Science.gov

Sample records for advanced simulation center

  1. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  2. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2016-07-12

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  3. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  4. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  5. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  6. NASA Center for Climate Simulation (NCCS) Advanced Technology AT5 Virtualized Infiniband Report

    NASA Technical Reports Server (NTRS)

    Thompson, John H.; Bledsoe, Benjamin C.; Wagner, Mark; Shakshober, John; Fromkin, Russ

    2013-01-01

    The NCCS is part of the Computational and Information Sciences and Technology Office (CISTO) of Goddard Space Flight Center's (GSFC) Sciences and Exploration Directorate. The NCCS's mission is to enable scientists to increase their understanding of the Earth, the solar system, and the universe by supplying state-of-the-art high performance computing (HPC) solutions. To accomplish this mission, the NCCS (https://www.nccs.nasa.gov) provides high performance compute engines, mass storage, and network solutions to meet the specialized needs of the Earth and space science user communities

  7. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  8. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  9. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  10. Center for Advanced Separation Technology

    SciTech Connect

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  11. Center for advanced microstructures and devices (CAMD)

    NASA Astrophysics Data System (ADS)

    Craft, B. C.; Feldman, M.; Morikawa, E.; Poliakoff, E. D.; Saile, V.; Scott, J. D.; Stockbauer, R. L.

    1992-01-01

    The new synchrotron-radiation facility, Center for Advanced Microstructures and Devices, at Louisiana State University is described with regard to the status of installation of the storage ring, implementation of the various programs, and construction of the first beamlines.

  12. Responding to Industry Demands: Advanced Technology Centers.

    ERIC Educational Resources Information Center

    Smith, Elizabeth Brient

    1991-01-01

    Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…

  13. Advanced electromagnetic gun simulation

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; George, E. B.; Lippert, J. R.; Balius, A. R.

    1986-11-01

    The architecture, software and application of a simulation system for evaluating electromagnetic gun (EMG) operability, maintainability, test data and performance tradeoffs are described. The system features a generic preprocessor designed for handling the large data rates necessary for EMG simulations. The preprocessor and postprocessor operate independent of the EMG simulation, which is viewed through windows by the user, who can then select the areas of the simulation desired. The simulation considers a homopolar generator, busbars, pulse shaping coils, the barrel, switches, and prime movers. In particular, account is taken of barrel loading by the magnetic field, Lorentz force and plasma pressure.

  14. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  15. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, John H.

    2000-01-01

    This paper presents a general overview of the National Center for Advanced Manufacturing, with an emphasis on Aerospace Materials, Processes and Environmental Technology. The topics include: 1) Background; 2) Mission; 3) Technology Development Approach; 4) Space Transportation Significance; 5) Partnering; 6) NCAM MAF Project; 7) NASA & Calhoun Community College; 8) Educational Development; and 9) Intelligent Synthesis Environment. This paper is presented in viewgraph form.

  16. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  17. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    ScienceCinema

    None

    2016-07-12

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  18. Center For Advanced Energy Studies Overview

    ScienceCinema

    Blackman, Harold

    2016-07-12

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  19. Center For Advanced Energy Studies Overview

    SciTech Connect

    Blackman, Harold

    2011-01-01

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  20. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  1. Center for Advanced Energy Studies Program Plan

    SciTech Connect

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  2. Advanced concepts flight simulation facility.

    PubMed

    Chappell, S L; Sexton, G A

    1986-12-01

    The cockpit environment is changing rapidly. New technology allows airborne computerised information, flight automation and data transfer with the ground. By 1995, not only will the pilot's task have changed, but also the tools for doing that task. To provide knowledge and direction for these changes, the National Aeronautics and Space Administration (NASA) and the Lockheed-Georgia Company have completed three identical Advanced Concepts Flight Simulation Facilities. Many advanced features have been incorporated into the simulators - e g, cathode ray tube (CRT) displays of flight and systems information operated via touch-screen or voice, print-outs of clearances, cockpit traffic displays, current databases containing navigational charts, weather and flight plan information, and fuel-efficient autopilot control from take-off to touchdown. More importantly, this cockpit is a versatile test bed for studying displays, controls, procedures and crew management in a full-mission context. The facility also has an air traffic control simulation, with radio and data communications, and an outside visual scene with variable weather conditions. These provide a veridical flight environment to evaluate accurately advanced concepts in flight stations.

  3. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-12-31

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  4. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-01-01

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  5. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  6. The New Center for Advanced Energy Studies

    SciTech Connect

    L.J. Bond; K. Kostelnik; R.A. Wharton; A. Kadak

    2006-06-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundation to enable future economic growth. The next generation energy workforce in the U.S. is a critical element in meeting both national and global energy needs. The Center for Advanced Energy Studies (CAES) was established in 2005 in response to U.S. Department of Energy (DOE) requirements. CAES, located at the new Idaho National Laboratory (INL), will address critical energy education, research, policy study and training needs. CAES is a unique joint partnership between the Battelle Energy Alliance (BEA), the State of Idaho, an Idaho University Consortium (IUC), and a National University Consortium (NUC). CAES will be based in a new facility that will foster collaborative academic and research efforts among participating institutions.

  7. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  8. Computer Simulation of Community Mental Health Centers.

    ERIC Educational Resources Information Center

    Cox, Gary B.; And Others

    1985-01-01

    Describes an ongoing research project designed to develop a computer model capable of simulating the service delivery activities of community mental health care centers and human service agencies. The goal and methodology of the project are described. (NB)

  9. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  10. Advanced simulation of digital filters

    NASA Astrophysics Data System (ADS)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  11. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  12. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  13. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  14. National Center for Advancing Translational Sciences

    MedlinePlus

    ... Groups Work with NCATS Research Team Advances Evatar Female Reproductive System Through its Tissue Chip for Drug Screening program, ... parasites and bacteria. More... Research Team Advances Evatar Female Reproductive System Through its Tissue Chip for Drug Screening program, ...

  15. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  16. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Kostadin, Damevski

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  17. Center for the Advancement of Health

    MedlinePlus

    ... YouTube CFAH PARTNERS Alliance for Quality Psychosocial Cancer Care Kellogg Health Scholars Program KP Burch Leadership Program Diversity Data Place, Migration & Health Network * The Center for ...

  18. Center for Space Power and Advanced Electronics, Auburn University

    NASA Technical Reports Server (NTRS)

    Deis, Dan W.; Hopkins, Richard H.

    1991-01-01

    The union of Auburn University's Center for Space Power and Advanced Electronics and the Westinghouse Science and Technology Center to form a Center for the Commercial Development of Space (CCDS) is discussed. An area of focus for the CCDS will be the development of silicon carbide electronics technology, in terms of semiconductors and crystal growth. The discussion is presented in viewgraph form.

  19. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  20. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  1. Cosmos, an international center for advanced studies

    NASA Technical Reports Server (NTRS)

    Ryzhov, Iurii; Alifanov, Oleg; Sadin, Stanley; Coleman, Paul

    1990-01-01

    The concept of Cosmos, a Soviet operating center for aerospace activities, is presented. The main Cosmos participants are the Institute for Aerospace Education, the Institute for Research and Commercial Development, and the Department of Space Policy and Socio-Economic Studies. Cosmos sponsors a number of educational programs, basic research, and studies of the social impact of space-related technologies.

  2. NASA Center for Climate Simulation (NCCS) Presentation

    NASA Technical Reports Server (NTRS)

    Webster, William P.

    2012-01-01

    The NASA Center for Climate Simulation (NCCS) offers integrated supercomputing, visualization, and data interaction technologies to enhance NASA's weather and climate prediction capabilities. It serves hundreds of users at NASA Goddard Space Flight Center, as well as other NASA centers, laboratories, and universities across the US. Over the past year, NCCS has continued expanding its data-centric computing environment to meet the increasingly data-intensive challenges of climate science. We doubled our Discover supercomputer's peak performance to more than 800 teraflops by adding 7,680 Intel Xeon Sandy Bridge processor-cores and most recently 240 Intel Xeon Phi Many Integrated Core (MIG) co-processors. A supercomputing-class analysis system named Dali gives users rapid access to their data on Discover and high-performance software including the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT), with interfaces from user desktops and a 17- by 6-foot visualization wall. NCCS also is exploring highly efficient climate data services and management with a new MapReduce/Hadoop cluster while augmenting its data distribution to the science community. Using NCCS resources, NASA completed its modeling contributions to the Intergovernmental Panel on Climate Change (IPCG) Fifth Assessment Report this summer as part of the ongoing Coupled Modellntercomparison Project Phase 5 (CMIP5). Ensembles of simulations run on Discover reached back to the year 1000 to test model accuracy and projected climate change through the year 2300 based on four different scenarios of greenhouse gases, aerosols, and land use. The data resulting from several thousand IPCC/CMIP5 simulations, as well as a variety of other simulation, reanalysis, and observationdatasets, are available to scientists and decision makers through an enhanced NCCS Earth System Grid Federation Gateway. Worldwide downloads have totaled over 110 terabytes of data.

  3. Center for Plasma Edge Simulation (CPES). Final Technical Report

    SciTech Connect

    Cummings, Julian C.

    2012-01-14

    The Center for Plasma Edge Simulation (CPES) project was a multi-institutional research effort funded jointly by the Office of Advanced Scientific Computing Research (OASCR) and the Office of Fusion Energy Sciences (OFES) within the Department of Energy's Office of Science. The effort was led by our Principal Investigator, CS Chang, at the Courant Institute for Mathematical Sciences at New York University. The Center included participants from Oak Ridge National Laboratory, Princeton Plasma Physics Laboratory, Lawrence Berkeley National Laboratory, California Institute of Technology, Columbia University, Lehigh University, Rutgers University, University of Colorado, Massachusetts Institute of Technology, University of California at Davis, University of California at Irvine, North Carolina State University, and Georgia Institute of Technology. This report concerns the work performed by Dr. Julian C. Cummings, who was the institutional Principal Investigator for the CPES project at Caltech.

  4. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  5. Advanced Vadose Zone Simulations Using TOUGH

    SciTech Connect

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  6. Advances in atomic oxygen simulation

    NASA Technical Reports Server (NTRS)

    Froechtenigt, Joseph F.; Bareiss, Lyle E.

    1990-01-01

    Atomic oxygen (AO) present in the atmosphere at orbital altitudes of 200 to 700 km has been shown to degrade various exposed materials on Shuttle flights. The relative velocity of the AO with the spacecraft, together with the AO density, combine to yield an environment consisting of a 5 eV beam energy with a flux of 10(exp 14) to 10(exp 15) oxygen atoms/sq cm/s. An AO ion beam apparatus that produces flux levels and energy similar to that encountered by spacecraft in low Earth orbit (LEO) has been in existence since 1987. Test data was obtained from the interaction of the AO ion beam with materials used in space applications (carbon, silver, kapton) and with several special coatings of interest deposited on various surfaces. The ultimate design goal of the AO beam simulation device is to produce neutral AO at sufficient flux levels to replicate on-orbit conditions. A newly acquired mass spectrometer with energy discrimination has allowed 5 eV neutral oxygen atoms to be separated and detected from the background of thermal oxygen atoms of approx 0.2 eV. Neutralization of the AO ion beam at 5 eV was shown at the Martin Marietta AO facility.

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  8. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  9. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  10. Center for Advanced Technology Training (CATT) Feasibility Study.

    ERIC Educational Resources Information Center

    Albuquerque Technical Vocational Inst., NM.

    A study of the feasibility of establishing a Center for Advanced Technology Training (CATT) at the Albuquerque Technical Vocational Institute (TVI Community College, New Mexico) was conducted by members of the Albuquerque business community, government representatives, and college administrators. Phase 1 of the study was an examination of the…

  11. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    ERIC Educational Resources Information Center

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  12. A simulation approach to a virtual base defense operating center

    NASA Astrophysics Data System (ADS)

    Athmer, Keith; Gaughan, Chris

    2010-04-01

    The TRADOC Maneuver Support Center of Excellence (MSCoE) is the Army proponent for protection and in turn, has the mission to support fixed site protection issues. To this end, the Maneuver Support Battle Lab (MSBL) developed a Virtual Base Defense Operating Center (VBDOC) capability that was initiated in support of the Force Protection Joint Experiment (FPJE) to examine data fusion enhancements and improvements to the Common Operating Picture (COP) display. Furthermore BDOC Standard Operating Procedures (SOPs), Tactics, Techniques and Procedures (TTPs), and Unmanned Ground Vehicle (UGV) capabilities were examined in order to optimize manpower, reduce exposure of friendly personnel, and improve force protection. The Modeling and Simulation (M&S) architecture was especially important due to the cost of providing realistic environments, such as Chemical Biological Radiological Nuclear (CBRN) hazards, and the availability of soldiers for experimentation. The VBDOC simulation architecture contains a force-on-force simulation, a CBRN simulation, a desktop UGV Advanced Concepts Research Tool (ACRT) and a sensor controller using the Distributed Interactive Simulation (DIS) protocol. This simulation architecture stimulated actual Command and Control (C2) systems including the Joint Battlespace Command and Control System (JBC2S) and the Joint Warning and Reporting Network (JWARN). These C2 systems, along with video feeds from various sensors and unmanned vehicles, were used by Battle Captains and staffs for situational awareness of the battlefield while conducting the experiment. The VBDOC capability offers a controlled environment to study fixed site protection issues, such as future Concept of Operation (CONOP)/TTP/SOP development and refinement, examining emerging concepts, and assessing specific technology capabilities.

  13. NETL's IGCC Dynamic Simulator Reserach and Training Center

    SciTech Connect

    Erbes, M.; Zitney, S.

    2008-01-01

    The National Energy Technology Laboratory (NETL) is collaborating with software, industry, and university partners to establish a world-class Dynamic Simulator Research and Training (DSR&T) Center dedicated to the operation and control of advanced energy plants with carbon capture capabilities. The DSR&T Center will offer a collaborative R&D program and comprehensive hands-on training built around a portfolio of non-proprietary, high-fidelity, real-time dynamic simulators. The simulators will provide full-scope operator training system (OTS) capabilities for normal and faulted operations, as well as plant start-up, shutdown, and load following. Immersive three-dimensional (3-D) virtual reality will add another dimension of realism to the dynamic OTS systems and extend the training scope to both control room and outside operators, allowing them to work as a team. The benefits of high-fidelity immersive training systems (ITS) include more realistic training scenarios, improved communication and collaboration among work crews, off-line evaluations of procedures, and training for safety-critical tasks and rare abnormal situations.

  14. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  15. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  16. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  17. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  18. Military trauma training at civilian centers: a decade of advancements.

    PubMed

    Thorson, Chad M; Dubose, Joseph J; Rhee, Peter; Knuth, Thomas E; Dorlac, Warren C; Bailey, Jeffrey A; Garcia, George D; Ryan, Mark L; Van Haren, Robert M; Proctor, Kenneth G

    2012-12-01

    In the late 1990s, a Department of Defense subcommittee screened more than 100 civilian trauma centers according to the number of admissions, percentage of penetrating trauma, and institutional interest in relation to the specific training missions of each of the three service branches. By the end of 2001, the Army started a program at University of Miami/Ryder Trauma Center, the Navy began a similar program at University of Southern California/Los Angeles County Medical Center, and the Air Force initiated three Centers for the Sustainment of Trauma and Readiness Skills (C-STARS) at busy academic medical centers: R. Adams Cowley Shock Trauma Center at the University of Maryland (C-STARS Baltimore), Saint Louis University (C-STARS St. Louis), and The University Hospital/University of Cincinnati (C-STARS Cincinnati). Each center focuses on three key areas, didactic training, state-of-the-art simulation and expeditionary equipment training, as well as actual clinical experience in the acute management of trauma patients. Each is integral to delivering lifesaving combat casualty care in theater. Initially, there were growing pains and the struggle to develop an effective curriculum in a short period. With the foresight of each trauma training center director and a dynamic exchange of information with civilian trauma leaders and frontline war fighters, there has been a continuous evolution and improvement of each center's curriculum. Now, it is clear that the longest military conflict in US history and the first of the 21st century has led to numerous innovations in cutting edge trauma training on a comprehensive array of topics. This report provides an overview of the decade-long evolutionary process in providing the highest-quality medical care for our injured heroes.

  19. Terascale Optimal PDE Simulations (TOPS) Center

    SciTech Connect

    Professor Olof B. Widlund

    2007-07-09

    Our work has focused on the development and analysis of domain decomposition algorithms for a variety of problems arising in continuum mechanics modeling. In particular, we have extended and analyzed FETI-DP and BDDC algorithms; these iterative solvers were first introduced and studied by Charbel Farhat and his collaborators, see [11, 45, 12], and by Clark Dohrmann of SANDIA, Albuquerque, see [43, 2, 1], respectively. These two closely related families of methods are of particular interest since they are used more extensively than other iterative substructuring methods to solve very large and difficult problems. Thus, the FETI algorithms are part of the SALINAS system developed by the SANDIA National Laboratories for very large scale computations, and as already noted, BDDC was first developed by a SANDIA scientist, Dr. Clark Dohrmann. The FETI algorithms are also making inroads in commercial engineering software systems. We also note that the analysis of these algorithms poses very real mathematical challenges. The success in developing this theory has, in several instances, led to significant improvements in the performance of these algorithms. A very desirable feature of these iterative substructuring and other domain decomposition algorithms is that they respect the memory hierarchy of modern parallel and distributed computing systems, which is essential for approaching peak floating point performance. The development of improved methods, together with more powerful computer systems, is making it possible to carry out simulations in three dimensions, with quite high resolution, relatively easily. This work is supported by high quality software systems, such as Argonne's PETSc library, which facilitates code development as well as the access to a variety of parallel and distributed computer systems. The success in finding scalable and robust domain decomposition algorithms for very large number of processors and very large finite element problems is, e

  20. Application of technology developed for flight simulation at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1991-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations including mathematical model computation and data input/output to the simulators must be deterministic and be completed in as short a time as possible. Personnel at NASA's Langley Research Center are currently developing the use of supercomputers for simulation mathematical model computation for real-time simulation. This, coupled with the use of an open systems software architecture, will advance the state-of-the-art in real-time flight simulation.

  1. Advanced Civil Transport Simulator Cockpit View

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Advanced Civil Transport Simulator (ACTS) is a futuristic aircraft cockpit simulator designed to provide full-mission capabilities for researching issues that will affect future transport aircraft flight stations and crews. The objective is to heighten the pilots situation awareness through improved information availability and ease of interpretation in order to reduce the possibility of misinterpreted data. The simulators five 13-inch Cathode Ray Tubes are designed to display flight information in a logical easy-to-see format. Two color flat panel Control Display Units with touch sensitive screens provide monitoring and modification of aircraft parameters, flight plans, flight computers, and aircraft position. Three collimated visual display units have been installed to provide out-the-window scenes via the Computer Generated Image system. The major research objectives are to examine needs for transfer of information to and from the flight crew; study the use of advanced controls and displays for all-weather flying; explore ideas for using computers to help the crew in decision making; study visual scanning and reach behavior under different conditions with various levels of automation and flight deck-arrangements.

  2. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  3. Center for Advanced Signal and Imaging Sciences Workshop 2004

    SciTech Connect

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  4. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  5. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  6. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  7. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  8. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  9. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... simulator instructors and check airmen must include training policies and procedures, instruction methods... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or...

  10. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  11. Software Framework for Advanced Power Plant Simulations

    SciTech Connect

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  12. Recent advances in superconducting-mixer simulations

    NASA Technical Reports Server (NTRS)

    Withington, S.; Kennedy, P. R.

    1992-01-01

    Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.

  13. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  14. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  15. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  16. The Center-TRACON Automation System: Simulation and field testing

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz

    1995-01-01

    A new concept for air traffic management in the terminal area, implemented as the Center-TRACON Automation System, has been under development at NASA Ames in a cooperative program with the FAA since 1991. The development has been strongly influenced by concurrent simulation and field site evaluations. The role of simulation and field activities in the development process will be discussed. Results of recent simulation and field tests will be presented.

  17. Center for Advanced Energy Studies (CAES) Strategic Plan

    SciTech Connect

    Kevin Kostelnik; Keith Perry

    2007-07-01

    Twenty-first century energy challenges include demand growth, national energy security, and global climate protection. The Center for Advanced Energy Studies (CAES) is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE) and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding the educational opportunities at the Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed this strategic plan based on the Balanced Scorecard approach. A Strategy Map (Section 7) summarizes the CAES vision, mission, customers, and strategic objectives. Identified strategic objectives encompass specific outcomes related to three main areas: Research, Education, and Policy. Technical capabilities and critical enablers needed to support these objectives are also identified. This CAES strategic plan aligns with and supports the strategic objectives of the four CAES institutions. Implementation actions are also presented which will be used to monitor progress towards fulfilling these objectives.

  18. An Analysis of Collaborative Technology Advancements Achieved through the Center for Network Innovation and Experimentation

    DTIC Science & Technology

    2008-12-01

    COLLABORATIVE TECHNOLOGY ADVANCEMENTS ACHIEVED THROUGH THE CENTER FOR NETWORK INNOVATION AND EXPERIMENTATION by Eric L. Quarles December 2008...Advancements Achieved through the Center for Network Innovation and Experimentation 6. AUTHOR(S) Eric L. Quarles 5. FUNDING NUMBERS 7...cycles which the members of the Naval Postgraduate School Center for Network Innovation and Experimentation (CENETIX) participate. These experiments

  19. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  20. C-Safe Image Gallery from the Center for the Simulation of Accidental Fires and Explosions

    DOE Data Explorer

    The Center for the Simulation of Accidental Fires and Explosions, created through the Department of Energy's Advanced Simulation and Computing (ASC) Program, employed a large number of a highly skilled faculty, research scientists, staff, and students who created the Uintah Computational Framework (UCF) software. For over a decade C-SAFE produced cutting edge research in simulating complex physical phenomena including reacting flows, material properties, multi-material interactions, and atomic level chemistry. Additionally, pioneering work was done in the field of parallel computing, software frameworks, and visualization.

  1. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  2. National Center for Advanced Information Components Manufacturing. Program summary report, Volume 1

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, summaries of the technical projects, and key program accomplishments.

  3. 77 FR 37422 - National Center for Advancing Translational Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Panel; Division of Comparative Medicine Peer Review Meeting; Office of Research Infrastructure Programs... Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Blvd., Dem....

  4. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  5. Stochastic discrete event simulation of germinal center reactions

    NASA Astrophysics Data System (ADS)

    Figge, Marc Thilo

    2005-05-01

    We introduce a generic reaction-diffusion model for germinal center reactions and perform numerical simulations within a stochastic discrete event approach. In contrast to the frequently used deterministic continuum approach, each single reaction event is monitored in space and time in order to simulate the correct time evolution of this complex biological system. Germinal centers play an important role in the immune system by performing a reaction that aims at improving the affinity between antibodies and antigens. Our model captures experimentally observed features of this reaction, such as the development of the remarkable germinal center morphology and the maturation of antibody-antigen affinity in the course of time. We model affinity maturation within a simple affinity class picture and study it as a function of the distance between the initial antibody-antigen affinity and the highest possible affinity. The model reveals that this mutation distance may be responsible for the experimentally observed all-or-none behavior of germinal centers; i.e., they generate either mainly output cells of high affinity or no high-affinity output cells at all. Furthermore, the exact simulation of the system dynamics allows us to study the hypothesis of cell recycling in germinal centers as a mechanism for affinity optimization. A comparison of three possible recycling pathways indicates that affinity maturation is optimized by a recycling pathway that has previously not been taken into account in deterministic continuum models.

  6. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  7. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  8. Evidence-centered design for simulation-based assessment.

    PubMed

    Mislevy, Robert J

    2013-10-01

    Simulations provide opportunities for people to learn and to develop skills for situations that are expensive, time-consuming, or dangerous. Careful design can support their learning by tailoring the features of situations to their levels of skill, allowing repeated attempts, and providing timely feedback. The same environments provide opportunities for assessing people's capabilities to act in these situations. This article describes an assessment design framework that can help projects develop effective simulation-based assessments. It reviews the rationale and terminology of the "evidence-centered" assessment design framework, discusses how it aligns with the principles of simulation design, and illustrates ideas with examples from engineering and medicine. Advice is offered for designing a new simulation-based assessment and for adapting an existing simulation system for assessment purposes.

  9. 78 FR 76634 - National Center for Advancing Translational Sciences; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... 20892. Contact Person: Danilo A Tagle, Ph.D., Executive Secretary, National Center for Advancing Translational Sciences, 1 Democracy Plaza, Room 992, Bethesda, MD 20892, 301-594-8064, Danilo.Tagle@nih.gov.... Contact Person: Danilo A Tagle, Ph.D., Executive Secretary, National Center for Advancing...

  10. Women's Center Volunteer Intern Program: Building Community While Advancing Social and Gender Justice

    ERIC Educational Resources Information Center

    Murray, Margaret A.; Vlasnik, Amber L.

    2015-01-01

    This program description explores the purpose, structure, activities, and outcomes of the volunteer intern program at the Wright State University Women's Center. Designed to create meaningful, hands-on learning experiences for students and to advance the center's mission, the volunteer intern program builds community while advancing social and…

  11. Emulation of an Advanced G-Seat on the Advanced Simulator for Pilot Training.

    DTIC Science & Technology

    1978-04-01

    ASPT ) which culminated in the emulation of an advanced approach to G-seat simulation. The development of the software, the design of the advanced seat...components, the implementation of the advanced design on the ASPT , and the results of the study are presented. (Author)

  12. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  13. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  14. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky

  15. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  16. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    SciTech Connect

    Guenther, Chris

    2013-09-26

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  17. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    ScienceCinema

    Guenther, Chris

    2016-07-12

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  18. SciDAC-Center for Plasma Edge Simulation

    SciTech Connect

    Chang, Choong Seock

    2012-06-04

    The SciDAC ProtoFSP Center for Plasma Edge Simulation (CPES) [http://www.cims.nyu.edu/cpes/] was awarded to New York University, Courant Institute of Mathematical Sciences in FY 2006. C.S. Chang was the institutional and national project PI. It's mission was 1) to build kinetic simulation code applicable to tokamak edge region including magnetic divertor geometry, 2) to build a computer science framework which can integrate the kinetic code with MHD/fluid codes in multiscale, 3) to conduct scientific research using the developed tools. CPES has built two such edge kinetic codes XGC0 and XGC1, which are still the only working kinetic edge plasma codes capable of including the diverted magnetic field geometry. CPES has also built the code coupling framework EFFIS (End-to-end Framework for Fusion Integrated Simulation), which incubated and used the Adios (www.olcf.ornl.gov/center-projects/adios/) and eSiMon (http://www.olcf.ornl.gov/center-projects/esimmon/) technologies, together with the Kepler technology.

  19. Simbios: an NIH national center for physics-based simulation of biological structures.

    PubMed

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B

    2012-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.

  20. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  1. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  2. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to +662F (-150 to +350C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  3. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  4. Data Serving Climate Simulation Science at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2011-01-01

    The NASA Center for Climate Simulation (NCCS) provides high performance computational resources, a multi-petabyte archive, and data services in support of climate simulation research and other NASA-sponsored science. This talk describes the NCCS's data-centric architecture and processing, which are evolving in anticipation of researchers' growing requirements for higher resolution simulations and increased data sharing among NCCS users and the external science community.

  5. Enhanced Capabilities of Advanced Airborne Radar Simulation.

    DTIC Science & Technology

    1996-01-01

    RCF UNIX-Based Machine 65 BAUHAUS A-l Illustrations to Understand How GTD Files are Read 78 C-l Input File for Sidelobe Jammer Nulling...on the UNIX-based machine BAUHAUS are provided to illustrate the enhancements in run time, as compared to the original version of the simulation [1...Figure 27 presents some CPU run times for executing the enhanced simulation on the RCF UNIX-based machine BAUHAUS . The run times are shown only for

  6. Predicting Performance in Technical Preclinical Dental Courses Using Advanced Simulation.

    PubMed

    Gottlieb, Riki; Baechle, Mary A; Janus, Charles; Lanning, Sharon K

    2017-01-01

    The aim of this study was to investigate whether advanced simulation parameters, such as simulation exam scores, number of student self-evaluations, time to complete the simulation, and time to complete self-evaluations, served as predictors of dental students' preclinical performance. Students from three consecutive classes (n=282) at one U.S. dental school completed advanced simulation training and exams within the first four months of their dental curriculum. The students then completed conventional preclinical instruction and exams in operative dentistry (OD) and fixed prosthodontics (FP) courses, taken during the first and second years of dental school, respectively. Two advanced simulation exam scores (ASES1 and ASES2) were tested as predictors of performance in the two preclinical courses based on final course grades. ASES1 and ASES2 were found to be predictors of OD and FP preclinical course grades. Other advanced simulation parameters were not significantly related to grades in the preclinical courses. These results highlight the value of an early psychomotor skills assessment in dentistry. Advanced simulation scores may allow early intervention in students' learning process and assist in efficient allocation of resources such as faculty coverage and tutor assignment.

  7. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... check airmen must include training policies and procedures, instruction methods and techniques... and a means for achieving flightcrew training in advanced airplane simulators. The requirements in... Simulation Training Program For an operator to conduct Level C or D training under this appendix all...

  8. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  9. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    SciTech Connect

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  10. Advanced Simulation and Computing Business Plan

    SciTech Connect

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  11. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  12. Simulation Credibility: Advances in Verification, Validation, and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Editor); Eklund, Dean R.; Romero, Vicente J.; Pearce, Jeffrey A.; Keim, Nicholas S.

    2016-01-01

    Decision makers and other users of simulations need to know quantified simulation credibility to make simulation-based critical decisions and effectively use simulations, respectively. The credibility of a simulation is quantified by its accuracy in terms of uncertainty, and the responsibility of establishing credibility lies with the creator of the simulation. In this volume, we present some state-of-the-art philosophies, principles, and frameworks. The contributing authors involved in this publication have been dedicated to advancing simulation credibility. They detail and provide examples of key advances over the last 10 years in the processes used to quantify simulation credibility: verification, validation, and uncertainty quantification. The philosophies and assessment methods presented here are anticipated to be useful to other technical communities conducting continuum physics-based simulations; for example, issues related to the establishment of simulation credibility in the discipline of propulsion are discussed. We envision that simulation creators will find this volume very useful to guide and assist them in quantitatively conveying the credibility of their simulations.

  13. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  14. Center for Technology for Advanced Scientific Componet Software (TASCS)

    SciTech Connect

    Govindaraju, Madhusudhan

    2010-10-31

    Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB. We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This

  15. Main drive selection for the Windstorm Simulation Center

    SciTech Connect

    Lacy, J.M.; Earl, J.S.

    1998-02-01

    Operated by the Partnership for Natural Disaster Reduction, the Windstorm Simulation Center (WSC) will be a structural test center dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. Within the WSC, a bank of high-power fans, the main drive, will produce the high velocity wind necessary to reproduce these storms. Several options are available for the main drive, each with advantages and liabilities. This report documents a study to identify and evaluate all candidates available, and to select the most promising system such that the best possible combination of real-world performance attributes is achieved at the best value. Four broad classes of candidate were identified: electric motors, turbofan aircraft engines, turboshaft aircraft engines, and turboshaft industrial engines. Candidate systems were evaluated on a basis of technical feasibility, availability, power, installed cost, and operating cost.

  16. Advances in NLTE Modeling for Integrated Simulations

    SciTech Connect

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  17. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  18. Center for Advanced Power and Energy Research (CAPEC)

    DTIC Science & Technology

    2015-01-01

    University structured through a cooperative research agreement. Our organizational focuses include: 1. Modeling of plasma physics 2. Modeling fuel cells 3...Testing new innovation and ideas for advanced fuel cells 4. Development of energy related issue for micro air vehicles (MAVs). 15. SUBJECT TERMS plasma ...1 2 Plasma Modeling

  19. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  20. Advanced Measurement Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.

    1998-01-01

    Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

  1. A Selection of Composites Simulation Practices at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2007-01-01

    One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.

  2. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  3. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  4. Advanced Material Intelligent Processing Center: Next Generation Scalable Lean Manufacturing

    DTIC Science & Technology

    2012-09-04

    machines and have made significant advances to automated tape laying (ATL) and automated fiber placement (AFP) technologies. Companies are moving...beyond standard thermoplastic and thermoset prepregs and are looking at placing 00A prepregs as well as dry fabrics. Today. Automated Tape Laying (ATL...References [1] Michael N. Grimshaw, " Automated Tape Laying ." in ASM Handbook Vol. 21 Composites.. ASM International, 2001. [2] Obaid Younossi. Michael

  5. Interoperable Technologies for Advanced Petascale Simulations

    SciTech Connect

    Li, Xiaolin

    2013-01-14

    Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of dynamic interface. We have migrated the hyperbolic, parabolic and elliptic solver from stage-wise second order toward global second order schemes. We have implemented high order coupling between interface propagation and interior PDE solvers. On the interface service, we have constructed the FronTier application programer's interface (API) and its manual page using doxygen. We installed the FronTier functional interface to conform with the ITAPS specifications, especially the iMesh and iMeshP interfaces. On applications, we have implemented deposition and dissolution models with flow and implemented the two-reactant model for a more realistic precipitation at the pore level and its coupling with Darcy level model. We have continued our support to the study of fluid mixing problem for problems in inertial comfinement fusion. We have continued our support to the MHD model and its application to plasma liner implosion in fusion confinement. We have simulated a step in the reprocessing and separation of spent fuels from nuclear power plant fuel rods. We have implemented the fluid-structure interaction for 3D windmill and parachute simulations. We have continued our collaboration with PNNL, BNL, LANL, ORNL, and other SciDAC institutions.

  6. 78 FR 26377 - National Center for Advancing Translational Sciences; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ..., Bethesda, MD 20892. Contact Person: Danilo A. Tagle, Ph.D., Executive Secretary, National Center for....Tagle@nih.gov . This notice is being published less than 15 days prior to the meeting due to scheduling...: Danilo A. Tagle, Ph.D., Executive Secretary, National Center for Advancing Translational, Sciences,...

  7. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  8. National Center for Advanced Information Components Manufacturing. Program summary report, Volume II

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

  9. SciDAC-Center for Plasma Edge Simulation Report

    SciTech Connect

    Parker, Steven

    2013-12-24

    The Common Component Architecture (CCA) effort is the embodiment of a long-range program of research and development into the formulation, roles, and use of component technologies in high-performance scientific computing. CCA components can interoperate with other components in a variety of frameworks, including SCIRun2 from the University of Utah. The SCIRun2 framework is also developing the ability to connect components from a variety of different models through a mechanism called meta-components. The meta component model operates by providing a plugin architecture for component models. Abstract components are manipulated and managed by the SCIRun2 framework, while concrete component models perform the actual work and communicate with each other directly. We will leverage the SCIRun2 framework and the Kepler system to orchestrate components in the Fusion Simulation Project (FSP) and to provide a CCA-based interface with Kepler. The groundwork for this functionality is being performed with the Scientific Data Management center. The SDM center is developing CCA-compliant interfaces for expressing and executing workflows and create workflow components based on SCIRun and Ptolemy (Kepler) execution engines, including development of uniform interfaces for selecting, starting, and monitoring scientific workflows. Accomplishments include Introduction to CCA and Simulation Software Systems, Introduction into SCIRun2 and Bridging within SCIRun2, CCALoop: A scalable design for a distributed component framework, and Combining Workflow methodologies with Component Architectures.

  10. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  11. Time parallelization of advanced operation scenario simulations of ITER plasma

    SciTech Connect

    Samaddar, D.; Casper, T. A.; Kim, S. H.; Berry, Lee A; Elwasif, Wael R; Batchelor, Donald B; Houlberg, Wayne A

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA - an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  12. Advanced interactive displays for deployable command and control centers

    NASA Astrophysics Data System (ADS)

    Jedrysik, Peter A.; Parada, Francisco E.; Stedman, Terrance A.; Zhang, Jingyuan

    2003-09-01

    Command and control in today's battlefield environment requires efficient and effective control of massive amounts of constantly changing information from a variety of databases and real-time sensors. Using advanced information technology for presentation and interactive control enables more extensive data fusion and correlation to present an accurate picture of the battlespace to commanders and their staffs. The Interactive DataWall being developed by the Advanced Displays and Intelligent Interfaces (ADII) technology team of the Air Force Research Laboratory's Information Directorate (AFRL/IF) is a strong contender for solving the information management problems facing the 21st century military commander. It provides an ultra high-resolution large screen display with multi-modal, wireless interaction. Commercial off-the-shelf (COTS) technology has been combined with specialized hardware and software developed in-house to provide a unique capability for multimedia data display and control. The technology once isolated to a laboratory environment has been packaged into deployable systems that have been successfully transitioned to support the warfighter in the field.

  13. Report on Advanced Life Support Activities at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2004-01-01

    Plant studies at Kennedy Space Center last year focused on selecting cultivars of lettuce, tomato, and pepper for further testing as crops for near-term space flight applications. Other testing continued with lettuce, onion, and radish plants grown at different combinations of light (PPF), temperature, and CO2 concentration. In addition, comparisons of mixed versus mono culture approaches for vegetable production were studied. Water processing testing focused on the development and testing of a rotating membrane bioreactor to increase oxygen diffusion levels for reducing total organic carbon levels and promoting nitrification. Other testing continued to study composting testing for food wastes (NRA grant) and the use of supplemental green light with red/blue LED lighting systems for plant production (NRC fellowship).

  14. Advances in Materials Research: An Internship at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Roberson, Luke B.

    2011-01-01

    My time at Kennedy Space Center. was spent immersing myself in research performed in the Materials Science Division of the Engineering Directorate. My Chemical Engineering background provided me the ability to assist in many different projects ranging from tensile testing of composite materials to making tape via an extrusion process. However, I spent the majority of my time on the following three projects: (1) testing three different materials to determine antimicrobial properties; (2) fabricating and analyzing hydrogen sensing tapes that were placed at the launch pad for STS-133 launch; and (3) researching molten regolith electrolysis at KSC to prepare me for my summer internship at MSFC on a closely related topic. This paper aims to explain, in detail, what I have learned about these three main projects. It will explain why this research is happening and what we are currently doing to resolve the issues. This paper will also explain how the hard work and experiences that I have gained as an intern have provided me with the next big step towards my career at NASA.

  15. Development of Advanced Hydrocarbon Fuels at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bai, S. D.; Dumbacher, P.; Cole, J. W.

    2002-01-01

    This was a small-scale, hot-fire test series to make initial measurements of performance differences of five new liquid fuels relative to rocket propellant-1 (RP-1). The program was part of a high-energy-density materials development at Marshall Space Flight Center (MSFC), and the fuels tested were quadricyclane, 1-7 octodiyne, AFRL-1, biclopropylidene, and competitive impulse noncarcinogenic hypergol (CINCH) (di-methyl-aminoethyl-azide). All tests were conducted at MSFC. The first four fuels were provided by the U.S. Air Force Research Laboratory (AFRL), Edwards Air Force Base, CA. The U.S. Army, Redstone Arsenal, Huntsville, AL, provided the CINCH. The data recorded in all hot-fire tests were used to calculate specific impulse and characteristic exhaust velocity for each fuel, then compared to RP-1 at the same conditions. This was not an exhaustive study, comparing each fuel to RP-1 at an array of mixture ratios, nor did it include important fuel parameters, such as fuel handling or long-term storage. The test hardware was designed for liquid oxygen (lox)/RP-1, then modified for gaseous oxygen/RP-1 to avoid two-phase lox at very small flow rates. All fuels were tested using the same thruster/injector combination designed for RP-1. The results of this test will be used to determine which fuels will be tested in future test programs.

  16. Implications of advanced collision operators for gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2017-04-01

    In this work, we explore both the potential improvements and pitfalls that arise when using advanced collision models in gyrokinetic simulations of plasma microinstabilities. Comparisons are made between the simple-but-standard electron Lorentz operator and specific variations of the advanced Sugama operator. The Sugama operator describes multi-species collisions including energy diffusion, momentum and energy conservation terms, and is valid for arbitrary wavelength. We report scans over collision frequency for both low and high {k}θ {ρ }s modes, with relevance for multiscale simulations that couple ion and electron scale physics. The influence of the ion–ion collision terms—not retained in the electron Lorentz model—on the damping of zonal flows is also explored. Collision frequency scans for linear and nonlinear simulations of ion-temperature-gradient instabilities including impurity ions are presented. Finally, implications for modeling turbulence in the highly collisional edge are discussed.

  17. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  18. SciDAC - Center for Plasma Edge Simulation - Project Summary

    SciTech Connect

    Parker, Scott

    2014-11-03

    Final Technical Report: Center for Plasma Edge Simulation (CPES) Principal Investigator: Scott Parker, University of Colorado, Boulder Description/Abstract First-principle simulations of edge pedestal micro-turbulence are performed with the global gyrokinetic turbulence code GEM for both low and high confinement tokamak plasmas. The high confinement plasmas show a larger growth rate, but nonlinearly a lower particle and heat flux. Numerical profiles are obtained from the XGC0 neoclassical code. XGC0/GEM code coupling is implemented under the EFFIS (“End-to-end Framework for Fusion Integrated Simulation”) framework. Investigations are underway to clearly identify the micro-instabilities in the edge pedestal using global and flux-tube gyrokinetic simulation with realistic experimental high confinement profiles. We use both experimental profiles and those obtained using the EFFIS XGC0/GEM coupled code framework. We find there are three types of instabilities at the edge: a low-n, high frequency electron mode, a high-n, low frequency ion mode, and possibly an ion mode like kinetic ballooning mode (KBM). Investigations are under way for the effects of the radial electric field. Finally, we have been investigating how plasmas dominated by ion-temperature gradient (ITG) driven turbulence, how cold Deuterium and Tritium ions near the edge will naturally pinch radially inward towards the core. We call this mechanism “natural fueling.” It is due to the quasi-neutral heat flux dominated nature of the turbulence and still applies when trapped and passing kinetic electron effects are included. To understand this mechanism, examine the situation where the electrons are adiabatic, and there is an ion heat flux. In such a case, lower energy particles move inward and higher energy particles move outward. If a trace amount of cold particles are added, they will move inward.

  19. The ADVANCE network: accelerating data value across a national community health center network

    PubMed Central

    DeVoe, Jennifer E; Gold, Rachel; Cottrell, Erika; Bauer, Vance; Brickman, Andrew; Puro, Jon; Nelson, Christine; Mayer, Kenneth H; Sears, Abigail; Burdick, Tim; Merrell, Jonathan; Matthews, Paul; Fields, Scott

    2014-01-01

    The ADVANCE (Accelerating Data Value Across a National Community Health Center Network) clinical data research network (CDRN) is led by the OCHIN Community Health Information Network in partnership with Health Choice Network and Fenway Health. The ADVANCE CDRN will ‘horizontally’ integrate outpatient electronic health record data for over one million federally qualified health center patients, and ‘vertically’ integrate hospital, health plan, and community data for these patients, often under-represented in research studies. Patient investigators, community investigators, and academic investigators with diverse expertise will work together to meet project goals related to data integration, patient engagement and recruitment, and the development of streamlined regulatory policies. By enhancing the data and research infrastructure of participating organizations, the ADVANCE CDRN will serve as a ‘community laboratory’ for including disadvantaged and vulnerable patients in patient-centered outcomes research that is aligned with the priorities of patients, clinics, and communities in our network. PMID:24821740

  20. Microgravity polymer and crystal growth at the Advanced Materials Center for the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    Mccauley, Lisa A.

    1990-01-01

    The microgravity research programs currently conducted by the Advanced Materials Center for the Commercial Development of Space (CCDS) are briefly reviewed. Polymer processing in space, which constitutes the most active microgravity program at the Advanced Materials CCDS, is conducted in three areas: membrane processing, multiphase composite behavior, and plasma polymerization. Current work in microgravity crystal growth is discussed with particular reference to the development of the Zeolite Crystal Growth facility.

  1. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    SciTech Connect

    Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

    2009-04-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  2. A review of the design and development processes of simulation for training in healthcare - A technology-centered versus a human-centered perspective.

    PubMed

    Persson, Johanna

    2017-01-01

    This article reviews literature about simulation systems for training in healthcare regarding the prevalence of human-centered approaches in the design and development of these systems, motivated by a tradition in this field of working technology-centered. The results show that the focus on human needs and context of use is limited. It is argued that a reduction of the focus on technical advancements in favor of the needs of the users and the healthcare community, underpinned by human factors and ergonomics theory, is favorable. Due to the low number of identified articles describing or discussing human-centered approaches it is furthermore concluded that the publication culture promotes technical descriptions and summative evaluations rather than descriptions and reflections regarding the design and development processes. Shifting the focus from a technology-centered approach to a human-centered one can aid in the process of creating simulation systems for training in healthcare that are: 1) relevant to the learning objectives, 2) adapted to the needs of users, context and task, and 3) not selected based on technical or fidelity criteria.

  3. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  4. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    SciTech Connect

    McCoy, Michel; Archer, Bill; Hendrickson, Bruce; Wade, Doug; Hoang, Thuc

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  5. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  6. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  7. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  8. Advances in Simulation of Wave Interaction with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; Abla, Gheni; D'Azevedo, Ed F; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, Joshua; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Foley, S.; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  9. Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Bonoli, P.; Bramley, Randall B; Breslau, Joshua; Elwasif, Wael R; Foley, S.; Jaeger, Erwin Frederick; Jardin, S. C.; Klasky, Scott A; Kruger, Scott E; Ku, Long-Poe; McCune, Douglas; Ramos, J.; Schissel, David P; Schnack, Dalton D

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  10. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    SciTech Connect

    Gu, Lixing; Shirey, Don; Raustad, Richard; Nigusse, Bereket; Sharma, Chandan; Lawrie, Linda; Strand, Rick; Pedersen, Curt; Fisher, Dan; Lee, Edwin; Witte, Mike; Glazer, Jason; Barnaby, Chip

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly

  11. The next frontier: stem cells and the Center for the Advancement of Science in Space.

    PubMed

    Ratliff, Duane

    2013-12-01

    The Center for the Advancement of Science in Space (CASIS) manages the International Space Station U.S. National Laboratory, supporting space-based research that seeks to improve life on Earth. The National Laboratory is now open for use by the broad scientific community--and CASIS is the gateway to this powerful in-orbit research platform.

  12. Community College Advanced Technology Centers: Meeting America's Need for Integrated, Comprehensive Economic Development.

    ERIC Educational Resources Information Center

    Hinckley, Richard; And Others

    By entering into partnerships with business and industry, community colleges are able to offset the high cost of remaining current with training techniques, job market skill requirements, and state-of-the-art hardware. The construction of advanced technology centers (ATCs) located on community college campuses is one key element supporting these…

  13. 78 FR 21131 - National Center for Advancing Translational Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Democracy Plaza, 6701 Democracy Boulevard, Bethesda, MD 20892, (Telephone Conference Call). Contact Person... Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 6701 Democracy Blvd., Democracy 1, Room 1084, Bethesda, MD 20892-4874, 301-435-0829, mv10f@nih.gov . Name of Committee:...

  14. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  15. Theoretical simulations of I-center annealing in KCl crystals

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Kotomin, E. A.; Eglitis, R. I.

    1995-12-01

    This paper focus on theory of diffusion-controlled annealing of the most mobile radiation-induced defects?I centers?in KCl crystals. The kinetics of annealing of pairs of close oppositely charged defects?α-I centers (arising as a result of the tunnelling recombination of primary Frenkel defects?F and H centers) and F-I centers (when H center trap electrons) is calculated taking into account defect diffusion and Coulomb/elastic interaction. Special attention is paid to the conditions under which multi-stage annealing arises; theoretical results are compared with the relevant experimental data.

  16. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    SciTech Connect

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a

  17. Mary S. Easton Center of Alzheimer's Disease Research at UCLA: advancing the therapeutic imperative.

    PubMed

    Cummings, Jeffrey L; Ringman, John; Metz, Karen

    2010-01-01

    The Mary S. Easton Center for Alzheimer's Disease Research (UCLA-Easton Alzheimer's Center) is committed to the "therapeutic imperative" and is devoted to finding new treatments for Alzheimer's disease (AD) and to developing technologies (biomarkers) to advance that goal. The UCLA-Easton Alzheimer's Center has a continuum of research and research-related activities including basic/foundational studies of peptide interactions; translational studies in transgenic animals and other animal models of AD; clinical research to define the phenotype of AD, characterize familial AD, develop biomarkers, and advance clinical trials; health services and outcomes research; and active education, dissemination, and recruitment activities. The UCLAEaston Alzheimer's Center is supported by the National Institutes on Aging, the State of California, and generous donors who share our commitment to developing new therapies for AD. The naming donor (Jim Easton) provided substantial funds to endow the center and to support projects in AD drug discovery and biomarker development. The Sidell-Kagan Foundation supports the Katherine and Benjamin Kagan Alzheimer's Treatment Development Program, and the Deane F. Johnson Alzheimer's Research Foundation supports the Deane F. Johnson Center for Neurotherapeutics at UCLA. The John Douglas French Alzheimer's Research Foundation provides grants to junior investigators in critical periods of their academic development. The UCLA-Easton Alzheimer's Center partners with community organizations including the Alzheimer's Association California Southland Chapter and the Leeza Gibbons memory Foundation. Collaboration with pharmaceutical companies, biotechnology companies, and device companies is critical to developing new therapeutics for AD and these collaborations are embraced in the mission of the UCLA-Easton Alzheimer's Center. The Center supports excellent senior 3 investigators and serves as an incubator for new scientists, agents, models, technologies

  18. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  19. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  20. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  1. Advanced Virtual Reality Simulations in Aerospace Education and Research

    NASA Astrophysics Data System (ADS)

    Plotnikova, L.; Trivailo, P.

    2002-01-01

    Recent research developments at Aerospace Engineering, RMIT University have demonstrated great potential for using Virtual Reality simulations as a very effective tool in advanced structures and dynamics applications. They have also been extremely successful in teaching of various undergraduate and postgraduate courses for presenting complex concepts in structural and dynamics designs. Characteristic examples are related to the classical orbital mechanics, spacecraft attitude and structural dynamics. Advanced simulations, reflecting current research by the authors, are mainly related to the implementation of various non-linear dynamic techniques, including using Kane's equations to study dynamics of space tethered satellite systems and the Co-rotational Finite Element method to study reconfigurable robotic systems undergoing large rotations and large translations. The current article will describe the numerical implementation of the modern methods of dynamics, and will concentrate on the post-processing stage of the dynamic simulations. Numerous examples of building Virtual Reality stand-alone animations, designed by the authors, will be discussed in detail. These virtual reality examples will include: The striking feature of the developed technology is the use of the standard mathematical packages, like MATLAB, as a post-processing tool to generate Virtual Reality Modelling Language files with brilliant interactive, graphics and audio effects. These stand-alone demonstration files can be run under Netscape or Microsoft Explorer and do not require MATLAB. Use of this technology enables scientists to easily share their results with colleagues using the Internet, contributing to the flexible learning development at schools and Universities.

  2. Simulated herbivory advances autumn phenology in Acer rubrum.

    PubMed

    Forkner, Rebecca E

    2014-05-01

    To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple (Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ∼7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ~16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.

  3. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  4. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  5. EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation

    SciTech Connect

    Fan, Xuetong

    2000-08-20

    Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

  6. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  7. Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.

    2017-01-01

    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.

  8. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  9. Recent advances of strong-strong beam-beam simulation

    SciTech Connect

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  10. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  11. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  12. Final Report for "Center for Technology for Advanced Scientific Component Software"

    SciTech Connect

    Svetlana Shasharina

    2010-12-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  13. Advanced Shuttle Simulation Turbulence Tapes (SSTT) users guide

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1981-01-01

    A nonrecursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity and also for simulation of instantaneous gust gradients. Based on this model, the time series for both gusts and gust gradients was generated and stored on a series of magnetic tapes which are entitled shuttle simulation turbulence tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. An appropriate description of the characteristics of the simulated turbulence stored on the tapes, as well as instructions regarding their proper use are provided. The characteristics of the turbulence series, including the spectral shape, cutoff frequencies, and variation of turbulence parameters with altitude, are discussed. Information regarding the tapes and their use is presented. Appendices provide results of spectral and statistical analyses of the SSTT and examples of how the SSTT should be used.

  14. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  15. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Astrophysics Data System (ADS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-12-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  16. Patterns of treatment and costs of intermediate and advanced hepatocellular carcinoma management in four Italian centers

    PubMed Central

    Colombo, Giorgio Lorenzo; Cammà, Calogero; Attili, Adolfo Francesco; Ganga, Roberto; Gaeta, Giovanni Battista; Brancaccio, Giuseppina; Franzini, Jean Marie; Volpe, Marco; Turchetti, Giuseppe

    2015-01-01

    Background Hepatocellular carcinoma (HCC) is a severe health condition associated with high hospitalizations and mortality rates, which also imposes a relevant economic burden. Purpose The aim of the present survey is to investigate treatment strategies and related costs for HCC in the intermediate and advanced stages of the disease. Patients and methods The survey was conducted in four Italian centers through structured interviews with physicians. Information regarding the stage of disease, treatments performed, and related health care resource consumption was included in the questionnaire. Direct health care cost per patient associated with the most relevant treatments such as sorafenib, transarterial chemoembolization (TACE), and transarterial radioembolization (TARE) was evaluated. Results Between 2013 and 2014, 285 patients with HCC were treated in the four participating centers; of these, 80 were in intermediate stage HCC (Barcelona Clinic Liver Cancer Classification [BCLC] B), and 57 were in the advanced stage of the disease (BCLC C). In intermediate stage HCC, the most frequent first-line treatment was TACE (63%) followed by sorafenib (15%), radiofrequency ablation (14%), and TARE (1.3%). In the advanced stage of HCC, the most frequently used first-line therapy was sorafenib (56%), followed by best supportive care (21%), TACE (18%), and TARE (3.5%). The total costs of treatment per patient amounted to €12,214.54 with sorafenib, €13,418.49 with TACE, and €26,106.08 with TARE. Both in the intermediate and in the advanced stage of the disease, variability in treatment patterns among centers was observed. Conclusion The present analysis raises for the first time the awareness of the overall costs incurred by the Italian National Healthcare System for different treatments used in intermediate and advanced HCC. Further investigations would be important to better understand the effective health care resource usage. PMID:26527877

  17. Graphics simulation and training aids for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1993-01-01

    Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.

  18. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  19. Mechanical design of NASA Ames Research Center vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  20. Design Model for Learner-Centered, Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Hawley, Chandra L.; Duffy, Thomas M.

    This paper presents a model for designing computer-based simulation environments within a constructivist framework for the K-12 school setting. The following primary criteria for the development of simulations are proposed: (1) the problem needs to be authentic; (2) the cognitive demand in learning should be authentic; (3) scaffolding supports a…

  1. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  2. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    SciTech Connect

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr.; Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  3. C-130 Advanced Technology Center wing box conceptual design/cost study

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.; Foreman, C. R.; Silva, K.

    1992-01-01

    A conceptual design was developed by Northrop/LTV for an advanced C-130 Center Wing Box (CWB) which could meet the severe mission requirements of the SOF C-130 aircraft. The goals for the advanced technology CWB relative to the current C-130H CWB were: (1) the same acquisition cost; (2) lower operating support costs; (3) equal or lower weight; (4) a 30,000 hour service life for the SOF mission; and (5) minimum impact on the current maintenance concept. Initially, the structural arrangement, weight, external and internal loads, fatigue spectrum, flutter envelope and design criteria for the SOF C-130 aircraft CWB were developed. An advanced materials assessment was then conducted to determine the suitability of advanced materials for a 1994 production availability and detailed trade studies were performed on candidate CWB conceptual designs. Finally, a life-cycle cost analysis was performed on the advanced CWB. The study results showed that a hybrid composite/metallic CWB could meet the severe SOF design requirements, reduce the CWB weight by 14 pct., and was cost effective relative to an all metal beefed up C-130H CWB.

  4. Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration

    SciTech Connect

    Meza, Juan; Hubbard, Susan; Freshley, Mark D.; Gorton, Ian; Moulton, David; Denham, Miles E.

    2011-03-07

    The U.S. Department of Energy Office of Environmental Management, Technology Innovation and Development (EM-32), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high performance computing tool will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. As part of the initial development process, a series of demonstrations were defined to test ASCEM components and provide feedback to developers, engage end users in applications, and lead to an outcome that would benefit the sites. The demonstration was implemented for a sub-region of the Savannah River Site General Separations Area that includes the F-Area Seepage Basins. The physical domain included the unsaturated and saturated zones in the vicinity of the seepage basins and Fourmile Branch, using an unstructured mesh fit to the hydrostratigraphy and topography of the site. The calculations modeled variably saturated flow and the resulting flow field was used in simulations of the advection of non-reactive species and the reactive-transport of uranium. As part of the demonstrations, a new set of data management, visualization, and uncertainty quantification tools were developed to analyze simulation results and existing site data. These new tools can be used to provide summary statistics, including information on which simulation parameters were most important in the prediction of uncertainty and to visualize the relationships between model input and output.

  5. Simulation of Electronic Center Formation by Irradiation in Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Yeritsyan, H. N.; Sahakyan, A. A.; Grigoryan, N. E.; Harutyunyan, V. V.; Tsakanov, V. M.; Grigoryan, B. A.; Yeremyan, A. S.; Amatuni, G. A.

    2017-02-01

    We present the results of a study on localized electronic centers formed in crystals by external influences (impurity introduction and irradiation). The main aim is to determine the nature of these centers in the forbidden gap of the energy states of the crystal lattice. For the case of semiconductors, silicon (Si) was applied as model material to determine the energy levels and concentration of radiation defects for application to both doped and other materials. This method relies on solving the appropriate equation describing the variation of the charge carrier concentration as a function of temperature n( T) for silicon crystals with two different energy levels and for a large set of N 1, N 2 (concentrations of electronic centers at each level), and n values. A total of almost 500 such combinations were found. For silicon, energy level values of ɛ 1 = 0.22 eV and ɛ 2 = 0.34 eV were used for the forbidden gap (with corresponding slopes determined from experimental temperature-dependent Hall-effect measurements) and compared with photoconductivity spectra. Additionally, it was shown that, for particular correlations among N 1, N 2, and n, curve slopes of ɛ 1/2 = 0.11 eV, ɛ 2/2 = 0.17 eV, and α = 1/2( ɛ 1 + ɛ 2) = 0.28 eV also apply. Comparison between experimental results for irradiation of silicon crystals by 3.5-MeV energy electrons and Co60 γ-quanta revealed that the n( T) curve slopes do not always coincide with the actual energy levels (electronic centers).

  6. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  7. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-09-15

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  8. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  9. SciDAC Center for Plasma Edge Simulation

    SciTech Connect

    Lin, Zhihong

    2013-12-17

    This project with a total funding of $592,998 for six years has partially supported four postdoctoral researchers at the University of California, Irvine (UCI). The UCI team has formulated electrostatic and electromagnetic global gyrokinetic particle simulation models with kinetic electrons, implemented these models in the edge code XGC1, performed benchmark between GTC and XGC1, developed computational tools for gyrokinetic particle simulation in tokamak edge geometry, and initiated preparatory study of edge turbulence using GTC code. The research results has been published in 12 papers and presented at many international and national conferences.

  10. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  11. Using Simulated Job Samples for Skills Evaluation: Learning from the Assessment Center Method.

    ERIC Educational Resources Information Center

    Thoresen, Joseph D.; Robinson, Linda E.

    1984-01-01

    Discusses the assessment center approach to employee selection and describes its background, history and use, methodology (including simulation and observation), and possible applications, including its use in a professional certification program for instructional/training designers. (MBR)

  12. The National Center for Collaboration in Medical Modeling and Simulation

    DTIC Science & Technology

    2005-05-01

    4 T ask 2 - T echnology D evelopm ent ...................................................................... 9 Task 3 - Simulators and Curriculum...offices, clinics, and even in mobile blood vehicles. Further, there are a number of concerns with respect to patient safety. According to Mishori... mobilization exposes more personnel to novel pathogens or if the stress of war down regulates immune function. Table 7. Similarity of ICD Profiles for

  13. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  14. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  15. A new synchrotron light source at Louisiana State University's Center for Advanced Microstructures and Devices

    NASA Astrophysics Data System (ADS)

    Stockbauer, Roger L.; Ajmera, Pratul; Poliakoff, Erwin D.; Craft, Ben C.; Saile, Volker

    1990-05-01

    A 1.2-GeV synchrotron light source is being constructed at the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University. The expressed purpose of the center, which has been funded by a grant from the US Department of Energy, is to develop X-ray lithography techniques for manufacturing microcircuits, although basic science programs are also being established. The storage ring will be optimized for the soft-X-ray region and will be the first commercially manufactured electron storage ring in the United States. The magnetic lattice is based on a design developed by Chasman and Green and will allow up to three insertion devices to be installed for higher-energy and higher-intensity radiation. In addition to the lithography effort, experimental programs are being established in physics, chemistry, and related areas.

  16. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  17. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  18. Advancing LGBT Health at an Academic Medical Center: A Case Study.

    PubMed

    Yehia, Baligh R; Calder, Daniel; Flesch, Judd D; Hirsh, Rebecca L; Higginbotham, Eve; Tkacs, Nancy; Crawford, Beverley; Fishman, Neil

    2015-12-01

    Academic health centers are strategically positioned to impact the health of lesbian, gay, bisexual and transgender (LGBT) populations by advancing science, educating future generations of providers, and delivering integrated care that addresses the unique health needs of the LGBT community. This report describes the early experiences of the Penn Medicine Program for LGBT Health, highlighting the favorable environment that led to its creation, the mission and structure of the Program, strategic planning process used to set priorities and establish collaborations, and the reception and early successes of the Program.

  19. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  20. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  1. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  2. Induced Stress, Artificial Environment, Simulated Tactical Operations Center Model

    DTIC Science & Technology

    1973-06-01

    components carried by four 2½ ton 6x6 trucks with M -292 expansible vans. c. Provide students with all reference mraterial needed to complete each task. d ...Bacon, LIn. "".’A Coa-,-un ica i.ion Pa tte ms mm, ’ns k-Or-icntcd (Ciup:.,, ~~~f’I𔃻>/;~1! :~: efl~flmmd’C,-,ory, D . C-ArtWr-iglmtI aad A. ~. m (ct.,Row...June 1968. Jackson, Jay M . and flerbert D . SaI.tzstrin. Croup Ilembers’iip and Corfori,ity 1rocesses, Research Center for Group Dynar.c., *LV. LUL. for

  3. Center for Plasma Edge Simulation (CPES) -- Rutgers University Final Report

    SciTech Connect

    Parashar, Manish

    2014-03-06

    The CPES scientific simulations run at scale on leadership class machines, collaborate at runtime and produce and exchange large data sizes, which present multiple I/O and data management challenges. During the CPES project, the Rutgers team worked with the rest of the CPES team to address these challenges at different levels, and specifically (1) at the data transport and communication level through the DART (Decoupled and Asynchronous Remote Data Transfers) framework, and (2) at the data management and services level through the DataSpaces and ActiveSpaces frameworks. These frameworks and their impact are briefly described.

  4. Final Technical Report for Center for Plasma Edge Simulation Research

    SciTech Connect

    Pankin, Alexei Y.; Bateman, Glenn; Kritz, Arnold H.

    2012-02-29

    The CPES research carried out by the Lehigh fusion group has sought to satisfy the evolving requirements of the CPES project. Overall, the Lehigh group has focused on verification and validation of the codes developed and/or integrated in the CPES project. Consequently, contacts and interaction with experimentalists have been maintained during the course of the project. Prof. Arnold Kritz, the leader of the Lehigh Fusion Group, has participated in the executive management of the CPES project. The code development and simulation studies carried out by the Lehigh fusion group are described in more detail in the sections below.

  5. Towards Interactive Medical Content Delivery Between Simulated Body Sensor Networks and Practical Data Center.

    PubMed

    Shi, Xiaobo; Li, Wei; Song, Jeungeun; Hossain, M Shamim; Mizanur Rahman, Sk Md; Alelaiwi, Abdulhameed

    2016-10-01

    With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.

  6. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  7. South Carolina Center for the Advancement of Teaching and School Leadership: Professional Development Schools. Policy Paper Series 1.3.

    ERIC Educational Resources Information Center

    Gottesman, Barbara; And Others

    In 1990, the South Carolina Center for the Advancement of Teaching and School Leadership was established by the state's legislature to provide support to schools undergoing or planning restructuring. The Center assists schools to analyze needs, establish goals, and implement those goals. Technical assistance and college and school faculty training…

  8. The role of university and college counseling centers in advancing the professionalization of psychology.

    PubMed

    Bingham, Rosie Phillips

    2015-11-01

    Psychologists in university and college counseling centers (UCCCs) have helped to shape and advance the professionalization of psychology. Most definitions of a profession contain at least 5 components. A profession has (1) systematic theories and underlying principles; (2) authority to practice provided by the client; (3) a long educational process, including training and mentoring; (4) standards and a code of ethics; and (5) a culture of service and accountability to the public. UCCC professionals have evolved in a manner that demonstrates all 5 components of a profession. They advance the discipline of psychology as a profession through their counseling interventions because such interventions are based on scientific theories and principles. While their practice rests on scientific principles, their work helps to confirm and modify that science. Authority to practice is evidenced by the continuous growth of counseling centers since World War II. UCCCs aid the extended educational process for psychology graduate students as evidenced by their providing more internship training sites than any other category of training agencies. The majority of UCCC professionals are licensed and must abide by their state code of ethics. Such codes hold psychologists accountable to the public because they regularly deliver counseling service to at least 10% of the campus student population and offer outreach services to many more in their communities.

  9. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    PubMed

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-02-24

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

  10. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  11. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  12. NCC Simulation Model: Simulating the operations of the network control center, phase 2

    NASA Technical Reports Server (NTRS)

    Benjamin, Norman M.; Paul, Arthur S.; Gill, Tepper L.

    1992-01-01

    The simulation of the network control center (NCC) is in the second phase of development. This phase seeks to further develop the work performed in phase one. Phase one concentrated on the computer systems and interconnecting network. The focus of phase two will be the implementation of the network message dialogues and the resources controlled by the NCC. These resources are requested, initiated, monitored and analyzed via network messages. In the NCC network messages are presented in the form of packets that are routed across the network. These packets are generated, encoded, decoded and processed by the network host processors that generate and service the message traffic on the network that connects these hosts. As a result, the message traffic is used to characterize the work done by the NCC and the connected network. Phase one of the model development represented the NCC as a network of bi-directional single server queues and message generating sources. The generators represented the external segment processors. The served based queues represented the host processors. The NCC model consists of the internal and external processors which generate message traffic on the network that links these hosts. To fully realize the objective of phase two it is necessary to identify and model the processes in each internal processor. These processes live in the operating system of the internal host computers and handle tasks such as high speed message exchanging, ISN and NFE interface, event monitoring, network monitoring, and message logging. Inter process communication is achieved through the operating system facilities. The overall performance of the host is determined by its ability to service messages generated by both internal and external processors.

  13. An efficient time advancing strategy for energy-preserving simulations

    NASA Astrophysics Data System (ADS)

    Capuano, F.; Coppola, G.; de Luca, L.

    2015-08-01

    Energy-conserving numerical methods are widely employed within the broad area of convection-dominated systems. Semi-discrete conservation of energy is usually obtained by adopting the so-called skew-symmetric splitting of the non-linear convective term, defined as a suitable average of the divergence and advective forms. Although generally allowing global conservation of kinetic energy, it has the drawback of being roughly twice as expensive as standard divergence or advective forms alone. In this paper, a general theoretical framework has been developed to derive an efficient time-advancement strategy in the context of explicit Runge-Kutta schemes. The novel technique retains the conservation properties of skew-symmetric-based discretizations at a reduced computational cost. It is found that optimal energy conservation can be achieved by properly constructed Runge-Kutta methods in which only divergence and advective forms for the convective term are used. As a consequence, a considerable improvement in computational efficiency over existing practices is achieved. The overall procedure has proved to be able to produce new schemes with a specified order of accuracy on both solution and energy. The effectiveness of the method as well as the asymptotic behavior of the schemes is demonstrated by numerical simulation of Burgers' equation.

  14. An Advanced Leakage Scheme for Neutrino Treatment in Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Perego, A.; Cabezón, R. M.; Käppeli, R.

    2016-04-01

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  15. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS

    SciTech Connect

    Perego, A.; Cabezón, R. M.; Käppeli, R.

    2016-04-15

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  16. Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  17. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  18. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  19. Advanced wellbore thermal simulator GEOTEMP2 research report

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

  20. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Lu, Lu; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-04-01

    Background: Advanced intercross lines (AIL) are segregating populations created using a multi-generation breeding protocol for fine mapping complex trait loci (QTL) in mice and other organisms. Applying QTL mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of AIL family structure in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with na ve mapping approaches in AIL populations is that the individual is not an exchangeable unit. Methodology/Principal Findings: The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. GRAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels, which are corrected using GRAIP. GRAIP also detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance: GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. The effect of

  1. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect

    Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for

  2. The rehabilitation engineering research center for the advancement of cognitive technologies.

    PubMed

    Heyn, Patricia Cristine; Cassidy, Joy Lucille; Bodine, Cathy

    2015-02-01

    Barring few exceptions, allied health professionals, engineers, manufacturers of assistive technologies (ATs), and consumer product manufacturers have developed few technologies for individuals with cognitive impairments (CIs). In 2004, the National Institute on Disability Rehabilitation Research (NIDRR) recognized the need to support research in this emergent field. They funded the first Rehabilitation Engineering Research Center for the Advancement of Cognitive Technologies (RERC-ACT). The RERC-ACT has since designed and evaluated existing and emerging technologies through rigorous research, improving upon existing AT devices, and creating new technologies for individuals with CIs. The RERC-ACT has contributed to the development and testing of AT products that assist persons with CIs to actively engage in tasks of daily living at home, school, work, and in the community. This article highlights the RERC-ACT's engineering development and research projects and discusses how current research may impact the quality of life for an aging population.

  3. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  4. Examining the Role of Gender in Career Advancement at the Centers for Disease Control and Prevention

    PubMed Central

    Roy, Kakoli; Gotway Crawford, Carol A.

    2010-01-01

    During the past decade, efforts to promote gender parity in the healing and public health professions have met with only partial success. We provide a critical update regarding the status of women in the public health profession by exploring gender-related differences in promotion rates at the nation's leading public health agency, the Centers for Disease Control and Prevention (CDC). Using personnel data drawn from CDC, we found that the gender gap in promotion has diminished across time and that this reduction can be attributed to changes in individual characteristics (e.g., higher educational levels and more federal work experience). However, a substantial gap in promotion that cannot be explained by such characteristics has persisted, indicating continuing barriers in women's career advancement. PMID:20075327

  5. Examining the role of gender in career advancement at the Centers for Disease Control and Prevention.

    PubMed

    Chen, Zhuo; Roy, Kakoli; Gotway Crawford, Carol A

    2010-03-01

    During the past decade, efforts to promote gender parity in the healing and public health professions have met with only partial success. We provide a critical update regarding the status of women in the public health profession by exploring gender-related differences in promotion rates at the nation's leading public health agency, the Centers for Disease Control and Prevention (CDC). Using personnel data drawn from CDC, we found that the gender gap in promotion has diminished across time and that this reduction can be attributed to changes in individual characteristics (e.g., higher educational levels and more federal work experience). However, a substantial gap in promotion that cannot be explained by such characteristics has persisted, indicating continuing barriers in women's career advancement.

  6. STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). CBS television camera personnel record MCC activities at Spacecraft Communicator (CAPCOM) and Flight Activities Officer (FAO) (foreground) consoles for '48 Hours' program to be broadcast at a later date. The integrated simulation involved communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. MCC FCR visual displays are seen in front of the rows of consoles.

  7. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  8. Center to Advance Palliative Care palliative care clinical care and customer satisfaction metrics consensus recommendations.

    PubMed

    Weissman, David E; Morrison, R Sean; Meier, Diane E

    2010-02-01

    Data collection and analysis are vital for strategic planning, quality improvement, and demonstration of palliative care program impact to hospital administrators, private funders and policymakers. Since 2000, the Center to Advance Palliative Care (CAPC) has provided technical assistance to hospitals, health systems and hospices working to start, sustain, and grow nonhospice palliative care programs. CAPC convened a consensus panel in 2008 to develop recommendations for specific clinical and customer metrics that programs should track. The panel agreed on four key domains of clinical metrics and two domains of customer metrics. Clinical metrics include: daily assessment of physical/psychological/spiritual symptoms by a symptom assessment tool; establishment of patient-centered goals of care; support to patient/family caregivers; and management of transitions across care sites. For customer metrics, consensus was reached on two domains that should be tracked to assess satisfaction: patient/family satisfaction, and referring clinician satisfaction. In an effort to ensure access to reliably high-quality palliative care data throughout the nation, hospital palliative care programs are encouraged to collect and report outcomes for each of the metric domains described here.

  9. Fulvestrant in advanced breast cancer following tamoxifen and aromatase inhibition: a single center experience.

    PubMed

    Wang, Jayson; Jain, Sandeep; Coombes, Charles R; Palmieri, Carlo

    2009-01-01

    Fulvestrant is a pure estrogen receptor (ER) antagonist with no agonist effects. We describe the experience of a single center involving 45 postmenopausal women with advanced breast cancer where fulvestrant was utilized following progression on tamoxifen and a third generation aromatase inhibitor. Patients received fulvestrant as first line one (2%), second line 18 (40%), third line 13 (29%), fourth line 10 (22%), and fifth line three (7%) treatment. Median duration of treatment with Fulvestrant was 4 months (range 1-20 months). One patient had a partial response, 14 other (31%) experienced clinical benefit (CB) (defined as response or stable disease for at least 6 months). The median time to progression (TTP) from initiation of fulvestrant was 4 months (range 1-20 months) and the median survival was 10 months (range 1-55 months). In those patients who experienced CB the median TTP was 10 months (range 6-20) and median survival was 21 months (range 7-55). Fulvestrant was well tolerated; two patients experienced side effects severe enough to stop therapy. Despite the fact that fulvestrant was used in the majority of cases, later in the treatment sequence CB was seen in a number of patients. This data suggest fulvestrant is well tolerated and is a useful treatment option in patients with advanced breast cancer who progress on prior endocrine treatment.

  10. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  11. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  12. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  13. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  14. Processing and Preparation of Advanced Stirling Convertors for Extended Operation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Peggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  15. Meaning-centered group psychotherapy for patients with advanced cancer: a pilot randomized controlled trial

    PubMed Central

    Breitbart, William; Rosenfeld, Barry; Gibson, Christopher; Pessin, Hayley; Poppito, Shannon; Nelson, Christian; Tomarken, Alexis; Timm, Anne Kosinski; Berg, Amy; Jacobson, Colleen; Sorger, Brooke; Abbey, Jennifer; Olden, Megan

    2013-01-01

    Objectives An increasingly important concern for clinicians who care for patients at the end of life is their spiritual well-being and sense of meaning and purpose in life. In response to the need for short-term interventions to address spiritual well-being, we developed Meaning Centered Group Psychotherapy (MCGP) to help patients with advanced cancer sustain or enhance a sense of meaning, peace and purpose in their lives, even as they approach the end of life. Methods Patients with advanced (stage III or IV) solid tumor cancers (N = 90) were randomly assigned to either MCGP or a supportive group psychotherapy (SGP). Patients were assessed before and after completing the 8-week intervention, and again 2 months after completion. Outcome assessment included measures of spiritual well-being, meaning, hopelessness, desire for death, optimism/pessimism, anxiety, depression and overall quality of life. Results MCGP resulted in significantly greater improvements in spiritual well-being and a sense of meaning. Treatment gains were even more substantial (based on effect size estimates) at the second follow-up assessment. Improvements in anxiety and desire for death were also significant (and increased over time). There was no significant improvement on any of these variables for patients participating in SGP. Conclusions MCGP appears to be a potentially beneficial intervention for patients’ emotional and spiritual suffering at the end of life. Further research, with larger samples, is clearly needed to better understand the potential benefits of this novel intervention. PMID:19274623

  16. Pilot Randomized Controlled Trial of Individual Meaning-Centered Psychotherapy for Patients With Advanced Cancer

    PubMed Central

    Breitbart, William; Poppito, Shannon; Rosenfeld, Barry; Vickers, Andrew J.; Li, Yuelin; Abbey, Jennifer; Olden, Megan; Pessin, Hayley; Lichtenthal, Wendy; Sjoberg, Daniel; Cassileth, Barrie R.

    2012-01-01

    Purpose Spiritual well-being and sense of meaning are important concerns for clinicians who care for patients with cancer. We developed Individual Meaning-Centered Psychotherapy (IMCP) to address the need for brief interventions targeting spiritual well-being and meaning for patients with advanced cancer. Patients and Methods Patients with stage III or IV cancer (N = 120) were randomly assigned to seven sessions of either IMCP or therapeutic massage (TM). Patients were assessed before and after completing the intervention and 2 months postintervention. Primary outcome measures assessed spiritual well-being and quality of life; secondary outcomes included anxiety, depression, hopelessness, symptom burden, and symptom-related distress. Results Of the 120 participants randomly assigned, 78 (65%) completed the post-treatment assessment and 67 (56%) completed the 2-month follow-up. At the post-treatment assessment, IMCP participants demonstrated significantly greater improvement than the control condition for the primary outcomes of spiritual well-being (b = 0.39; P <.001, including both components of spiritual well-being (sense of meaning: b = 0.34; P = .003 and faith: b = 0.42; P = .03), and quality of life (b = 0.76; P = .013). Significantly greater improvements for IMCP patients were also observed for the secondary outcomes of symptom burden (b = −6.56; P < .001) and symptom-related distress (b = −0.47; P < .001) but not for anxiety, depression, or hopelessness. At the 2-month follow-up assessment, the improvements observed for the IMCP group were no longer significantly greater than those observed for the TM group. Conclusion IMCP has clear short-term benefits for spiritual suffering and quality of life in patients with advanced cancer. Clinicians working with patients who have advanced cancer should consider IMCP as an approach to enhance quality of life and spiritual well-being. PMID:22370330

  17. Creating Interoperable Meshing and Discretization Software: The Terascale Simulation Tools and Technology Center

    SciTech Connect

    Brown, D.; Freitag, L.; Glimm, J.

    2002-03-28

    We present an overview of the technical objectives of the Terascale Simulation Tools and Technologies center. The primary goal of this multi-institution collaboration is to develop technologies that enable application scientists to easily use multiple mesh and discretization strategies within a single simulation on terascale computers. The discussion focuses on our efforts to create interoperable mesh generation tools, high-order discretization techniques, and adaptive meshing strategies.

  18. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    SciTech Connect

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-15

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  19. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-01-01

    Abstract Background Advanced intercross lines (AIL) are segregating populations created using a multigeneration breeding protocol for fine mapping complex traits in mice and other organisms. Applying quantitative trait locus (QTL) mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of family structure in AIL populations in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with a na ve mapping approach in such AIL populations is that the individual is not an exchangeable unit given the family structure. Methodology/Principal Findings The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. RAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome- ide significance thresholds and locus-specific P-values for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels in our AIL population, which are corrected by use of GRAIP. We also show that GRAIP detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance GRAIP determines appropriate genome-wide significance thresholds

  20. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  1. Supplemental final environmental impact statement for advanced solid rocket motor testing at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.

  2. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  3. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    SciTech Connect

    Piccinini, M. Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M.; Ambrosini, F.; Nichelatti, E.

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  4. A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.

  5. The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility.

    PubMed

    Ku, Joy P; Hicks, Jennifer L; Hastie, Trevor; Leskovec, Jure; Ré, Christopher; Delp, Scott L

    2015-11-01

    Regular physical activity helps prevent heart disease, stroke, diabetes, and other chronic diseases, yet a broad range of conditions impair mobility at great personal and societal cost. Vast amounts of data characterizing human movement are available from research labs, clinics, and millions of smartphones and wearable sensors, but integration and analysis of this large quantity of mobility data are extremely challenging. The authors have established the Mobilize Center (http://mobilize.stanford.edu) to harness these data to improve human mobility and help lay the foundation for using data science methods in biomedicine. The Center is organized around 4 data science research cores: biomechanical modeling, statistical learning, behavioral and social modeling, and integrative modeling. Important biomedical applications, such as osteoarthritis and weight management, will focus the development of new data science methods. By developing these new approaches, sharing data and validated software tools, and training thousands of researchers, the Mobilize Center will transform human movement research.

  6. The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility

    PubMed Central

    Ku, Joy P; Hicks, Jennifer L; Hastie, Trevor; Leskovec, Jure; Ré, Christopher

    2015-01-01

    Regular physical activity helps prevent heart disease, stroke, diabetes, and other chronic diseases, yet a broad range of conditions impair mobility at great personal and societal cost. Vast amounts of data characterizing human movement are available from research labs, clinics, and millions of smartphones and wearable sensors, but integration and analysis of this large quantity of mobility data are extremely challenging. The authors have established the Mobilize Center (http://mobilize.stanford.edu) to harness these data to improve human mobility and help lay the foundation for using data science methods in biomedicine. The Center is organized around 4 data science research cores: biomechanical modeling, statistical learning, behavioral and social modeling, and integrative modeling. Important biomedical applications, such as osteoarthritis and weight management, will focus the development of new data science methods. By developing these new approaches, sharing data and validated software tools, and training thousands of researchers, the Mobilize Center will transform human movement research. PMID:26272077

  7. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  8. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based

  9. Instrumentation for synchrotron based micromachining at the Center for Advanced Microstructures and Devices (abstract)

    NASA Astrophysics Data System (ADS)

    Aigeldinger, G.; Goettert, J.; Desta, Y.; Ling, Z. L.; Rupp, L.

    2002-03-01

    The J. Bennett Johnston Sr., Center for Advanced Microstructures and Devices (CAMD) is a synchrotron radiation facility owned by Louisiana State University and operated with financial support from the State of Louisiana (for information how to submit a project proposal go to: http://www.camd.lsu.edu). The centerpiece of CAMD is a 1.3-1.5 GeV electron storage ring. CAMD supports a strong program in x-ray lithography micromachining (XRLM) or LIGA. A total of four beamlines equipped with different scanners is available for exposures. A 2.500 sq. ft class 100 clean room provides basic processing capability for MEMS including optical lithography, thin film deposition, electroplating, and metrology. Three micromachining beamlines are connected to bending magnets. All beamlines are "white light" beamlines, terminated with a beryllium window. The typical source point to scanner distance is 10 m and the horizontal acceptance ranges from 6.5 to 10 mrad. A number of low Z filters can be inserted into the beam adapting the exposure spectrum to the resist thickness. Two beamlines are equipped with commercial scanners from Jenoptik GmbH (for details see Jenoptik's webpage at www.jo-mikrotechnik.com/) and one beamline with a "vacuum" scanner designed in house. The latest model of Jenoptik's DEX02 scanner has been installed at CAMD's XRLM1 beamline in December 2000 and allows advanced exposures using overlay as well as tilt and rotate functions. In addition to these beamlines CAMD has installed a "white light" beamline at its 7 T wiggler source. Preliminary exposure tests in ultrathick samples (1 mm and thicker) have been conducted using an "air scanner." Currently this beamline is dismantled and will be reinstalled together with a PX beamline. In the article further details of the beamlines and scanners as well as some examples of applications of LIGA microstructures fabricated at CAMD will be discussed.

  10. Radionuclide Emission Estimation for the Center for Advanced Energy Studies (CAES)

    SciTech Connect

    Bradley J Schrader

    2010-02-01

    An Radiological Safety Analysis Computer Program (RSAC)-7 model dose assessment was performed to evaluate maximum Center for Advanced Energy Studies (CAES) boundary effective dose equivalent (EDE, in mrem/yr) for potential individual releases of radionuclides from the facility. The CAES is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE), and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding educational opportunities at Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed a strategic plan (INL/EXT-07-12950) based on the balanced scorecard approach. At the present time it is unknown exactly what processes will be used in the facility in support of this strategic plan. What is known is that the Idaho State University (ISU) Radioactive Materials License (Nuclear Regulatory Commission [NRC] license 11-27380-01) is the basis for handling radioactive material in the facility. The material in this license is shared between the ISU campus and the CAES facility. There currently are no agreements in place to limit the amount of radioactive material at the CAES facility or what is done to the material in the facility. The scope of this analysis is a summary look at the basis dose for each radionuclide included under the license at a distance of 100, 500, and 1,000 m. Inhalation, ingestion and ground surface dose was evaluated using the NRC design basis guidelines. The results can be used to determine a sum of the fractions approach to facility safety. This sum of the fractions allows a facility threshold value (TV) to be established and potential activities to be evaluated against

  11. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, Ohio, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hr period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hr period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  12. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, OH, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hour period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hour period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  13. Advanced Study Center: Proceedings of the National Faculty Plenary Conference (Columbus, Ohio, October 30-November 1, 1978).

    ERIC Educational Resources Information Center

    Jackson, Elise B., Ed.; Russell, Earl B., Ed.

    These proceedings contain presentations made at the National Faculty Plenary Conference, whose theme, Nurturing Vocational Education's Leadership and Intellectual Capital, involved these topics: planning, evaluation, recruitment, and policy implications as they relate to the development and implementation of an Advanced Study Center. Introductory…

  14. 75 FR 69468 - Dentek.com, D/B/A Nsequence Center for Advanced Dentistry; Reno, NV; Notice of Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... Employment and Training Administration Dentek.com , D/B/A Nsequence Center for Advanced Dentistry; Reno, NV... engaged in employment related to the production of dental prosthetics. The initial determination was based... directly competitive with dental prosthetics or a shift/acquisition of these articles to a foreign...

  15. Realizing the potential of the CUAHSI Water Data Center to advance Earth Science

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Seul, M.; Pollak, J.; Couch, A.

    2015-12-01

    The CUAHSI Water Data Center has developed a cloud-based system for data publication, discovery and access. Key features of this system are a semantically enabled catalog to discover data across more than 100 different services and delivery of data and metadata in a standard format. While this represents a significant technical achievement, the purpose of this system is to support data reanalysis for advancing science. A new web-based client, HydroClient, improves access to the data from previous clients. This client is envisioned as the first step in a workflow that can involve visualization and analysis using web-processing services, followed by download to local computers for further analysis. The release of the WaterML library in the R package CRAN repository is an initial attempt at linking the WDC services in a larger analysis workflow. We are seeking community input on other resources required to make the WDC services more valuable in scientific research and education.

  16. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  17. Simulation systems for tsunami wave propagation forecasting within the French tsunami warning center

    NASA Astrophysics Data System (ADS)

    Gailler, A.; Hébert, H.; Loevenbruck, A.; Hernandez, B.

    2012-04-01

    Improvements in the availability of sea-level observations and advances in numerical modeling techniques are increasing the potential for tsunami warnings to be based on numerical model forecasts. Numerical tsunami propagation and inundation models are well developed, but they present a challenge to run in real-time, partly due to computational limitations and also to a lack of detailed knowledge on the earthquake rupture parameters. A first generation model-based tsunami prediction system is being developed as part of the French Tsunami Warning Center that will be operational by mid 2012. It involves a pre-computed unit source functions database (i.e., a number of tsunami model runs that are calculated ahead of time and stored) corresponding to tsunami scenarios generated by a source of seismic moment 1.75E+19 N.m with a rectangular fault 25 km by 20 km in size and 1 m in slip. The faults of the unit functions are placed adjacent to each other, following the discretization of the main seismogenic faults bounding the western Mediterranean and North-East Atlantic basins. An authomatized composite scenarios calculation tool is implemented to allow the simulation of any tsunami propagation scenario (i.e., of any seismic moment). The strategy is based on linear combinations and scaling of a finite number of pre-computed unit source functions. The number of unit functions involved varies with the magnitude of the wanted composite solution and the combined wave heights are multiplied by a given scaling factor to produce the new arbitrary scenario. Uncertainty on the magnitude of the detected event and inaccuracy on the epicenter location are taken into account in the composite scenarios calculation. For one tsunamigenic event, the tool produces finally 3 warning maps (i.e., most likely, minimum and maximum scenarios) together with the rough decision matrix representation. A no-dimension code representation is chosen to show zones in the main axis of energy at the basin

  18. White paper: A plan for cooperation between NASA and DARPA to establish a center for advanced architectures

    NASA Technical Reports Server (NTRS)

    Denning, P. J.; Adams, G. B., III; Brown, R. L.; Kanerva, P.; Leiner, B. M.; Raugh, M. R.

    1986-01-01

    Large, complex computer systems require many years of development. It is recognized that large scale systems are unlikely to be delivered in useful condition unless users are intimately involved throughout the design process. A mechanism is described that will involve users in the design of advanced computing systems and will accelerate the insertion of new systems into scientific research. This mechanism is embodied in a facility called the Center for Advanced Architectures (CAA). CAA would be a division of RIACS (Research Institute for Advanced Computer Science) and would receive its technical direction from a Scientific Advisory Board established by RIACS. The CAA described here is a possible implementation of a center envisaged in a proposed cooperation between NASA and DARPA.

  19. The use of queueing and simulative analyses to improve an overwhelmed pharmacy call center.

    PubMed

    Day, T Eugene; Li, W Max; Ingolfsson, Armann; Ravi, Nathan

    2010-10-01

    Like many others, the St. Louis Veterans Administration Medical Center (VAMC) Pharmacy help desk receives far more calls than can be processed by current staffing levels. The objective of the study is to improve pharmaceutical services provided by the call center, by using queueing theory and discrete event dynamic simulation to analyze incoming telephone traffic to the help desk. Queueing and simulation models using both archival and hand-gathered data over a 1-year period were created, compared, and presented in order to determine the minimum quantities of staff needed to reach the desired service threshold. The simulation model was validated in comparison with real-world data. Results suggest that telephone traffic congestion in this setting may be alleviated by increasing the number of staff responsible for telephone services from 2 to 6 throughout the week, with an additional one serving on Monday. Both queueing and simulative models can be used to improve overwhelm pharmacy call centers, by determining the theoretical minimal staff needed to reach a service threshold.

  20. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  1. Advanced beam-dynamics simulation tools for RIA.

    SciTech Connect

    Garnett, R. W.; Wangler, T. P.; Billen, J. H.; Qiang, J.; Ryne, R.; Crandall, K. R.; Ostroumov, P.; York, R.; Zhao, Q.; Physics; LANL; LBNL; Tech Source; Michigan State Univ.

    2005-01-01

    We are developing multi-particle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. This year will mark the end of our project. In this paper we present the status of the work, describe some recent additions to the codes, and show some preliminary simulation results.

  2. Advanced Simulator Development for Power Flow and Sources

    DTIC Science & Technology

    2006-02-01

    specifications for sub-system (primary energy store, water pulse compression/transmission lines, vacuum power flow) design. Using our experience with pulsed ...also enable beneficial upgrades to existing simulator facilities. 14. SUBJECT TERMS 15. NUMBER OF PAGES 109 Marx Generator Plasma Radiation Source Pulsed ...minimize cost for large dose X area products. Based upon simple scaling from existing pulsed power simulators , we assumed that we could achieve yields

  3. [Research advances in soil nitrogen cycling models and their simulation].

    PubMed

    Tang, Guoyong; Huang, Daoyou; Tong, Chengli; Zhang, Wenju; Wu, Jinshui

    2005-11-01

    Nitrogen is one of the necessary nutrients for plant, and also a primary element leading to environmental pollution. Many researches have been concerned about the contribution of agricultural activities to environmental pollution by nitrogenous compounds, and the focus is how to simulate soil nitrogen cycling processes correctly. In this paper, the primary soil nitrogen cycling processes were reviewed in brief, with 13 cycling models and 6 simulated cycling processes introduced, and the parameterization of models discussed.

  4. Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES)

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.

    2013-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector

  5. Advanced SAR simulator with multi-beam interferometric capabilities

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  6. Advanced Simulation in Undergraduate Pilot Training: Visual Display Development

    DTIC Science & Technology

    1975-12-01

    transmission efficiency pancake window birefringent package dodecahedron structure pentagonal channels 20. STRACT (Continue on reverse aide If necessary...display system was based on the cockpit size of the T-37B and centered on the geometry of the regular dodecahedron , a solid having 12 equal regular...pentagonal faces. The field of view requirements could be met by mosaicking 7 of the 12 sides of a dodecahedron with infinity optics, or pancake windows. The

  7. Prosthesis-user-in-the-loop: user-centered design parameters and visual simulation.

    PubMed

    Christ, O; Wojtusch, J; Beckerle, P; Wolff, K; Vogt, J; von Stryk, O; Rinderknecht, S

    2012-01-01

    After an amputation, processes of change in the body image as well as a change in body scheme have direct influences on the quality of living in every patient. Within this paper, a paradigm of experimental induced body illusion (the Rubber Hand Illusion, RHI) is integrated in a prosthetic hardware simulator concept. This concept combines biodynamical and visual feedback to enhance the quality of rehabilitation and to integrate patients' needs into the development of prostheses aiming on user-centered solutions. Therefore, user-centered design parameters are deducted. Furthermore, the basic concept of the visual simulation is presented and a possibility for its implementation is given. Finally, issues and conclusions for future work are described.

  8. Astrophysics Simulations from the ASC/Alliances Center for Astrophysical Thermonuclear Flashes

    DOE Data Explorer

    The "Flash Center" works to solve the long-standing problem of thermonuclear flashes on the surfaces of compact stars such as neutron stars and white dwarfs, and in the interior of white dwarfs (i.e., Type I supernovae). The physical conditions, and many of the physical phenomena, are similar to those confronted by the Department of Energy Stockpile Stewardship program. The (fully ionized) plasmas are at very high temperatures and densities; and the physical problems of nuclear ignition, deflagration or detonation, turbulent mixing, and interface dynamics for complex multicomponent fluids are common to the weapons program. Because virtually every aspect of this problem represents a computational Grand Challenge, large-scale numerical simulations are at the heart of its resolution (Taken from Executive Summary page). More than 35 simulations and computer animations developed through research at the "Flash Center" are available here. The collection offers .avi, .flv, or .mpeg file downloads as well as references to related research papers or presentations.

  9. Numerical simulation of turbomachinery flows with advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Kunz, R.; Luo, J.; Fan, S.

    1992-01-01

    A three dimensional full Navier-Stokes (FNS) code is used to simulate complex turbomachinery flows. The code incorporates an explicit multistep scheme and solves a conservative form of the density averaged continuity, momentum, and energy equations. A compressible low Reynolds number form of the k-epsilon turbulence model, and a q-omega model and an algebraic Reynolds stress model have been incorporated in a fully coupled manner to approximate Reynolds stresses. The code is used to predict the viscous flow field in a backswept transonic centrifugal compressor for which laser two focus data is available. The code is also used to simulate the tip clearance flow in a cascade. The code has been extended to include unsteady Euler solutions for predicting the unsteady flow through a cascade due to incoming wakes, simulating rotor-stator interactions.

  10. Advances in Discrete-Event Simulation for MSL Command Validation

    NASA Technical Reports Server (NTRS)

    Patrikalakis, Alexander; O'Reilly, Taifun

    2013-01-01

    In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.

  11. Advances in simulation study on organic small molecular solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Guo, Wenge; Li, Ming; Ma, Wentao; Meng, Sen

    2015-02-01

    Recently, more focuses have been put on organic semiconductors because of its advantages, such as its flexibility, ease of fabrication and potential low cost, etc. The reasons we pay highlight on small molecular photovoltaic material are its ease of purification, easy to adjust and determine structure, easy to assemble range units and get high carrier mobility, etc. Simulation study on organic small molecular solar cells before the experiment can help the researchers find relationship between the efficiency and structure parameters, properties of material, estimate the performance of the device, bring the optimization of guidance. Also, the applicability of the model used in simulation can be discussed by comparison with experimental data. This paper summaries principle, structure, progress of numerical simulation on organic small molecular solar cells.

  12. Design and simulation of advanced fault tolerant flight control schemes

    NASA Astrophysics Data System (ADS)

    Gururajan, Srikanth

    This research effort describes the design and simulation of a distributed Neural Network (NN) based fault tolerant flight control scheme and the interface of the scheme within a simulation/visualization environment. The goal of the fault tolerant flight control scheme is to recover an aircraft from failures to its sensors or actuators. A commercially available simulation package, Aviator Visual Design Simulator (AVDS), was used for the purpose of simulation and visualization of the aircraft dynamics and the performance of the control schemes. For the purpose of the sensor failure detection, identification and accommodation (SFDIA) task, it is assumed that the pitch, roll and yaw rate gyros onboard are without physical redundancy. The task is accomplished through the use of a Main Neural Network (MNN) and a set of three De-Centralized Neural Networks (DNNs), providing analytical redundancy for the pitch, roll and yaw gyros. The purpose of the MNN is to detect a sensor failure while the purpose of the DNNs is to identify the failed sensor and then to provide failure accommodation. The actuator failure detection, identification and accommodation (AFDIA) scheme also features the MNN, for detection of actuator failures, along with three Neural Network Controllers (NNCs) for providing the compensating control surface deflections to neutralize the failure induced pitching, rolling and yawing moments. All NNs continue to train on-line, in addition to an offline trained baseline network structure, using the Extended Back-Propagation Algorithm (EBPA), with the flight data provided by the AVDS simulation package. The above mentioned adaptive flight control schemes have been traditionally implemented sequentially on a single computer. This research addresses the implementation of these fault tolerant flight control schemes on parallel and distributed computer architectures, using Berkeley Software Distribution (BSD) sockets and Message Passing Interface (MPI) for inter

  13. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  14. A microtomography beamline at the Louisiana State University Center for Advanced Microstructures and Devices synchrotron

    NASA Astrophysics Data System (ADS)

    Ham, Kyungmin; Jin, Hua; Butler, Leslie G.; Kurtz, Richard L.

    2002-03-01

    A microtomography beamline has been recently assembled and is currently operating at the Louisiana State University's Center for Advanced Microstructures and Devices synchrotron (CAMD). It has been installed on a bending magnet white-light beamline at port 7A. With the storage ring operating at 1.5 GeV, this beamline has a maximum usable x-ray energy of ˜15 keV. The instrumentation consists of computer-controlled positioning stages for alignment and rotation, a CsI(Tl) phosphor screen, a reflecting mirror, a microscope objective (1:1, 1:4), and Linux/LabVIEW-controlled charge coupled device. With the 1:4 objective, the maximum spatial resolution is 2.25 μm. The positioning and image acquisition computers communicate via transfer control protocol/internet protocol (TCP/IP). A small G4/Linux cluster has been installed for the purpose of on-site reconstruction. Instrument, alignment and reconstruction programs are written in MATLAB, IDL, and C. The applications to date are many and we present several examples. Several biological samples have been studied as part of an effort on biological visualization and computation. Future improvements to this microtomography station include the addition of a double-multilayer monochromator, allowing one to evaluate the three-dimensional elemental composition of materials. Plans also include eventual installation at the CAMD 7 T wiggler beamline, providing x rays in excess of 50 keV to provide better penetration of higher mass-density materials.

  15. Proposed center for advanced industrial processes. Washington State University, College of Engineering and Architecture

    SciTech Connect

    1995-03-01

    The DOE proposes to authorize Washington State University (WSU) to proceed with the detailed design, construction, and equipping of the proposed Center for Advanced Industrial Processes (CAIP). The proposed project would involve construction of a three story building containing laboratories, classrooms, seminar rooms, and graduate student and administrative office space. Existing buildings would be demolished. The proposed facility would house research in thermal/fluid sciences, bioengineering, manufacturing processes, and materials processing. Under the {open_quotes}no-action{close_quotes} DOE would not authorize WSU to proceed with construction under the grant. WSU would then need to consider alternatives for proceeding without DOE funds. Such alternatives (including delaying or scaling back the project), would result in a postponement or slight reduction in the minor adverse environmental, safety and health Impacts of the project evaluated in this assessment. More importantly, these alternatives would affect the important environmental, safety, health, and programmatic benefits of the projects. The surrounding area is fully urbanized and the campus is intensely developed around the proposed site. The buildings scheduled for demolition do not meet State energy codes, are not air conditioned, and lack handicapped access. Sensitive resources (historical/archeological, protected species/critical habitats, wetlands/floodplains, national forests/parks/trails, prime farmland and special sources of water) would not be affected as they do not occur on or near the proposed site. Cumulative impacts would be small. The proposed action is not related to other actions being considered under other NEPA reviews. There is no conflict between the proposed action and any applicable Federal, State, regional or local land use plans and policies.

  16. Advances in surveillance of periodontitis: the Centers for Disease Control and Prevention periodontal disease surveillance project.

    PubMed

    Eke, Paul I; Thornton-Evans, Gina; Dye, Bruce; Genco, Robert

    2012-11-01

    The Centers for Disease Control and Prevention (CDC) has as one of its strategic goals to support and improve surveillance of periodontal disease. In 2003, the CDC initiated the CDC Periodontal Disease Surveillance Project in collaboration with the American Academy of Periodontology to address population-based surveillance of periodontal disease at the local, state, and national levels. This initiative has made significant advancements toward the goal of improved surveillance, including developing valid self-reported measures that can be obtained from interview-based surveys to predict prevalence of periodontitis in populations. This will allow surveillance of periodontitis at the state and local levels and in countries where clinical resources for surveillance are scarce. This work has produced standard case definitions for surveillance of periodontitis that are now widely recognized and applied in population studies and research. At the national level, this initiative has evaluated the validity of previous clinical examination protocols and tested new protocols on the National Health and Nutrition Examination Survey (NHANES), recommending and supporting funding for the gold-standard full-mouth periodontal examination in NHANES 2009 to 2012. These examinations will generate accurate estimates of the prevalence of periodontitis in the US adult population and provide a superior dataset for surveillance and research. Also, this data will be used to generate the necessary coefficients for our self-report questions for use in subsets of the total US population. The impact of these findings on population-based surveillance of periodontitis and future directions of the project are discussed along with plans for dissemination and translation efforts for broader public health use.

  17. Advancing the Culture of Teaching on Campus: How a Teaching Center Can Make a Difference

    ERIC Educational Resources Information Center

    Cook, Constance, Ed.; Kaplan, Matthew, Ed.

    2011-01-01

    Written by the director and staff of the first, and one of the largest, teaching centers in American higher education--the University of Michigan's Center for Research on Learning and Teaching (CRLT)--this book offers a unique perspective on the strategies for making a teaching center integral to an institution's educational mission. It presents a…

  18. An architecture and model for cognitive engineering simulation analysis - Application to advanced aviation automation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Smith, Barry R.

    1993-01-01

    The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.

  19. An expanded framework for the advanced computational testing and simulation toolkit

    SciTech Connect

    Marques, Osni A.; Drummond, Leroy A.

    2003-11-09

    The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.

  20. Cost-efficiency assessment of Advanced Life Support (ALS) courses based on the comparison of advanced simulators with conventional manikins

    PubMed Central

    Iglesias-Vázquez, José Antonio; Rodríguez-Núñez, Antonio; Penas-Penas, Mónica; Sánchez-Santos, Luís; Cegarra-García, Maria; Barreiro-Díaz, Maria Victoria

    2007-01-01

    Background Simulation is an essential tool in modern medical education. The object of this study was to assess, in cost-effective measures, the introduction of new generation simulators in an adult life support (ALS) education program. Methods Two hundred fifty primary care physicians and nurses were admitted to ten ALS courses (25 students per course). Students were distributed at random in two groups (125 each). Group A candidates were trained and tested with standard ALS manikins and Group B ones with new generation emergency and life support integrated simulator systems. Results In group A, 98 (78%) candidates passed the course, compared with 110 (88%) in group B (p < 0.01). The total cost of conventional courses was €7689 per course and the cost of the advanced simulator courses was €29034 per course (p < 0.001). Cost per passed student was €392 in group A and €1320 in group B (p < 0.001). Conclusion Although ALS advanced simulator systems may slightly increase the rate of students who pass the course, the cost-effectiveness of ALS courses with standard manikins is clearly superior. PMID:17953771

  1. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  2. Advanced Simulation and Computing Co-Design Strategy

    SciTech Connect

    Ang, James A.; Hoang, Thuc T.; Kelly, Suzanne M.; McPherson, Allen; Neely, Rob

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  3. Advanced Computation Dynamics Simulation of Protective Structures Research

    DTIC Science & Technology

    2013-02-01

    between the steel and CMU, grout, a flowable concrete mixture, is placed into the reinforced cells. If grout is placed into every cell (including...multi-wythe walls that were fully grouted and had a brick veneer filled with a foam insulated cavity. He simulated the grout and CMU with a single

  4. Technical advances in molecular simulation since the 1980s.

    PubMed

    Field, Martin J

    2015-09-15

    This review describes how the theory and practice of molecular simulation have evolved since the beginning of the 1980s when the author started his career in this field. The account is of necessity brief and subjective and highlights the changes that the author considers have had significant impact on his research and mode of working.

  5. Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

    2008-01-01

    Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

  6. 75 FR 71463 - Dentek.Com, Inc. D/B/A Nsequence Center for Advanced Dentistry Reno, NV; Notice of Negative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Employment and Training Administration Dentek.Com, Inc. D/B/A Nsequence Center for Advanced Dentistry Reno... production of dental prosthetics (such as crowns and the bridges). Pursuant to 29 CFR 90.18(c... workers at Dentek.com , Inc., d/b/a nSequence Center for Advanced Dentistry, Reno, Nevada (the...

  7. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  8. Simulating data processing for an Advanced Ion Mobility Mass Spectrometer

    SciTech Connect

    Chavarría-Miranda, Daniel; Clowers, Brian H.; Anderson, Gordon A.; Belov, Mikhail E.

    2007-11-03

    We have designed and implemented a Cray XD-1-based sim- ulation of data capture and signal processing for an ad- vanced Ion Mobility mass spectrometer (Hadamard trans- form Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based soft- ware component to simulate Ion Mobility mass spectrome- try data processing. The FPGA component includes data capture and accumulation, as well as a more sophisticated deconvolution algorithm based on a PNNL-developed en- hancement to standard Hadamard transform Ion Mobility spectrometry. The software portion is in charge of stream- ing data to the FPGA and collecting results. We expect the computational and memory addressing logic of the FPGA component to be portable to an instrument-attached FPGA board that can be interfaced with a Hadamard transform Ion Mobility mass spectrometer.

  9. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    NASA Astrophysics Data System (ADS)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  10. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    SciTech Connect

    Xiu, Dongbin

    2016-06-21

    The focus of the project is the development of mathematical methods and high-performance com- putational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly e cient and scalable numer- ical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  11. Advanced Simulation in Undergraduate Pilot Training: Motion System Development

    DTIC Science & Technology

    1975-10-01

    Resources Laboratory * a~ October 1975 DISTRIBUTED BY: National Technical Infolmation Service U. S. DEPARTMENT OF COMMERCE 329055 AFHRL-TR-75.59(11) AIR...1911 - March 1975 0 A plloved (or publ( rele.Le; ditribution unlii h¢uted. E S LABORATORY NATIONAL TECHNICAL I INFORMATION SERVICEIJS D-pvt-f Of ,CU...Force IHuman Resources Laboratory (AFSC), Wright-Patterson Air Force Base. Ohio 45433. Mr. Don R. Gur.i Simulation Techniques Branch. was tile contract

  12. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  13. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  14. Collective efficacy in a high-fidelity simulation of an airline operations center

    NASA Astrophysics Data System (ADS)

    Jinkerson, Shanna

    This study investigated the relationships between collective efficacy, teamwork, and team performance. Participants were placed into teams, where they worked together in a high-fidelity simulation of an airline operations center. Each individual was assigned a different role to represent different jobs within an airline (Flight Operations Coordinator, Crew Scheduling, Maintenance, Weather, Flight Scheduling, or Flight Planning.) Participants completed a total of three simulations with an After Action Review between each. Within this setting, both team performance and teamwork behaviors were shown to be positively related to expectations for subsequent performance (collective efficacy). Additionally, teamwork and collective efficacy were not shown to be concomitantly related to subsequent team performance. A chi-square test was used to evaluate existence of performance spirals, and they were not supported. The results of this study were likely impacted by lack of power, as well as a lack of consistency across the three simulations.

  15. Experiment and molecular dynamics simulation of nanoindentation of body centered cubic iron.

    PubMed

    Lu, Cheng; Gao, Yuan; Michal, Guillaume; Deng, Guanyu; Huynh, Nam N; Zhu, Hongtao; Liu, Xianghua; Tieu, Anh Kiet

    2009-12-01

    Experiments and molecular dynamics (MD) simulations have been conducted to investigate the nanoindentation behaviours of iron with body centered cubic (BCC) structure. The experiments show that the indentation hardness decreases with the indentation depth and it changes sharply for a small depth. Two cases with different crystallographic orientations have been simulated. The indentation plane is (010) for Case I and (111) for Case II, respectively. The calculated harness (17.4 GPa for Case I and 22.6 GPa for Case II) are in reasonable agreement with the experimental value (24.2 GPa). The simulation results show that the crystallographic orientation significantly influences the indentation deformation. Case I and Case II exhibit different deformation patterns. The indentation force and the hardness in Case I are smaller than Case II. It is also found that the pileup around the indenter is mainly formed along [110] direction for both cases.

  16. Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju

    2016-10-01

    This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.

  17. The Terascale Simulation Tools and Technologies Center Annual Report August 15, 2001-September 30, 2002

    SciTech Connect

    Glimm, J; Brown, D L; Freitag, L

    2002-09-30

    The overall goal of the TSTT Center is to enable the scientific community to more easily use modern high-order, adaptive, parallel mesh and discretization tools. To achieve this goal, we are following three distinct but related paths. The first is to work directly with a number of lead application teams (for the most part SciDAC-funded) to use such technologies in their application domains. The second is to create new technology that eases the use of such tools, not only for our designated application partners, but across a broad range of application areas that require mesh and discretization tools for scientific simulation. The main technology thrust is not to create new tools (although some of this will occur), but to create new capabilities that will allow the use of these tools interoperably. This very profound step can be compared to the shift from hand craftmanship to manufactured products with interchangable components which revolutionized the world economy one to two centuries ago. The third component of our efforts is to embed this work in a larger framework of related activities, each seeking a similar, and profound, change in the practice of computational science. To ensure the relevance of our work to the SciDAC program goals, we originally selected six application areas, and in each, one or more application projects and teams with which to work directly. One application collaboration which targeted the development of an adaptive mesh refinement capability for the oceanographic code POP was postponed and may be dropped due to unanticipated technical obstacles in the specific goal selected. One new application involving jet breakup for spray combustion was added. The initial job of establishing good working relations, agreement on a plan of action, and obtaining initial results was accomplished in all cases. In general, our work with the applications has been more difficult than anticipated, in spite of the experience of the TSTT team members in similar

  18. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  19. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  20. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  1. Earth resources programs at the Langley Research Center. Part 1: Advanced Applications Flight Experiments (AAFE) and microwave remote sensing program

    NASA Technical Reports Server (NTRS)

    Parker, R. N.

    1972-01-01

    The earth resources activity is comprised of two basic programs as follows: advanced applications flight experiments, and microwave remote sensing. The two programs are in various stages of implementation, extending from experimental investigations within both the AAFE program and the microwave remote sensing program, to multidisciplinary studies and planning. The purpose of this paper is simply to identify the main thrust of the Langley Research Center activity in earth resources.

  2. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  3. Advanced solid elements for sheet metal forming simulation

    NASA Astrophysics Data System (ADS)

    Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.

    2016-08-01

    The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.

  4. Simulation models and designs for advanced Fischer-Tropsch technology

    SciTech Connect

    Choi, G.N.; Kramer, S.J.; Tam, S.S.

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  5. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

  6. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  7. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  8. Advancing Mental Health Research: Washington University's Center for Mental Health Services Research

    ERIC Educational Resources Information Center

    Proctor, Enola K.; McMillen, Curtis; Haywood, Sally; Dore, Peter

    2008-01-01

    Research centers have become a key component of the research infrastructure in schools of social work, including the George Warren Brown School of Social Work at Washington University. In 1993, that school's Center for Mental Health Services Research (CMHSR) received funding from the National Institute of Mental Health (NIMH) as a Social Work…

  9. 78 FR 50069 - National Center for Advancing Translational Sciences; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... clearly unwarranted invasion of personal privacy. ] Name of Committee: Cures Acceleration Network Review.... Place: National Institutes of Health, Building 31, Conference Room 6, 31 Center Drive, Bethesda, MD.... Place: National Institutes of Health, Building 31, Conference Room 6, 31 Center Drive, Bethesda,...

  10. A Wish List for the Advancement of University and College Counseling Centers

    ERIC Educational Resources Information Center

    Bishop, John B.

    2016-01-01

    University and college counseling centers continue to meet emerging challenges in higher education. This article addresses three issues: the need for a more unified organizational structure to represent the profession, the potential value for counseling centers in seeking accreditation, and the importance of specialized training for those entering…

  11. Teaching Advanced Skills to Educationally Disadvantaged Students. Data Analysis Support Center (DASC) Task 4. Final Report.

    ERIC Educational Resources Information Center

    Means, Barbara, Ed.; Knapp, Michael S., Ed.

    This document comprises six papers that discuss teaching advanced skills to educationally disadvantaged students. An introductory paper, "Models for Teaching Advanced Skills to Educationally Disadvantaged Children" (B. Means and M. S. Knapp), synthesizes the themes that characterize the collection of papers as a whole, and discusses general issues…

  12. Center-to-Limb Variation of Solar Three-dimensional Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Koesterke, L.; Allende Prieto, C.; Lambert, D. L.

    2008-06-01

    We examine closely the solar center-to-limb variation of continua and lines and compare observations with predictions from both a three-dimensional (3D) hydrodynamic simulation of the solar surface (provided by M. Asplund and collaborators) and one-dimensional (1D) model atmospheres. Intensities from the 3D time series are derived by means of the new synthesis code ASSepsilonT, which overcomes limitations of previously available codes by including a consistent treatment of scattering and allowing for arbitrarily complex line and continuum opacities. In the continuum, we find very similar discrepancies between synthesis and observation for both types of model atmospheres. This is in contrast to previous studies that used a "horizontal" and time-averaged representation of the 3D model and found a significantly larger disagreement with observations. The presence of temperature and velocity fields in the 3D simulation provides a significant advantage when it comes to reproducing solar spectral line shapes. Nonetheless, a comparison of observed and synthetic equivalent widths reveals that the 3D model also predicts more uniform abundances as a function of position angle on the disk. We conclude that the 3D simulation provides not only a more realistic description of the gas dynamics, but despite its simplified treatment of the radiation transport, it also predicts reasonably well the observed center-to-limb variation, which is indicative of a thermal structure free from significant systematic errors.

  13. High-Fidelity Simulation Training for Sleep Technologists in a Pediatric Sleep Disorders Center

    PubMed Central

    Avis, Kristin T.; Lozano, David J.; White, Marjorie L.; Youngblood, Amber Q.; Zinkan, Lynn; Niebauer, Julia M.; Tofil, Nancy M.

    2012-01-01

    Study Objectives: Severe events of respiratory distress can be life threatening. Although rare in some outpatient settings, effective recognition and management are essential to improving outcomes. The value of high-fidelity simulation has not been assessed for sleep technologists (STs). We hypothesized that knowledge of and comfort level in managing emergent pediatric respiratory events would improve with this innovative method. Methods: We designed a course that utilized high-fidelity human patient simulators (HPS) and that focused on rapid pediatric assessment of young children in the first 5 minutes of an emergency. We assessed knowledge of and comfort with critical emergencies that STs may encounter in a pediatric sleep center utilizing a pre/post-test study design. Results: Ten STs enrolled in the study, and scores from the pre- and posttest were compared utilizing a paired samples t-test. Mean participant age was 42 ± 11 years, with average of 9.3 ± 3.3 years of ST experience but minimal experience in managing an actual emergency. Average pretest score was 54% ± 17% correct and improved to 69% ± 16% after the educational intervention (p < 0.05). Participant ratings indicated the course was a well-received, innovative educational methodology. Conclusions: A simulation course focusing on respiratory emergencies requiring basic life support skills during the first 5 min of distress can significantly improve the knowledge of STs. Simulation may provide a highly useful methodology for training STs in the management of rare life-threatening events. Citation: Avis KT; Lozano DJ; White ML; Youngblood AQ; Zinkan L; Niebauer JM; Tofil NM. High-fidelity simulation training for sleep technologists in a pediatric sleep disorders center. J Clin Sleep Med 2012;8(1):97-101. PMID:22334815

  14. A real-time simulation facility for advanced digital guidance and control system research

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Downing, D. R.; Ostroff, A. J.

    1979-01-01

    A real-time simulation facility built at NASA's Langley Research Center to support digital guidance and control research and development activities is examined. The unit has recently been used to develop autoland systems for VTOL. The paper describes the autoland experiment and the flight environment, the simulation facility hardware and software, and presents typical simulation data to illustrate the type of data analysis carried out during software development. Finally, flight data for a later version of the autoland system are presented to demonstrate the simulation's capability to predict overall system behavior.

  15. Advanced Practice Registered Nurses and Physician Assistants in Sleep Centers and Clinics: A Survey of Current Roles and Educational Background

    PubMed Central

    Colvin, Loretta; Cartwright, Ann; Collop, Nancy; Freedman, Neil; McLeod, Don; Weaver, Terri E.; Rogers, Ann E.

    2014-01-01

    Study Objectives: To survey Advanced Practice Registered Nurse (APRN) and Physician Assistant (PA) utilization, roles and educational background within the field of sleep medicine. Methods: Electronic surveys distributed to American Academy of Sleep Medicine (AASM) member centers and APRNs and PAs working within sleep centers and clinics. Results: Approximately 40% of responding AASM sleep centers reported utilizing APRNs or PAs in predominantly clinical roles. Of the APRNs and PAs surveyed, 95% reported responsibilities in sleep disordered breathing and more than 50% in insomnia and movement disorders. Most APRNs and PAs were prepared at the graduate level (89%), with sleep-specific education primarily through “on the job” training (86%). All APRNs surveyed were Nurse Practitioners (NPs), with approximately double the number of NPs compared to PAs. Conclusions: APRNs and PAs were reported in sleep centers at proportions similar to national estimates of NPs and PAs in physicians' offices. They report predominantly clinical roles, involving common sleep disorders. Given current predictions that the outpatient healthcare structure will change and the number of APRNs and PAs will increase, understanding the role and utilization of these professionals is necessary to plan for the future care of patients with sleep disorders. Surveyed APRNs and PAs reported a significant deficiency in formal and standardized sleep-specific education. Efforts to provide formal and standardized educational opportunities for APRNs and PAs that focus on their clinical roles within sleep centers could help fill a current educational gap. Citation: Colvin L, Cartwright Ann, Collop N, Freedman N, McLeod D, Weaver TE, Rogers AE. Advanced practice registered nurses and physician assistants in sleep centers and clinics: a survey of current roles and educational background. J Clin Sleep Med 2014;10(5):581-587. PMID:24812545

  16. Los Angeles International Airport Runway Incursion Studies: Phase III--Center-Taxiway Simulation

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.

    2004-01-01

    Phase III of the Los Angeles International Airport Runway Incursion Studies was conducted, under an agreement with HNTB Corporation, at the NASA Ames FutureFlight Central (FFC) facility in June 2003. The objective of the study was the evaluation of a new center-taxiway concept at LAX. This study is an extension of the Phase I and Phase II studies previously conducted at FFC. This report presents results from Phase III of the study, in which a center-taxiway concept between runways 25L and 25R was simulated and evaluated. Phase III data were compared objectively against the Baseline data. Subjective evaluations by participating LAX controllers were obtained with regard to workload, efficiency, and safety criteria. To facilitate a valid comparison between Baseline and Phase III data, the same scenarios were used for Phase III that were tested during Phases I and II. This required briefing participating controllers on differences in airport and airline operations between 2001 and today.

  17. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  18. State of the Art Assessment of Simulation in Advanced Materials Development

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher E.

    2008-01-01

    Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.

  19. Methodological advances: using greenhouses to simulate climate change scenarios.

    PubMed

    Morales, F; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Irigoyen, J J; Goicoechea, N; Antolín, M C; Oyarzun, M; Urdiain, A

    2014-09-01

    Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber - greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported.

  20. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  1. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  2. Three-dimensional flow over a conical afterbody containing a centered propulsive jet: A numerical simulation

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Rothmund, H.

    1984-01-01

    The supersonic flow field over a body of revolution incident to the free stream is simulated numerically on a large, array processor (the CDC CYBER 205). The configuration is composed of a cone-cylinder forebody followed by a conical afterbody from which emanates a centered, supersonic propulsive jet. The free-stream Mach number is 2, the jet-exist Mach number is 2.5, and the jet-to-free-stream static pressure ratio is 3. Both the external flow and the exhaust are ideal air at a common total temperature.

  3. Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center

    SciTech Connect

    Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M.

    1997-11-01

    One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

  4. Comparison of Orion Vision Navigation Sensor Performance from STS-134 and the Space Operations Simulation Center

    NASA Technical Reports Server (NTRS)

    Christian, John A.; Patangan, Mogi; Hinkel, Heather; Chevray, Keiko; Brazzel, Jack

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is a new spacecraft being designed by NASA and Lockheed Martin for future crewed exploration missions. The Vision Navigation Sensor is a Flash LIDAR that will be the primary relative navigation sensor for this vehicle. To obtain a better understanding of this sensor's performance, the Orion relative navigation team has performed both flight tests and ground tests. This paper summarizes and compares the performance results from the STS-134 flight test, called the Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective, and the ground tests at the Space Operations Simulation Center.

  5. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil

    2014-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins.

  6. Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers

    SciTech Connect

    Hong, Tianzhen; Sartor, Dale; Mathew, Paul; Yazdanian, Mehry

    2008-08-13

    This paper compares HVAC simulations between EnergyPlus and DOE-2.2 for data centers. The HVAC systems studied in the paper are packaged direct expansion air-cooled single zone systems with and without air economizer. Four climate zones are chosen for the study - San Francisco, Miami, Chicago, and Phoenix. EnergyPlus version 2.1 and DOE-2.2 version 45 are used in the annual energy simulations. The annual cooling electric consumption calculated by EnergyPlus and DOE-2.2 are reasonablely matched within a range of -0.4percent to 8.6percent. The paper also discusses sources of differences beween EnergyPlus and DOE-2.2 runs including cooling coil algorithm, performance curves, and important energy model inputs.

  7. 77 FR 75180 - National Center for Advancing Translational Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... Room 6, Bethesda, MD 20892. Contact Person: Danilo A Tagle, Ph.D., Executive Secretary, National Center..., Danilo.Tagle@nih.gov . Any interested person may file written comments with the committee by...

  8. Center for Advancing ystemic Heliophysics Education (CAHEd): Outreach through Community Building

    NASA Astrophysics Data System (ADS)

    Whitman, K.; Kadooka, M.

    2012-12-01

    In 2010, the Center for Advancing ystemic Heliophysics Education (CAHEd) was established at the University of Hawaii Institute for Astronomy to promote public outreach and education of solar astronomy and heliophysics. The primary objectives of CAHEd are to increase public awareness of the significance of heliophysics and space weather through lectures, open houses, and online resources. In addition, CAHEd works to educate secondary teachers and students on physics concepts essential for understanding heliophysics ideas. For the first two years of the NASA sponsored grant, CAHEd has focused its efforts on teachers and students in Hawaii. Approaching its third year, CAHEd has begun to expand to a national level, partnering with teachers in locations across the United States. Two core goals of CAHEd will be discussed here: collaboration with a select group of Master Teachers and student mentoring in research projects. CAHEd has built a partnership with over a dozen Master Teachers that work with scientists to develop curriculum for the middle and high school classroom. These teachers come from diverse backgrounds with a variety of scientific experiences. Master Teachers play the important role of assessing and improving CAHEd curriculum and provide support for CAHEd activities. All Master Teachers participate in in-depth multi-day workshops that allow them to develop a deeper understanding of the science behind heliophysics. After building a strong background, Master Teachers organize workshops, growing a community of teachers who incorporate heliophysics into their curriculum. Scientists also work closely with middle school and high school students who wish to pursue study in heliophysics. Student research is a fundamental goal of CAHEd and scientists work with students to complete projects for school and state science fairs. Four students have completed award winning heliophysics projects to date and three of the four students have gone on to pursue a second

  9. NASA. Lewis Research Center Advanced Modulation and Coding Project: Introduction and overview

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1992-01-01

    The Advanced Modulation and Coding Project at LeRC is sponsored by the Office of Space Science and Applications, Communications Division, Code EC, at NASA Headquarters and conducted by the Digital Systems Technology Branch of the Space Electronics Division. Advanced Modulation and Coding is one of three focused technology development projects within the branch's overall Processing and Switching Program. The program consists of industry contracts for developing proof-of-concept (POC) and demonstration model hardware, university grants for analyzing advanced techniques, and in-house integration and testing of performance verification and systems evaluation. The Advanced Modulation and Coding Project is broken into five elements: (1) bandwidth- and power-efficient modems; (2) high-speed codecs; (3) digital modems; (4) multichannel demodulators; and (5) very high-data-rate modems. At least one contract and one grant were awarded for each element.

  10. Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.

    2004-01-01

    Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying

  11. NCC simulation model. Phase 2: Simulating the operations of the Network Control Center and NCC message manual

    NASA Technical Reports Server (NTRS)

    Benjamin, Norman M.; Gill, Tepper; Charles, Mary

    1994-01-01

    The network control center (NCC) provides scheduling, monitoring, and control of services to the NASA space network. The space network provides tracking and data acquisition services to many low-earth orbiting spacecraft. This report describes the second phase in the development of simulation models for the FCC. Phase one concentrated on the computer systems and interconnecting network.Phase two focuses on the implementation of the network message dialogs and the resources controlled by the NCC. Performance measures were developed along with selected indicators of the NCC's operational effectiveness.The NCC performance indicators were defined in terms of the following: (1) transfer rate, (2) network delay, (3) channel establishment time, (4) line turn around time, (5) availability, (6) reliability, (7) accuracy, (8) maintainability, and (9) security. An NCC internal and external message manual is appended to this report.

  12. Advanced Flight Simulator: Utilization in A-10 Conversion and Air-to-Surface Attack Training.

    DTIC Science & Technology

    1981-01-01

    CLASSIFIC.TION OF THIS PAGE(1Whl Data Emiterd) Item 20 (Continued) -" blocks of instruction on the Advanced Simulator for Pilot Training ( ASPT ). The first...training, the transfer of training from the ASPT to the A-10 is nearly 100 percent. therefore, in the early phases of AiS training, one simulator... ASPT ) could be suitably modified, an alternative to initially dangerous and expensive aircraft training would exist which also offered considerable

  13. Advanced Simulator for Pilot Training: Design of Automated Performance Measurement System

    DTIC Science & Technology

    1980-08-01

    reverse aide if necessary and identify by block number) pilot pertormance measurement Advanced Simulator for Pilot Training ( ASPT ) Aircrew performance...Simulator for Pilot Training ( ASPT ). This report documents that development effort and describes the current status of the measurement system. It was...Continued): cj;? /To date, the following scenarios have been implemented on the ASPT : (a)1’nusition Tasks - Straight and Level, Airspeed Changes, Turns

  14. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  15. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema

    None

    2016-07-12

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  16. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    SciTech Connect

    Hules, J.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  17. Advances in Constitutive and Failure Models for Sheet Forming Simulation

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong Whan; Stoughton, Thomas B.

    2016-08-01

    Non-Associated Flow Rule (Non-AFR) can be used as a convenient way to account for anisotropic material response in metal deformation processes, making it possible for example, to eliminate the problem of the anomalous yielding in equibiaxial tension that is mistakenly attributed to limitations of the quadratic yield function, but may instead be attributed to the Associated Flow Rule (AFR). Seeing as in Non-AFR based models two separate functions can be adopted for yield and plastic potential, there is no constraint to which models are used to describe each of them. In this work, the flexible combination of two different yield criteria as yield function and plastic potential under Non-AFR is proposed and evaluated. FE simulations were carried so as to verify the accuracy of the material directionalities predicted using these constitutive material models. The stability conditions for non-associated flow connected with the prediction of yield point elongation are also reviewed. Anisotropic distortion hardening is further incorporated under non-associated flow. It has been found that anisotropic hardening makes the noticeable improvements for both earing and spring-back predictions. This presentation is followed by a discussion of the topic of the forming limit & necking, the evidence in favor of stress analysis, and the motivation for the development of a new type of forming limit diagram based on the polar effective plastic strain (PEPS) diagram. In order to connect necking to fracture in metals, the stress-based necking limit is combined with a stress- based fracture criterion in the principal stress, which provides an efficient method for the analysis of necking and fracture limits. The concept for the PEPS diagram is further developed to cover the path-independent PEPS fracture which is compatible with the stress-based fracture approach. Thus this fracture criterion can be utilized to describe the post-necking behavior and to cover nonlinear strain-path. Fracture

  18. Advanced Method to Estimate Fuel Slosh Simulation Parameters

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl

    2005-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the

  19. Research On Subjective Response To Simulated Sonic Booms At NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Sullivan, Brenda M.

    2006-05-01

    Over the past 15 years, NASA Langley Research Center has conducted many tests investigating subjective response to simulated sonic booms. Most tests have used the Sonic Boom Booth, an airtight concrete booth fitted with loudspeakers that play synthesized sonic booms pre-processed to compensate for the response of the booth/loudspeaker system. Tests using the Booth have included investigations of shaped booms, booms with simulated ground reflections, recorded booms, outdoor and indoor booms, booms with differing loudness for bow and tail shocks, and comparisons of aircraft flyover recordings with sonic booms. Another study used loudspeakers placed inside people's houses, so that they could experience the booms while in their own homes. This study investigated the reactions of people to different numbers of booms heard within a 24-hour period. The most recent Booth test used predicted boom shapes from candidate low-boom aircraft. At present, a test to compare the Booth with boom simulators constructed by Gulfstream Aerospace Corporation and Lockheed Martin Aeronautics Company is underway. The Lockheed simulator is an airtight booth similar to the Langley booth; the Gulfstream booth uses a traveling wave method to create the booms. Comparison of "realism" as well as loudness and other descriptors is to be studied.

  20. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-06-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  1. Research on Subjective Response to Simulated Sonic Booms at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2005-01-01

    Over the past 15 years, NASA Langley Research Center has conducted many tests investigating subjective response to simulated sonic booms. Most tests have used the Sonic Boom Booth, an airtight concrete booth fitted with loudspeakers that play synthesized sonic booms pre-processed to compensate for the response of the booth/loudspeaker system. Tests using the Booth have included investigations of shaped booms, booms with simulated ground reflections, recorded booms, outdoor and indoor booms, booms with differing loudness for bow and tail shocks, and comparisons of aircraft flyover recordings with sonic booms. Another study used loudspeakers placed inside people s houses, so that they could experience the booms while in their own homes. This study investigated the reactions of people to different numbers of booms heard within a 24-hour period. The most recent Booth test used predicted boom shapes from candidate low-boom aircraft. At present, a test to compare the Booth with boom simulators constructed by Gulfstream Aerospace Corporation and Lockheed Martin Aeronautics Company is underway. The Lockheed simulator is an airtight booth similar to the Langley booth; the Gulfstream booth uses a traveling wave method to create the booms. Comparison of "realism" as well as loudness and other descriptors is to be studied.

  2. Advanced numerical techniques for accurate unsteady simulations of a wingtip vortex

    NASA Astrophysics Data System (ADS)

    Ahmad, Shakeel

    A numerical technique is developed to simulate the vortices associated with stationary and flapping wings. The Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations are used over an unstructured grid. The present work assesses the locations of the origins of vortex generation, models those locations and develops a systematic mesh refinement strategy to simulate vortices more accurately using the URANS model. The vortex center plays a key role in the analysis of the simulation data. A novel approach to locating a vortex center is also developed referred to as the Max-Max criterion. Experimental validation of the simulated vortex from a stationary NACA0012 wing is achieved. The tangential velocity along the core of the vortex falls within five percent of the experimental data in the case of the stationary NACA0012 simulation. The wing surface pressure coefficient also matches with the experimental data. The refinement techniques are then focused on unsteady simulations of pitching and dual-mode wing flapping. Tip vortex strength, location, and wing surface pressure are analyzed. Links to vortex behavior and wing motion are inferred. Key words: vortex, tangential velocity, Cp, vortical flow, unsteady vortices, URANS, Max-Max, Vortex center

  3. Improving Customer Waiting Time at a DMV Center Using Discrete-Event Simulation

    NASA Technical Reports Server (NTRS)

    Arnaout, Georges M.; Bowling, Shannon

    2010-01-01

    Virginia's Department of Motor Vehicles (DMV) serves a customer base of approximately 5.6 million licensed drivers and ID card holders and 7 million registered vehicle owners. DMV has more daily face-to-face contact with Virginia's citizens than any other state agency [1]. The DMV faces a major difficulty in keeping up with the excessively large customers' arrival rate. The consequences are queues building up, stretching out to the entrance doors (and sometimes even outside) and customers complaining. While the DMV state employees are trying to serve at their fastest pace, the remarkably large queues indicate that there is a serious problem that the DMV faces in its services, which must be dealt with rapidly. Simulation is considered as one of the best tools for evaluating and improving complex systems. In this paper, we use it to model one of the DMV centers located in Norfolk, VA. The simulation model is modeled in Arena 10.0 from Rockwell systems. The data used is collected from experts of the DMV Virginia headquarter located in Richmond. The model created was verified and validated. The intent of this study is to identify key problems causing the delays at the DMV centers and suggest possible solutions to minimize the customers' waiting time. In addition, two tentative hypotheses aiming to improve the model's design are tested and validated.

  4. Design outline for a new multiman ATC simulation facility at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Gallagher, O.

    1977-01-01

    A new and unique facility for studying human factors aspects in aeronautics is being planned for use in the Man-Vehicle Systems Research Division at the NASA-Ames Research Center. This facility will replace the existing three cockpit-single ground controller station and be expandable to include approximately seven cockpits and two ground controller stations. Unlike the previous system, each cockpit will be mini-computer centered and linked to a main CPU to effect a distributed computation facility. Each simulator will compute its own flight dynamic and flight path predictor. Mechanical flight instruments in each cockpit will be locally supported and CRT cockpit displays of (e.g.) traffic and or RNAV information will be centrally computed and distributed as a means of extending the existing computational and graphical resources. An outline of the total design is presented which addresses the technical design options and research possibilities of this unique man-machine facility and which may also serve as a model for other real time distributed simulation facilities.

  5. Three-dimensional Moving-mesh Simulations of Galactic Center Cloud G2

    NASA Astrophysics Data System (ADS)

    Anninos, Peter; Fragile, P. Chris; Wilson, Julia; Murray, Stephen D.

    2012-11-01

    Using three-dimensional, moving-mesh simulations, we investigate the future evolution of the recently discovered gas cloud G2 traveling through the galactic center. We consider the case of a spherical cloud initially in pressure equilibrium with the background. Our suite of simulations explores the following parameters: the equation of state, radial profiles of the background gas, and start times for the evolution. Our primary focus is on how the fate of this cloud will affect the future activity of Sgr A*. From our simulations we expect an average feeding rate in the range of (5-19) × 10-8 M ⊙ yr-1 beginning in 2013 and lasting for at least 7 years (our simulations stop in year 2020). The accretion varies by less than a factor of three on timescales <=1 month, and shows no more than a factor of 10 difference between the maximum and minimum observed rates within any given model. These rates are comparable to the current estimated accretion rate in the immediate vicinity of Sgr A*, although they represent only a small (lsim 5%) increase over the current expected feeding rate at the effective inner boundary of our simulations (r = 750, RS ≈ 1015 cm), where RS is the Schwarzschild radius of the black hole. Therefore, the breakup of cloud G2 may have only a minimal effect on the brightness and variability of Sgr A* over the next decade. This is because current models of the galactic center predict that most of the gas will be caught up in outflows. However, if the accreted G2 material can remain cold, it may not mix well with the hot, diffuse background gas, and instead accrete efficiently onto Sgr A*. Further observations of G2 will give us an unprecedented opportunity to test this idea. The breakup of the cloud itself may also be observable. By tracking the amount of cloud energy that is dissipated during our simulations, we are able to get a rough estimate of the luminosity associated with its tidal disruption; we find values of a few 1036 erg s-1.

  6. 3D Moving-Mesh Simulations of Galactic Center Cloud G2

    NASA Astrophysics Data System (ADS)

    Wilson, Julia; Fragile, P. C.; Anninos, P.; Murray, S. D.

    2013-01-01

    Using three-dimensional, moving-mesh simulations, we investigate the future evolution of the recently discovered gas cloud G2 traveling through the galactic center. We consider the case of a spherical cloud initially in pressure equilibrium with the background. Our suite of simulations explores the following parameters: the equation of state, radial profiles of the background gas, and start times for the evolution. Our primary focus is on how the fate of this cloud will affect the future activity of Sgr A*. From our simulations we expect an average feeding rate in the range of 5 - 19 × 10-8M⊙ yr-1 beginning in 2013 and lasting for at least 7 years (our simulations stop in year 2020). The accretion varies by less than a factor of three on timescales ≤ 1 month, and shows no more than a factor of 10 difference between the maximum and minimum observed rates within any given model. These rates are comparable to the current estimated accretion rate in the immediate vicinity of Sgr A*, although they represent only a small (≤ 5%) increase over the current expected feeding rate at the effective inner boundary of our simulations (r = 750RS ≈ 1015 cm), where RS is the Schwarzschild radius of the black hole. Therefore, the break up of cloud G2 may have only a minimal effect on the brightness and variability of Sgr A* over the next decade. This is because current models of the galactic center predict that most of the gas will be caught up in outflows. However, if the accreted G2 material can remain cold, it may not mix well with the hot, diffuse background gas, and instead accrete efficiently onto Sgr A*. Further observations of G2 will give us an unprecedented opportunity to test this idea. The break up of the cloud itself may also be observable. By tracking the amount of cloud energy that is dissipated during our simulations, we are able to get a rough estimate of the luminosity associated with its tidal disruption; we find values of a few 1036 erg s-1.

  7. WinSRFR: Current Advances in Software for Surface Irrigation Simulation and Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant advances have been made over the last decade in the development of software for surface irrigation analysis. WinSRFR is an integrated tool that combines unsteady flow simulation with tools for system evaluation/parameter estimation, system design, and for operational optimization. Ongoi...

  8. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  9. ADVANCED UTILITY SIMULATION MODEL, DESCRIPTION OF THE NATIONAL LOOP (VERSION 3.0)

    EPA Science Inventory

    The report is one of 11 in a series describing the initial development of the Advanced Utility Simulation Model (AUSM) by the Universities Research Group on Energy (URGE) and its continued development by the Science Applications International Corporation (SAIC) research team. The...

  10. Advances in Land Data Assimilation at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2009-01-01

    Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the

  11. Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.

    SciTech Connect

    Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago

    2016-05-01

    Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations are performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.

  12. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  13. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  14. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  15. Advancements of In-Flight Mass Moment of Inertia and Structural Deflection Algorithms for Satellite Attitude Simulators

    DTIC Science & Technology

    2015-03-26

    simulators are geometrically limited to rotate about the center of an air- bearing , not necessarily the center of mass. As a result, there are potentially... bearing satellite attitude simulator. The simulation results were compared against truth, and the experimental results were compared against an a-priori MOI...review of air- bearings , Smith [34] derived the equations of various disturbance torques experience by satellite attitude simulators. During Smith’s

  16. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  17. Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)

    DOE Data Explorer

    This database contains information on advanced petroleum and non-petroleum based fuels, as well as key data on advanced compression ignition fuels. Included are data on physical, chemical, operational, environmental, safety, and health properties. These data result from tests conducted according to standard methods (mostly American Society for Testing and Materials (ASTM). The source and test methods for each fuel data set are provided with the information. The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

  18. The Emory Chemical Biology Discovery Center: leveraging academic innovation to advance novel targets through HTS and beyond.

    PubMed

    Johns, Margaret A; Meyerkord-Belton, Cheryl L; Du, Yuhong; Fu, Haian

    2014-03-01

    The Emory Chemical Biology Discovery Center (ECBDC) aims to accelerate high throughput biology and translation of biomedical research discoveries into therapeutic targets and future medicines by providing high throughput research platforms to scientific collaborators worldwide. ECBDC research is focused at the interface of chemistry and biology, seeking to fundamentally advance understanding of disease-related biology with its HTS/HCS platforms and chemical tools, ultimately supporting drug discovery. Established HTS/HCS capabilities, university setting, and expertise in diverse assay formats, including protein-protein interaction interrogation, have enabled the ECBDC to contribute to national chemical biology efforts, empower translational research, and serve as a training ground for young scientists. With these resources, the ECBDC is poised to leverage academic innovation to advance biology and therapeutic discovery.

  19. The National Palliative Care Research Center and the Center to Advance Palliative Care: a partnership to improve care for persons with serious illness and their families.

    PubMed

    Morrison, R Sean; Meier, Diane E

    2011-10-01

    families must know to request palliative care, medical professionals must have the knowledge and skills to provide palliative care, and hospitals and other healthcare institutions must be equipped to deliver and support palliative care services. The Center to Advance Palliative Care (CAPC) and the National Palliative Care Research Center (NPCRC) are accomplishing this three-part mission by working in partnership to: 1) Develop research to serve as the knowledge base for quality clinical care and the foundation on which to build palliative care programs and systems; 2) Disseminate this knowledge to patients, families, professionals, and institutions throughout the United States and ensure that it is integrated within mainstream healthcare; and 3) Influence and collaborate with policy makers , regulatory bodies, and federal funding agencies to ensure that the healthcare infrastructure supports the continued growth and development of palliative care.

  20. Recent Efforts in Advanced High Frequency Communications at the Glenn Research Center in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  1. Learner-Centered Strategies and Advanced Mathematics: A Study of Students' Perspectives

    ERIC Educational Resources Information Center

    Ortiz-Robinson, Norma L.; Ellington, Aimee J.

    2009-01-01

    A number of learner-centered strategies were implemented during a two-semester course in real analysis that is traditionally taught in lecture format. We seek to understand the role that these strategies can have in this proof-intensive theoretical mathematics classroom and the perceived benefits by the students. Although learner-centered…

  2. 77 FR 74674 - National Center for Advancing Translational Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    .... App.), notice is hereby given of a meeting of the Cures Acceleration Network Review Board. The meeting... Acceleration Network Review Board. Date: January 23, 2013. Time: 8:30 a.m. to 2:45 p.m. Agenda: Report of the Institute Director. Place: National Institutes of Health, Building 31, Conference Room 6, 31 Center...

  3. The USGS National Wildlife Health Center: Advancing wildlife and ecosystem health

    USGS Publications Warehouse

    Moede Rogall, Gail; Sleeman, Jonathan M.

    2017-01-11

    In 1975, the Federal government responded to the need for establishing national expertise in wildlife health by creating the National Wildlife Health Center (NWHC), a facility within the Department of the Interior; the NWHC is the only national center dedicated to wildlife disease detection, control, and prevention. Its mission is to provide national leadership to safeguard wildlife and ecosystem health through active partnerships and exceptional science. Comparisons are often made between the NWHC, which strives to protect the health of our Nation’s wildlife, and the Centers for Disease Control and Prevention (CDC), which strive to protect public health. The NWHC, a science center of the U.S. Geological Survey (USGS) with specialized laboratories, works to safeguard the Nation’s wildlife from diseases by studying the causes and drivers of these threats, and by developing strategies to prevent and manage them. In addition to the main campus, located in Madison, Wisconsin, the NWHC also operates the Honolulu Field Station that addresses wildlife health issues in Hawaii and the Pacific Region.

  4. Advanced Materials Intelligent Processing Center (AMIPC): Manufacturing for Multi-Functionality

    DTIC Science & Technology

    2005-12-31

    through the development and use of Resin Transfer Molding ( RTM ) and Vacuum Assisted Resin Transfer Molding ( VARTM ) to address processing, sensing, and...intelligent processing has been advanced through the development and use of Resin Transfer Molding VRTM) and Vacuum Assisted Resin Transfer Molding ( VARTm ...16 Task 4B: Process Developments: Resin Bleeding During VARTM Infusion ....................... _18 Task 5

  5. CALS Tech Bulletin #3. An Occasional Publication of the Center for Advanced Learning Systems.

    ERIC Educational Resources Information Center

    CSR, Inc., Washington, DC.

    This paper contains brief synopses of recent technical progress/projects in the field of advanced learning systems. This issue contains the following 12 items: (1) "Guest Editorial" (Sylvia Charp) concerning the need to provide better learning experiences for all students; (2) "Steps in Developing an Expert Systems Model," as…

  6. Center of Mass Acceleration Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    PubMed Central

    Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    The potential efficacy of total body center of mass (COM) acceleration for feedback control of standing balance by functional neuromuscular stimulation (FNS) following spinal cord injury (SCI) was investigated. COM acceleration may be a viable alternative to conventional joint kinematics due to its rapid responsiveness, focal representation of COM dynamics, and ease of measurement. A computational procedure was developed using an anatomically-realistic, three-dimensional, bipedal biomechanical model to determine optimal patterns of muscle excitations to produce targeted effects upon COM acceleration from erect stance. The procedure was verified with electromyographic data collected from standing able-bodied subjects undergoing systematic perturbations. Using 16 muscle groups targeted by existing implantable neuroprostheses, data were generated to train an artificial neural network (ANN)-based controller in simulation. During forward simulations, proportional feedback of COM acceleration drove the ANN to produce muscle excitation patterns countering the effects of applied perturbations. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the clinical case of maximum constant excitation, the controller reduced UE loading by 43% in resisting external perturbations and by 51% during simulated one-arm reaching. Future work includes performance assessment against expected measurement errors and developing user-specific control systems. PMID:22773529

  7. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  8. A review of recent programs and future plans for rotorcraft in-flight simulation at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Aiken, Edwin W.; Hindson, William S.; Lebacqz, J. V.; Denery, Dallas G.

    1991-01-01

    A new flight research vehicle, the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at Ames Research Center. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the CH-47B research helicopter that was operated as an in-flight simulator at Ames during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at Ames are reviewed. Another U.S. Army helicopter, a UH-60A Black Hawk, has been selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described.

  9. Development of a VOR/DME model for an advanced concepts simulator

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  10. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  11. Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Rubin, D. M.

    2012-06-01

    In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.

  12. Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation

    USGS Publications Warehouse

    Daniel Buscombe,; Rubin, David M.

    2012-01-01

    1. In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.

  13. A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Zhai, Xue; Fei, Cheng-Wei; Choy, Yat-Sze; Wang, Jian-Jun

    2017-01-01

    To improve the accuracy and efficiency of computation model for complex structures, the stochastic model updating (SMU) strategy was proposed by combining the improved response surface model (IRSM) and the advanced Monte Carlo (MC) method based on experimental static test, prior information and uncertainties. Firstly, the IRSM and its mathematical model were developed with the emphasis on moving least-square method, and the advanced MC simulation method is studied based on Latin hypercube sampling method as well. And then the SMU procedure was presented with experimental static test for complex structure. The SMUs of simply-supported beam and aeroengine stator system (casings) were implemented to validate the proposed IRSM and advanced MC simulation method. The results show that (1) the SMU strategy hold high computational precision and efficiency for the SMUs of complex structural system; (2) the IRSM is demonstrated to be an effective model due to its SMU time is far less than that of traditional response surface method, which is promising to improve the computational speed and accuracy of SMU; (3) the advanced MC method observably decrease the samples from finite element simulations and the elapsed time of SMU. The efforts of this paper provide a promising SMU strategy for complex structure and enrich the theory of model updating.

  14. Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Scott, Parker

    2011-05-02

    This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph.D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electron modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of

  15. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    SciTech Connect

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a

  16. The Osseus platform: a prototype for advanced web-based distributed simulation

    NASA Astrophysics Data System (ADS)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  17. The role of numerical simulation for the development of an advanced HIFU system

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro

    2014-10-01

    High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.

  18. Monte Carlo Simulations in Statistical Physics -- From Basic Principles to Advanced Applications

    NASA Astrophysics Data System (ADS)

    Janke, Wolfhard

    2013-08-01

    This chapter starts with an overview of Monte Carlo computer simulation methodologies which are illustrated for the simple case of the Ising model. After reviewing importance sampling schemes based on Markov chains and standard local update rules (Metropolis, Glauber, heat-bath), nonlocal cluster-update algorithms are explained which drastically reduce the problem of critical slowing down at second-order phase transitions and thus improve the performance of simulations. How this can be quantified is explained in the section on statistical error analyses of simulation data including the effect of temporal correlations and autocorrelation times. Histogram reweighting methods are explained in the next section. Eventually, more advanced generalized ensemble methods (simulated and parallel tempering, multicanonical ensemble, Wang-Landau method) are discussed which are particularly important for simulations of first-order phase transitions and, in general, of systems with rare-event states. The setup of scaling and finite-size scaling analyses is the content of the following section. The chapter concludes with two advanced applications to complex physical systems. The first example deals with a quenched, diluted ferromagnet, and in the second application we consider the adsorption properties of macromolecules such as polymers and proteins to solid substrates. Such systems often require especially tailored algorithms for their efficient and successful simulation.

  19. Overview of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2012-01-01

    A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact ]induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.

  20. Simulation of the coupled multi-spacecraft control testbed at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ghosh, Dave; Montgomery, Raymond C.

    1994-01-01

    The capture and berthing of a controlled spacecraft using a robotic manipulator is an important technology for future space missions and is presently being considered as a backup option for direct docking of the Space Shuttle to the Space Station during assembly missions. The dynamics and control of spacecraft configurations that are manipulator-coupled with each spacecraft having independent attitude control systems is not well understood and NASA is actively involved in both analytic research on this three dimensional control problem for manipulator coupled active spacecraft and experimental research using a two dimensional ground based facility at the Marshall Space Flight Center (MSFC). This paper first describes the MSFC testbed and then describes a two link arm simulator that has been developed to facilitate control theory development and test planning. The motion of the arms and the payload is controlled by motors located at the shoulder, elbow, and wrist.

  1. FY05-FY06 Advanced Simulation and Computing Implementation Plan, Volume 2

    SciTech Connect

    Baron, A L

    2004-07-19

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapon design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile life extension programs and the resolution of significant finding investigations (SFIs). This requires a balanced system of technical staff, hardware, simulation software, and computer science solutions.

  2. In-silico simulations of advanced drug delivery systems: what will the future offer?

    PubMed

    Siepmann, Juergen

    2013-09-15

    This commentary enlarges on some of the topics addressed in the Position Paper "Towards more effective advanced drug delivery systems" by Crommelin and Florence (2013). Inter alia, the role of mathematical modeling and computer-assisted device design is briefly addressed in the Position Paper. This emerging and particularly promising field is considered in more depth in this commentary. In fact, in-silico simulations have become of fundamental importance in numerous scientific and related domains, allowing for a better understanding of various phenomena and for facilitated device design. The development of novel prototypes of space shuttles, nuclear power plants and automobiles are just a few examples. In-silico simulations are nowadays also well established in the field of pharmacokinetics/pharmacodynamics (PK/PD) and have become an integral part of the discovery and development process of novel drug products. Since Takeru Higuchi published his seminal equation in 1961 the use of mathematical models for the analysis and optimization of drug delivery systems in vitro has also become more and more popular. However, applying in-silico simulations for facilitated optimization of advanced drug delivery systems is not yet common practice. One of the reasons is the gap between in vitro and in vivo (PK/PD) simulations. In the future it can be expected that this gap will be closed and that computer assisted device design will play a central role in the research on, and development of advanced drug delivery systems.

  3. Image based weighted center of proximity versus directly measured knee contact location during simulated gait

    PubMed Central

    Wang, Hongsheng; Chen, Tony; Koff, Matthew F.; Hutchinson, Ian D.; Gilbert, Susannah; Choi, Dan; Warren, Russell F.; Rodeo, Scott A.; Maher, Suzanne A.

    2014-01-01

    To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities – using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (P < 0.01, 95% confidence interval of Person’s coefficient r > 0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (P > 0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction. PMID:24837219

  4. HYDRODYNAMICAL SIMULATIONS OF A COMPACT SOURCE SCENARIO FOR THE GALACTIC CENTER CLOUD G2

    SciTech Connect

    Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Genzel, R.; Fritz, T. K.; Eisenhauer, F.; Pfuhl, O.; Ott, T.

    2013-10-10

    The origin of the dense gas cloud G2 discovered in the Galactic Center is still a debated puzzle. G2 might be a diffuse cloud or the result of an outflow from an invisible star embedded in it. We present hydrodynamical simulations of the evolution of different spherically symmetric winds of a stellar object embedded in G2. We find that the interaction with the ambient medium and the extreme gravitational field of the supermassive black hole in the Galactic Center must be taken into account in such a source scenario. The thermal pressure of the hot and dense atmosphere confines the wind, while its ram pressure shapes it via stripping along the orbit, with the details depending on the wind parameters. Tidal forces squeeze the wind near pericenter, reducing it to a thin and elongated filament. We also find that in this scenario most of the Brγ luminosity is expected to come from the densest part of the wind, which has a highly filamentary structure with a low filling factor. For our assumed atmosphere, the observations can be best matched by a mass outflow rate of M-dot{sub w}=8.8×10{sup -8} M{sub sun} yr{sup -1} and a wind velocity of v{sub w} = 50 km s{sup –1}. These values are comparable with those of a young T Tauri star wind, as already suggested by Scoville and Burkert.

  5. Applications of Modeling and Simulation for Flight Hardware Processing at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Marshall, Jennifer L.

    2010-01-01

    The Boeing Design Visualization Group (DVG) is responsible for the creation of highly-detailed representations of both on-site facilities and flight hardware using computer-aided design (CAD) software, with a focus on the ground support equipment (GSE) used to process and prepare the hardware for space. Throughout my ten weeks at this center, I have had the opportunity to work on several projects: the modification of the Multi-Payload Processing Facility (MPPF) High Bay, weekly mapping of the Space Station Processing Facility (SSPF) floor layout, kinematics applications for the Orion Command Module (CM) hatches, and the design modification of the Ares I Upper Stage hatch for maintenance purposes. The main goal of each of these projects was to generate an authentic simulation or representation using DELMIA V5 software. This allowed for evaluation of facility layouts, support equipment placement, and greater process understanding once it was used to demonstrate future processes to customers and other partners. As such, I have had the opportunity to contribute to a skilled team working on diverse projects with a central goal of providing essential planning resources for future center operations.

  6. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  7. A Flight Dynamic Simulation Program in Air-Path Axes Using ACSL (Advanced Continuous Simulation Language).

    DTIC Science & Technology

    1986-06-01

    NO-A±?3 649 A FLIGHT DYNANIC SINULRTION PROGRAM IN AIR-PRTH AXES 11𔃼 USING ACSL (ADVANCED.. (U) AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) P W...Aeronajutical Restvarch Laboratrmes, ....,. i P.O. Box 4331,M lo re Vic:toria. 3001, Aus trali ."-" Melbourne.-a ’ 𔃾’ -- .-,, : _" • , (C) CMMONWALTH F...of time dependent results . e Tne DERIVATIVE section contains tne aitnd1- of the six degrees look- of freedom flight model. Tr imm inrg o f tnte a ir

  8. Design for an Advanced Red Agent for the Rand Strategy Assessment Center.

    DTIC Science & Technology

    1983-05-01

    achieve the goals in the simulated future, the ACL makes a new attempt to fill - . ., ’The tem analytic is used hare becaue an analytic war plan...risk-averse. It will attack if the situa- tion appears highly advantageous to Red and little chance of escala - tion is present. The rules for a

  9. Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) Validation Data Management at the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC)

    NASA Astrophysics Data System (ADS)

    Marquis, M. C.; Paserba, A. M.

    2003-12-01

    The National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) is supporting the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) validation activity. NSIDC has designed and developed a web portal to data and information collected during NASA's AMSR-E Validation Program: (http://nsidc.org/data/amsr_validation/.) The AMSR-E validation experiments address three disciplines: soil moisture, rainfall and cryospheric validation campaigns. This poster describes all these experiments (past, present and future). NSIDC provides documentation, e.g., user guides, as well as metadata documents (DIFS) submitted to the Global Change Master Directory (GCMD), for all the AMSR-E validation experiments. NSIDC further supports the validation activities by collaborating with the AMSR-E Science Investigator-led Processing System (SIPS) to provide scientists in the field (e.g., Arctic and Antarctic ship and flight campaigns) with quick, easy access to AMSR-E data for their validation experiments. NSIDC provides subsets of reformatted data in a manner most convenient to the validation scientists while they conduct their experiments. The AMSR-E is a mission instrument launched aboard NASA's Aqua Satellite on 4 May 2002. The Aqua mission provides a multi-disciplinary study of the Earth's atmospheric, oceanic, cryospheric, and land processes and their relationship to global change. With six instruments aboard, the Aqua Satellite will travel in a polar, sun-synchronous orbit. NSIDC will archive and distribute all AMSR-E products, including Levels 1A, 2, and 3 data. Users can order Level-1A AMSR-E data beginning 19 June 2003 and Level-2A data beginning 01 September 2003. Other products will be available in March 2004.

  10. Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON.

    PubMed

    Lytton, William W; Seidenstein, Alexandra H; Dura-Bernal, Salvador; McDougal, Robert A; Schürmann, Felix; Hines, Michael L

    2016-10-01

    Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500-100,000 cells), and using different numbers of nodes (1-256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.

  11. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; Sostaric, Ronald r.; Johnson, Andrew E.

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  12. Advanced Initiatives in Medical Simulation, 3rd Annual Conference to Create Awareness of Medical Simulation

    DTIC Science & Technology

    2006-06-30

    expertise in psychomotor skills . That understanding makes it possible to predict which measures to distinguish among levels of expertise. With a...students have “virtual mentors” that tell them whenever they make an error. Most simulators focus on psychomotor skills , but they need to also assess and...features at which the student is looking to assess the student’s judgment. Hand motions can be monitored to quantify psychomotor skills during the

  13. Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2005-01-01

    The goal of this publication is to provide an overview of the topic of revolutionary research in aeronautics at Langley, including many examples of research efforts that offer significant potential benefits, but have not yet been applied. The discussion also includes an overview of how innovation and creativity is stimulated within the Center, and a perspective on the future of innovation. The documentation of this topic, especially the scope and experiences of the example research activities covered, is intended to provide background information for future researchers.

  14. Human-centered design of a cyber-physical system for advanced response to Ebola (CARE).

    PubMed

    Dimitrov, Velin; Jagtap, Vinayak; Skorinko, Jeanine; Chernova, Sonia; Gennert, Michael; Padir, Taşkin

    2015-01-01

    We describe the process towards the design of a safe, reliable, and intuitive emergency treatment unit to facilitate a higher degree of safety and situational awareness for medical staff, leading to an increased level of patient care during an epidemic outbreak in an unprepared, underdeveloped, or disaster stricken area. We start with a human-centered design process to understand the design challenge of working with Ebola treatment units in Western Africa in the latest Ebola outbreak, and show preliminary work towards cyber-physical technologies applicable to potentially helping during the next outbreak.

  15. The layered sensing operations center: a modeling and simulation approach to developing complex ISR networks

    NASA Astrophysics Data System (ADS)

    Curtis, Christopher; Lenzo, Matthew; McClure, Matthew; Preiss, Bruce

    2010-04-01

    In order to anticipate the constantly changing landscape of global warfare, the United States Air Force must acquire new capabilities in the field of Intelligence, Surveillance, and Reconnaissance (ISR). To meet this challenge, the Air Force Research Laboratory (AFRL) is developing a unifying construct of "Layered Sensing" which will provide military decision-makers at all levels with the timely, actionable, and trusted information necessary for complete battlespace awareness. Layered Sensing is characterized by the appropriate combination of sensors and platforms (including those for persistent sensing), infrastructure, and exploitation capabilities to enable this synergistic awareness. To achieve the Layered Sensing vision, AFRL is pursuing a Modeling & Simulation (M&S) strategy through the Layered Sensing Operations Center (LSOC). An experimental ISR system-of-systems test-bed, the LSOC integrates DoD standard simulation tools with commercial, off-the-shelf video game technology for rapid scenario development and visualization. These tools will help facilitate sensor management performance characterization, system development, and operator behavioral analysis. Flexible and cost-effective, the LSOC will implement a non-proprietary, open-architecture framework with well-defined interfaces. This framework will incentivize the transition of current ISR performance models to service-oriented software design for maximum re-use and consistency. This paper will present the LSOC's development and implementation thus far as well as a summary of lessons learned and future plans for the LSOC.

  16. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  17. The validity and incremental validity of knowledge tests, low-fidelity simulations, and high-fidelity simulations for predicting job performance in advanced-level high-stakes selection.

    PubMed

    Lievens, Filip; Patterson, Fiona

    2011-09-01

    In high-stakes selection among candidates with considerable domain-specific knowledge and experience, investigations of whether high-fidelity simulations (assessment centers; ACs) have incremental validity over low-fidelity simulations (situational judgment tests; SJTs) are lacking. Therefore, this article integrates research on the validity of knowledge tests, low-fidelity simulations, and high-fidelity simulations in advanced-level high-stakes settings. A model and hypotheses of how these 3 predictors work in combination to predict job performance were developed. In a sample of 196 applicants, all 3 predictors were significantly related to job performance. Both the SJT and the AC had incremental validity over the knowledge test. Moreover, the AC had incremental validity over the SJT. Model tests showed that the SJT fully mediated the effects of declarative knowledge on job performance, whereas the AC partially mediated the effects of the SJT.

  18. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    SciTech Connect

    McCoy, Michel; Archer, Bill; Matzen, M. Keith

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.

  19. Meaning-Centered Group Psychotherapy: An Effective Intervention for Improving Psychological Well-Being in Patients With Advanced Cancer

    PubMed Central

    Breitbart, William; Rosenfeld, Barry; Pessin, Hayley; Applebaum, Allison; Kulikowski, Julia; Lichtenthal, Wendy G.

    2015-01-01

    Purpose To test the efficacy of meaning-centered group psychotherapy (MCGP) to reduce psychological distress and improve spiritual well-being in patients with advanced or terminal cancer. Patients and Methods Patients with advanced cancer (N = 253) were randomly assigned to manualized eight-session interventions of either MCGP or supportive group psychotherapy (SGP). Patients were assessed before and after completing the treatment and 2 months after treatment. The primary outcome measures were spiritual well-being and overall quality of life, with secondary outcome measures assessing depression, hopelessness, desire for hastened death, anxiety, and physical symptom distress. Results Hierarchical linear models that included a priori covariates and only participants who attended ≥ three sessions indicated a significant group × time interaction for most outcome variables. Specifically, patients receiving MCGP showed significantly greater improvement in spiritual well-being and quality of life and significantly greater reductions in depression, hopelessness, desire for hastened death, and physical symptom distress compared with those receiving SGP. No group differences were observed for changes in anxiety. Analyses that included all patients, regardless of whether they attended any treatment sessions (ie, intent-to-treat analyses), and no covariates still showed significant treatment effects (ie, greater benefit for patients receiving MCGP v SGP) for quality of life, depression, and hopelessness but not for other outcome variables. Conclusion This large randomized controlled study provides strong support for the efficacy of MCGP as a treatment for psychological and existential or spiritual distress in patients with advanced cancer. PMID:25646186

  20. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    SciTech Connect

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  1. Simulation Study of Injection Performance for the Advanced Photon Source Upgrade

    SciTech Connect

    Xiao, A.; Sajaev, V.

    2015-01-01

    A vertical on-axis injection scheme has been proposed for the hybrid seven-bend-achromat (H7BA) [1] Advanced Photon Source upgrade (APSU) lattice. In order to evaluate the injection performance, various errors, such as injection beam jitter, optical mismatch and errors, and injection element errors have been investigated and their significance has been discovered. Injection efficiency is then simulated under different error levels. Based on these simulation results, specifications and an error-budget for individual systems have been defined.

  2. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    SciTech Connect

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  3. Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

    SciTech Connect

    McCoy, M; Kusnezov, D; Bikkel, T; Hopson, J

    2007-04-25

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  4. Advanced Simulation and Computing FY07-08 Implementation Plan Volume 2

    SciTech Connect

    Kusnezov, D; Hale, A; McCoy, M; Hopson, J

    2006-06-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  5. Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0

    SciTech Connect

    Meisner, R; Perry, J; McCoy, M; Hopson, J

    2008-04-30

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  6. Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect

    Meisner, R; Hopson, J; Peery, J; McCoy, M

    2008-10-07

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  7. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  8. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    SciTech Connect

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  9. Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5

    SciTech Connect

    Meisner, R; Peery, J; McCoy, M; Hopson, J

    2009-09-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  10. An overview of the demonstration advanced avionics system guest pilot evaluation conducted at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Hardy, G. H.; Denery, D. G.

    1983-01-01

    The guest pilot flight evaluation of the Demonstration Advanced Avionics System (DAAS) is discussed. The results are based on the fifty-nine questionnaires that were completed by the participants. The primary purpose of the pilot evaluation was to expose the Demonstration Advanced Avionics System to the various segments of the general aviation community and solicit comments in order to determine the effectiveness of integrated avionics for general aviation. Segments of the community that were represented in the evaluation are listed. A total of sixty-four (64) flights were conducted in which one hundred and seventeen (117) pilots and observers participated. It was felt that the exposure each subject had with the DAAS was too short to adequately assess the training requirements, pilot workload, and the reconfiguration concept of the DAAS. It is recommended that an operational evaluation of the DAAS be made to assess: the training requirements or varying experience levels, the pilot workload in the ATC environment with unplanned route changes, and the viability of the reconfiguration concept for failures.

  11. Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Modiano, David

    1995-01-01

    Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.

  12. Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    Subjective measures of physical exertion, compensation, and controllability while performing tasks in simulated reduced gravity can be affected by changing the center of gravity (CG) of the overall system. The CG of the overall system is defined as the combined CG of the subject, the spacesuit, and the equipment required to change the CG. PURPOSE: To determine if changing the CG affects subjective ratings of suited human performance in simulated lunar gravity. METHODS: A custom weight support structure interfaced with the lunar prototype spacesuit, allowing manipulation of the CG. Weight locations to alter CG were based on a reference subject (81.6 kg, 182.9 cm). Six subjects (80.0 +/- 10.6 kg, 182.3 +/- 6.2 cm) completed 4 tasks (walking, kneel/stand, rock pickup, and shoveling) with system CG at 3 different locations (B=4.8/1.0, C=7.6/14.4, and P=11.2/20.1 cm aft/above the standard subject?s CG). Lunar gravity (0.17-g) was simulated by parabolic flight. Suited testing was performed at 29.6 kPa with a combined suit and structure mass of 181 kg. In all conditions, subjects provided ratings of perceived exertion (RPE) and the gravity compensation and performance scale (GCPS) upon completion of each task. RESULTS: Mean RPE and GCPS were highest at P for all tasks. Variability was greatest at B and lowest at C, and large variations between subjects at the same CG existed for both RPE and GCPS. These trends were not consistent with results from unsuited CG studies performed in other underwater and overhead suspension lunar gravity simulations. CONCLUSION: Modifying CG during suited testing at lunar gravity seems to affect subjective human performance. However, variation in subjective ratings at a given CG location indicates that further study is needed to determine the interactions among lunar gravity simulation, system CG, system mass, and subject characteristics such as anthropometry, strength, and fitness.

  13. Telemedicine & Advanced Technology Research Center (TATRC) Overview: Research Shaped to Meet Military Needs

    DTIC Science & Technology

    2011-06-01

    Technology BHSAI Medical Modeling & Simulation JPC Program Execution National ProgramsLogistics Security, Plans, Training, Travel Innovative and...SBIR CSI 400 450 Demonstrations & Field T-Med (P8) JPC -1 Other JPC Execution 5 6 & 8 300 350 Demonstrations , , , 200 250 & Field T-Med (P8...Other JPC Execution 100 150 Congressional Special Appropriations – RDT&E 0 50 SBIR JPC1 UNCLASSIFIED June 2011 Key Sources: CSI, AAMTI(P8), SBIR/STTR

  14. Advanced Distributed Simulation Technology II Global Positioning System Interactive Simulation (GPS DIS) Experiment

    DTIC Science & Technology

    2007-11-02

    RWA Manned Simulators 11 3.2.6 Voice Radio Communications: SRE & ASTi 11 3.2.7 ModSAF Operations 11 3.2.8 Data Logger 12 3.2.9 Time Stamper 12...utilized were the Single Channel Ground and Airborne Radio System (SINCGARS) Radio Emulator (SRE), the ASTi Radio, and the Tactical Internet Model (TIM...SGIs at the MWTB and ASTi radios at Ft. Rucker. These two Approved for public release; distribution is unlimited 4 ADST-II-CDRL-GPSDIS-9800018A

  15. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    SciTech Connect

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    2015-09-01

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications

  16. Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Franceschini, Fausto; Evans, Thomas M.; Gehin, Jess C.

    2016-02-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed.

  17. Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.

    2005-01-01

    NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.

  18. Certify for success: A methodology for human-centered certification of advanced aviation systems

    NASA Technical Reports Server (NTRS)

    Small, Ronald L.; Rouse, William B.

    1994-01-01

    This position paper uses the methodology in Design for Success as a basis for a human factors certification program. The Design for Success (DFS) methodology espouses a multi-step process to designing and developing systems in a human-centered fashion. These steps are as follows: (1) naturalizing - understand stakeholders and their concerns; (2) marketing - understand market-oriented alternatives to meeting stakeholder concerns; (3) engineering - detailed design and development of the system considering tradeoffs between technology, cost, schedule, certification requirements, etc.; (4) system evaluation - determining if the system meets its goal(s); and (5) sales and service - delivering and maintaining the system. Because the main topic of this paper is certification, we will focus our attention on step 4, System Evaluation, since it is the natural precursor to certification. Evaluation involves testing the system and its parts for their correct behaviors. Certification focuses not only on ensuring that the system exhibits the correct behaviors, but ONLY the correct behaviors.

  19. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  20. Cost benefits of advanced software: A review of methodology used at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla N.

    1993-01-01

    To assist rational investments in advanced software, a formal, explicit, and multi-perspective cost-benefit analysis methodology is proposed. The methodology can be implemented through a six-stage process which is described and explained. The current practice of cost-benefit analysis at KSC is reviewed in the light of this methodology. The review finds that there is a vicious circle operating. Unsound methods lead to unreliable cost-benefit estimates. Unreliable estimates convince management that cost-benefit studies should not be taken seriously. Then, given external demands for cost-benefit estimates, management encourages software enginees to somehow come up with the numbers for their projects. Lacking the expertise needed to do a proper study, courageous software engineers with vested interests use ad hoc and unsound methods to generate some estimates. In turn, these estimates are unreliable, and the cycle continues. The proposed methodology should help KSC to break out of this cycle.

  1. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    SciTech Connect

    Germain, Shawn St.; Thomas, Kenneth; Farris, Ronald; Joe, Jeffrey

    2014-09-01

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are

  2. Seven behaviors to advance teamwork: findings from a study of innovation leadership in a simulation center.

    PubMed

    Weberg, Dan; Weberg, Kim

    2014-01-01

    Traditional notions of individual-based leadership behaviors are no longer adequate to achieve innovation in health care organizations. A major contributing factor for limited innovation is that outdated leadership practices, such as leader centricity, linear thinking, and poor readiness for innovation, are being used in health care organizations. Through a qualitative case study analysis of innovation implementation, 7 characteristics of innovation leadership, founded in team behaviors, were uncovered. The characteristics that were uncovered included boundary spanning, risk taking, visioning, leveraging opportunity, adaptation, coordination of information flow, and facilitation. These characteristics describe how leaders throughout the system were able to influence and implement innovation successfully.

  3. Extending ESGF Data Publication at the NASA Center for Climate Simulation

    NASA Astrophysics Data System (ADS)

    Carriere, L.; Shen, Y.; Nadeau, D.; Potter, G. L.; Cinquini, L.; Blodgett, D. L.; McInerney, M.

    2013-12-01

    The NASA Center for Climate Simulation (NCCS) manages an Earth System Grid Federation (ESGF) node that distributes over 150 TB of climate model data in support multiple ESGF projects; IPCC AR5, NASA observational data for model-data comparisons (obs4MIPs), reanalysis data (ana4MIPS) and downscaled NEX climate data. The purpose of ESGF is to improve collaboration among climate modelers and to extend access to these climate data to other scientific communities. The NCCS has collaborated with the US Geological Survey (USGS), NASA's JPL, the European Center for Medium-Range Weather Forecasts (ECMWF), NOAA/NCEP and the Japanese Meteorological Agency (JMA) in three distinct projects to facilitate extending this access. First, the NASA Earth Exchange (NEX) data were made available to USGS's Geo Data Portal (GDP) by creating new unions and aggregations within the THREDDS catalog. Second, Reanalysis data from ECMWF and JMA were published in two ESGF Projects: obs4MIPS - zonal and meridional (u and v) winds at designated CMIP5 pressure levels for direct comparison to model output, and ana4MIPs - all the equivalent CMIP5 variables at their original pressure levels. Third, BioClim data (Biodiversity) in geotiff format were published, becoming the first geotiff image files to be successfully published in ESGF. Additionally, the BioClim geotiff images were published through a THREDDS server using the USGS-CIDA geotiff-iosp THREDDS overlay to allow the images to be presented and visualized as if they were netcdf files. This will allow any opendap client, such as uvcdat, grads, and matlab to analyze these images alongside climate model data. Future work includes incorporating the WMS feature when it is enabled in ESGF to visualize the BioClim geotiff files from within ESGF. Use Cases for each of these projects will be presented.

  4. The LISA Pathfinder Simulator for the Science and Technology Operations Center: Simulator Reuse Across the Project Life-Cycle: Practical Experiences and Lessons Learned

    NASA Astrophysics Data System (ADS)

    van der Plas, Peter; Leorato, Christiano

    2010-08-01

    During the operational phase of the Lisa Pathfinder (LPF) mission, the Science and Technology Operations Center (STOC) will be in charge of the operations of the LPF experiments. For the STOC to be able to perform its planning activities, an experiment simulator is required. The STOC simulator is based on the reuse of two simulators, which had originally been developed by EADS Astrium to support previous phases of the project life-cycle. This paper describes the STOC Simulator development approach, the used technologies and the high-level design. It then focuses on the specific implications of the reuse of the existing simulators: relevant issues are highlighted, together with the adopted solutions. Finally, the paper reports the first feedback on the actual usage of the STOC Simulator and then summarizes the lessons learned.

  5. The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update

    SciTech Connect

    Epperly, T W

    2008-12-03

    This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

  6. Spirituality and meaning in supportive care: spirituality- and meaning-centered group psychotherapy interventions in advanced cancer.

    PubMed

    Breitbart, William

    2002-05-01

    Existential and spiritual issues are at the frontier of new clinical and research focus in palliative and supportive care of cancer patients. As concepts of adequate supportive care expand beyond a focus on pain and physical symptom control, existential and spiritual issues such as meaning, hope and spirituality in general have received increased attention from supportive care clinicians and clinical researchers. This paper reviews the topics of spirituality and end-of-life care, defines spirituality, and suggests measures of spirituality that deal with two of its main components: faith/religious beliefs and meaning/spiritual well-being. These two constructs of spirituality are reviewed in terms of their role in supportive care. Finally, a review of existing psychotherapeutic interventions for spiritual suffering are reviewed and a novel meaning-centered group psychotherapy for advanced cancer patients is described.

  7. Advancing educational continuity in primary care residencies: an opportunity for patient-centered medical homes.

    PubMed

    Bowen, Judith L; Hirsh, David; Aagaard, Eva; Kaminetzky, Catherine P; Smith, Marie; Hardman, Joseph; Chheda, Shobhina G

    2015-05-01

    Continuity of care is a core value of patients and primary care physicians, yet in graduate medical education (GME), creating effective clinical teaching environments that emphasize continuity poses challenges. In this Perspective, the authors review three dimensions of continuity for patient care-informational, longitudinal, and interpersonal-and propose analogous dimensions describing continuity for learning that address both residents learning from patient care and supervisors and interprofessional team members supporting residents' competency development. The authors review primary care GME reform efforts through the lens of continuity, including the growing body of evidence that highlights the importance of longitudinal continuity between learners and supervisors for making competency judgments. The authors consider the challenges that primary care residency programs face in the wake of practice transformation to patient-centered medical home models and make recommendations to maximize the opportunity that these practice models provide. First, educators, researchers, and policy makers must be more precise with terms describing various dimensions of continuity. Second, research should prioritize developing assessments that enable the study of the impact of interpersonal continuity on clinical outcomes for patients and learning outcomes for residents. Third, residency programs should establish program structures that provide informational and longitudinal continuity to enable the development of interpersonal continuity for care and learning. Fourth, these educational models and continuity assessments should extend to the level of the interprofessional team. Fifth, policy leaders should develop a meaningful recognition process that rewards academic practices for training the primary care workforce.

  8. Development of a Batch Fabrication Process for Chemical Nanosensors: Recent Advancements at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.

    2014-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption. Chemical sensors involving nanostructured materials can provide these characteristics as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited by the ability to control their location on the sensor platform, which in turn hinders the progress for batch fabrication. This presentation will discuss the following: the development of a novel room temperature methane (CH4) sensor fabricated using porous tin oxide (SnO2) nanorods as the sensing material, the advantages of using nanomaterials in sensor designs, the challenges encountered with the integration of nanostructures into microsensordevices, and the different methods that have been attempted to address these challenges. An approach for the mass production of sensors with nanostructures using a method developed by our group at the NASA Glenn Research Center to control the alignment of nanostructures onto a sensor platform will also be described.

  9. Recent advances in carbon-carbon substrate technology at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O.; Yamaki, Y. Robert; Maahs, Howard G.

    1992-01-01

    A comparison of specific strengths of candidate high-temperature materials as a function of temperature is shown. From this comparison, it is apparent why there is an interest in carbon-carbon composites for applications as a strong, light-weight thermal protection system (TPS), or as hot structure, for applications above 2500 F. The lower bound of the carbon-carbon band is representative of the tensile strength of cross-ply Advanced Carbon-Carbon (ACC). The upper bound represents capabilities of various experimental carbon-carbon composites. Thin carbon-carbon composites, such as would be used as TPS panels or hot aero-structure, are usually constructed of layups of 2-D fabrics of carbon-fiber yarns (tows). Although the in-plane strengths of these composites can be very attractive, a major problem area is low interlaminar strength. The low interlaminar strength is the result of a relatively weak carbon matrix and poor interaction between the fibers and matrix. The purpose of this paper is to discuss strategies being employed to improve the interlaminar strengths of the materials at the upper bound of the carbon-carbon band, and to present some recent encouraging results. The emphasis of these strategies is to improve interlaminar shear and tensile strengths while maintaining, or even improving, the inplane properties.

  10. Impact of an Advanced Cardiac Life Support Simulation Laboratory Experience on Pharmacy Student Confidence and Knowledge

    PubMed Central

    Mohorn, Phillip L.; Haney, Jason S.; Phillips, Cynthia M.; Lu, Z. Kevin; Clark, Kimberly; Corboy, Alex; Ragucci, Kelly R.

    2016-01-01

    Objective. To assess the impact of an advanced cardiac life support (ACLS) simulation on pharmacy student confidence and knowledge. Design. Third-year pharmacy students participated in a simulation experience that consisted of team roles training, high-fidelity ACLS simulations, and debriefing. Students completed a pre/postsimulation confidence and knowledge assessment. Assessment. Overall, student knowledge assessment scores and student confidence scores improved significantly. Student confidence and knowledge changes from baseline were not significantly correlated. Conversely, a significant, weak positive correlation between presimulation studying and both presimulation confidence and presimulation knowledge was discovered. Conclusions. Overall, student confidence and knowledge assessment scores in ACLS significantly improved from baseline; however, student confidence and knowledge were not significantly correlated. PMID:27899836

  11. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  12. Impact of an Advanced Cardiac Life Support Simulation Laboratory Experience on Pharmacy Student Confidence and Knowledge.

    PubMed

    Maxwell, Whitney D; Mohorn, Phillip L; Haney, Jason S; Phillips, Cynthia M; Lu, Z Kevin; Clark, Kimberly; Corboy, Alex; Ragucci, Kelly R

    2016-10-25

    Objective. To assess the impact of an advanced cardiac life support (ACLS) simulation on pharmacy student confidence and knowledge. Design. Third-year pharmacy students participated in a simulation experience that consisted of team roles training, high-fidelity ACLS simulations, and debriefing. Students completed a pre/postsimulation confidence and knowledge assessment. Assessment. Overall, student knowledge assessment scores and student confidence scores improved significantly. Student confidence and knowledge changes from baseline were not significantly correlated. Conversely, a significant, weak positive correlation between presimulation studying and both presimulation confidence and presimulation knowledge was discovered. Conclusions. Overall, student confidence and knowledge assessment scores in ACLS significantly improved from baseline; however, student confidence and knowledge were not significantly correlated.

  13. Do Advance Yield Markings Increase Safe Driver Behaviors at Unsignalized, Marked Midblock Crosswalks? Driving Simulator Study

    PubMed Central

    Gómez, Radhameris A.; Samuel, Siby; Gerardino, Luis Roman; Romoser, Matthew R. E.; Collura, John; Knodler, Michael; Fisher, Donald L.

    2012-01-01

    In the United States, 78% of pedestrian crashes occur at noninter-section crossings. As a result, unsignalized, marked midblock crosswalks are prime targets for remediation. Many of these crashes occur under sight-limited conditions in which the view of critical information by the driver or pedestrian is obstructed by a vehicle stopped in an adjacent travel or parking lane on the near side of the crosswalk. Study of such a situation on the open road is much too risky, but study of the situation in a driving simulator is not. This paper describes the development of scenarios with sight limitations to compare potential vehicle–pedestrian conflicts on a driving simulator under conditions with two different types of pavement markings. Under the first condition, advance yield markings and symbol signs (prompts) that indicated “yield here to pedestrians” were used to warn drivers of pedestrians at marked, midblock crosswalks. Under the second condition, standard crosswalk treatments and prompts were used to warn drivers of these hazards. Actual crashes as well as the drivers' point of gaze were measured to determine if the drivers approaching a marked midblock crosswalk looked for pedestrians in the crosswalk more frequently and sooner in high-risk scenarios when advance yield markings and prompts were present than when standard markings and prompts were used. Fewer crashes were found to occur with advance yield markings. Drivers were also found to look for pedestrians much more frequently and much sooner with advance yield markings. The advantages and limitations of the use of driving simulation to study problems such as these are discussed. PMID:23082040

  14. Do Advance Yield Markings Increase Safe Driver Behaviors at Unsignalized, Marked Midblock Crosswalks? Driving Simulator Study.

    PubMed

    Gómez, Radhameris A; Samuel, Siby; Gerardino, Luis Roman; Romoser, Matthew R E; Collura, John; Knodler, Michael; Fisher, Donald L

    2011-01-01

    In the United States, 78% of pedestrian crashes occur at noninter-section crossings. As a result, unsignalized, marked midblock crosswalks are prime targets for remediation. Many of these crashes occur under sight-limited conditions in which the view of critical information by the driver or pedestrian is obstructed by a vehicle stopped in an adjacent travel or parking lane on the near side of the crosswalk. Study of such a situation on the open road is much too risky, but study of the situation in a driving simulator is not. This paper describes the development of scenarios with sight limitations to compare potential vehicle-pedestrian conflicts on a driving simulator under conditions with two different types of pavement markings. Under the first condition, advance yield markings and symbol signs (prompts) that indicated "yield here to pedestrians" were used to warn drivers of pedestrians at marked, midblock crosswalks. Under the second condition, standard crosswalk treatments and prompts were used to warn drivers of these hazards. Actual crashes as well as the drivers' point of gaze were measured to determine if the drivers approaching a marked midblock crosswalk looked for pedestrians in the crosswalk more frequently and sooner in high-risk scenarios when advance yield markings and prompts were present than when standard markings and prompts were used. Fewer crashes were found to occur with advance yield markings. Drivers were also found to look for pedestrians much more frequently and much sooner with advance yield markings. The advantages and limitations of the use of driving simulation to study problems such as these are discussed.

  15. Retention of Advanced Cardiac Life Support Knowledge and Skills Following High-Fidelity Mannequin Simulation Training

    PubMed Central

    Sen, Sanchita; Finn, Laura A.; Cawley, Michael J.

    2015-01-01

    Objective. To assess pharmacy students’ ability to retain advanced cardiac life support (ACLS) knowledge and skills within 120 days of previous high-fidelity mannequin simulation training. Design. Students were randomly assigned to rapid response teams of 5-6. Skills in ACLS and mannequin survival were compared between teams some members of which had simulation training 120 days earlier and teams who had not had previous training. Assessment. A checklist was used to record and assess performance in the simulations. Teams with previous simulation training (n=10) demonstrated numerical superiority to teams without previous training (n=12) for 6 out of 8 (75%) ACLS skills observed, including time calculating accurate vasopressor infusion rate (83 sec vs 113 sec; p=0.01). Mannequin survival was 37% higher for teams who had previous simulation training, but this result was not significant (70% vs 33%; p=0.20). Conclusion. Teams with students who had previous simulation training demonstrated numerical superiority in ACLS knowledge and skill retention within 120 days of previous training compared to those who had no previous training. Future studies are needed to add to the current evidence of pharmacy students’ and practicing pharmacists’ ACLS knowledge and skill retention. PMID:25741028

  16. Mission simulation as an approach to develop requirements for automation in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.

  17. Advancements in Data Access at the IRIS Data Management Center to Broaden Data Use

    NASA Astrophysics Data System (ADS)

    Benson, R. B.; Trabant, C. M.; Ahern, T. K.

    2013-12-01

    The IRIS Data Management Center (DMC) has been serving digital seismic data for more than 20 years and has offered a variety of access mechanisms that have stood the test of time. However, beginning in 2010, and in response to multiple needs being requested from the IRIS DMC, we have developed web service interfaces to access our primary data repository. These new interfaces have rapidly grown in popularity. In 2013, the third full year of their operation, these services were responsible for half of all the data shipped from the DMC. In the same time period, the amount of data shipped from the other data access mechanisms has also increased. This non-linear growth of data shipments reflects the increased data usage by the research community. We believe that our new web service interfaces are well suited to fit future data access needs and signify a significant evolution in integrating different scientific data sets. Based on standardized web technologies, support for writing access software is ubiquitous. As fundamentally programmatic interfaces, the services are well suited for integration into data processing systems, in particular large-scale data processing systems. Their programmatic nature also makes then well suited for use with brokering systems where, for example, data from multiple disciplines can be integrated. In addition to providing access to raw data, the DMC created web services that apply simple, on-the-fly processing and format conversion. Processing the data (e.g. converting to Earth units) and formatting the result into something generally usable (e.g. ASCII) removes important barriers for users working in other disciplines. The end result is that we are shipping a much larger amount of data in a manner more directly usable by users. Many of these principles will be applied to the DMC's future work in the NSF's EarthCube Web Service Building Blocks project.

  18. Recent Advances in Hydrogen Peroxide Propulsion Test Capability at NASA's Stennis Space Center E-Complex

    NASA Technical Reports Server (NTRS)

    Jacks, Thomas E.; Beisler, Michele

    2003-01-01

    In recent years, the rocket propulsion test capability at NASA's John C. Stennis Space Center's (SSC) E-Complex has been enhanced to include facilitization for hydrogen peroxide (H2O2) based ground testing. In particular, the E-3 test stand has conducted numerous test projects that have been reported in the open literature. These include combustion devices as simple as small-scale catalyst beds, and larger devices such as ablative thrust chambers and a flight-type engine (AR2-3). Consequently, the NASA SSC test engineering and operations knowledge base and infrastructure have grown considerably in order to conduct safe H2O2 test operations with a variety of test articles at the component and engine level. Currently, the E-Complex has a test requirement for a hydrogen peroxide based stage test. This new development, with its unique set of requirements, has motivated the facilitization for hydrogen peroxide propellant use at the E-2 Cell 2 test position in addition to E-3. Since the E-2 Cell 2 test position was not originally designed as a hydrogen peroxide test stand, a facility modernization-improvement project was planned and implemented in FY 2002-03 to enable this vertical engine test stand to accomodate H2O2. This paper discusses the ongoing enhancement of E-Complex ground test capability, specifically at the E-3 stand (Cell 1 and Cell 2) and E-2 Cell 2 stand, that enable current and future customers considerable test flexibility and operability in conducting their peroxide based rocket R&D efforts.

  19. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  20. Factors associated with attrition from a randomized controlled trial of meaning-centered group psychotherapy for patients with advanced cancer

    PubMed Central

    Applebaum, Allison J.; Lichtenthal, Wendy G.; Pessin, Hayley A.; Radomski, Julia N.; Gökbayrak, N. Simay; Katz, Aviva M.; Rosenfeld, Barry; Breitbart, William

    2013-01-01

    Objective The generalizability of palliative care intervention research is often limited by high rates of study attrition. This study examined factors associated with attrition from a randomized controlled trial comparing meaning-centered group psychotherapy (MCGP), an intervention designed to help advanced cancer patients sustain or enhance their sense of meaning to the supportive group psychotherapy (SGP), a standardized support group. Methods Patients with advanced solid tumor cancers (n = 153) were randomized to eight sessions of either the MCGP or SGP. They completed assessments of psychosocial, spiritual, and physical well-being pretreatment, midtreatment, and 2 months post-treatment. Attrition was assessed in terms of the percent of participants who failed to complete these assessments, and demographic, psychiatric, medical, and study-related correlates of attrition were examined for the participants in each of these categories. Results The rates of attrition at these time points were 28.1%, 17.7%, and 11.1%, respectively; 43.1% of the participants (66 of 153) completed the entire study. The most common reason for dropout was patients feeling too ill. Attrition rates did not vary significantly between study arms. The participants who dropped out pretreatment reported less financial concerns than post-treatment dropouts, and the participants who dropped out of the study midtreatment had poorer physical health than treatment completers. There were no other significant associations between attrition and any demographic, medical, psychiatric, or study-related variables. Conclusions These findings highlight the challenge of maintaining advanced cancer patients in longitudinal research and suggest the need to consider alternative approaches (e.g., telemedicine) for patients who might benefit from group interventions but are too ill to travel. PMID:21751295

  1. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  2. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  3. Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities

    SciTech Connect

    Gregory Weatherby

    2012-05-01

    The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage

  4. Surgical approach for ulcerated locally advanced breast cancer. A single Center experience: a retrospective study.

    PubMed

    Laforgia, Rita; Punzo, Clelia; Panebianco, Annunziata; Volpi, Annalisa; Minafra, Marina; Sederino, Maria Grazia

    2017-01-12

    L’obiettivo del nostro studio è la valutazione della strategia chirurgica più idonea nei casi di LABC (Locally Advanced Breast Cancer) in condizioni di ulcerazione e sanguinamento. La diagnosi clinica del LABC prevede nella maggior parte dei casi una massa mammaria estesa associata ad edema, eritema, retrazione e sanguinamento, dolore, superficie cutanea irregolare e coinvolgimento linfonodale. L’intervento chirurgico di scelta per le forme T3-T4 è la mastectomia radicale che rappresenta un trattamento adeguato per il controllo locale della patologia. In caso di forme localmente avanzate e ulcerate, pur essendo forme inoperabili, l’exeresi chirurgica si rende necessaria per una bonifica locale. La presenza di fenomeni di ulcerazione e sanguinamento non rende possibile avviare un trattamento chemioterapico neoadiuvante ed è necessario eseguire interventi chirurgici palliativi. Il trattamento chirurgico stesso richiede mutilazioni ampie ed associate procedure di chirurgia plastica. Spesso per l’estensione della malattia ed il sovvertimento del corpus mammae durante l’exeresi chirurgica della mammella, la sezione su zone esenti da neoplasia non consente la chiusura immediata dei lembi. Abbiamo considerato, su un campione di 288 pazienti affette da carcinoma mammario, 11 donne con forme avanzate fra T4a e T4c (3.8%). E’ stata posta indicazione a trattamento chirurgico perché pazienti provenienti dal Pronto Soccorso con anemizzazione per neoplasie avanzate ulcerate e sanguinanti, non candidabili in prima istanza a chemioterapia neoadiuvante citoriduttiva. Le procedure adoperate per la ricostruzione della mammella sono state in 2 pazienti la rotazione di un lembo muscolo cutaneo, in 4 casi un innesto cutaneo prelevato dalla coscia, in 4 casi è stata utilizzata una matrice dermica biologica - sostituto cutaneo (INTEGRA) che è stata poi sostituita con un successivo innesto cutaneo a distanza di circa 20-30 giorni. Sono state osservate recidive in 2 casi

  5. ADVANCED UTILITY SIMULATION MODEL, REPORT OF SENSITIVITY TESTING, CALIBRATION, AND MODEL OUTPUT COMPARISONS (VERSION 3.0)

    EPA Science Inventory

    The report gives results of activities relating to the Advanced Utility Simulation Model (AUSM): sensitivity testing. comparison with a mature electric utility model, and calibration to historical emissions. The activities were aimed at demonstrating AUSM's validity over input va...

  6. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    NASA Astrophysics Data System (ADS)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  7. Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2014-11-01

    The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.

  8. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  9. [Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].

    PubMed

    Suhánszki, Norbert; Haidegger, Tamás

    2014-12-01

    Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education.

  10. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  11. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Macdonald, Digby; Liu, Jun; Liu, Sue; Al-Rifaie, Mohammed; Sikora; Elzbieta

    2000-06-01

    The principal goals of this project are to develop advanced electrochemical emission spectroscopic (EES) methods for monitoring the corrosion of carbon steel in simulated DOE liquid waste and to develop a better understanding of the mechanisms of the corrosion of metals (e.g. iron, nickel, and chromium) and alloys (carbon steel, low alloy steels, stainless steels) in thes e environments. During the first two years of this project, significant advances have been made in developing a better understanding of the corrosion of iron in aqueous solutions as a function of pH, on developing a better understanding of the growth of passive films on metal surfaces, and on developing EES techniques for corrosion monitoring. This report summarizes work on beginning the third year of the 3-year project.

  12. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  13. Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools

    NASA Astrophysics Data System (ADS)

    Massat, Jean-Pierre; Laurent, Christophe; Bianchi, Jean-Philippe; Balmès, Etienne

    2014-05-01

    This paper presents recent developments undertaken by SNCF Innovation & Research Department on numerical modelling of pantograph catenary interaction. It aims at describing an efficient co-simulation process between finite element (FE) and multibody (MB) modelling methods. FE catenary models are coupled with a full flexible MB representation with pneumatic actuation of pantograph. These advanced functionalities allow new kind of numerical analyses such as dynamic improvements based on innovative pneumatic suspensions or assessment of crash risks crossing areas that demonstrate the powerful capabilities of this computing approach.

  14. Advanced Numerical methods for F. E. Simulation of Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Chenot, Jean-Loup; Bernacki, Marc; Fourment, Lionel; Ducloux, Richard

    2010-06-01

    The classical scientific basis for finite element modeling of metal forming processes is first recalled. Several developments in advanced topics are summarized: adaptive and anisotropic remeshing, parallel solving, multi material deformation. More recent researches in numerical analysis are outlined, including multi grid and multi mesh methods, mainly devoted to decrease computation time, automatic optimization method for faster and more effective design of forming processes. The link of forming simulation and structural computations is considered with emphasis on the necessity to predict the final mechanical properties. Finally a brief account of computation at the micro scale level is given.

  15. The GEANT low energy Compton scattering (GLECS) package for use in simulating advanced Compton telescopes

    NASA Astrophysics Data System (ADS)

    Kippen, R. Marc

    2004-02-01

    Compton γ-ray imaging is inherently based on the assumption of γ-rays scattering with free electrons. In reality, the non-zero momentum of target electrons bound in atoms blurs this ideal scattering response in a process known as Doppler broadening. The design and understanding of advanced Compton telescopes, thus, depends critically on the ability to accurately account for Doppler broadening effects. For this purpose, a Monte Carlo package that simulates detailed Doppler broadening has been developed for use with the powerful, general-purpose GEANT3 and GEANT4 radiation transport codes. This paper describes the design of this package, and illustrates results of comparison with selected experimental data.

  16. On Simulation of Edge Stretchability of an 800MPa Advanced High Strength Steel

    NASA Astrophysics Data System (ADS)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael

    2016-08-01

    In the present work, the edge stretchability of advanced high strength steel (AHSS) was investigated experimentally and numerically using both a hole expansion test and a tensile specimen with a central hole. The experimental fracture strains obtained using the hole expansion and hole tension test in both reamed and sheared edge conditions were in very good agreement, suggesting the tests are equivalent for fracture characterization. Isotropic finite-element simulations of both tests were performed to compare the stress-state near the hole edge.

  17. Absolute Time Error Calibration of GPS Receivers Using Advanced GPS Simulators

    DTIC Science & Technology

    1997-12-01

    29th Annual Precise Time a d Time Interval (PTTI) Meeting ABSOLUTE TIME ERROR CALIBRATION OF GPS RECEIVERS USING ADVANCED GPS SIMULATORS E.D...DC 20375 USA Abstract Preche time transfer eq)er&nen& using GPS with t h e stabd?v’s under ten nanoseconh are common& being reported willrbr the... time transfer communily. Relarive calibrations are done by naeasurhg the time error of one GPS receiver versus a “known master refmence receiver.” Z?t

  18. Advances in Systems and Technologies Toward Interopoerating Operational Military C2 and Simulation Systems

    DTIC Science & Technology

    2014-06-01

    Standards   Organization   (SISO)   provides   a   collaborative   environment   for   exchange   of   information   about...19th  ICCRTS   “C2  Agility:  Lessons   Learned  from  Research  and  Operations”   Advances  in  Systems  and...Their vision is a future where military organizations can link their C2 and simulation systems without special preparation in support of coalition

  19. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.

    2016-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (S?A) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is ?0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.

  20. Orthogonal Metal Cutting Simulation Using Advanced Constitutive Equations with Damage and Fully Adaptive Numerical Procedure

    NASA Astrophysics Data System (ADS)

    Saanouni, Kkemais; Labergère, Carl; Issa, Mazen; Rassineux, Alain

    2010-06-01

    This work proposes a complete adaptive numerical methodology which uses `advanced' elastoplastic constitutive equations coupling: thermal effects, large elasto-viscoplasticity with mixed non linear hardening, ductile damage and contact with friction, for 2D machining simulation. Fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning the local integration scheme as well as the global resolution strategy and the adaptive remeshing facility are briefly discussed. Applications are made to the orthogonal metal cutting by chip formation and segmentation under high velocity. The interactions between hardening, plasticity, ductile damage and thermal effects and their effects on the adiabatic shear band formation including the formation of cracks are investigated.

  1. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  2. Ejector nozzle test results at simulated flight conditions for an advanced supersonic transport propulsion system

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Bresnahan, D. L.

    1983-01-01

    Results are presented of wind tunnel tests conducted to verify the performance improvements of a refined ejector nozzle design for advanced supersonic transport propulsion systems. The analysis of results obtained at simulated engine operating conditions is emphasized. Tests were conducted with models of approximately 1/10th scale which were configured to simulate nozzle operation at takeoff, subsonic cruise, transonic cruise, and supersonic cruise. Transonic cruise operation was not a consideration during the nozzle design phase, although an evaluation at this condition was later conducted. Test results, characterized by thrust and flow coefficients, are given for a range of nozzle pressure ratios, emphasizing the thrust performance at the engine operating conditions predicted for each flight Mach number. The results indicate that nozzle performance goals were met or closely approximated at takeoff and supersonic cruise, while subsonic cruise performance was within 2.3 percent of the goal with further improvement possible.

  3. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  4. The Effect of Center of Gravity and Anthropometrics on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Chappell, Steven P.; Skytland, Nicholas G.

    2009-01-01

    NASA EVA Physiology, Systems and Performance (EPSP) Project at JSC has been investigating the effects of Center of Gravity and other factors on astronaut performance in reduced gravity. A subset of the studies have been performed with the water immersion technique. Study results show correlation between Center of Gravity location and performance. However, data variability observed between subjects for prescribed Center of Gravity configurations. The hypothesis is that Anthropometric differences between test subjects could be a source of the performance variability.

  5. Current Advances in the Computational Simulation of the Formation of Low-Mass Stars

    SciTech Connect

    Klein, R I; Inutsuka, S; Padoan, P; Tomisaka, K

    2005-10-24

    Developing a theory of low-mass star formation ({approx} 0.1 to 3 M{sub {circle_dot}}) remains one of the most elusive and important goals of theoretical astrophysics. The star-formation process is the outcome of the complex dynamics of interstellar gas involving non-linear interactions of turbulence, gravity, magnetic field and radiation. The evolution of protostellar condensations, from the moment they are assembled by turbulent flows to the time they reach stellar densities, spans an enormous range of scales, resulting in a major computational challenge for simulations. Since the previous Protostars and Planets conference, dramatic advances in the development of new numerical algorithmic techniques have been successfully implemented on large scale parallel supercomputers. Among such techniques, Adaptive Mesh Refinement and Smooth Particle Hydrodynamics have provided frameworks to simulate the process of low-mass star formation with a very large dynamic range. It is now feasible to explore the turbulent fragmentation of molecular clouds and the gravitational collapse of cores into stars self-consistently within the same calculation. The increased sophistication of these powerful methods comes with substantial caveats associated with the use of the techniques and the interpretation of the numerical results. In this review, we examine what has been accomplished in the field and present a critique of both numerical methods and scientific results. We stress that computational simulations should obey the available observational constraints and demonstrate numerical convergence. Failing this, results of large scale simulations do not advance our understanding of low-mass star formation.

  6. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  7. Sorafenib treatment of radioiodine-refractory advanced thyroid cancer in daily clinical practice: a cohort study from a single center.

    PubMed

    Gallo, Marco; Michelon, Federica; Castiglione, Anna; Felicetti, Francesco; Viansone, Alessandro Adriano; Nervo, Alice; Zichi, Clizia; Ciccone, Giovannino; Piovesan, Alessandro; Arvat, Emanuela

    2015-08-01

    Treatment options for recurrent or metastatic differentiated thyroid cancer (DTC) refractory to radioactive iodine (RAI) are inadequate. Multitargeted kinase inhibitors have recently shown promising results in phase 2-3 studies. This retrospective study aimed to document our clinical experience on the effects of sorafenib in the setting of daily clinical practice. Retrospective study evaluating the efficacy and safety of sorafenib in a cohort of patients consecutively treated with sorafenib at a single center. Twenty patients with advanced RAI-refractory thyroid carcinoma were enrolled (March 2011-March 2014). Patients generally started with 400 mg of sorafenib twice daily, tapering the dose in case of side effects. Radiological response and toxicity were measured during follow-up, together with safety parameters. CT scans were performed by a single experienced radiologist every 3-4 months. Five patients stopped sorafenib within 90 days due to severe toxicities. Median progression-free survival was 248 days. Five patients had a partial response (PR), achieved in all cases within 3 months, whereas 5 had stable disease (SD) at 12 months. Durable response rate (PR plus SD) for at least 6 months was 50 %, among those who received sorafenib for at least 3 months. Commonest adverse events included skin toxicity, gastrointestinal and constitutional symptoms. In our cohort of patients with advanced RAI-refractory thyroid carcinoma, sorafenib confirmed antitumor activity leading to SD or PR in the majority of cases, at the expense of clinically relevant side effects. More effective and tolerable agents are still needed in the treatment of RAI-refractory DTC.

  8. Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2015-11-01

    This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.

  9. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  10. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  11. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods.

    PubMed

    Lee, Anthony; Yau, Christopher; Giles, Michael B; Doucet, Arnaud; Holmes, Christopher C

    2010-12-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design.

  12. A demonstration of motion base design alternatives for the National Advanced Driving Simulator

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Sharkey, Thomas J.; Sinacori, John B.; Laforce, Soren; Miller, James C.; Cook, Anthony

    1992-01-01

    A demonstration of the capability of NASA's Vertical Motion Simulator to simulate two alternative motion base designs for the National Advanced Driving simulator (NADS) is reported. The VMS is located at ARC. The motion base conditions used in this demonstration were as follows: (1) a large translational motion base; and (2) a motion base design with limited translational capability. The latter had translational capability representative of a typical synergistic motion platform. These alternatives were selected to test the prediction that large amplitude translational motion would result in a lower incidence or severity of simulator induced sickness (SIS) than would a limited translational motion base. A total of 10 drivers performed two tasks, slaloms and quick-stops, using each of the motion bases. Physiological, objective, and subjective measures were collected. No reliable differences in SIS between the motion base conditions was found in this demonstration. However, in light of the cost considerations and engineering challenges associated with implementing a large translation motion base, performance of a formal study is recommended.

  13. Space-based radar representation in the advanced warfighting simulation (AWARS)

    NASA Astrophysics Data System (ADS)

    Phend, Andrew E.; Buckley, Kathryn; Elliott, Steven R.; Stanley, Page B.; Shea, Peter M.; Rutland, Jimmie A.

    2004-09-01

    Space and orbiting systems impact multiple battlefield operating systems (BOS). Space support to current operations is a perfect example of how the United States fights. Satellite-aided munitions, communications, navigation and weather systems combine to achieve military objectives in a relatively short amount of time. Through representation of space capabilities within models and simulations, the military will have the ability to train and educate officers and soldiers to fight from the high ground of space or to conduct analysis and determine the requirements or utility of transformed forces empowered with advanced space-based capabilities. The Army Vice Chief of Staff acknowledged deficiencies in space modeling and simulation during the September 2001 Space Force Management Analsyis Review (FORMAL) and directed that a multi-disciplinary team be established to recommend a service-wide roadmap to address shortcomings. A Focus Area Collaborative Team (FACT), led by the U.S. Army Space & Missile Defense Command with participation across the Army, confirmed the weaknesses in scope, consistency, correctness, completeness, availability, and usability of space model and simulation (M&S) for Army applications. The FACT addressed the need to develop a roadmap to remedy Space M&S deficiencies using a highly parallelized process and schedule designed to support a recommendation during the Sep 02 meeting of the Army Model and Simulation Executive Council (AMSEC).

  14. Direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)

    SciTech Connect

    Carroll, C.C.; Owen, J.E.

    1988-05-01

    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.

  15. A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Owen, Jeffrey E.

    1988-01-01

    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.

  16. Advancing Cancer Systems Biology: Introducing the Center for the Development of a Virtual Tumor, CViT

    PubMed Central

    Deisboeck, Thomas S.; Zhang, Le; Martin, Sean

    2007-01-01

    Integrative cancer biology research relies on a variety of data-driven computational modeling and simulation methods and techniques geared towards gaining new insights into the complexity of biological processes that are of critical importance for cancer research. These include the dynamics of gene-protein interaction networks, the percolation of sub-cellular perturbations across scales and the impact they may have on tumorigenesis in both experiments and clinics. Such innovative ‘systems’ research will greatly benefit from enabling Information Technology that is currently under development, including an online collaborative environment, a Semantic Web based computing platform that hosts data and model repositories as well as high-performance computing access. Here, we present one of the National Cancer Institute’s recently established Integrative Cancer Biology Programs, i.e. the Center for the Development of a Virtual Tumor, CViT, which is charged with building a cancer modeling community, developing the aforementioned enabling technologies and fostering multi-scale cancer modeling and simulation. PMID:19390664

  17. MHD Simulation of Magnetic Nozzle Plasma with the NIMROD Code: Applications to the VASIMR Advanced Space Propulsion Concept

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.; Shebalin, John V.

    2002-11-01

    A simulation study with the NIMROD code [1] is being carried on to investigate the efficiency of the thrust generation process and the properties of the plasma detachment in a magnetic nozzle. In the simulation, hot plasma is injected in the magnetic nozzle, modeled as a 2D, axi-symmetric domain. NIMROD has two-fluid, 3D capabilities but the present runs are being conducted within the MHD, 2D approximation. As the plasma travels through the magnetic field, part of its thermal energy is converted into longitudinal kinetic energy, along the axis of the nozzle. The plasma eventually detaches from the magnetic field at a certain distance from the nozzle throat where the kinetic energy becomes larger than the magnetic energy. Preliminary NIMROD 2D runs have been benchmarked with a particle trajectory code showing satisfactory results [2]. Further testing is here reported with the emphasis on the analysis of the diffusion rate across the field lines and of the overall nozzle efficiency. These simulation runs are specifically designed for obtaining comparisons with laboratory measurements of the VASIMR experiment, by looking at the evolution of the radial plasma density and temperature profiles in the nozzle. VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [3]) is an advanced space propulsion concept currently under experimental development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A plasma (typically ionized Hydrogen or Helium) is generated by a RF (Helicon) discharge and heated by an Ion Cyclotron Resonance Heating antenna. The heated plasma is then guided into a magnetic nozzle to convert the thermal plasma energy into effective thrust. The VASIMR system has no electrodes and a solenoidal magnetic field produced by an asymmetric mirror configuration ensures magnetic insulation of the plasma from the material surfaces. By powering the plasma source and the heating antenna at different levels it is possible to vary smoothly of the

  18. A driver linac for the Advanced Exotic Beam Laboratory : physics design and beam dynamics simulations.

    SciTech Connect

    Ostroumov, P. N.; Mustapha, B.; Nolen, J.; Physics

    2007-01-01

    The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper station and chicane. We present the results of an optimized linac design and end-to-end simulations including machine errors and detailed beam loss analysis. The Advanced Exotic Beam Laboratory (AEBL) has been proposed at ANL as a reduced scale of the original Rare Isotope Accelerator (RIA) project with about half the cost but the same beam power. AEBL will address 90% or more of RIA physics but with reduced multi-users capabilities. The focus of this paper is the physics design and beam dynamics simulations of the AEBL driver linac. The reported results are for a multiple charge state U{sup 238} beam.

  19. Decadal Simulation and Comprehensive Evaluation of CESM/CAM5 with Advanced Chemistry, Aerosol Microphysics, and Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    He, J.; Glotfelty, T.; Zhang, Y.

    2013-12-01

    Community Earth System Model (CESM) is a global Earth system model that was developed by National Center for Atmospheric Research (NCAR) to simulate the entire Earth system by coupling physical climate system with chemistry, biogeochemistry, biology and human systems. It can also quantify the certainties and uncertainties in Earth system feedbacks on time scales up to centuries and longer. The Community Atmosphere Model version 5.1 (CAM5.1) is the atmosphere component of CESM version 1.0.5. CESM/CAM5.1 has been applied by NCAR to simulate climate change as part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The IPCC-AR5 indicates that the uncertainties associated with cloud, aerosol, and their feedbacks, as well as uncertainties in near- and long-term projections are emerging issues to be addressed by the scientific community. CESM/CAM5.1 has been recently further developed and improved with advanced treatments for gas-phase chemistry, aerosol chemistry and dynamics, and aerosol-cloud interactions by North Carolina State University (NCSU) to reduce the uncertainties associated with those treatments in the model predictions. Our ultimate goal is to enhance CESM/CAM5's capability in representing current atmosphere and projecting future climate change. In this work, as the first step toward this goal, the NCSU's version of CESM/CAM5 with those advanced treatments is applied for 2001-2010, which will provide valuable information about the model's capability in capturing the decadal variation trend in climate and its potential in projecting future climate changes. The model simulation is conducted at a horizontal resolution of 0.9o × 1.25o and a vertical resolution of 30 layers. The simulation results based on 10-year average are evaluated comprehensively with a variety of datasets, including global surface observations of meteorological and radiative variables; satellite observations of the column mass of chemical species and

  20. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  1. Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2010-01-01

    The presentation slides include: Moving Past Apollo, Testing in Analog Environments, NEEMO/NBL CG (center of gravity) Studies, Center of Gravity Test Design and Methods, CG Suited Locations and Results, CG Individual Considerations, CG Shirt-Sleeve Locations and Results.

  2. Dr. Wernher Von Braun at the Marshall Space Flight Center's neutral buoyancy simulator.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Wernher Von Braun, Marshall Space Flight Center director, points and asks a question about the operation of the center's neutral buoyancy facility in the Manufacturing Engineering Laboratory. The facility was used to test and evaluate hardware and operations hat were planned for Apollo applications program flights.

  3. A Simulation Study Comparing Incineration and Composting in a Mars-Based Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Hogan, John; Kang, Sukwon; Cavazzoni, Jim; Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The objective of this study is to compare incineration and composting in a Mars-based advanced life support (ALS) system. The variables explored include waste pre-processing requirements, reactor sizing and buffer capacities. The study incorporates detailed mathematical models of biomass production and waste processing into an existing dynamic ALS system model. The ALS system and incineration models (written in MATLAB/SIMULINK(c)) were developed at the NASA Ames Research Center. The composting process is modeled using first order kinetics, with different degradation rates for individual waste components (carbohydrates, proteins, fats, cellulose and lignin). The biomass waste streams are generated using modified "Eneray Cascade" crop models, which use light- and dark-cycle temperatures, irradiance, photoperiod, [CO2], planting density, and relative humidity as model inputs. The study also includes an evaluation of equivalent system mass (ESM).

  4. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  5. An Investigation of the North Carolina Center for the Advancement of Teaching and Its Possible Influence on Experienced Teacher Retention: A Companion Dissertation

    ERIC Educational Resources Information Center

    White, Jenny Blalock

    2015-01-01

    The purpose of this companion, qualitative case study was to examine the degree to which the residential professional development model at the North Carolina Center for the Advancement of Teaching (NCCAT) possibly influenced the retention of experienced teachers. The researcher sought to discover the ways and to what degree NCCAT had discharged…

  6. Use of the Marshall Space Flight Center solar simulator in collector performance evaluation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1978-01-01

    Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.

  7. Recent CESAR (Center for Engineering Systems Advanced Research) research activities in sensor based reasoning for autonomous machines

    SciTech Connect

    Pin, F.G.; de Saussure, G.; Spelt, P.F.; Killough, S.M.; Weisbin, C.R.

    1988-01-01

    This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioning of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.

  8. Guidelines for Implementation of an Advanced Outage Control Center to Improve Outage Coordination, Problem Resolution, and Outage Risk Management

    SciTech Connect

    St. Germain, Shawn W.; Farris, Ronald K.; Whaley, April M.; Medema, Heather D.; Gertman, David I.

    2014-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The purpose of this research is to improve management of nuclear power plant (NPP) outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.

  9. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  10. Advanced Cancer Detection Center

    DTIC Science & Technology

    2000-10-01

    projects have begun to lead to peer-reviewed extramural funding. In the case of the genistein and lycopene trials, ACDC funding has led to randomized...Unsafe Herbs Lycopene Supplements Associated with Illness or Milk Thistle Injury PC-SPES Drug/Nutrient/Supplement Interactions Prickly Ash Herbs

  11. Advanced Cancer Detection Center

    DTIC Science & Technology

    2009-01-01

    patient reported outcomes. The technology that makes this possible is a PC card that accepts tone-dial (push-button) sounds and can playback pre- recorded ...then be recorded : The video resolution is adequate for many clinical applications. While not precise enough for pathological diagnosis, it is...appropriate samples at frequent intervals. State-of-the-art techniques must be used for sensitive and specific detection of candidate infectious

  12. Advanced Cancer Detection Center

    DTIC Science & Technology

    2007-10-01

    Cancer Treatment Affecting the Central Nervous System (HLMCC 0707) • Melatonin and sleep hygiene for the treatment of insomnia following cancer...Determinants of Diabetes in the Young. (PI: Jeffrey Krischer, Ph.D.) Moffitt Community Clinical Oncology Program Research Base (PI: Jeffrey Krischer

  13. Advanced Materials Center, Battelle

    NASA Technical Reports Server (NTRS)

    Bellis, Harold

    1991-01-01

    The goal of the Mixed Oxide Program is to determine the results obtained by using microgravity processing on a commercially significant catalyst - V-P-O System. The topics are presented in viewgraph form and include the following: (1) reasons for using microgravity; (2) the synthesis process; (3) novel results of the earth based program; and (4) Dupont interests.

  14. Microbiological assay of the Marshall Space Flight Center neutral buoyancy simulator

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1973-01-01

    A neutral buoyancy simulator tank system is described in terms of microbiological and medical safety for astronauts. The system was designed to simulate a gravity-free state for evaluation of orbital operations in a microorganism-free environment. Methods for the identification and elimination of specific microorganisms are dealt with as measures for a pure system of space environment simulation.

  15. Combining ESGF Data node with its complementary data services at the NASA Center for Climate Simulation

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Carriere, L.; Nadeau, D.; Potter, G. L.; Peters, J.; Winter, E.; Cinquini, L.; Blodgett, D. L.; McInerney, M.

    2014-12-01

    The NASA Climate Model Data Service (CDS) and the NASA Center for Climate Simulation (NCCS) are collaborating to manage an Earth System Grid Federation (ESGF) node that distributes over 150 TB of climate model data in support of multiple ESGF projects; Climate Model Intercomparison Project (CMIP5), NASA observational data for model-data comparisons (obs4MIPs), reanalysis data (ana4MIPs) and downscaled NASA Earth Exchange Downscaled Climate Projections (NEX-DCP30) climate data. The purpose of ESGF is to improve collaboration among climate modelers and to extend access to these climate data to other scientific communities. A complementary THREDDS server was set up to provide services that are not available through the ESGF data node but are of great interest to a broad user community. For example, the high spatial resolution of the downscaled NEX-DCP30 climate data attracts many GIS users who are interested in a slice/point time series subset. This cannot be done through ESGF but can be done through the complementary THREDDS server that is seamlessly linked to ESGF. Another example is the customized aggregation prepared for the complementary THREDDS service that provides access from the USGS Geo Data Portal (GDP). This access requires the aggregation of 23 models each containing 3 variables. BioClim data (Biodiversity) in geotiff format have been published, becoming the first geotiff image files to be successfully published in ESGF. In order to make ESGF's Live Access Server (LAS) work with BioClim geotiff, we recompiled THREDDS with the USGS-CIDA geotiff-iosp plugin. The plugin adds the ability to access geotiff format with OPeNDAP through THREDDS. This enables LAS, which uses FERRET, to provide visualizations of the data. This technique was extended to provide LAS access to the NEX-DCP30 data. Recently we have expanded the complementary server to cover NASA Global Modeling and Assimilation Office (GMAO) forecast and assimilation operational products in near real

  16. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  17. Recent advances in computational methodology for simulation of mechanical circulatory assist devices

    PubMed Central

    Marsden, Alison L.; Bazilevs, Yuri; Long, Christopher C.; Behr, Marek

    2014-01-01

    Ventricular assist devices (VADs) provide mechanical circulatory support to offload the work of one or both ventricles during heart failure. They are used in the clinical setting as destination therapy, as bridge to transplant, or more recently as bridge to recovery to allow for myocardial remodeling. Recent developments in computational simulation allow for detailed assessment of VAD hemodynamics for device design and optimization for both children and adults. Here, we provide a focused review of the recent literature on finite element methods and optimization for VAD simulations. As VAD designs typically fall into two categories, pulsatile and continuous flow devices, we separately address computational challenges of both types of designs, and the interaction with the circulatory system with three representative case studies. In particular, we focus on recent advancements in finite element methodology that has increased the fidelity of VAD simulations. We outline key challenges, which extend to the incorporation of biological response such as thrombosis and hemolysis, as well as shape optimization methods and challenges in computational methodology. PMID:24449607

  18. An educational training simulator for advanced perfusion techniques using a high-fidelity virtual patient model.

    PubMed

    Tokaji, Megumi; Ninomiya, Shinji; Kurosaki, Tatsuya; Orihashi, Kazumasa; Sueda, Taijiro

    2012-12-01

    The operation of cardiopulmonary bypass procedure requires an advanced skill in both physiological and mechanical knowledge. We developed a virtual patient simulator system using a numerical cardiovascular regulation model to manage perfusion crisis. This article evaluates the ability of the new simulator to prevent perfusion crisis. It combined short-term baroreflex regulation of venous capacity, vascular resistance, heart rate, time-varying elastance of the heart, and plasma-refilling with a simple lumped parameter model of the cardiovascular system. The combination of parameters related to baroreflex regulation was calculated using clinical hemodynamic data. We examined the effect of differences in autonomous-nerve control parameter settings on changes in blood volume and hemodynamic parameters and determined the influence of the model on operation of the control arterial line flow and blood volume during the initiation and weaning from cardiopulmonary bypass. Typical blood pressure (BP) changes (hypertension, stable, and hypotension) were reproducible using a combination of four control parameters that can be estimated from changes in patient physiology, BP, and blood volume. This simulation model is a useful educational tool to learn the recognition and management skills of extracorporeal circulation. Identification method for control parameter can be applied for diagnosis of heart failure.

  19. Annoyance response to simulated advanced turboprop aircraft interior noise containing tonal beats

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.

    1987-01-01

    A study is done to investigate the effects on subjective annoyance of simulated advanced turboprop (ATP) interior noise environments containing tonal beats. The simulated environments consisted of low-frequency tones superimposed on a turbulent-boundary-layer noise spectrum. The variables used in the study included propeller tone frequency (100 to 250 Hz), propeller tone levels (84 to 105 dB), and tonal beat frequency (0 to 1.0 Hz). Results indicated that propeller tones within the simulated ATP environment resulted in increased annoyance response that was fully predictable in terms of the increase in overall sound pressure level due to the tones. Implications for ATP aircraft include the following: (1) the interior noise environment with propeller tones is more annoying than an environment without tones if the tone is present at a level sufficient to increase the overall sound pressure level; (2) the increased annoyance due to the fundamental propeller tone frequency without harmonics is predictable from the overall sound pressure level; and (3) no additional noise penalty due to the perception of single discrete-frequency tones and/or beats was observed.

  20. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.