the Space Station to address successfully these and other functions, the operating costs must be minimized. Furthermore, crew time in space will be an exceedingly scarce and valuable commodity. The human operator should perform only those tasks that are unique in demanding the use of the human creative capability in coping with unanticipated events. The technologies of automation and robotics (A & R) have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing systems will enable us to service assets either at the Space Station or in situ with a high degree of human efficiency. This paper presents the results of studies conducted by NASA and its contractors, at the urging of the Congress, leading toward the formulation of an automation and robotics plan for Space Station development.

  5. Advanced APCVD-processes for high-temperature grown crystalline silicon thin film solar cells.

    PubMed

    Driessen, Marion; Merkel, Benjamin; Reber, Stefan

    2011-09-01

    Crystalline silicon thin film (cSiTF) solar cells based on the epitaxial wafer-equivalent (EpiWE) concept combine advantages of wafer-based and thin film silicon solar cells. In this paper two processes beyond the standard process sequence for cSiTF cell fabrication are described. The first provides an alternative to wet chemical saw damage removal by chemical vapor etching (CVE) with hydrogen chloride in-situ prior to epitaxial deposition. This application decreases the number of process and handling steps. Solar cells fabricated with different etching processes achieved efficiencies up to 14.7%. 1300 degrees C etching temperature led to better cell results than 1200 degrees C. The second investigated process aims for an improvement of cell efficiency by implementation of a reflecting interlayer between substrate and active solar cell. Some characteristics of epitaxial lateral overgrowth (ELO) of a patterned silicon dioxide film in a lab-type reactor constructed at Fraunhofer ISE are described and first solar cell results are presented.

  6. Development of Advanced Hydrocarbon Fuels at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bai, S. D.; Dumbacher, P.; Cole, J. W.

    2002-01-01

    This was a small-scale, hot-fire test series to make initial measurements of performance differences of five new liquid fuels relative to rocket propellant-1 (RP-1). The program was part of a high-energy-density materials development at Marshall Space Flight Center (MSFC), and the fuels tested were quadricyclane, 1-7 octodiyne, AFRL-1, biclopropylidene, and competitive impulse noncarcinogenic hypergol (CINCH) (di-methyl-aminoethyl-azide). All tests were conducted at MSFC. The first four fuels were provided by the U.S. Air Force Research Laboratory (AFRL), Edwards Air Force Base, CA. The U.S. Army, Redstone Arsenal, Huntsville, AL, provided the CINCH. The data recorded in all hot-fire tests were used to calculate specific impulse and characteristic exhaust velocity for each fuel, then compared to RP-1 at the same conditions. This was not an exhaustive study, comparing each fuel to RP-1 at an array of mixture ratios, nor did it include important fuel parameters, such as fuel handling or long-term storage. The test hardware was designed for liquid oxygen (lox)/RP-1, then modified for gaseous oxygen/RP-1 to avoid two-phase lox at very small flow rates. All fuels were tested using the same thruster/injector combination designed for RP-1. The results of this test will be used to determine which fuels will be tested in future test programs.

  7. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  8. Advancing Robotic Control for Space Exploration Using Robonaut 2

    NASA Technical Reports Server (NTRS)

    Badger, Julia; Diftler, Myron; Hart, Stephen; Joyce, Charles

    2012-01-01

    Robonaut 2, or R2, arrived on the International Space Station (ISS) in February 2011 and is currently being tested in preparation for its role initially as an Intra-Vehicular Activity (IVA) tool and eventually as a robot that performs Extra-Vehicular Activities (EVA). Robonaut 2, is a state of the art dexterous anthropomorphic robotic torso designed for assisting astronauts. R2 features increased force sensing, greater range of motion, higher bandwidth, and improved dexterity over its predecessor. Robonaut 2 is unique in its ability to safely allow humans in its workspace and to perform significant tasks in a workspace designed for humans. The current operational paradigm involves either the crew or the ground control team running semi-autonomous scripts on the robot as both the astronaut and the ground team monitor R2 and the data it produces. While this is appropriate for the check-out phase of operations, the future plans for R2 will stress the current operational framework. The approach described here will outline a suite of operational modes that will be developed for Robonaut 2. These operational modes include teleoperation, shared control, directed autonomy, and supervised autonomy, and they cover a spectrum of human involvement in controlling R2.

  9. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis was conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  10. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  11. Advanced Ceramic Technology for Space Applications at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Alim, Mohammad A.

    2003-01-01

    The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.

  12. Recent advances in solar dynamic power for space

    SciTech Connect

    Binz, E.F.; Grosskopf, W.J.; Hallinan, G.J.

    1986-01-01

    The development of a hybrid power system for the Space Station is discussed. The hybrid system consists of photovoltaic modules, solar dynamic modules, and power management and distribution subsystems; the design and components of the modules and subsystems are described. The capabilities of closed Brayton cycle (CBC) and organic Rankine cycle (ORC) solar receivers are examined. The behavior of phase-change materials (PCMs) for ORC and CBC is characterized. It is observed that LiOH with a melting point of 471 C is appropriate for an ORC that operates in the 399 C range, and the LiOH which has a heat fusion of 877 kJ/g can be contained with Ni and Ni-Cr alloys. A mixture of CaF2-LiF was selected for CBC which operates at 732 C; the salt mixture has a melting point of 768 C, a heat fusion of 791 kJ/kg, and can be contained with Ni-Cr and Co-base alloys. Large-scale system tests with PCMs in cylindrical canisters were conducted using a parabolic concentrator to evaluate thermodynamic performance in a LEO environment. The data reveal that the PCM can convert the sunlight of LEO to the constant energy stream necessary for dynamic engine operation.

  13. Advances in Materials Research: An Internship at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Roberson, Luke B.

    2011-01-01

    My time at Kennedy Space Center. was spent immersing myself in research performed in the Materials Science Division of the Engineering Directorate. My Chemical Engineering background provided me the ability to assist in many different projects ranging from tensile testing of composite materials to making tape via an extrusion process. However, I spent the majority of my time on the following three projects: (1) testing three different materials to determine antimicrobial properties; (2) fabricating and analyzing hydrogen sensing tapes that were placed at the launch pad for STS-133 launch; and (3) researching molten regolith electrolysis at KSC to prepare me for my summer internship at MSFC on a closely related topic. This paper aims to explain, in detail, what I have learned about these three main projects. It will explain why this research is happening and what we are currently doing to resolve the issues. This paper will also explain how the hard work and experiences that I have gained as an intern have provided me with the next big step towards my career at NASA.

  14. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  15. Advanced Guidance and Control for Hypersonics and Space Access

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hall, Charles E.; Mulqueen, John A.; Jones, Robert E.

    2003-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety, reliability, and cost requirements for the next generation of reusable launch vehicle (RLV), whether it is fully rocket-powered or has air- breathing components. This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies could have saved a RLV with the same failure mode, the additional vehicle problems where t h i s technology applies, and the costs and time associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is the point where we can look to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AWC, current technology efforts, and the additional work needed for making this goal a reality. There are a number of approaches to AG&C that have the potential for achieving the desired goals. For some of these methods, we compare the results of tests designed to demonstrate the achievement of the goals. Tests up to now have been focused on rocket-powered vehicles; application to hypersonic air-breathers is planned. We list the test cases used to demonstrate that the desired results are achieved, briefly describe an automated test scoring method, and display results of the tests. Some of the technology components have reached the maturity level where they are ready for application to a new vehicle concept, while others are not far along in development.

  16. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  17. Advanced Precipitation Radar Antenna to Measure Rainfall From Space

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen

    2008-01-01

    To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds

  18. Experiments Advance Gardening at Home and in Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Aeroponics, the process of growing plants suspended in air without soil or media, provides clean, efficient, and rapid food production. Crops can be planted and harvested year-round without interruption, and without contamination from soil, pesticides, and residue. Aeroponic systems also reduce water usage by 98 percent, fertilizer usage by 60 percent, and eliminate pesticide usage altogether. Plants grown in aeroponic systems have been shown to absorb more minerals and vitamins, making the plants healthier and potentially more nutritious. The suspended system also has other advantages. Since the growing environment can be kept clean and sterile, the chances of spreading plant diseases and infections commonly found in soil and other growing media are greatly reduced. Also, seedlings do not stretch or wilt while their roots are forming, and once the roots are developed, the plants can be easily moved into any type of growing media without the risk of transplant shock. Lastly, plants tend to grow faster in a regulated aeroponic environment, and the subsequent ease of transplant to a natural medium means a higher annual crop yield. For example, tomatoes are traditionally started in pots and transplanted to the ground at least 28 days later; growers using an aeroponic system can transplant them just 10 days after starting the plants in the growing chamber. This accelerated cycle produces six tomato crops per year, rather than the traditional one to two crop cycles. These benefits, along with the great reduction in weight by eliminating soil and much of the water required for plant growth, illustrate why this technique has found such enthusiastic support from NASA. Successful long-term missions into deep space will require crews to grow some of their own food during flight. Aeroponic crops are also a potential source of fresh oxygen and clean drinking water, and every ounce of food produced and water conserved aboard a spacecraft reduces payload weight, decreasing

  19. Advancing cell biology through proteomics in space and time (PROSPECTS).

    PubMed

    Lamond, Angus I; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V; Serrano, Luis; Hartl, F Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-03-01

    The term "proteomics" encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology and molecular medicine.

  20. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  1. Advancing automation and robotics technology for the space station and for the US economy

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  2. Advancing automation and robotics technology for the space station and for the US economy

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  3. Characterization of Amorphous Silicon Advanced Materials and PV Devices: Final Technical Report, 15 December 2001--31 January 2005

    SciTech Connect

    Taylor, P. C.

    2005-11-01

    The major objectives of this subcontract have been: (1) understand the microscopic properties of the defects that contribute to the Staebler-Wronski effect to eliminate this effect, (2) perform correlated studies on films and devices made by novel techniques, especially those with promise to improve stability or deposition rates, (3) understand the structural, electronic, and optical properties of films of hydrogenated amorphous silicon (a-Si:H) made on the boundary between the amorphous and microcrystalline phases, (4) search for more stable intrinsic layers of a-Si:H, (5) characterize the important defects, impurities, and metastabilities in the bulk and at surfaces and interfaces in a-Si:H films and devices and in important alloy systems, and (6) make state-of-the-art plasma-enhanced chemical vapor deposition (PECVD) devices out of new, advanced materials, when appropriate. All of these goals are highly relevant to improving photovoltaic devices based on a-Si:H and related alloys. With regard to the first objective, we have identified a paired hydrogen site that may be the defect that stabilizes the silicon dangling bonds formed in the Staebler-Wronski effect.

  4. Thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Bacon, C.; Direda, V.; Ford, D. H.; Ingram, A. E.; Cotter, J.; Hughes-Lampros, T.; Rand, J. A.; Ruffins, T. R.; Barnett, A. M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (less than 50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  5. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  6. Advanced technology and the Space Shuttle /10th Von Karman Lecture/.

    NASA Technical Reports Server (NTRS)

    Love, E. S.

    1973-01-01

    Selected topics in technology advancement related to the space shuttle are examined. Contributions from long-range research prior to the advent of the 'shuttle-focused technology program' of the past 3 years are considered together with highlights from the latter. Attention is confined to three of the shuttle's seven principal technology areas: aerothermodynamics/configurations, dynamics/aeroelasticity, and structures/materials. Some observations are presented on the shuttle's origin, the need to sustain advanced research, and future systems that could emerge from a combination of shuttle and non-shuttle technology advancements.

  7. JPL space station telerobotic engineering prototype development: Advanced telerobotics system technology

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1991-01-01

    The objective of the Advanced Telerobotics System Technology Task is to develop/prototype advanced telerobotics supervisory and shared control to enhance Intra-Vehicular Activity (IVA) teleoperation in the Space Station. The technology provides enhanced telerobotics capabilities while operating within the expected constraints of computation limitations, time delay, and bus bandwidth. A local site operator interface has also been developed for specifying teleoperation and shared control modes as well as supervised autonomous macros for execution at the remote site. The primary objective of the task is to transfer the advanced technology to appropriate flight centers to enhance the baseline Station capabilities.

  8. Spin injection and diffusion in silicon based devices from a space charge layer

    SciTech Connect

    Ghosh, Joydeep Sverdlov, Viktor; Windbacher, Thomas; Selberherr, Siegfried

    2014-05-07

    We have performed simulations on electron spin transport in an n-doped silicon bar with spin-dependent conductivity with or without the presence of an external electric field. We further consider three cases like charge neutrality, charge accumulation, and charge depletion at one boundary and found substantial differences in the spin transport behavior. The criteria determining the maximum spin current are investigated. The physical reason behind the transport behavior is explained.

  9. Silicon spintronics.

    PubMed

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  10. Space-based radar representation in the advanced warfighting simulation (AWARS)

    NASA Astrophysics Data System (ADS)

    Phend, Andrew E.; Buckley, Kathryn; Elliott, Steven R.; Stanley, Page B.; Shea, Peter M.; Rutland, Jimmie A.

    2004-09-01

    Space and orbiting systems impact multiple battlefield operating systems (BOS). Space support to current operations is a perfect example of how the United States fights. Satellite-aided munitions, communications, navigation and weather systems combine to achieve military objectives in a relatively short amount of time. Through representation of space capabilities within models and simulations, the military will have the ability to train and educate officers and soldiers to fight from the high ground of space or to conduct analysis and determine the requirements or utility of transformed forces empowered with advanced space-based capabilities. The Army Vice Chief of Staff acknowledged deficiencies in space modeling and simulation during the September 2001 Space Force Management Analsyis Review (FORMAL) and directed that a multi-disciplinary team be established to recommend a service-wide roadmap to address shortcomings. A Focus Area Collaborative Team (FACT), led by the U.S. Army Space & Missile Defense Command with participation across the Army, confirmed the weaknesses in scope, consistency, correctness, completeness, availability, and usability of space model and simulation (M&S) for Army applications. The FACT addressed the need to develop a roadmap to remedy Space M&S deficiencies using a highly parallelized process and schedule designed to support a recommendation during the Sep 02 meeting of the Army Model and Simulation Executive Council (AMSEC).

  11. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  12. a Roadmap to Advance Understanding of the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Schrijver, K.; Kauristie, K.; Aylward, A.; De Nardin, C. M.; Gibson, S. E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M. A.; Heynderickx, D.; Jakowski, N.; Kalegaev, V. V.; Lapenta, G.; Linker, J.; Liu, S.; Mandrini, C. H.; Mann, I. R.; Nagatsuma, T.; Nandy, D.; Obara, T.; O'Brien, T. P., III; Onsager, T. G.; Opgenoorth, H. J.; Terkildsen, M. B.; Valladares, C. E.; Vilmer, N.

    2015-12-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. A COSPAR/ILWS team recently completed a roadmap that identifies the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications and costs for society. This presentation provides a summary of the highest-priority recommendations from that roadmap.

  13. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  14. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  15. Opportunities for space exploitation to year 2000 - A challenge for advanced technology

    NASA Technical Reports Server (NTRS)

    Calio, A. J.

    1979-01-01

    Application of satellite remote sensing to wide range of areas requires the development or improvement of specialized spaceborne and ground-based equipment and systems. This paper describes some of the important areas for remote sensing and the opportunities that must be met in order to advance technology and capabilities for the exploitation of space to the year 2000.

  16. Advancing automation and robotics technology for the space station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Creedon, Jeremiah F.

    1989-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.

  17. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.

  18. Ceramic Fabric Coated With Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  19. The effects of contamination from silicones and a modified-tefzel® insulation on critical surfaces of the international space station

    NASA Astrophysics Data System (ADS)

    Babel, Henry W.; Hasegawa, Mark; Jones, Cherie; Fussell, John

    1997-01-01

    The purpose of this study was to assess the contamination resulting from extensive usage of silicone-insulated and modified Tefzel-insulated electrical cables and a silicone-based thermal control coating, S-13GP/LO-1, used on the International Space Station (ISS). The outgassing condensation rates of these materials were characterized per ASTM 1559-93 as a function of contamination source and receiver hardware temperatures. The results of MOLFLUX analyses for both the silicone-insulated cables and the silicone-based thermal control coating showed that these materials did not meet the program requirements. The silicone-insulated cables and the antenna and associated hardware painted with S-13GP/LO-1 were vacuum baked and the outgassing condensation rates remeasured. These products now met the program requirements. The condensable portion of the outgassed products from modified-Tefzel cable insulation at two temperatures was deposited onto the white, inorganic thermal control coating, Z-93P. These contaminants were exposed to various space environments that included near ultraviolet (UV) radiation, vacuum UV (VUV) radiation, and atomic oxygen (AO). The contaminant darkened more rapidly with VUV exposure than a silicone contaminant of the same thickness. It was eroded by AO and bleached in air after VUV. It was shown that the ISS hardware provided would perform satisfactorily.

  20. DART: Delta Advanced Reusable Transport. An alternate manned space system proposal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Delta Advanced Reusable Transport (DART) craft is being developed to add, multiple, rapid, and cost effective space access to the U.S. capability and to further the efforts towards a permanent space presence. The DART craft provides an augmentative and an alternative system to the Shuttle. As a supplement launch vehicle, the DART adds low cost and easily accessible transport of crew and cargo to specific space destinations to the U.S. program. This adds significant opportunities for manned rated missions that do not require Shuttle capabilities. In its alternative role, the DART can provide emergency space access and satellite repair, the continuation of scientific research, and the furthering of U.S. manned efforts in the event of Shuttle incapabilities. In addition, the DART is being designed for Space Station Freedom compatibility, including its use as a 'lifeboat' emergency reentry craft for Freedom astronauts, as well as the transport of crew and cargo for station resupply.

  1. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications.

    PubMed

    Namdari, Pooria; Daraee, Hadis; Eatemadi, Ali

    2016-12-01

    The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics. PMID:27639579

  2. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Namdari, Pooria; Daraee, Hadis; Eatemadi, Ali

    2016-09-01

    The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics.

  3. Advances in silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices

    NASA Astrophysics Data System (ADS)

    Sharif Azadeh, S.; Müller, J.; Merget, F.; Romero-García, S.; Shen, B.; Witzens, J.

    2014-09-01

    We report recent progress made in our laboratory on travelling wave Mach-Zehnder Interferometer based Silicon Photonics modulators with segmented transmission lines, as well as on resonant ring modulators and add-drop multiplexers with peaking enhanced bandwidth extended beyond the photon lifetime limit. In our segmented transmission lines, microstructuring of the electrodes results in radio-frequency modes significantly deviating from the transverse electromagnetic (TEM) condition and allows for additional design freedom to jointly achieve phase matching, impedance matching and minimizing resistive losses. This technique was found to be particularly useful to achieve the aforementioned objectives in simple back-end processes with one or two metallization layers. Peaking results from intrinsic time dynamics in ring resonator based modulators and add-drop multiplexers and allows extending the bandwidth of the devices beyond the limit predicted from the photon lifetime. Simple closed form expressions allow incorporating peaking into system level modeling.

  4. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications.

    PubMed

    Namdari, Pooria; Daraee, Hadis; Eatemadi, Ali

    2016-12-01

    The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics.

  5. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  6. Micromachined silicon-based analytical microinstruments for space science and planetary exploration

    SciTech Connect

    Grunthaner, F.J.; Stalder, R.E.; Boumsellek, S.; Van Zandt, T.R.; Kenny, T.W.; Hecht, M.H.; Ksendzov, A.; Homer, M.L.; Terhune, R.W.; Lane, A.L.

    1994-09-01

    For future planetary science missions, the authors are developing a series of microinstruments using the techniques of silicon-based micromachining. Conventional instruments such as chemical sensors, charged particle analyzers and mass spectrometers are reduced in size and effective volume to the dimension of cubic centimeters, while maintaining or enhancing performance. Using wafer/wafer bonding techniques, selective chemical etching, thin Film growth, and high resolution lithography, complex three dimensional structures can be assembled. This paper discusses the design, implementation and performance of two new instruments: The Micromachined Bessel Box Auger Electron Spectrometer, and the Mars Soil Chemistry Experiment (MOx).

  7. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  8. Overview study of Space Power Technologies for the advanced energetics program. [spacecraft

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.

    1981-01-01

    Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.

  9. Advanced Silicon Photonic Device Architectures for Optical Communications: Proposals and Demonstrations

    NASA Astrophysics Data System (ADS)

    Sacher, Wesley David

    Photonic integrated circuits implemented on silicon (Si) hold the potential for densely integrated electro-optic and passive devices manufactured by the high-volume fabrication and sophisticated assembly processes used for complementary metal-oxide-semiconductor (CMOS) electronics. However, high index contrast Si photonics has a number of functional limitations. In this thesis, several devices are proposed, designed, and experimentally demonstrated to overcome challenges in the areas of resonant modulation, waveguide loss, fiber-to-chip coupling, and polarization control. The devices were fabricated using foundry services at IBM and A*STAR Institute of Microelectronics (IME). First, we describe coupling modulated microrings, in which the coupler between a microring and the bus waveguide is modulated. The device circumvents the modulation bandwidth vs. resonator linewidth trade-off of conventional intracavity modulated microrings. We demonstrate a Si coupling modulated microring with a small-signal modulation response free of the parasitic resonator linewidth limitations at frequencies up to about 6x the linewidth. Comparisons of eye diagrams show that coupling modulation achieved data rates > 2x the rate attainable with intracavity modulation. Second, we demonstrate a silicon nitride (Si3N4)-on-Si photonic platform with independent Si3N4 and Si waveguides and taper transitions to couple light between the layers. The platform combines the excellent passive waveguide properties of Si3N4 and the compatibility of Si waveguides with electro-optic devices. Within the platform, we propose and demonstrate dual-level, Si3N 4-on-Si, fiber-to-chip grating couplers that simultaneously have wide bandwidths and high coupling efficiencies. Conventional Si and Si3N 4 grating couplers suffer from a trade-off between bandwidth and coupling efficiency. The dual-level grating coupler achieved a peak coupling efficiency of -1.3 dB and a 1-dB bandwidth of 80 nm, a record for the

  10. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  11. CCSDS Advanced Orbiting Systems - International data communications standards for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.

    1990-01-01

    Established in 1982, the Consultative Committee for Space Data Systems (CCSDS) is an international organization that is staffed by data-handling experts from nearly all of the world's major space agencies. Its goal is to develop standard data-communications techniques so that several agencies may cross-support each other's data flow and thus allow complex, international missions to be flown. Under the general umbrella of Advanced Orbiting Systems (AOS), an international CCSDS task force was formed in 1985 to develop standard data-communications concepts for manned missions, such as the Space Station Freedom and the Hermes space plane, and large unmanned vehicles, such as polar orbiting platforms. The history of the CCSDS and the development of the AOS recommendation are reviewed, and the user services and protocols embodied in its systems architecture are introduced.

  12. User needs as a basis for advanced technology. [U.S. civil space program

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Reck, Gregory M.

    1992-01-01

    The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.

  13. Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2012-04-27

    Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are relative longitudinal position and energy deviation with respect to the reference particle. Methods to achieve exact phase space exchanges, i.e., mapping x to z, x' to {delta}, z to x, and {delta} to x', are suggested. Schemes to mitigate and completely compensate for the thick-lens effect of the transverse cavity on emittance exchange are studied. Some applications of the phase space exchange for advanced beam manipulation and diagnostics are discussed.

  14. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  15. NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements

  16. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  17. Recent Space PV Concentrator Advances: More Robust, Lighter, and Easier to Track

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Schmid, Kevin; LaCorte, Peter; Piszczor, Michael; Myers, Matt

    2015-01-01

    Over the past three years, the authors have collaborated on several significant advances in space photovoltaic concentrator technology, including a far more robust Fresnel lens for sunlight concentration, improved color-mixing features for the lens to minimize chromatic aberration losses for next-generation 4-junction and 6-junction IMM cells, a new approach to suntracking requiring only one axis of rotation even in the presence of large beta angles (e.g., +/- 50 deg), a new waste heat radiator made of graphene, with 80-90% reduction in mass, and a new platform for deployment and support on orbit (SOLAROSA). These patent-pending advances are described in this paper.

  18. NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and

  19. Recapitulating flesh with silicon and steel: advancements in upper extremity robotic prosthetics.

    PubMed

    Lee, Brian; Attenello, Frank J; Liu, Charles Y; McLoughlin, Michael P; Apuzzo, Michael L J

    2014-01-01

    With the loss of function of an upper extremity because of stroke or spinal cord injury or a physical loss from amputation, an individual's life is forever changed, and activities that were once routine become a magnitude more difficult. Much research and effort have been put into developing advanced robotic prostheses to restore upper extremity function. For patients with upper extremity amputations, previously crude prostheses have evolved to become exceptionally functional. Because the upper extremities can perform a wide variety of activities, several types of upper extremity prostheses are available ranging from passive cosmetic limbs to externally powered robotic limbs. In addition, new developments in brain-machine interface are poised to revolutionize how patients can control these advanced prostheses using their thoughts alone. For patients with spinal cord injury or stroke, functional electrical stimulation promises to provide the most sophisticated prosthetic limbs possible by reanimating paralyzed arms of these patients. Advances in technology and robotics continue to help patients recover vital function. This article examines the latest neurorestorative technologies for patients who have either undergone amputation or lost the use of their upper extremities secondary to stroke or spinal cord injury.

  20. A finite element analysis of room temperature silicon crystals for the Advanced Photon Source bending-magnet and insertion-device beams

    SciTech Connect

    Assoufid, L.; Lee, W.K.; Mills, D.M.

    1994-08-01

    The third generation of synchrotron radiation sources, such as the Advanced Photon Source (APS), will provide users with a high brilliance x-ray beam with high power and power densities. In many cases, the first optical component to intercept the x-ray beam is a silicon-crystal monochromator. Due to extreme heat loading, the photon throughput and brilliance will be severely degraded if the monochromator is not properly designed (or cooled). This document describes a series of finite element analyses performed on room temperature silicon for the three standard APS sources, namely, the bending magnet, Wiggler A, and Undulator A. The modeling is performed with the silicon cooled directly with water or liquid gallium through rectangular channels. The temperature distributions and thermally induced deformations are presented.

  1. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    SciTech Connect

    Stübner, R. E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl. E-mail: kolkov@ifpan.edu.pl; Weber, J.

    2015-08-07

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.

  2. Parametric performance characteristics and treatment of temperature coefficients of silicon solar cells for space application

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Yasui, R. K.

    1973-01-01

    The electrical performance characteristics of 2 and 10 ohms-cm N/P-type silicon solar cells were measured at simulated solar intensities of 5, 50, 100, 140, 250, 400, 550, 700, and 850 mW/sq cm. At each intensity, the temperature was varied in increments of 20 deg between extremes of +160 and -160 C. Short-circuit current, open-circuit voltage, and maximum power are presented in graphical format. Also described are three methods for predicting solar cell electrical performance as a function of temperature and intensity. Two of the methods are suitable for use at extreme temperature-intensity conditions. These methods were used sucessfully to predict the performance of the transducer on board the Mariner Mars 1971 spacecraft.

  3. Advances in space power research and technology at the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.; Ambrus, J. H.

    1981-01-01

    Progress and plans in various areas of the NASA Space Power Program are discussed. Solar cell research is narrowed to GaAs, multibandgap, and thin Si cells for arrays in planar and concentrator configurations, with further work to increase cell efficiency, radiation hardness, develop flexible encapsulants, and reduce cost. Electrochemical research is concentrating on increasing energy and power density, cycle and wet stand life, reliability and cost reduction of batteries. Further development of the Ni-H2 battery and O2-H2 fuel cell to multihundred kW with a 5 year life and 30,000 cycles is noted. Basic research is ongoing for alkali metal anodes for high energy density secondary cells. Nuclear thermoelectric propulsion is being developed for outer planets exploration propulsion systems, using Si-Ge generators, and studies with rare earth chalcogenides and sulfides are mentioned. Power Systems Management seeks to harmonize increasing power supply levels with inner and outer spacecraft environments, circuits, demands, and automatic monitoring. Concomitant development of bipolar transistors, an infrared rectenna, spacecraft charging measurement, and larger heat pipe transport capacity are noted.

  4. Design of a prototype Advanced Main Combustion Chamber for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Lackey, J. D.; Myers, W. N.

    1992-01-01

    Development of a prototype advanced main combustion chamber is underway at NASA Marshall Space Flight Center. The Advanced Main Combustion Chamber (AMCC) project is being approached utilizing a 'concurrent engineering' concept where groups from materials, manufacturing, stress, quality, and design are involved from the initiation of the project. The AMCC design has been tailored to be compatible with the investment casting process. Jacket, inlet/outlet manifolds, inlet/outlet neck coolant flow splitters, support ribs, actuator lugs, and engine controller mounting bracket will all be a part of the one-piece AMCC casting. Casting of the AMCC in a one-piece configuration necessitated a method of forming a liner in its structural jacket. A method of vacuum plasma spraying the liner is being developed. In 1994, the AMCC will be hot-fired on the Technology Test Bed Space Shuttle Main Engine.

  5. Some operational aspects of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.

    1988-01-01

    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.

  6. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  7. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  8. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Technical Reports Server (NTRS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, C.; Lanyi, G.; Naudet, C.

    2005-01-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  9. Advanced-technology space station study: Summary of systems and pacing technologies

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.

    1990-01-01

    The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.

  10. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  11. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Astrophysics Data System (ADS)

    Weber, Gary A.

    1991-04-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  12. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  13. Analysis of costs of gallium arsenide and silicon solar arrays for space power applications

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.

    1981-01-01

    A parametric analysis was performed to compare the costs of silicon and gallium arsenide arrays for Earth orbital missions. The missions included electric power in low Earth orbit (LEO), electric power in geosynchronous Earth orbit (GEO), and power for electric propulsion of a LEO to GEO orbit transfer mission. Inputs to the analysis for all missions included launch and purchase costs of the array. For the orbit transfer mission, the launch and purchase costs of the electric propulsion system were added. Radiation flux as a function of altitude and rediation tolerance as a function of cell type were used to determine power degradation for each mission. Curves were generated that show the sensitivity of launch-array cost and total mission cost to a variety of input parameters for each mission. These parameters included mission duration, cover glass thickness, array specific cost, array specific mass, and solar cell efficiency. Solar concentration was considered and the sensitivities of cost to concentration ratio, concentrator costs, and concentrator mass were also evaluated. Results indicate that solar cell development should give a high priority to reducing array costs and that the development of low cost, lightweight, solar concentrators should be pursued.

  14. The TEF modeling and analysis approach to advance thermionic space power technology

    NASA Astrophysics Data System (ADS)

    Marshall, Albert C.

    1997-01-01

    Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.

  15. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    NASA Astrophysics Data System (ADS)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  16. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  17. Advanced space power requirements and techniques. Task 1: Mission projections and requirements. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1978-01-01

    The objectives of this study were to: (1) develop projections of the NASA, DoD, and civil space power requirements for the 1980-1995 time period; (2) identify specific areas of application and space power subsystem type needs for each prospective user; (3) document the supporting and historical base, including relevant cost related measures of performance; and (4) quantify the benefits of specific technology projection advancements. The initial scope of the study included: (1) construction of likely models for NASA, DoD, and civil space systems; (2) generation of a number of future scenarios; (3) extraction of time phased technology requirements based on the scenarios; and (4) cost/benefit analyses of some of the technologies identified.

  18. LSST system analysis and integration task for an advanced science and application space platform

    NASA Technical Reports Server (NTRS)

    1980-01-01

    To support the development of an advanced science and application space platform (ASASP) requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. These payloads were a 100 meter diameter atmospheric gravity wave antenna, a 100 meter by 100 meter particle beam injection experiment, a 2 meter diameter, 18 meter long astrometric telescope, and a 15 meter diameter, 35 meter long large ambient deployable IR telescope. A low earth orbit at 500 km altitude and 56 deg inclination was selected as being the best compromise for meeting payload requirements. Platform subsystems were defined which would support the payload requirements and a physical platform concept was developed. Structural system requirements which included utilities accommodation, interface requirements, and platform strength and stiffness requirements were developed. An attitude control system concept was also described. The resultant ASASP concept was analyzed and technological developments deemed necessary in the area of large space systems were recommended.

  19. Advanced solar dynamic space power systems perspectives, requirements and technology needs

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.

    1986-01-01

    Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.

  20. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  1. The NASA New Millennium Program: Space Flight Validation of Advanced Technologies for Future Science Missions.

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Raymond, C.

    1999-09-01

    A broad range of advanced technologies are needed to support NASA's ambitious plans for planetary exploration during the next decade. To address these needs, the NASA New Millennium Program (NMP) identifies breakthrough spacecraft and instrument technologies and validates them in space to reduce their cost and risk. The first NMP Deep Space mission, DS1, was launched on October 24, 1998. Since then, it has successfully validated a solar-powered ion propulsion system, a miniaturized deep space transponder, autonomous operations and navigation software, multifunctional structures, low-power microelectronics and 2 instruments: the Miniature Integrated Camera and Spectrometer (MICAS), and the Plasma Experiment for Planetary Exploration (PEPE). To validate these technologies in a realistic environment, DS1's trajectory includes a close (<10km) flyby of asteroid 1992KD. An extended mission will allow encounters with comets Wilson-Harrington and Borrelly. The second NMP mission, DS2, consists of a pair of micro penetrators that are targeted near the Martian South Pole (71 to 76 S). DS2 was launched on January 3, 1999 as a piggyback payload on the Mars Surveyor '98 Lander cruise stage. After crashing into the Martian surface at greater than 200 m/s on December 3, 1999, these probes will validate technologies that will enable future Mars penetrator networks. These technologies include a single-stage, passive atmospheric entry system and a high-impact landing system designed to deliver a payload up to 1 meter below the Martian surface. This mission will also validate a miniaturized telecom system, low-temperature batteries, a suite of miniaturized in-situ scientific instruments, and other innovative packaging technologies. The next 2 NMP space science missions are currently being planned. If approved, Space Technology 3 (ST3) will validate technologies for separated spacecraft optical interferometry, to enable the ambitious Terrestrial Planet Finder (TPF) mission. The ST5

  2. Advanced Cardiac Life Support (ACLS) utilizing Man-Tended Capability (MTC) hardware onboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, M.; Barratt, M.; Lloyd, C.

    1992-01-01

    Because of the time and distance involved in returning a patient from space to a definitive medical care facility, the capability for Advanced Cardiac Life Support (ACLS) exists onboard Space Station Freedom. Methods: In order to evaluate the effectiveness of terrestrial ACLS protocols in microgravity, a medical team conducted simulations during parabolic flights onboard the KC-135 aircraft. The hardware planned for use during the MTC phase of the space station was utilized to increase the fidelity of the scenario and to evaluate the prototype equipment. Based on initial KC-135 testing of CPR and ACLS, changes were made to the ventricular fibrillation algorithm in order to accommodate the space environment. Other constraints to delivery of ACLS onboard the space station include crew size, minimum training, crew deconditioning, and limited supplies and equipment. Results: The delivery of ACLS in microgravity is hindered by the environment, but should be adequate. Factors specific to microgravity were identified for inclusion in the protocol including immediate restraint of the patient and early intubation to insure airway. External cardiac compressions of adequate force and frequency were administered using various methods. The more significant limiting factors appear to be crew training, crew size, and limited supplies. Conclusions: Although ACLS is possible in the microgravity environment, future evaluations are necessary to further refine the protocols. Proper patient and medical officer restraint is crucial prior to advanced procedures. Also emphasis should be placed on early intubation for airway management and drug administration. Preliminary results and further testing will be utilized in the design of medical hardware, determination of crew training, and medical operations for space station and beyond.

  3. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN

  4. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  5. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    space weather monitoring and alarm system--SPE exposure analysis system, an advanced space weather data distribution and display system, and a high-fidelity space weather simulation system. In addition, significant new real-time space weather data sets, which will enhance the forecasting and now-casting of near-Earth space environment conditions, are being made available through unique NASA-NOAA-USAF collaborations. These new data sets include coronal mass ejection monitoring by the Solar and Heliospheric Observatory (SOHO) and in-situ plasma and particle monitoring at the L1 libration point by the Solar Wind Monitor (SWIM) and Advanced Composition Explorer (ACE) spacecraft. Advanced real-time radiation monitoring data from charged particle telescopes and tissue equivalent proportional counters will also be available to assist crew and flight controllers in monitoring the external and intravehicular radiation environment.

  6. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L. (Editor); Wefel, John P. (Editor)

    1999-01-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  7. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas L.; Wefel, John P.

    1999-06-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  8. An assessment of advanced displays and controls technology applicable to future space transportation systems

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  9. D0 Silicon Upgrade: Measurements for Space in the A-Stub Muon System

    SciTech Connect

    Cease, H.; /Fermilab

    1995-09-25

    Measurements are given for the A layer Stub counters of the D-Zero Muon system. The purpose of the measurements is to determine the amount of space available for the A-stub muon counters. The counters will be positioned in between the central A layer PDTs and the cryostats. The given measurements are taken from the A layer PDTs towards the cryostat around the central portion of the detector. Drawings of the position and depth of the obstructions in a 5 inch clear zone are given.

  10. Economic analysis of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  11. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  12. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  13. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1992-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifteenth in a series of progress updates and covers the period between 27 Feb. - 17 Sep. 1992. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom program responses to specific recommendations made in ATAC Progress Report 14. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  14. Advancing brain-machine interfaces: moving beyond linear state space models

    PubMed Central

    Rouse, Adam G.; Schieber, Marc H.

    2015-01-01

    Advances in recent years have dramatically improved output control by Brain-Machine Interfaces (BMIs). Such devices nevertheless remain robotic and limited in their movements compared to normal human motor performance. Most current BMIs rely on transforming recorded neural activity to a linear state space composed of a set number of fixed degrees of freedom. Here we consider a variety of ways in which BMI design might be advanced further by applying non-linear dynamics observed in normal motor behavior. We consider (i) the dynamic range and precision of natural movements, (ii) differences between cortical activity and actual body movement, (iii) kinematic and muscular synergies, and (iv) the implications of large neuronal populations. We advance the hypothesis that a given population of recorded neurons may transmit more useful information than can be captured by a single, linear model across all movement phases and contexts. We argue that incorporating these various non-linear characteristics will be an important next step in advancing BMIs to more closely match natural motor performance. PMID:26283932

  15. The New Millennium Program: Validating Advanced Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Minning, Charles P.; Luers, Philip

    1999-01-01

    This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument

  16. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  17. Experimental evaluation of an advanced Space Shuttle Main Engine hot-gas manifold design concept

    NASA Technical Reports Server (NTRS)

    Pelaccio, D. G.; Lepore, F. F.; Oconnor, G. M.; Rao, G. V. R.; Ratekin, G. H.; Vogt, S. T.

    1984-01-01

    The Space Shuttle Main Engine's hot gas manifold (HGM) has been the subject of an experimental study aimed at the establishment of an aerodynamic data base to support the development of an advanced, three-dimensional, fluid dynamic analysis computer model. The advanced HGM design used in the study demonstrated improved flow uniformity in the fuel-side turbine exit and transfer duct exit regions. Major modifications were incorporated in the HGM flow test article model, using two large transfer ducts on the fuel turbine side in place of the three small transfer ducts of the present design. The HGM flow field data were found to be essentially independent of Reynolds number over the range examined.

  18. Experimental evaluation of an advanced Space Shuttle main engine hot-gas manifold design concept

    NASA Technical Reports Server (NTRS)

    Pelaccio, D. G.; Lepore, F. F.; Oconnor, G. M.; Rao, G. V. R.; Ratekin, G. H.; Vogt, S. T.

    1985-01-01

    This study, using an extensively modified, full-scale space shuttle main engine (SSME) hot-gas manifold (HGM), established a detailed aerodynamic data base to support development of an advanced, three-dimensional, fluid-dynamic analysis computer model. In addition, the advanced SSME hot-gas manifold design used in this study demonstrated improved flow environment (uniformity) in the fuel side turbine exit and transfer duct exit regions. Major modifications were incorporated in the full-scale HGM flow test article model using two large transfer ducts on the fuel turbine side of the HGM in place of the three small transfer ducts in the present design. Other model features included an increases in the flow areas downstream of the 180-degree turn and in the fishbowl regions.

  19. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  20. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  1. STARPAHC - Operational findings. [Space Technology Applied to Rural Papago Advanced Health Care

    NASA Technical Reports Server (NTRS)

    Belasco, N.; Pool, S. L.

    1976-01-01

    Delivery of quality health care to passengers of extended-mission spacecraft and to remote populations on earth (a major national problem) requires extending the knowledge and skills of the physician many kilometers distant from his physical location. The STARPAHC telemedicine system accomplishes this by using physician's assistants complemented with space technology in communications, data handling, and systems engineering. It is presently in operation and undergoing a 2-year evaluation on the Papago Indian Reservation, Arizona. Results have established its feasibility as a solution for remote area health care on earth, while providing information useful to the planners of advanced manned spacecraft missions.

  2. Advancement of photonics for space and other platforms: open optical interconnect architecture (OOIA)

    NASA Astrophysics Data System (ADS)

    Gaydeski, Michael S.

    1997-07-01

    Continuous investigation of new technologies for avionics and space processing has led to the improvement of applications capabilities and processing for tactical platforms (commercial and government satellites, tactical asset such as the USN Reconnaissance Fighter F/A-18R, USAF Fighter F-16, various helicopters, etc.,) and surveillance platforms (commercial and government satellites, Joint Surveillance Target Attack Radar System, Advanced Warning and Control System). This paper focuses on the potential benefits of inserting optical interconnect technology into these platforms while subscribing an Open Optical Interconnect Architecture concept and a methodology for systems development and integration.

  3. Draft environmental impact statement: Space Shuttle Advanced Solid Rocket Motor Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site.

  4. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  5. Technology advancements for the U.S. manned Space Station - An overview

    NASA Technical Reports Server (NTRS)

    Simon, William E.

    1987-01-01

    The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

  6. Recent developments of advanced structures for space optics at Astrium, Germany

    NASA Astrophysics Data System (ADS)

    Stute, Thomas; Wulz, Georg; Scheulen, Dietmar

    2003-12-01

    The mechanical division of EADS Astrium GmbH, Friedrichshafen Germany, the former Dornier Satellitensystem GmbH is currently engaged with the development, manufacturing and testing of three different advanced dimensionally stable composite and ceramic material structures for satellite borne optics: -CFRP Camera Structure -Planck Telescope Reflectors -NIRSpec Optical Bench Breadboard for James Web Space Telescope The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  7. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  8. Open Discussion Session: Challenges and Advancements in Coordinated Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti

    2016-07-01

    Besides addressing the key questions in space weather research the Cospar/ILWS Roadmap presents also recommendations for teaming in the research environment and for collaboration between agencies and communities. Coordinated work of different research groups facilitate our efforts for a holistic view on the entire Sun-Earth system with its complicated feedback processes in different scale sizes. Seamless knowledge transfer from research to operational services is a crucial factor for the success of space weather research field. In this open discussion session we encourage the participants to share their views on most important challenges and advancements in our field, both in science and in collaboration. We also welcome comments on the roadmap recommendations and guidance for similar activities in the future.

  9. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  10. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  11. Advanced controls for stability assessment of solar dynamics space power generation

    NASA Astrophysics Data System (ADS)

    Momoh, James A.; Anwah, Nnamdi A.

    1995-08-01

    In support of the power requirements for the Space Station Alpha (SSA), a joint program by the U.S. and Russia for a permanently manned space station to be launched into orbit by 1998, a robust control scheme is needed to assure the stability of the rotating machines that will be integrated into the power subsystem. A framework design and systems studies for modeling and analysis is presented. It employs classical d-q axes machine model with voltage/frequency dependent loads. To guarantee that design requirements and necessary trade studies are done, a functional analysis tool CORE is used for the study. This provides us with different control options for stability assessment. Initial studies and recommendations using advanced simulation tools are also presented. The benefits of the stability/control scheme for evaluating future designs and power management are discussed.

  12. Advanced controls for stability assessment of solar dynamics space power generation

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Anwah, Nnamdi A.

    1995-01-01

    In support of the power requirements for the Space Station Alpha (SSA), a joint program by the U.S. and Russia for a permanently manned space station to be launched into orbit by 1998, a robust control scheme is needed to assure the stability of the rotating machines that will be integrated into the power subsystem. A framework design and systems studies for modeling and analysis is presented. It employs classical d-q axes machine model with voltage/frequency dependent loads. To guarantee that design requirements and necessary trade studies are done, a functional analysis tool CORE is used for the study. This provides us with different control options for stability assessment. Initial studies and recommendations using advanced simulation tools are also presented. The benefits of the stability/control scheme for evaluating future designs and power management are discussed.

  13. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally. PMID:11808572

  14. Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

    PubMed Central

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed. PMID:24459433

  15. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  16. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  17. Slitless Grism Spectroscopy with the Hubble Space Telescope Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Pasquali, A.; Pirzkal, N.; Larsen, S.; Walsh, J. R.; Kümmel, M.

    2006-02-01

    The Advanced Camera for Surveys on board the Hubble Space Telescope is equipped with one grism and three prisms for low-resolution, slitless spectroscopy in the range 1150-10500 Å. The G800L grism provides optical spectroscopy between 5500 Å and >1 μm, with a mean dispersion of 39 and 24 Å pixel-1 (in the first spectral order) when coupled with the Wide Field and the High Resolution Channels, respectively. Given the lack of any on-board calibration lamps for wavelength and narrowband flat-fielding, the G800L grism can only be calibrated using astronomical targets. In this paper, we describe the strategy used to calibrate the grism in orbit, with special attention given to the treatment of the field dependence of the grism flat field, wavelength solution, and sensitivity in both channels. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  19. Biological effects of space radiation on human cells: history, advances and outcomes.

    PubMed

    Maalouf, Mira; Durante, Marco; Foray, Nicolas

    2011-01-01

    Exposure to radiation is one of the main concerns for space exploration by humans. By focusing deliberately on the works performed on human cells, we endeavored to review, decade by decade, the technological developments and conceptual advances of space radiation biology. Despite considerable efforts, the cancer and the toxicity risks remain to be quantified: 1) the nature and the frequency of secondary heavy ions need to be better characterized in order to estimate their contribution to the dose and to the final biological response; 2) the diversity of radiation history of each astronaut and the impact of individual susceptibility make very difficult any epidemiological analysis for estimating hazards specifically due to space radiation exposure. 3) Cytogenetic data undoubtedly revealed that space radiation exposure produce significant damage in cells. However, our knowledge of the basic mechanisms specific to low-dose, to repeated doses and to adaptive response is still poor. The application of new radiobiological techniques, like immunofluorescence, and the use of human tissue models different from blood, like skin fibroblasts, may help in clarifying all the above items. PMID:21436608

  20. 4K×4K format 10μm pixel pitch H4RG-10 hybrid CMOS silicon visible focal plane array for space astronomy

    NASA Astrophysics Data System (ADS)

    Bai, Yibin; Tennant, William; Anglin, Selmer; Wong, Andre; Farris, Mark; Xu, Min; Holland, Eric; Cooper, Donald; Hosack, Joseph; Ho, Kenneth; Sprafke, Thomas; Kopp, Robert; Starr, Brian; Blank, Richard; Beletic, James W.; Luppino, Gerard A.

    2012-07-01

    Teledyne’s silicon hybrid CMOS focal plane array technology has matured into a viable, high performance and high- TRL alternative to scientific CCD sensors for space-based applications in the UV-visible-NIR wavelengths. This paper presents the latest results from Teledyne’s low noise silicon hybrid CMOS visible focal place array produced in 4K×4K format with 10 μm pixel pitch. The H4RG-10 readout circuit retains all of the CMOS functionality (windowing, guide mode, reference pixels) and heritage of its highly successful predecessor (H2RG) developed for JWST, with additional features for improved performance. Combined with a silicon PIN detector layer, this technology is termed HyViSI™ (Hybrid Visible Silicon Imager). H4RG-10 HyViSI™ arrays achieve high pixel interconnectivity (<99.99%), low readout noise (<10 e- rms single CDS), low dark current (<0.5 e-/pixel/s at 193K), high quantum efficiency (<90% broadband), and large dynamic range (<13 bits). Pixel crosstalk and interpixel capacitance (IPC) have been predicted using detailed models of the hybrid structure and these predictions have been confirmed by measurements with Fe-55 Xray events and the single pixel reset technique. For a 100-micron thick detector, IPC of less than 3% and total pixel crosstalk of less than 7% have been achieved for the HyViSI™ H4RG-10. The H4RG-10 array is mounted on a lightweight silicon carbide (SiC) package and has been qualified to Technology Readiness Level 6 (TRL-6). As part of space qualification, the HyViSI™ H4RG-10 array passed radiation testing for low earth orbit (LEO) environment.

  1. ESA successfully conducts experiment in Advanced Space Robotics on Japanese satellite

    NASA Astrophysics Data System (ADS)

    1999-04-01

    ETS-VII is the latest in NASDA's series of engineering test satellites. It is dedicated to the in-orbit assessment and demonstration of novel technologies in rendez-vous / docking and space robotics. ETS-VII is in fact a pair of satellites, a larger chaser and a smaller target satellite which can be released for the rendez-vous and docking experiments. The larger satellite carries a robot arm with a stretched length of about 2 m, and a set of experimentation equipment to test the robot's capabilities : a task board on which typical robot manipulation activities can be performed and measured, an Orbital Replacement Unit (ORU) to be removed and reinstalled, a truss structure to be erected, an antenna assembly mechanism to be actuated and an advanced robot hand. The ESA experiments concern advanced schemes for planning, commanding, controlling and monitoring the activities of a space robot arm system. One set of experiments tests an operational mode called "interactive autonomy", whereby the robot motions are split into typical "tasks" of medium complexity. Ground operators can interact with the tasks (parameterising, commanding, rescheduling, monitoring, interrupting them as needed), relying on the fact that each task will be autonomously executed using appropriate sensor-based control loops (it having been programmed and extensively verified in advance by simulation). This significantly reduces the amount of data traffic over the spacelink - in fact, ETS-VII offers only a few short communications windows per day. Data from ESA experiments will be used to assess the performance of tasks executed with "interactive autonomy" compared with the more traditional telemanipulation at lower control levels. The second group of experiments concerns vision-based robot control. Using the Japanese-provided on-board vision system (which includes one hand camera and one scene-overview camera), it has been demonstrated that reliable automatic object localisation and grasping can be

  2. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based

  3. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  4. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  5. Application of advanced flywheel technology for energy storage on space station

    NASA Technical Reports Server (NTRS)

    Olszewski, Mitchell

    1987-01-01

    In space power applications where solar inputs are the primary thermal source, energy storage is necessary to provide a continuous power supply during the eclipse portion of the orbit. Because of their potentially high storage density, flywheels are being considered for use as the storage system on the proposed orbiting space station. During the past several years, graphite fiber technology has advanced, leading to significant gains in flywheel storage density. Use of these improved fibers in experimental flywheel rims has resulted in ultimate storage densities of 878 kJ/kg. With these high strength graphite fibers, operational storage densities for flywheel storage modules applicable to the space station power storage could reach 200 kJ/kg. This module would also be volumetrically efficient occupying only about 1 cu m. Because the size and mass of the flywheel storage module are controlled by the storage density, improvements in fiber strength can have a significant impact on these values. With the improvements anticipated within the next five years, operational storage density on the order of 325 kJ/kg may be possible for the flywheel module.

  6. Modular, Reconfigurable, and Rapid Response Space Systems: The Remote Sensing Advanced Technology Microsatellite

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Andary, Jim; Oberright, John; So, Maria; Wegner, Peter; Hauser, Joe

    2004-01-01

    Modular, Reconfigurable, and Rapid-response (MR(sup 2)) space systems represent a paradigm shift in the way space assets of all sizes are designed, manufactured, integrated, tested, and flown. This paper will describe the MR(sup 2) paradigm in detail, and will include guidelines for its implementation. The Remote Sensing Advanced Technology microsatellite (RSAT) is a proposed flight system test-bed used for developing and implementing principles and best practices for MR(sup 2) spacecraft, and their supporting infrastructure. The initial goal of this test-bed application is to produce a lightweight (approx. 100 kg), production-minded, cost-effective, and scalable remote sensing micro-satellite capable of high performance and broad applicability. Such applications range from future distributed space systems, to sensor-webs, and rapid-response satellite systems. Architectures will be explored that strike a balance between modularity and integration while preserving the MR(sup 2) paradigm. Modularity versus integration has always been a point of contention when approaching a design: whereas one-of-a-kind missions may require close integration resulting in performance optimization, multiple and flexible application spacecraft benefit &om modularity, resulting in maximum flexibility. The process of building spacecraft rapidly (< 7 days), requires a concerted and methodical look at system integration and test processes and pitfalls. Although the concept of modularity is not new and was first developed in the 1970s by NASA's Goddard Space Flight Center (Multi-Mission Modular Spacecraft), it was never modernized and was eventually abandoned. Such concepts as the Rapid Spacecraft Development Office (RSDO) became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years technology has advanced considerably, and the time is ripe to reconsider modularity in its own right, as enabler of R(sup 2), and as a key element of transformational systems. The

  7. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  8. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  9. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  10. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  11. Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study

    NASA Astrophysics Data System (ADS)

    Wefel, John P.; ACCESS Accommodation Study Team

    1999-01-01

    ACCESS-Advanced Cosmic-ray Composition Experiment for Space Station-was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the ``knee'' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control, power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized.

  12. Design and fabrication of brazed Rene 41 honeycomb sandwich structural panels for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1981-01-01

    The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.

  13. Advanced interface heat exchangers for the Space Station main thermal bus

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.

    1990-01-01

    Future evolution and growth of the Space Station will place increasing demands on the thermal management system by the addition of new payloads and from increased activity in the habitat modules. To meet this need, Creare is developing advanced evaporators, condensors, and single-phase heat exchangers for operation in microgravity. The objective is to achieve a several-fold increase in the heat flux capability of these components, while operating at the same temperature difference as specified for the present interface heat exchangers. Two prototype interface heat exchangers are presently being developed: one to interface the main thermal bus to a payload two-phase ammonia bus, and the other, to interface with the crew module single-phase water loop. The results achieved to date in the development of these heat exchangers are reviewed.

  14. Space architecture monograph series. Volume 4: Genesis 2: Advanced lunar outpost

    NASA Technical Reports Server (NTRS)

    Fieber, Joseph P.; Huebner-Moths, Janis; Paruleski, Kerry L.; Moore, Gary T. (Editor)

    1991-01-01

    This research and design study investigated advanced lunar habitats for astronauts and mission specialists on the Earth's moon. Design recommendations are based on environmental response to the lunar environment, human habitability (human factors and environmental behavior research), transportability (structural and materials system with least mass), constructability (minimizing extravehicular time), construction dependability and resilience, and suitability for NASA launch research missions in the 21st century. The recommended design uses lunar lava tubes, with construction being a combination of Space Station Freedom derived hard modules and light weight Kevlar laminate inflatable structures. The proposed habitat includes research labs and a biotron, crew quarters and crew support facility, mission control, health maintenance facility, maintenance work areas for psychological retreat, privacy, and comtemplation. Furniture, specialized equipment, and lighting are included in the analysis and design. Drawings include base master plans, construction sequencing, overall architectural configuration, detailed floor plans, sections and axonometrics, with interior perspectives.

  15. Developing a Free-Piston Stirling Convertor for advanced radioisotope space power systems

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Augenblick, John E.; White, Maurice A.; Peterson, Allen A.; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. This paper provides a description of the Flight Prototype (FP) Stirling convertor design as compared to the previous TDC design. The initial flight prototype units are already undergoing performance tuning at STC. The new design will be hermetically scaled and will provide a weight reduction from approximately 4.8 kg to approximately 3.9 kg. .

  16. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  17. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixteenth in a series of progress updates and covers the period between 15 Sep. 1992 - 16 Mar. 1993. The report describes the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 15; and includes a status review of Space Station Freedom Launch Processing facilities at Kennedy Space Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  18. GOES-R Rapid Refresh Imagery Advancements for the Earth and Space Weather Enterprise

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Schmit, T. J.; Lindsey, D. T.; Denig, W. F.

    2014-12-01

    The next generation of GOES, the GOES-R series, with planned launch in early 2016 offers improved spacecraft and instrument technology to provide more accurate, detailed and timely detection of high impact environmental phenomena, and at the same time significant opportunities and challenges in quickly creating, updating, and disseminating data and products in near real-time to produce more accurate forecasts and warnings. The Advanced Baseline Imager (ABI) will provide three times more spectral information, four times the spatial resolution, and more than five times faster temporal coverage than the current system with rapid scan imagery of severe storms, tropical cyclones, volcanic eruptions, and fires potentially as often as every thirty seconds in mesoscale mode and at least every 5 min or 15 min (as opposed to the 7.5, 15 or 30 min data from today's imager). Additional advancements over current GOES capabilities include continuous total lightning detection and mapping of in-cloud and cloud-to-ground flashes from the Geostationary Lightning Mapper (GLM) with only twenty second latency or less, and increased dynamic range, resolution, and sensitivity imaging solar activity with the Solar UV Imager (SUVI) every ten seconds. The total lightning is very useful for identifying hazardous and severe thunderstorms, monitoring storm intensification and tracking evolution. Used in tandem with radar, visible satellite, and surface observations, total lightning data has great potential to increase lead time for severe storm warnings and improve public safety. The space weather instruments provide more detailed observations of coronal mass ejection, solar flares, and energetic particles to produce more accurate forecasts and warnings of solar storms. The data from the ABI, GLM and space weather instruments will have a wide-range of uses and multiple societal benefits in areas such as severe weather, energy, transportation, and commerce. This presentation will highlight the

  19. Study of advanced InSb arrays for SIRTF (Space Infrared Telescope Facility)

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan; Feitt, Robert

    1989-01-01

    The Santa Barbara Research Center has completed a study leading to the development of advanced Indium Antimonide detector arrays for the Space Infrared Telescope Facility (SIRTF) Focal Plane Array Detector (FPAD) Subsystem of the Infrared Array Camera (IRAC) Band 1. The overall goal of the study was to perform design tradeoff studies, analysis and research to develop a Direct Readout Integrated Circuit to be hybridized to an advanced, high performance InSb detector array that would satisfy the technical requirements for Band 1 as specified in the IRAC Instrument Requirements Document (IRD), IRAC-202. The overall goal of the study was divided into both a near-term goal and a far-term goal. The near-term goal identifies current technology available that approaches, and in some cases meets the program technological goals as specified in IRAC-202. The far-term goal identifies technology development required to completely achieve SIRTF program goals. Analyses of potential detector materials indicates that InSb presently meets all Band 1 requirements and is considered to be the baseline approach due to technical maturity. The major issue with regard to photovoltaic detectors such as InSb and HgCdTe is to achieve a reduction in detector capacitance.

  20. Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.

  1. Manufacturing of 100mm diameter GaSb substrates for advanced space based applications

    NASA Astrophysics Data System (ADS)

    Allen, L. P.; Flint, J. P.; Meshew, G.; Trevethan, J.; Dallas, G.; Khoshakhlagh, A.; Hill, C. J.

    2012-01-01

    Engineered substrates such as large diameter (100mm) GaSb wafers need to be ready years in advance of any major shift in DoD and commercial technology, and typically before much of the rest of the materials and equipment for fabricating next generation devices. Antimony based III-V semiconductors are of significant interest for advanced applications in optoelectronics, high speed transistors, microwave devices, and photovoltaics. GaSb demand is increasing due to its lattice parameter matching of various ternary and quaternary III-V compounds, as their bandgaps can be engineered to cover a wide spectral range. For these stealth and spaced based applications, larger format IRFPAs benefit clearly from next generation starting substrates. In this study, we have manufactured and tested 100mm GaSb substrates. This paper describes the characterization process that provides the best possible GaSb material for advanced IRFPA and SLS epi growth. The analysis of substrate by AFM surface roughness, particles, haze, GaSb oxide character and desorption using XPS, flatness measurements, and SLS based epitaxy quality are shown. By implementing subtle changes in our substrate processing, we show that a Sb-oxide rich surface is routinely provided for rapid desorption. Post-MBE CBIRD structures on the 100mm ULD GaSb were examined and reveals a high intensity, 6.6nm periodicity, low (15.48 arcsec) FWHM peak distribution that suggests low surface strain and excellent lattice matching. The Ra for GaSb is a consistent ~0.2-4nm, with average batch wafer warp of ~4 μm to provide a clean, flat GaSb template critical for next generation epi growth.

  2. Advances in solid state switchgear technology for large space power systems

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1984-01-01

    High voltage solid state remote power controllers (RPC's) and the required semiconductor power switches to provide baseline technology for large, high power distribution systems in the space station, all electric airplane and other advanced aerospace applications were developed. The RPC's were developed for dc voltages from 28 to 1200 V and ac voltages of 115, 230, and 440 V at frequencies of 400 Hz to 20 kHz. The benefits and operation of solid state RPC's and highlights of several developments to bring the RPC to technology readiness for future aerospace needs are examined. The 28 V dc Space Shuttle units, three RPC types at 120 V dc, two at 270/300 V dc, two at 230 V ac and several high power RPC models at voltages up to 1200 V dc with current ratings up to 100 A are reviewed. New technology programs to develop a new family of (DI)2 semiconductor switches and 20 kHz, 440 V ac RPC's are described.

  3. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  4. Investigations on fracture curves in strain and stress space for advanced high strength steel forming

    NASA Astrophysics Data System (ADS)

    Panich, S.; Drotleff, K.; Liewald, M.; Uthaisangsuk, V.

    2016-08-01

    Conventional forming limit curves (FLCs) are inappropriate for describing formability for advanced high strength (AHS) steel sheets, since such steel grades experience fracture without localized necking occurrence. The aim of this work was to develop a fracture curve (FC) for the AHS steel grade DP980. The FC was determined by means of the Nakajima stretch forming test and tensile tests of various sample geometries, by which shear fracture governed. An optical strain measurement system was used to capture strain histories of deformed samples up to failure. From these results, fracture strains were gathered and plotted in a strain space. Subsequently, the strain based curve was transformed to space between stress triaxiality and plastic strain. Hereby, effects of anisotropic yield function, namely, the Hill’48 model on obtained stress fracture loci were investigated. In order to verify applicability of the determined limit curves, a Mini-tunnel part was pressed and simulated. It was found that the stress based FC do predict failure of the DP980 steel sheet more accurately than the strain based F C.

  5. Advanced NaBH4/H2O2 Fuel Cell for Space Applications

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Kim, Kyu-Jung; Luo, Nie; Shrestha, Prajakti Joshi

    2009-03-01

    Fuel cells have played an important role in NASA's space program starting with the Gemini space program. However, improved fuel cell performance will be needed to enable demanding future missions. An advanced fuel cell (FC) using liquid fuel and oxidizer is being developed by U of IL/NPL team to provide air independence and to achieve higher power densities than normal H2/O2 fuel cells (Lou et al., 2008; Miley, 2007). Hydrogen peroxide (H2O2) is used in this FC directly at the cathode (Lou and Miley, 2004). Either of two types of reactant, namely a gas-phase hydrogen or an aqueous NaBH4 solution, is utilized as fuel at the anode. Experiments with both 10-W single cells and 500-W stacks demonstrate that the direct utilization of H2O2 and NaBH4 at the electrodes result in >30% higher voltage output compared to the ordinary H2/O2 FC (Miley, 2007). Further, the use of this combination of all liquid fuels provides—from an operational point of view—significant advantages (ease of storage, reduced pumping requirements, simplified heat removal). This design is inherently compact compared to other fuel cells that use gas phase reactants. This results in a high overall system (including fuel tanks, pumps and piping, waste heat radiator) power density. Further, work is in progress on a regenerative version which uses an electrical input, e.g. from power lines or a solar panel to regenerate reactants.

  6. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  7. Risk reduction activities for an F-1-based advanced booster for NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Crocker, A. M.; Doering, K. B.; Cook, S. A.; Meadows, R. G.; Lariviere, B. W.; Bachtel, F. D.

    For NASA's Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) procurement, Dynetics, Inc. and Pratt & Whitney Rocketdyne (PWR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's goal of enabling competition on an affordable booster that meets the evolved capabilities of the SLS. During the ABEDRR effort, the Dynetics Team will apply state-of-the-art manufacturing and processing techniques to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. ABEDRR will use NASA test facilities to perform full-scale F-1 gas generator and powerpack hot-fire test campaigns for engine risk reduction. Dynetics will also fabricate and test a tank assembly to verify the structural design. The Dynetics Team is partnered with NASA through Space Act Agreements (SAAs) to maximize the expertise and capabilities applied to ABEDRR.

  8. Advanced Multi-Junction Photovoltaic Device Optimization For High Temperature Space Applications

    NASA Astrophysics Data System (ADS)

    Sherif, Michael

    2011-10-01

    Almost all solar cells available today for space or terrestrial applications are optimized for low temperature or "room temperature" operations, where cell performances demonstrate favourable efficiency figures. The fact is in many space applications, as well as when using solar concentrators, operating cell temperature are typically highly elevated, where cells outputs are severely depreciated. In this paper, a novel approach for the optimization of multi-junction photovoltaic devices at such high expected operating temperature is presented. The device optimization is carried out on the novel cell physical model previously developed at the Naval Postgraduate School using the SILVACO software tools [1]. Taking into account the high cost of research and experimentation involved with the development of advanced cells, this successful modelling technique was introduced and detailed results were previously presented by the author [2]. The flexibility of the proposed methodology is demonstrated and example results are shown throughout the whole process. The research demonstrated the capability of developing a realistic model of any type of solar cell, as well as thermo-photovoltaic devices. Details of an example model of an InGaP/GaAs/Ge multi-junction cell was prepared and fully simulated. The major stages of the process are explained and the simulation results are compared to published experimental data. An example of cell parameters optimization for high operating temperature is also presented. Individual junction layer optimization was accomplished through the use of a genetic search algorithm implemented in Matlab.

  9. Robust colour calibration of an imaging system using a colour space transform and advanced regression modelling.

    PubMed

    Jackman, Patrick; Sun, Da-Wen; Elmasry, Gamal

    2012-08-01

    A new algorithm for the conversion of device dependent RGB colour data into device independent L*a*b* colour data without introducing noticeable error has been developed. By combining a linear colour space transform and advanced multiple regression methodologies it was possible to predict L*a*b* colour data with less than 2.2 colour units of error (CIE 1976). By transforming the red, green and blue colour components into new variables that better reflect the structure of the L*a*b* colour space, a low colour calibration error was immediately achieved (ΔE(CAL) = 14.1). Application of a range of regression models on the data further reduced the colour calibration error substantially (multilinear regression ΔE(CAL) = 5.4; response surface ΔE(CAL) = 2.9; PLSR ΔE(CAL) = 2.6; LASSO regression ΔE(CAL) = 2.1). Only the PLSR models deteriorated substantially under cross validation. The algorithm is adaptable and can be easily recalibrated to any working computer vision system. The algorithm was tested on a typical working laboratory computer vision system and delivered only a very marginal loss of colour information ΔE(CAL) = 2.35. Colour features derived on this system were able to safely discriminate between three classes of ham with 100% correct classification whereas colour features measured on a conventional colourimeter were not.

  10. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  11. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities. This research is partly supported by grant O N517 418440

  12. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  13. Design and analysis of the internally cooled silicon mirrors and benders for wiggler sources at the Advanced Photon Source

    SciTech Connect

    Schildkamp, W.; Jaski, Y.; Tonnessen, T.; Douglas, G.

    1996-09-01

    When silicon single crystal mirrors are bent to cylindrical figures of typically 6 km bending radius, the moments needed are very small and easy to disturb by cooling attachments to the sides of the mirror. Hence, we decided to abandon the conventional concept of cooling plates attached to the sides of the mirrors and instead have chosen to use internal water channels. We present here the design of mirrors with cooling channels near the neutral axis of the silicon beam that have a rather thick {open_quote}{open_quote}hot wall.{close_quote}{close_quote} The results of this analytical work are nonintuitive, regarding the stresses produced by wiggler heating. The design path chosen minimizes figure errors due to coolant pressure variations and residual stresses from machining and bonding of multiple layers of silicon. The geometry of the water channels avoids water-to-vacuum seals and uses the mirror bender as the coolant manifold. Engineering efforts, which reduce the bending stresses at bender-to-silicon interface by a factor of five, will be presented. The complete mirror bender and motion control mechanics will be shown. {copyright} {ital 1996 American Institute of Physics.}

  14. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  15. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In

  16. Minimizing guard ring dead space in silicon detectors with an n-type guard ring at the edge of the detector

    NASA Astrophysics Data System (ADS)

    Palviainen, Tanja; Tuuva, Tuure; Leinonen, Kari

    2007-04-01

    Detectors with n-type silicon with an n +-type guard ring were investigated. In the present work, a new p +/n/n + detector structure with an n + guard ring is described. The guard ring is placed at the edge of the detector. The detector depletion region extends also sideways, allowing for signal collection very close to the n-guard ring. In this kind of detector structure, the dead space of the detector is minimized to be only below the guard ring. This is proved by simulations done using Silvaco/ATLAS software.

  17. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; Youngstrom, Erica

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  18. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  19. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  20. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.