Challenges of NDE simulation tool validation, optimization, and utilization for composites
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Seebo, Jeffrey P.; Juarez, Peter
2016-02-01
Rapid, realistic nondestructive evaluation (NDE) simulation tools can aid in inspection optimization and prediction of inspectability for advanced aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, ultrasound modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation is still far from the goal of rapidly simulating damage detection techniques for large scale, complex geometry composite components/vehicles containing realistic damage types. Ongoing work at NASA Langley Research Center is focused on advanced ultrasonic simulation tool development. This paper discusses challenges of simulation tool validation, optimization, and utilization for composites. Ongoing simulation tool development work is described along with examples of simulation validation and optimization challenges that are more broadly applicable to all NDE simulation tools. The paper will also discuss examples of simulation tool utilization at NASA to develop new damage characterization methods for composites, and associated challenges in experimentally validating those methods.
Kurosawa, Hiroshi; Ikeyama, Takanari; Achuff, Patricia; Perkel, Madeline; Watson, Christine; Monachino, Annemarie; Remy, Daphne; Deutsch, Ellen; Buchanan, Newton; Anderson, Jodee; Berg, Robert A; Nadkarni, Vinay M; Nishisaki, Akira
2014-03-01
Recent evidence shows poor retention of Pediatric Advanced Life Support provider skills. Frequent refresher training and in situ simulation are promising interventions. We developed a "Pediatric Advanced Life Support-reconstructed" recertification course by deconstructing the training into six 30-minute in situ simulation scenario sessions delivered over 6 months. We hypothesized that in situ Pediatric Advanced Life Support-reconstructed implementation is feasible and as effective as standard Pediatric Advanced Life Support recertification. A prospective randomized, single-blinded trial. Single-center, large, tertiary PICU in a university-affiliated children's hospital. Nurses and respiratory therapists in PICU. Simulation-based modular Pediatric Advanced Life Support recertification training. Simulation-based pre- and postassessment sessions were conducted to evaluate participants' performance. Video-recorded sessions were rated by trained raters blinded to allocation. The primary outcome was skill performance measured by a validated Clinical Performance Tool, and secondary outcome was behavioral performance measured by a Behavioral Assessment Tool. A mixed-effect model was used to account for baseline differences. Forty participants were prospectively randomized to Pediatric Advanced Life Support reconstructed versus standard Pediatric Advanced Life Support with no significant difference in demographics. Clinical Performance Tool score was similar at baseline in both groups and improved after Pediatric Advanced Life Support reconstructed (pre, 16.3 ± 4.1 vs post, 22.4 ± 3.9; p < 0.001), but not after standard Pediatric Advanced Life Support (pre, 14.3 ± 4.7 vs post, 14.9 ± 4.4; p =0.59). Improvement of Clinical Performance Tool was significantly higher in Pediatric Advanced Life Support reconstructed compared with standard Pediatric Advanced Life Support (p = 0.006). Behavioral Assessment Tool improved in both groups: Pediatric Advanced Life Support reconstructed (pre, 33.3 ± 4.5 vs post, 35.9 ± 5.0; p = 0.008) and standard Pediatric Advanced Life Support (pre, 30.5 ± 4.7 vs post, 33.6 ± 4.9; p = 0.02), with no significant difference of improvement between both groups (p = 0.49). For PICU-based nurses and respiratory therapists, simulation-based "Pediatric Advanced Life Support-reconstructed" in situ training is feasible and more effective than standard Pediatric Advanced Life Support recertification training for skill performance. Both Pediatric Advanced Life Support recertification training courses improved behavioral performance.
Real-time micro-modelling of city evacuations
NASA Astrophysics Data System (ADS)
Löhner, Rainald; Haug, Eberhard; Zinggerling, Claudio; Oñate, Eugenio
2018-01-01
A methodology to integrate geographical information system (GIS) data with large-scale pedestrian simulations has been developed. Advances in automatic data acquisition and archiving from GIS databases, automatic input for pedestrian simulations, as well as scalable pedestrian simulation tools have made it possible to simulate pedestrians at the individual level for complete cities in real time. An example that simulates the evacuation of the city of Barcelona demonstrates that this is now possible. This is the first step towards a fully integrated crowd prediction and management tool that takes into account not only data gathered in real time from cameras, cell phones or other sensors, but also merges these with advanced simulation tools to predict the future state of the crowd.
An integrated modeling and design tool for advanced optical spacecraft
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1992-01-01
Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCorkle, D.; Yang, C.; Jordan, T.
2007-06-01
Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less
Rendering of dense, point cloud data in a high fidelity driving simulator.
DOT National Transportation Integrated Search
2014-09-01
Driving Simulators are advanced tools that can address many research questions in transportation. Recently they have been used to advance the practice of transportation engineering, specifically signs, signals, pavement markings, and most powerfully ...
Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation
NASA Technical Reports Server (NTRS)
Chan, William M.
2004-01-01
This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.
Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Naiman, Cynthia G.
2001-01-01
The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.
Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases
Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.
2014-01-01
Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374
Successes and Challenges of Incompressible Flow Simulation
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2003-01-01
During the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of CFD discipline. Even though incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient, CFD tools become indispensable in fluid engineering for incompressible and low speed flow. This paper is intended to review some of the successes made possible by advances in computational technologies during the same period, and discuss some of the current challenges.
ERIC Educational Resources Information Center
Schwarz, Christina V.; Meyer, Jason; Sharma, Ajay
2007-01-01
This study infused computer modeling and simulation tools in a 1-semester undergraduate elementary science methods course to advance preservice teachers' understandings of computer software use in science teaching and to help them learn important aspects of pedagogy and epistemology. Preservice teachers used computer modeling and simulation tools…
Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
Jørgensen, Katarina M; Haddow, Pauline C
2011-08-01
Simulation tools are playing an increasingly important role behind advances in the field of systems biology. However, the current generation of biological science students has either little or no experience with such tools. As such, this educational glitch is limiting both the potential use of such tools as well as the potential for tighter cooperation between the designers and users. Although some simulation tool producers encourage their use in teaching, little attempt has hitherto been made to analyze and discuss their suitability as an educational tool for noncomputing science students. In general, today's simulation tools assume that the user has a stronger mathematical and computing background than that which is found in most biological science curricula, thus making the introduction of such tools a considerable pedagogical challenge. This paper provides an evaluation of the pedagogical attributes of existing simulation tools for cell signal transduction based on Cognitive Load theory. Further, design recommendations for an improved educational simulation tool are provided. The study is based on simulation tools for cell signal transduction. However, the discussions are relevant to a broader biological simulation tool set.
Integrated Instrument Simulator Suites for Earth Science
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.;
2012-01-01
The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.
Optimizing STEM Education with Advanced ICTs and Simulations
ERIC Educational Resources Information Center
Levin, Ilya, Ed.; Tsybulsky, Dina, Ed.
2017-01-01
The role of technology in educational settings has become increasingly prominent in recent years. When utilized effectively, these tools provide a higher quality of learning for students. "Optimizing STEM Education With Advanced ICTs and Simulations" is an innovative reference source for the latest scholarly research on the integration…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
2016-07-07
The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.
Can surgical simulation be used to train detection and classification of neural networks?
Zisimopoulos, Odysseas; Flouty, Evangello; Stacey, Mark; Muscroft, Sam; Giataganas, Petros; Nehme, Jean; Chow, Andre; Stoyanov, Danail
2017-10-01
Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors' knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.
Combining Simulation Tools for End-to-End Trajectory Optimization
NASA Technical Reports Server (NTRS)
Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min
2015-01-01
Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.
Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Matzen, M. Keith
2014-09-16
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less
Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, Robert; McCoy, Michel; Archer, Bill
2013-09-11
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools.« less
Advanced surface design for logistics analysis
NASA Astrophysics Data System (ADS)
Brown, Tim R.; Hansen, Scott D.
The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.; McCorkle, D.; Yang, C.
Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less
Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia
2012-09-01
This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.
Virtual Reality and Simulation in Neurosurgical Training.
Bernardo, Antonio
2017-10-01
Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.
Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.
2015-01-01
Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.
DOT National Transportation Integrated Search
2013-06-03
"Integrated Global Positioning System and Inertial Navigation Unit (GPS/INU) Simulator for Enhanced Traffic Safety," is a project awarded to Ohio State University to integrate different simulation models to accurately study the relationship between v...
Advanced Computer Simulations of Military Incinerators
2004-12-01
Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in
The Design and Development of a Simulation to Teach Water Conservation to Primary School Students
ERIC Educational Resources Information Center
Campbell, Lee
2004-01-01
Information and Communications Technology (ICT) plays a dominant role in enhancing teaching and learning. Similar advances have been made in the use of multimedia in the classroom. These advances are coupled with newer developmental tools and techniques. This paper examines the design and development of a simulation on water conservation. Science…
SimVascular: An Open Source Pipeline for Cardiovascular Simulation.
Updegrove, Adam; Wilson, Nathan M; Merkow, Jameson; Lan, Hongzhi; Marsden, Alison L; Shadden, Shawn C
2017-03-01
Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.
ERIC Educational Resources Information Center
Weeber, Marc; Klein, Henny; de Jong-van den Berg, Lolkje T. W.; Vos, Rein
2001-01-01
Proposes a two-step model of discovery in which new scientific hypotheses can be generated and subsequently tested. Applying advanced natural language processing techniques to find biomedical concepts in text, the model is implemented in a versatile interactive discovery support tool. This tool is used to successfully simulate Don R. Swanson's…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environmentmore » and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
A manipulator arm for zero-g simulations
NASA Technical Reports Server (NTRS)
Brodie, S. B.; Grant, C.; Lazar, J. J.
1975-01-01
A 12-ft counterbalanced Slave Manipulator Arm (SMA) was designed and fabricated to be used for resolving the questions of operational applications, capabilities, and limitations for such remote manned systems as the Payload Deployment and Retrieval Mechanism (PDRM) for the shuttle, the Free-Flying Teleoperator System, the Advanced Space Tug, and Planetary Rovers. As a developmental tool for the shuttle manipulator system (or PDRM), the SMA represents an approximate one-quarter scale working model for simulating and demonstrating payload handling, docking assistance, and satellite servicing. For the Free-Flying Teleoperator System and the Advanced Tug, the SMA provides a near full-scale developmental tool for satellite servicing, docking, and deployment/retrieval procedures, techniques, and support equipment requirements. For the Planetary Rovers, it provides an oversize developmental tool for sample handling and soil mechanics investigations. The design of the SMA was based on concepts developed for a 40-ft NASA technology arm to be used for zero-g shuttle manipulator simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi
2013-11-29
This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less
Abaqus Simulations of Rock Response to Dynamic Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, David W.; Coblentz, David
The LANL Geodynamics Team has been applying Abaqus modeling to achieve increasingly complex simulations. Advancements in Abaqus model building and simulation tools allows this progress. We use Lab-developed constitutive models, the fully coupled CEL Abaqus and general contact to simulate response of realistic sites to explosively driven shock.
Facilitating researcher use of flight simulators
NASA Technical Reports Server (NTRS)
Russell, C. Ray
1990-01-01
Researchers conducting experiments with flight simulators encounter numerous obstacles in bringing their ideas to the simulator. Research into how these simulators could be used more efficiently is presented. The study involved: (1) analyzing the Advanced Concepts Simulator software architecture, (2) analyzing the interaction between the researchers and simulation programmers, and (3) proposing a documentation tool for the researchers.
NASA Astrophysics Data System (ADS)
Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam
2016-12-01
Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.
Advanced data management for optimising the operation of a full-scale WWTP.
Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo
2012-01-01
The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.
The Role of Crop Systems Simulation in Agriculture and Environment
USDA-ARS?s Scientific Manuscript database
Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...
High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics
Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis
2014-07-28
The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less
An Advanced, Interactive, High-Performance Liquid Chromatography Simulator and Instructor Resources
ERIC Educational Resources Information Center
Boswell, Paul G.; Stoll, Dwight R.; Carr, Peter W.; Nagel, Megan L.; Vitha, Mark F.; Mabbott, Gary A.
2013-01-01
High-performance liquid chromatography (HPLC) simulation software has long been recognized as an effective educational tool, yet many of the existing HPLC simulators are either too expensive, outdated, or lack many important features necessary to make them widely useful for educational purposes. Here, a free, open-source HPLC simulator is…
A Selection of Composites Simulation Practices at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2007-01-01
One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.
Simulation training tools for nonlethal weapons using gaming environments
NASA Astrophysics Data System (ADS)
Donne, Alexsana; Eagan, Justin; Tse, Gabriel; Vanderslice, Tom; Woods, Jerry
2006-05-01
Modern simulation techniques have a growing role for evaluating new technologies and for developing cost-effective training programs. A mission simulator facilitates the productive exchange of ideas by demonstration of concepts through compellingly realistic computer simulation. Revolutionary advances in 3D simulation technology have made it possible for desktop computers to process strikingly realistic and complex interactions with results depicted in real-time. Computer games now allow for multiple real human players and "artificially intelligent" (AI) simulated robots to play together. Advances in computer processing power have compensated for the inherent intensive calculations required for complex simulation scenarios. The main components of the leading game-engines have been released for user modifications, enabling game enthusiasts and amateur programmers to advance the state-of-the-art in AI and computer simulation technologies. It is now possible to simulate sophisticated and realistic conflict situations in order to evaluate the impact of non-lethal devices as well as conflict resolution procedures using such devices. Simulations can reduce training costs as end users: learn what a device does and doesn't do prior to use, understand responses to the device prior to deployment, determine if the device is appropriate for their situational responses, and train with new devices and techniques before purchasing hardware. This paper will present the status of SARA's mission simulation development activities, based on the Half-Life gameengine, for the purpose of evaluating the latest non-lethal weapon devices, and for developing training tools for such devices.
WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, A; Held, K; Paganetti, H
2016-06-15
Purpose: New advances in radiation therapy are most likely to come from the complex interface of physics, chemistry and biology. Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can thus help bridge the gap between physics and biology. The aim of TOPAS-nBio is to provide a comprehensive tool to generate advanced radiobiology simulations. Methods: TOPAS wraps and extends the Geant4 Monte Carlo (MC) simulation toolkit. TOPAS-nBio is an extension to TOPAS which utilizes the physics processes in Geant4-DNA to model biological damage from very low energy secondary electrons. Specialized cell, organelle and molecularmore » geometries were designed for the toolkit. Results: TOPAS-nBio gives the user the capability of simulating biological geometries, ranging from the micron-scale (e.g. cells and organelles) to complex nano-scale geometries (e.g. DNA and proteins). The user interacts with TOPAS-nBio through easy-to-use input parameter files. For example, in a simple cell simulation the user can specify the cell type and size as well as the type, number and size of included organelles. For more detailed nuclear simulations, the user can specify chromosome territories containing chromatin fiber loops, the later comprised of nucleosomes on a double helix. The chromatin fibers can be arranged in simple rigid geometries or within factual globules, mimicking realistic chromosome territories. TOPAS-nBio also provides users with the capability of reading protein data bank 3D structural files to simulate radiation damage to proteins or nucleic acids e.g. histones or RNA. TOPAS-nBio has been validated by comparing results to other track structure simulation software and published experimental measurements. Conclusion: TOPAS-nBio provides users with a comprehensive MC simulation tool for radiobiological simulations, giving users without advanced programming skills the ability to design and run complex simulations.« less
Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger
2014-01-01
Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.
Status and outlook of CFD technology at Mitsubishi Heavy Industries, Nagoya
NASA Astrophysics Data System (ADS)
Tanioka, Tadayuki
1990-09-01
Computational Fluid Dynamics (CFD) technology has made tremendous progress in the last several years. It has matured to become a practical simulation tool in aircraft industries. In MHI, CFD has become an indispensible tool for aerodynamic design aerospace vehicles. The present status is described of this advanced technology at MHI. Also mentioned are some future advances of the fast growing technology as well as associated hardware requirements.
Toward improved simulation of river operations through integration with a hydrologic model
Morway, Eric D.; Niswonger, Richard G.; Triana, Enrique
2016-01-01
Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.
State of the Art Assessment of Simulation in Advanced Materials Development
NASA Technical Reports Server (NTRS)
Wise, Kristopher E.
2008-01-01
Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.
Simulations of binary black hole mergers
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey
2017-01-01
Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.
ERIC Educational Resources Information Center
Haji, Faizal A.; Hoppe, Daniel J.; Morin, Marie-Paule; Giannoulakis, Konstantine; Koh, Jansen; Rojas, David; Cheung, Jeffrey J. H.
2014-01-01
Rapid technological advances and concern for patient safety have increased the focus on simulation as a pedagogical tool for educating health care providers. To date, simulation research scholarship has focused on two areas; evaluating instructional designs of simulation programs, and the integration of simulation into a broader educational…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Hendrickson, Bruce
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less
NASA Technical Reports Server (NTRS)
Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.
1998-01-01
A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.
2010-09-30
simulating violent free - surface flows , and show the importance of wave breaking in energy transport...using Eulerian simulation . 3 IMPACT/APPLICATION This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that...several Eulerian and Lagrangian methods for free - surface turbulence and wave simulation . The WIND–SNOW is used to simulate 1 Report
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
PhET Interactive Simulations: Transformative Tools for Teaching Chemistry
ERIC Educational Resources Information Center
Moore, Emily B.; Chamberlain, Julia M.; Parson, Robert; Perkins, Katherine K.
2014-01-01
Developing fluency across symbolic-, macroscopic-, and particulate-level representations is central to learning chemistry. Within the chemistry education community, animations and simulations that support multi-representational fluency are considered critical. With advances in the accessibility and sophistication of technology,…
Computational Challenges of Viscous Incompressible Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung
2004-01-01
Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.
Advanced Engineering Environments: Implications for Aerospace Manufacturing
NASA Technical Reports Server (NTRS)
Thomas, D.
2001-01-01
There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.
Physics-based simulation models for EBSD: advances and challenges
NASA Astrophysics Data System (ADS)
Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.
2016-02-01
EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.
An Update on Improvements to NiCE Support for PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay
2015-09-01
The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawal, Adekola; Schmal, Pieter; Ramos, Alfredo
PSE, in the first phase of the CCSI commercialization project, set out to identify market opportunities for the CCSI tools combined with existing gPROMS platform capabilities and develop a clear technical plan for the proposed commercialization activities.
The use of virtual reality tools in surgical education.
Smith, Andrew
2010-03-01
Advances in computing, specifically those used for simulation and games technology has allowed for exciting developments in dental and surgical education. At the same time concerns are being raised that students with relatively little training, practise to improve their skill on patients with all of the inherent risks that may occur. Simulation in dentistry has been practised for many years and so the concept is not new to the profession. New tools have been developed that both enhance teaching and learning and are also useful for assessment of students and trainees. The challenge of virtual and simulated reality tools is to have the required fidelity to improve teaching and learning outcomes over the currently utilized methodology.
Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin; Dunn, Timothy; Durbin, Samual
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools willmore » consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.« less
Hybrid and Electric Advanced Vehicle Systems Simulation
NASA Technical Reports Server (NTRS)
Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.
1985-01-01
Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.
ASCEM Data Brower (ASCEMDB) v0.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROMOSAN, ALEXANDRU
Data management tool designed for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Distinguishing features of this gateway include: (1) handling of complex geometry data, (2) advance selection mechanism, (3) state of art rendering of spatiotemporal data records, and (4) seamless integration with a distributed workflow engine.
Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System
NASA Technical Reports Server (NTRS)
Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.
1999-01-01
Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.
Advanced computer graphic techniques for laser range finder (LRF) simulation
NASA Astrophysics Data System (ADS)
Bedkowski, Janusz; Jankowski, Stanislaw
2008-11-01
This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.
Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A
2014-01-01
The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos N; Caro, J A; Lebensohn, R A
2010-01-01
Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less
A real-time simulator of a turbofan engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.
1989-01-01
A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
Digital test assembly of truck parts with the IMMA-tool--an illustrative case.
Hanson, L; Högberg, D; Söderholm, M
2012-01-01
Several digital human modelling (DHM) tools have been developed for simulation and visualisation of human postures and motions. In 2010 the DHM tool IMMA (Intelligently Moving Manikins) was introduced as a DHM tool that uses advanced path planning techniques to generate collision free and biomechanically acceptable motions for digital human models (as well as parts) in complex assembly situations. The aim of the paper is to illustrate how the IPS/IMMA tool is used at Scania CV AB in a digital test assembly process, and to compare the tool with other DHM tools on the market. The illustrated case of using the IMMA tool, here combined with the path planner tool IPS, indicates that the tool is promising. The major strengths of the tool are its user friendly interface, the motion generation algorithms, the batch simulation of manikins and the ergonomics assessment methods that consider time.
Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
NASA Astrophysics Data System (ADS)
Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.
2006-06-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.
NASA Technical Reports Server (NTRS)
Westra, Doug G.; West, Jeffrey S.; Richardson, Brian R.
2015-01-01
Historically, the analysis and design of liquid rocket engines (LREs) has relied on full-scale testing and one-dimensional empirical tools. The testing is extremely expensive and the one-dimensional tools are not designed to capture the highly complex, and multi-dimensional features that are inherent to LREs. Recent advances in computational fluid dynamics (CFD) tools have made it possible to predict liquid rocket engine performance, stability, to assess the effect of complex flow features, and to evaluate injector-driven thermal environments, to mitigate the cost of testing. Extensive efforts to verify and validate these CFD tools have been conducted, to provide confidence for using them during the design cycle. Previous validation efforts have documented comparisons of predicted heat flux thermal environments with test data for a single element gaseous oxygen (GO2) and gaseous hydrogen (GH2) injector. The most notable validation effort was a comprehensive validation effort conducted by Tucker et al. [1], in which a number of different groups modeled a GO2/GH2 single element configuration by Pal et al [2]. The tools used for this validation comparison employed a range of algorithms, from both steady and unsteady Reynolds Averaged Navier-Stokes (U/RANS) calculations, large-eddy simulations (LES), detached eddy simulations (DES), and various combinations. A more recent effort by Thakur et al. [3] focused on using a state-of-the-art CFD simulation tool, Loci/STREAM, on a two-dimensional grid. Loci/STREAM was chosen because it has a unique, very efficient flamelet parameterization of combustion reactions that are too computationally expensive to simulate with conventional finite-rate chemistry calculations. The current effort focuses on further advancement of validation efforts, again using the Loci/STREAM tool with the flamelet parameterization, but this time with a three-dimensional grid. Comparisons to the Pal et al. heat flux data will be made for both RANS and Hybrid RANSLES/ Detached Eddy simulations (DES). Computation costs will be reported, along with comparison of accuracy and cost to much less expensive two-dimensional RANS simulations of the same geometry.
Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Alan
2014-10-21
This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.
Development of Advanced Life Prediction Tools for Elastic-Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
Gregg, Wayne; McGill, Preston; Swanson, Greg; Wells, Doug; Throckmorton, D. A. (Technical Monitor)
2001-01-01
The objective of this viewgraph presentation is to develop a systematic approach to improving the fracture control process, including analytical tools, standards, guidelines, and awareness. Analytical tools specifically for elastic-plastic fracture analysis is a regime that is currently empirical for the Space Shuttle External Tank (ET) and is handled by simulated service testing of pre-cracked panels.
Astrophysical Computation in Research, the Classroom and Beyond
NASA Astrophysics Data System (ADS)
Frank, Adam
2009-03-01
In this talk I review progress in the use of simulations as a tool for astronomical research, for education and public outreach. The talk will include the basic elements of numerical simulations as well as advances in algorithms which have led to recent dramatic progress such as the use of Adaptive Mesh Refinement methods. The scientific focus of the talk will be star formation jets and outflows while the educational emphasis will be on the use of advanced platforms for simulation based learning in lecture and integrated homework. Learning modules for science outreach websites such as DISCOVER magazine will also be highlighted.
Real-Time-Simulation of IEEE-5-Bus Network on OPAL-RT-OP4510 Simulator
NASA Astrophysics Data System (ADS)
Atul Bhandakkar, Anjali; Mathew, Lini, Dr.
2018-03-01
The Real-Time Simulator tools have high computing technologies, improved performance. They are widely used for design and improvement of electrical systems. The advancement of the software tools like MATLAB/SIMULINK with its Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT), real-time simulators are used extensively in many engineering fields, such as industry, education, and research institutions. OPAL-RT-OP4510 is a Real-Time Simulator which is used in both industry and academia. In this paper, the real-time simulation of IEEE-5-Bus network is carried out by means of OPAL-RT-OP4510 with CRO and other hardware. The performance of the network is observed with the introduction of fault at various locations. The waveforms of voltage, current, active and reactive power are observed in the MATLAB simulation environment and on the CRO. Also, Load Flow Analysis (LFA) of IEEE-5-Bus network is computed using MATLAB/Simulink power-gui load flow tool.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
The SIMs Meet ESL Incorporating Authentic Computer Simulation Games into the Language Classroom
ERIC Educational Resources Information Center
Miller, Megan; Hegelheimer, Volker
2006-01-01
Despite their motivational appeal to learners, innovative and technologically advanced computer simulation games targeting native English speakers frequently remain beyond the competence of ESL learners as independent didactic tools. Guided by Chapelle's (2001) criteria for determining CALL task appropriateness, this paper illustrates how the…
Rater Training to Support High-Stakes Simulation-Based Assessments
ERIC Educational Resources Information Center
Feldman, Moshe; Lazzara, Elizabeth H.; Vanderbilt, Allison A.; DiazGranados, Deborah
2012-01-01
Competency-based assessment and an emphasis on obtaining higher-level outcomes that reflect physicians' ability to demonstrate their skills has created a need for more advanced assessment practices. Simulation-based assessments provide medical education planners with tools to better evaluate the 6 Accreditation Council for Graduate Medical…
Development of a VOR/DME model for an advanced concepts simulator
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.; Bowles, R. L.
1984-01-01
The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.
An online model composition tool for system biology models
2013-01-01
Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914
Numerical Propulsion System Simulation
NASA Technical Reports Server (NTRS)
Naiman, Cynthia
2006-01-01
The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.
The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model simulates long-term transport and deposition of oxides of and nitrogen. t is a potential screening tool for assessing long-term effects on regional visibility from sulfur emission sources. owever, a rigorou...
USDA-ARS?s Scientific Manuscript database
Rangeland managers and scientists are in need of predictive tools to accurately simulate post-fire hydrologic responses and provide hydrologic risk assessment. Rangeland hydrologic modeling has advanced in recent years; however, model advancements have largely been associated with data from gently ...
Modeling and Simulation Tools for Heavy Lift Airships
NASA Technical Reports Server (NTRS)
Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John
2016-01-01
For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.
2011-09-30
simulation provides boundary condition to the SPH simulation in a sub- domain. For the test with surface wave propagation, the free surface and the...This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that can be used to study the fundamental physics...of horizontal velocity(normalized by wave phase speed c) obtained from SPH simulation and the corresponding free surface obtained from LSM
Accomplishments and challenges of surgical simulation.
Satava, R M
2001-03-01
For nearly a decade, advanced computer technologies have created extraordinary educational tools using three-dimensional (3D) visualization and virtual reality. Pioneering efforts in surgical simulation with these tools have resulted in a first generation of simulators for surgical technical skills. Accomplishments include simulations with 3D models of anatomy for practice of surgical tasks, initial assessment of student performance in technical skills, and awareness by professional societies of potential in surgical education and certification. However, enormous challenges remain, which include improvement of technical fidelity, standardization of accurate metrics for performance evaluation, integration of simulators into a robust educational curriculum, stringent evaluation of simulators for effectiveness and value added to surgical training, determination of simulation application to certification of surgical technical skills, and a business model to implement and disseminate simulation successfully throughout the medical education community. This review looks at the historical progress of surgical simulators, their accomplishments, and the challenges that remain.
Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha
2016-05-01
A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.
NASA Astrophysics Data System (ADS)
Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars
2014-05-01
This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.
Cattle Uterus: A Novel Animal Laboratory Model for Advanced Hysteroscopic Surgery Training
Ewies, Ayman A. A.; Khan, Zahid R.
2015-01-01
In recent years, due to reduced training opportunities, the major shift in surgical training is towards the use of simulation and animal laboratories. Despite the merits of Virtual Reality Simulators, they are far from representing the real challenges encountered in theatres. We introduce the “Cattle Uterus Model” in the hope that it will be adopted in training courses as a low cost and easy-to-set-up tool. It adds new dimensions to the advanced hysteroscopic surgery training experience by providing tactile sensation and simulating intraoperative difficulties. It complements conventional surgical training, aiming to maximise clinical exposure and minimise patients' harm. PMID:26265918
NASA Astrophysics Data System (ADS)
Podgorney, Robert; Coleman, Justin; Wilkins, Amdrew; Huang, Hai; Veeraraghavan, Swetha; Xia, Yidong; Permann, Cody
2017-04-01
Numerical modeling has played an important role in understanding the behavior of coupled subsurface thermal-hydro-mechanical (THM) processes associated with a number of energy and environmental applications since as early as the 1970s. While the ability to rigorously describe all key tightly coupled controlling physics still remains a challenge, there have been significant advances in recent decades. These advances are related primarily to the exponential growth of computational power, the development of more accurate equations of state, improvements in the ability to represent heterogeneity and reservoir geometry, and more robust nonlinear solution schemes. The work described in this paper documents the development and linkage of several fully-coupled and fully-implicit modeling tools. These tools simulate: (1) the dynamics of fluid flow, heat transport, and quasi-static rock mechanics; (2) seismic wave propagation from the sources of energy release through heterogeneous material; and (3) the soil-structural damage resulting from ground acceleration. These tools are developed in Idaho National Laboratory's parallel Multiphysics Object Oriented Simulation Environment, and are integrated together using a global implicit approach. The governing equations are presented, the numerical approach for simultaneously solving and coupling the three coupling physics tools is discussed, and the data input and output methodology is outlined. An example is presented to demonstrate the capabilities of the coupled multiphysics approach. The example involves simulating a system conceptually similar to the geothermal development in Basel Switzerland, and the resultant induced seismicity, ground motion and structural damage is predicted.
NASA Astrophysics Data System (ADS)
Vrolijk, Mark; Ogawa, Takayuki; Camanho, Arthur; Biasutti, Manfredi; Lorenz, David
2018-05-01
As a result from the ever increasing demand to produce lighter vehicles, more and more advanced high-strength materials are used in automotive industry. Focusing on sheet metal cold forming processes, these materials require high pressing forces and exhibit large springback after forming. Due to the high pressing forces deformations occur in the tooling geometry, introducing dimensional inaccuracies in the blank and potentially impact the final springback behavior. As a result the tool deformations can have an impact on the final assembly or introduce cosmetic defects. Often several iterations are required in try-out to obtain the required tolerances, with costs going up to as much as 30% of the entire product development cost. To investigate the sheet metal part feasibility and quality, in automotive industry CAE tools are widely used. However, in current practice the influence of the tool deformations on the final part quality is generally neglected and simulations are carried out with rigid tools to avoid drastically increased calculation times. If the tool deformation is analyzed through simulation it is normally done at the end of the drawing prosses, when contact conditions are mapped on the die structure and a static analysis is performed to check the deflections of the tool. But this method does not predict the influence of these deflections on the final quality of the part. In order to take tool deformations into account during drawing simulations, ESI has developed the ability to couple solvers efficiently in a way the tool deformations can be real-time included in the drawing simulation without high increase in simulation time compared to simulations with rigid tools. In this paper a study will be presented which demonstrates the effect of tool deformations on the final part quality.
Sustainability of transport structures - some aspects of the nonlinear reliability assessment
NASA Astrophysics Data System (ADS)
Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír
2017-09-01
Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.
Advanced Simulator for Combat, Transport Vehicles, Submarines, Vessels, Airplanes and Helicopters
2004-10-01
simulation experiments. 3.1 Road vehicles - lane change test In order to evaluate the driving dynamics and also the driving safety of road vehicles...8] L.D. Chen, Y. Papelis, G. Watson, D. Solis. NADS at the University of Iowa: A Tool for Driving Safety Research, In Proceedings of 1st Human
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...
Software Tools to Support Research on Airport Departure Planning
NASA Technical Reports Server (NTRS)
Carr, Francis; Evans, Antony; Feron, Eric; Clarke, John-Paul
2003-01-01
A simple, portable and useful collection of software tools has been developed for the analysis of airport surface traffic. The tools are based on a flexible and robust traffic-flow model, and include calibration, validation and simulation functionality for this model. Several different interfaces have been developed to help promote usage of these tools, including a portable Matlab(TM) implementation of the basic algorithms; a web-based interface which provides online access to automated analyses of airport traffic based on a database of real-world operations data which covers over 250 U.S. airports over a 5-year period; and an interactive simulation-based tool currently in use as part of a college-level educational module. More advanced applications for airport departure traffic include taxi-time prediction and evaluation of "windowing" congestion control.
Design and development of a virtual reality simulator for advanced cardiac life support training.
Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall
2014-07-01
The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.
Advanced data management system architectures testbed
NASA Technical Reports Server (NTRS)
Grant, Terry
1990-01-01
The objective of the Architecture and Tools Testbed is to provide a working, experimental focus to the evolving automation applications for the Space Station Freedom data management system. Emphasis is on defining and refining real-world applications including the following: the validation of user needs; understanding system requirements and capabilities; and extending capabilities. The approach is to provide an open, distributed system of high performance workstations representing both the standard data processors and networks and advanced RISC-based processors and multiprocessor systems. The system provides a base from which to develop and evaluate new performance and risk management concepts and for sharing the results. Participants are given a common view of requirements and capability via: remote login to the testbed; standard, natural user interfaces to simulations and emulations; special attention to user manuals for all software tools; and E-mail communication. The testbed elements which instantiate the approach are briefly described including the workstations, the software simulation and monitoring tools, and performance and fault tolerance experiments.
Springback Simulation and Compensation for High Strength Parts Using JSTAMP
NASA Astrophysics Data System (ADS)
Shindo, Terumasa; Sugitomo, Nobuhiko; Ma, Ninshu
2011-08-01
The stamping parts made from high strength steel have a large springback which is difficult to control. With the development of simulation technology, the springback can be accurately predicted using advanced kinematic material models and CAE systems. In this paper, a stamping process for a pillar part made from several classes of high strength steel was simulated using a Yoshida-Uemori kinematic material model and the springback was well predicted. To obtain the desired part shape, CAD surfaces of the stamping tools were compensated by a CAE system JSTAMP. After applying the compensation 2 or 3 times, the dimension accuracy of the simulation for the part shape achieved was about 0.5 mm. The compensated CAD surfaces of the stamping tools were directly exported from JSTAMP to CAM for machining. The effectiveness of the compensation was verified by an experiment using the compensated tools.
Predicting Operator Execution Times Using CogTool
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Latorella, Kara A.
2013-01-01
Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.
Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.
2007-01-01
The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less
NASA Technical Reports Server (NTRS)
Shapiro, Diane C. (Editor); Norman, R. Michael (Editor)
1993-01-01
Advances in simulation technology are discussed by a number of government and industry experts, for both training and research and development applications. Advanced techniques, such as helmet-mounted information displays, neurocontrollers, automated training systems, and simulation for space-based systems are included. Advances in training methodology for air transportation are covered by a group of experts in that field, including discussions of advanced flight deck transition training, new training tools, and effective low cost alternatives for part-task training. With the ever-increasing emphasis on human factors in cockpit and cabin design, the section on research, advances, and certification criteria in that field is pertinent. NASA, aircraft manufacturing, and FAA representatives have compiled an informative group of presentations concerning active topics and considerations in human factors design.
Introducing GHOST: The Geospace/Heliosphere Observation & Simulation Tool-kit
NASA Astrophysics Data System (ADS)
Murphy, J. J.; Elkington, S. R.; Schmitt, P.; Wiltberger, M. J.; Baker, D. N.
2013-12-01
Simulation models of the heliospheric and geospace environments can provide key insights into the geoeffective potential of solar disturbances such as Coronal Mass Ejections and High Speed Solar Wind Streams. Advanced post processing of the results of these simulations greatly enhances the utility of these models for scientists and other researchers. Currently, no supported centralized tool exists for performing these processing tasks. With GHOST, we introduce a toolkit for the ParaView visualization environment that provides a centralized suite of tools suited for Space Physics post processing. Building on the work from the Center For Integrated Space Weather Modeling (CISM) Knowledge Transfer group, GHOST is an open-source tool suite for ParaView. The tool-kit plugin currently provides tools for reading LFM and Enlil data sets, and provides automated tools for data comparison with NASA's CDAweb database. As work progresses, many additional tools will be added and through open-source collaboration, we hope to add readers for additional model types, as well as any additional tools deemed necessary by the scientific public. The ultimate end goal of this work is to provide a complete Sun-to-Earth model analysis toolset.
Advanced construction management for lunar base construction - Surface operations planner
NASA Technical Reports Server (NTRS)
Kehoe, Robert P.
1992-01-01
The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.
Simulator technology as a tool for education in cardiac care.
Hravnak, Marilyn; Beach, Michael; Tuite, Patricia
2007-01-01
Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Sumner, Tyler S.
2016-04-17
An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less
Construction of dynamic stochastic simulation models using knowledge-based techniques
NASA Technical Reports Server (NTRS)
Williams, M. Douglas; Shiva, Sajjan G.
1990-01-01
Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).
Perspectives on the Future of CFD
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time
Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
2017-01-01
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598
Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2013-09-01
Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.
Library reuse in a rapid development environment
NASA Technical Reports Server (NTRS)
Uhde, JO; Weed, Daniel; Gottlieb, Robert; Neal, Douglas
1995-01-01
The Aeroscience and Flight Mechanics Division (AFMD) established a Rapid Development Laboratory (RDL) to investigate and improve new 'rapid development' software production processes and refine the use of commercial, off-the-shelf (COTS) tools. These tools and processes take an avionics design project from initial inception through high fidelity, real-time, hardware-in-the-loop (HIL) testing. One central theme of a rapid development process is the use and integration of a variety of COTS tools: This paper discusses the RDL MATRIX(sub x)(R) libraries, as well as the techniques for managing and documenting these libraries. This paper also shows the methods used for building simulations with the Advanced Simulation Development System (ASDS) libraries, and provides metrics to illustrate the amount of reuse for five complete simulations. Combining ASDS libraries with MATRIX(sub x)(R) libraries is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David; Agarwal, Deborah A.; Sun, Xin
2011-09-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.; Agarwal, D.; Sun, X.
2011-01-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
Mission Assignment Model and Simulation Tool for Different Types of Unmanned Aerial Vehicles
2008-09-01
TABLE OF ABBREVIATIONS AND ACRONYMS AAA Anti Aircraft Artillery ATO Air Tasking Order BDA Battle Damage Assessment DES Discrete Event Simulation...clock is advanced in small, fixed time steps. Since the value of simulated time is important in DES , an internal variable, called as simulation clock...VEHICLES Yücel Alver Captain, Turkish Air Force B.S., Turkish Air Force Academy, 2000 Murat Özdoğan 1st Lieutenant, Turkish Air Force B.S., Turkish
Real-time simulation of an automotive gas turbine using the hybrid computer
NASA Technical Reports Server (NTRS)
Costakis, W.; Merrill, W. C.
1984-01-01
A hybrid computer simulation of an Advanced Automotive Gas Turbine Powertrain System is reported. The system consists of a gas turbine engine, an automotive drivetrain with four speed automatic transmission, and a control system. Generally, dynamic performance is simulated on the analog portion of the hybrid computer while most of the steady state performance characteristics are calculated to run faster than real time and makes this simulation a useful tool for a variety of analytical studies.
Simulating Humans as Integral Parts of Spacecraft Missions
NASA Technical Reports Server (NTRS)
Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine
2006-01-01
The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.
Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.
2014-01-01
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627
Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I
2014-04-30
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
Interactive visualization to advance earthquake simulation
Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.
2008-01-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.
Waterborne Disease Case Investigation: Public Health Nursing Simulation.
Alexander, Gina K; Canclini, Sharon B; Fripp, Jon; Fripp, William
2017-01-01
The lack of safe drinking water is a significant public health threat worldwide. Registered nurses assess the physical environment, including the quality of the water supply, and apply environmental health knowledge to reduce environmental exposures. The purpose of this research brief is to describe a waterborne disease simulation for students enrolled in a public health nursing (PHN) course. A total of 157 undergraduate students completed the simulation in teams, using the SBAR (Situation-Background-Assessment-Recommendation) reporting tool. Simulation evaluation consisted of content analysis of the SBAR tools and debriefing notes. Student teams completed the simulation and articulated the implications for PHN practice. Student teams discussed assessment findings and primarily recommended four nursing interventions: health teaching focused on water, sanitation, and hygiene; community organizing; collaboration; and advocacy to ensure a safe water supply. With advanced planning and collaboration with partners, waterborne disease simulation may enhance PHN education. [J Nurs Educ. 2017;56(1):39-42.]. Copyright 2017, SLACK Incorporated.
A PICKSC Science Gateway for enabling the common plasma physicist to run kinetic software
NASA Astrophysics Data System (ADS)
Hu, Q.; Winjum, B. J.; Zonca, A.; Youn, C.; Tsung, F. S.; Mori, W. B.
2017-10-01
Computer simulations offer tremendous opportunities for studying plasmas, ranging from simulations for students that illuminate fundamental educational concepts to research-level simulations that advance scientific knowledge. Nevertheless, there is a significant hurdle to using simulation tools. Users must navigate codes and software libraries, determine how to wrangle output into meaningful plots, and oftentimes confront a significant cyberinfrastructure with powerful computational resources. Science gateways offer a Web-based environment to run simulations without needing to learn or manage the underlying software and computing cyberinfrastructure. We discuss our progress on creating a Science Gateway for the Particle-in-Cell and Kinetic Simulation Software Center that enables users to easily run and analyze kinetic simulations with our software. We envision that this technology could benefit a wide range of plasma physicists, both in the use of our simulation tools as well as in its adaptation for running other plasma simulation software. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.
Myokit: A simple interface to cardiac cellular electrophysiology.
Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A
2016-01-01
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.
ASC FY17 Implementation Plan, Rev. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, P. G.
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less
Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Bartels, R. E.
2008-01-01
NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.
NASA Technical Reports Server (NTRS)
Diak, George R.; Huang, Hung-Lung; Kim, Dongsoo
1990-01-01
The paper addresses the concept of synthetic satellite imagery as a visualization and diagnostic tool for understanding satellite sensors of the future and to detail preliminary results on the quality of soundings from the current sensors. Preliminary results are presented on the quality of soundings from the combination of the High-Resolution Infrared Radiometer Sounder and the Advanced Microwave Sounding Unit. Results are also presented on the first Observing System Simulation Experiment using this data in a mesoscale numerical prediction model.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey
2003-01-01
The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices (Ascention Inc.) attached to instrumented gloves (Immersion Inc.) which co-locate the user's hands with hand/forearm representations in the virtual workspace. Force-feedback is possible in a work volume defined by a Phantom Desktop device (SensAble inc.). Graphics are written in OpenGL. The system runs on a 2.2 GHz Pentium 4 PC. The prototype VGX provides astronauts and support personnel with a real-time physically-based VE system to simulate basic research tasks both on Earth and in the microgravity of Space. The immersive virtual environment of the VGX also makes it a useful tool for virtual engineering applications including CAD development, procedure design and simulation of human-system systems in a desktop-sized work volume.
Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications
NASA Technical Reports Server (NTRS)
Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.
2017-01-01
Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less
Evaluating an immersive virtual environment prototyping and simulation system
NASA Astrophysics Data System (ADS)
Nemire, Kenneth
1997-05-01
An immersive virtual environment (IVE) modeling and simulation tool is being developed for designing advanced weapon and training systems. One unique feature of the tool is that the design, and not just visualization of the design is accomplished with the IVE tool. Acceptance of IVE tools requires comparisons with current commercial applications. In this pilot study, expert users of a popular desktop 3D graphics application performed identical modeling and simulation tasks using both the desktop and IVE applications. The IVE tool consisted of a head-mounted display, 3D spatialized sound, spatial trackers on head and hands, instrumented gloves, and a simulated speech recognition system. The results are preliminary because performance from only four users has been examined. When using the IVE system, users completed the tasks to criteria in less time than when using the desktop application. Subjective ratings of the visual displays in each system were similar. Ratings for the desktop controls were higher than for the IVE controls. Ratings of immersion and user enjoyment were higher for the IVE than for the desktop application. These results are particular remarkable because participants had used the desktop application regularly for three to five years and the prototype IVE tool for only three to six hours.
Gilfoyle, Elaine; Koot, Deanna A; Annear, John C; Bhanji, Farhan; Cheng, Adam; Duff, Jonathan P; Grant, Vincent J; St George-Hyslop, Cecilia E; Delaloye, Nicole J; Kotsakis, Afrothite; McCoy, Carolyn D; Ramsay, Christa E; Weiss, Matthew J; Gottesman, Ronald D
2017-02-01
To measure the effect of a 1-day team training course for pediatric interprofessional resuscitation team members on adherence to Pediatric Advanced Life Support guidelines, team efficiency, and teamwork in a simulated clinical environment. Multicenter prospective interventional study. Four tertiary-care children's hospitals in Canada from June 2011 to January 2015. Interprofessional pediatric resuscitation teams including resident physicians, ICU nurse practitioners, registered nurses, and registered respiratory therapists (n = 300; 51 teams). A 1-day simulation-based team training course was delivered, involving an interactive lecture, group discussions, and four simulated resuscitation scenarios, each followed by a debriefing. The first scenario of the day (PRE) was conducted prior to any team training. The final scenario of the day (POST) was the same scenario, with a slightly modified patient history. All scenarios included standardized distractors designed to elicit and challenge specific teamwork behaviors. Primary outcome measure was change (before and after training) in adherence to Pediatric Advanced Life Support guidelines, as measured by the Clinical Performance Tool. Secondary outcome measures were as follows: 1) change in times to initiation of chest compressions and defibrillation and 2) teamwork performance, as measured by the Clinical Teamwork Scale. Correlation between Clinical Performance Tool and Clinical Teamwork Scale scores was also analyzed. Teams significantly improved Clinical Performance Tool scores (67.3-79.6%; p < 0.0001), time to initiation of chest compressions (60.8-27.1 s; p < 0.0001), time to defibrillation (164.8-122.0 s; p < 0.0001), and Clinical Teamwork Scale scores (56.0-71.8%; p < 0.0001). A positive correlation was found between Clinical Performance Tool and Clinical Teamwork Scale (R = 0.281; p < 0.0001). Participation in a simulation-based team training educational intervention significantly improved surrogate measures of clinical performance, time to initiation of key clinical tasks, and teamwork during simulated pediatric resuscitation. A positive correlation between clinical and teamwork performance suggests that effective teamwork improves clinical performance of resuscitation teams.
Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance
NASA Astrophysics Data System (ADS)
Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju
2016-10-01
This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.
Integrated Control Modeling for Propulsion Systems Using NPSS
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.
2004-01-01
The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.
Object oriented studies into artificial space debris
NASA Technical Reports Server (NTRS)
Adamson, J. M.; Marshall, G.
1988-01-01
A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.
The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Lytle, John K.
1999-01-01
Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Advanced Simulation of Coupled Earthquake and Tsunami Events
NASA Astrophysics Data System (ADS)
Behrens, Joern
2013-04-01
Tsunami-Earthquakes represent natural catastrophes threatening lives and well-being of societies in a solitary and unexpected extreme event as tragically demonstrated in Sumatra (2004), Samoa (2009), Chile (2010), or Japan (2011). Both phenomena are consequences of the complex system of interactions of tectonic stress, fracture mechanics, rock friction, rupture dynamics, fault geometry, ocean bathymetry, and coastline geometry. The ASCETE project forms an interdisciplinary research consortium that couples the most advanced simulation technologies for earthquake rupture dynamics and tsunami propagation to understand the fundamental conditions of tsunami generation. We report on the latest research results in physics-based dynamic rupture and tsunami wave propagation simulation, using unstructured and adaptive meshes with continuous and discontinuous Galerkin discretization approaches. Coupling both simulation tools - the physics-based dynamic rupture simulation and the hydrodynamic tsunami wave propagation - will give us the possibility to conduct highly realistic studies of the interaction of rupture dynamics and tsunami impact characteristics.
A typology of educationally focused medical simulation tools.
Alinier, Guillaume
2007-10-01
The concept of simulation as an educational tool in healthcare is not a new idea but its use has really blossomed over the last few years. This enthusiasm is partly driven by an attempt to increase patient safety and also because the technology is becoming more affordable and advanced. Simulation is becoming more commonly used for initial training purposes as well as for continuing professional development, but people often have very different perceptions of the definition of the term simulation, especially in an educational context. This highlights the need for a clear classification of the technology available but also about the method and teaching approach employed. The aims of this paper are to discuss the current range of simulation approaches and propose a clear typology of simulation teaching aids. Commonly used simulation techniques have been identified and discussed in order to create a classification that reports simulation techniques, their usual mode of delivery, the skills they can address, the facilities required, their typical use, and their pros and cons. This paper presents a clear classification scheme of educational simulation tools and techniques with six different technological levels. They are respectively: written simulations, three-dimensional models, screen-based simulators, standardized patients, intermediate fidelity patient simulators, and interactive patient simulators. This typology allows the accurate description of the simulation technology and the teaching methods applied. Thus valid comparison of educational tools can be made as to their potential effectiveness and verisimilitude at different training stages. The proposed typology of simulation methodologies available for educational purposes provides a helpful guide for educators and participants which should help them to realise the potential learning outcomes at different technological simulation levels in relation to the training approach employed. It should also be a useful resource for simulation users who are trying to improve their educational practice.
Recent advancements in medical simulation: patient-specific virtual reality simulation.
Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E
2012-07-01
Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.
An Integrated Tool Suite for En Route Radar Controllers in NextGen
NASA Technical Reports Server (NTRS)
Mercer, Joey; Prevot, Thomas; Brasil, Connie; Mainini, Matthew; Kupfer, Michael; Smtih, Nancy
2010-01-01
This paper describes recent human-in-the-loop research in the Airspace Operations Laboratory at the NASA Ames Research Center focusing on en route air traffic management with advanced trajectory planning tools and increased levels of human-automation cooperation. The decision support tools were exercised in a simulation of seven contiguous high-altitude sectors. Preliminary data suggests the controllers were able to manage higher amounts of traffic as compared to today, while maintaining acceptable levels of workload.
Phenomena Important in Molten Salt Reactor Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David J.; Brown, Nicholas R.; Denning, Richard
The U.S. Nuclear Regulatory Commission (NRC) is preparing for the future licensing of advanced reactors that will be very different from current light water reactors. Part of the NRC preparation strategy is to identify the simulation tools that will be used for confirmatory safety analysis of normal operation and abnormal situations in those reactors. This report advances that strategy for reactors that will use molten salts (MSRs). This includes reactors with the fuel within the salt as well as reactors using solid fuel. Although both types are discussed in this report, the emphasis is on those reactors with liquid fuelmore » because of the perception that solid-fuel MSRs will be significantly easier to simulate. These liquid-fuel reactors include thermal and fast neutron spectrum alternatives. The specific designs discussed in the report are a subset of many designs being considered in the U.S. and elsewhere but they are considered the most likely to submit information to the NRC in the near future. The objective herein, is to understand the design of proposed molten salt reactors, how they will operate under normal or transient/accident conditions, and what will be the corresponding modeling needs of simulation tools that consider neutronics, heat transfer, fluid dynamics, and material composition changes in the molten salt. These tools will enable the NRC to eventually carry out confirmatory analyses that examine the validity and accuracy of applicant’s calculations and help determine the margin of safety in plant design.« less
Advanced studies of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Ling, Hao
1994-01-01
In radar signature applications it is often desirable to generate the range profiles and inverse synthetic aperture radar (ISAR) images of a target. They can be used either as identification tools to distinguish and classify the target from a collection of possible targets, or as diagnostic/design tools to pinpoint the key scattering centers on the target. The simulation of synthetic range profiles and ISAR images is usually a time intensive task and computation time is of prime importance. Our research has been focused on the development of fast simulation algorithms for range profiles and ISAR images using the shooting and bouncing ray (SBR) method, a high frequency electromagnetic simulation technique for predicting the radar returns from realistic aerospace vehicles and the scattering by complex media.
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Dongbin
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1989-01-01
This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.
Development of a Robust and Efficient Parallel Solver for Unsteady Turbomachinery Flows
NASA Technical Reports Server (NTRS)
West, Jeff; Wright, Jeffrey; Thakur, Siddharth; Luke, Ed; Grinstead, Nathan
2012-01-01
The traditional design and analysis practice for advanced propulsion systems relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. In the design of advanced propulsion systems, CFD plays a major role in defining the required performance over the entire flight regime, as well as in testing the sensitivity of the design to the different modes of operation. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment. The turbomachinery simulation capability presented here is being developed in a computational tool called Loci-STREAM [1]. It integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci [2] which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective is to be able to routinely simulate problems involving complex geometries requiring large unstructured grids and complex multidisciplinary physics. An immediate application of interest is simulation of unsteady flows in rocket turbopumps, particularly in cryogenic liquid rocket engines. The key components of the overall methodology presented in this paper are the following: (a) high fidelity unsteady simulation capability based on Detached Eddy Simulation (DES) in conjunction with second-order temporal discretization, (b) compliance with Geometric Conservation Law (GCL) in order to maintain conservative property on moving meshes for second-order time-stepping scheme, (c) a novel cloud-of-points interpolation method (based on a fast parallel kd-tree search algorithm) for interfaces between turbomachinery components in relative motion which is demonstrated to be highly scalable, and (d) demonstrated accuracy and parallel scalability on large grids (approx 250 million cells) in full turbomachinery geometries.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Interactive Visualization to Advance Earthquake Simulation
NASA Astrophysics Data System (ADS)
Kellogg, Louise H.; Bawden, Gerald W.; Bernardin, Tony; Billen, Magali; Cowgill, Eric; Hamann, Bernd; Jadamec, Margarete; Kreylos, Oliver; Staadt, Oliver; Sumner, Dawn
2008-04-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.
Progress in virtual reality simulators for surgical training and certification.
de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D
2011-02-21
There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.
ANTARES: Spacecraft Simulation for Multiple User Communities and Facilities
NASA Technical Reports Server (NTRS)
Acevedo, Amanda; Berndt, Jon; Othon, William; Arnold, Jason; Gay, Robet
2007-01-01
The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is the primary tool being used for requirements assessment of the NASA Orion spacecraft by the Guidance Navigation and Control (GN&C) teams at Johnson Space Center (JSC). ANTARES is a collection of packages and model libraries that are assembled and executed by the Trick simulation environment. Currently, ANTARES is being used for spacecraft design assessment, performance analysis, requirements validation, Hardware In the Loop (HWIL) and Human In the Loop (HIL) testing.
Tool Support for Parametric Analysis of Large Software Simulation Systems
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony
2008-01-01
The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.
The future of simulations for space applications
NASA Astrophysics Data System (ADS)
Matsumoto, H.
Space development has been rapidly increasing and there will be huge investment by business markets for space development and applications such as space factory and Solar Power Station (SPS). In such a situation, we would like to send a warning message regarding the future space simulations. It is widely recognized that space simulation have been contributing to the quantitative understanding of various plasma phenomena occurring in the solarterrestrial environment. In the current century, however, in addition to the conventional contribution to the solar-terrestrial physics, we also have to pay our attention to the application of space simulation for human activities in space. We believe that space simulations can be a a powerful and helpful tool for the understanding the spacecraft-environment interactions occurring in space development and applications. The global influence by exhausted heavy ions from electric propulsion on the plasmasphere can be also analyzed by the combination of MHD and particle simulations. The results obtained in the simulations can provide us very significant and beneficial information so that we can minimize the undesirable effects in space development and applications. 1 Brief history of ISSS and contribution to the space plasma physics Numerical simulation has been largely recognized as a powerful tool in the advance of space plasma physics. The International School for Space Simulation (ISSS) series was set up in order to emphasize such a recognition in the early eighties, on the common initiative of M. Ashour-Abdalla, R. Gendrin, T. Sato and myself. The preceding five ISSS's (in Japan, USA, France, Japan, and Japan again) have greatly contributed to the promotion of and advance of computer simulations as well as the education of students trying to start the simulation study for their own research objectives.
The Osseus platform: a prototype for advanced web-based distributed simulation
NASA Astrophysics Data System (ADS)
Franceschini, Derrick; Riecken, Mark
2016-05-01
Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time.
Brooks, Johnell; Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection © (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21-66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants' performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. Copyright © 2017 by the American Occupational Therapy Association, Inc.
NDE and SHM Simulation for CFRP Composites
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Parker, F. Raymond
2014-01-01
Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.
Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems
NASA Technical Reports Server (NTRS)
Holda, Julie
2004-01-01
The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
NASA Astrophysics Data System (ADS)
Kern, Bastian; Jöckel, Patrick
2016-10-01
Numerical climate and weather models have advanced to finer scales, accompanied by large amounts of output data. The model systems hit the input and output (I/O) bottleneck of modern high-performance computing (HPC) systems. We aim to apply diagnostic methods online during the model simulation instead of applying them as a post-processing step to written output data, to reduce the amount of I/O. To include diagnostic tools into the model system, we implemented a standardised, easy-to-use interface based on the Modular Earth Submodel System (MESSy) into the ICOsahedral Non-hydrostatic (ICON) modelling framework. The integration of the diagnostic interface into the model system is briefly described. Furthermore, we present a prototype implementation of an advanced online diagnostic tool for the aggregation of model data onto a user-defined regular coarse grid. This diagnostic tool will be used to reduce the amount of model output in future simulations. Performance tests of the interface and of two different diagnostic tools show, that the interface itself introduces no overhead in form of additional runtime to the model system. The diagnostic tools, however, have significant impact on the model system's runtime. This overhead strongly depends on the characteristics and implementation of the diagnostic tool. A diagnostic tool with high inter-process communication introduces large overhead, whereas the additional runtime of a diagnostic tool without inter-process communication is low. We briefly describe our efforts to reduce the additional runtime from the diagnostic tools, and present a brief analysis of memory consumption. Future work will focus on optimisation of the memory footprint and the I/O operations of the diagnostic interface.
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, E.; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulations, such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The paper reports on the Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components.
NASA Technical Reports Server (NTRS)
Salas, Manuel D.
2007-01-01
The research program of the aerodynamics, aerothermodynamics and plasmadynamics discipline of NASA's Hypersonic Project is reviewed. Details are provided for each of its three components: 1) development of physics-based models of non-equilibrium chemistry, surface catalytic effects, turbulence, transition and radiation; 2) development of advanced simulation tools to enable increased spatial and time accuracy, increased geometrical complexity, grid adaptation, increased physical-processes complexity, uncertainty quantification and error control; and 3) establishment of experimental databases from ground and flight experiments to develop better understanding of high-speed flows and to provide data to validate and guide the development of simulation tools.
Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1
NASA Technical Reports Server (NTRS)
Bernard, Douglas E. (Editor); Man, Guy K. (Editor)
1989-01-01
Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft.
NASA Technical Reports Server (NTRS)
2008-01-01
NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.
Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System
NASA Astrophysics Data System (ADS)
Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.
2017-01-01
This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.
NASA Astrophysics Data System (ADS)
Neyts, Erik C.; Yusupov, Maksudbek; Verlackt, Christof C.; Bogaerts, Annemie
2014-07-01
Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficult—if not impossible—to obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasma-biomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.
Recovery Discontinuous Galerkin Jacobian-free Newton-Krylov Method for all-speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
HyeongKae Park; Robert Nourgaliev; Vincent Mousseau
2008-07-01
There is an increasing interest to develop the next generation simulation tools for the advanced nuclear energy systems. These tools will utilize the state-of-art numerical algorithms and computer science technology in order to maximize the predictive capability, support advanced reactor designs, reduce uncertainty and increase safety margins. In analyzing nuclear energy systems, we are interested in compressible low-Mach number, high heat flux flows with a wide range of Re, Ra, and Pr numbers. Under these conditions, the focus is placed on turbulent heat transfer, in contrast to other industries whose main interest is in capturing turbulent mixing. Our objective ismore » to develop singlepoint turbulence closure models for large-scale engineering CFD code, using Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) tools, requireing very accurate and efficient numerical algorithms. The focus of this work is placed on fully-implicit, high-order spatiotemporal discretization based on the discontinuous Galerkin method solving the conservative form of the compressible Navier-Stokes equations. The method utilizes a local reconstruction procedure derived from weak formulation of the problem, which is inspired by the recovery diffusion flux algorithm of van Leer and Nomura [?] and by the piecewise parabolic reconstruction [?] in the finite volume method. The developed methodology is integrated into the Jacobianfree Newton-Krylov framework [?] to allow a fully-implicit solution of the problem.« less
Finite element analysis simulations for ultrasonic array NDE inspections
NASA Astrophysics Data System (ADS)
Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony
2016-02-01
Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.
Simulation based optimization on automated fibre placement process
NASA Astrophysics Data System (ADS)
Lei, Shi
2018-02-01
In this paper, a software simulation (Autodesk TruPlan & TruFiber) based method is proposed to optimize the automate fibre placement (AFP) process. Different types of manufacturability analysis are introduced to predict potential defects. Advanced fibre path generation algorithms are compared with respect to geometrically different parts. Major manufacturing data have been taken into consideration prior to the tool paths generation to achieve high success rate of manufacturing.
Advanced computational simulations of water waves interacting with wave energy converters
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Freniere, Cole; Raessi, Mehdi
2017-03-01
Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.
Effects of ATC automation on precision approaches to closely space parallel runways
NASA Technical Reports Server (NTRS)
Slattery, R.; Lee, K.; Sanford, B.
1995-01-01
Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.
Virtual reality simulators for gastrointestinal endoscopy training
Triantafyllou, Konstantinos; Lazaridis, Lazaros Dimitrios; Dimitriadis, George D
2014-01-01
The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has been suggested for ascertaining patient safety while positively influencing the trainees’ learning curve. Virtual simulators are the most promising tool among all available types of simulators. These integrated modalities offer a human-like endoscopy experience by combining virtual images of the gastrointestinal tract and haptic realism with using a customized endoscope. From their first steps in the 1980s until today, research involving virtual endoscopic simulators can be divided in two categories: investigation of the impact of virtual simulator training in acquiring endoscopy skills and measuring competence. Emphasis should also be given to the financial impact of their implementation in endoscopy, including the cost of these state-of-the-art simulators and the potential economic benefits from their usage. Advances in technology will contribute to the upgrade of existing models and the development of new ones; while further research should be carried out to discover new fields of application. PMID:24527175
ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package
NASA Astrophysics Data System (ADS)
Jaggi, S.
1993-02-01
The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.
NASA System-Level Design, Analysis and Simulation Tools Research on NextGen
NASA Technical Reports Server (NTRS)
Bardina, Jorge
2011-01-01
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
Orion Entry, Descent, and Landing Simulation
NASA Technical Reports Server (NTRS)
Hoelscher, Brian R.
2007-01-01
The Orion Entry, Descent, and Landing simulation was created over the past two years to serve as the primary Crew Exploration Vehicle guidance, navigation, and control (GN&C) design and analysis tool at the National Aeronautics and Space Administration (NASA). The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is a six degree-of-freedom tool with a unique design architecture which has a high level of flexibility. This paper describes the decision history and motivations that guided the creation of this simulation tool. The capabilities of the models within ANTARES are presented in detail. Special attention is given to features of the highly flexible GN&C architecture and the details of the implemented GN&C algorithms. ANTARES provides a foundation simulation for the Orion Project that has already been successfully used for requirements analysis, system definition analysis, and preliminary GN&C design analysis. ANTARES will find useful application in engineering analysis, mission operations, crew training, avionics-in-the-loop testing, etc. This paper focuses on the entry simulation aspect of ANTARES, which is part of a bigger simulation package supporting the entire mission profile of the Orion vehicle. The unique aspects of entry GN&C design are covered, including how the simulation is being used for Monte Carlo dispersion analysis and for support of linear stability analysis. Sample simulation output from ANTARES is presented in an appendix.
Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger
2016-01-01
Educational theory highlights the importance of contextualized simulation for effective learning. The authors recently published the concept of "The Burns Suite" (TBS) as a novel tool to advance the delivery of burns education for residents/clinicians. Effectively, TBS represents a low-cost, high-fidelity, portable, immersive simulation environment. Recently, simulation-based team training (SBTT) has been advocated as a means to improve interprofessional practice. The authors aimed to explore the role of TBS in SBTT. A realistic pediatric burn resuscitation scenario was designed based on "advanced trauma and life support" and "emergency management of severe burns" principles, refined utilizing expert opinion through cognitive task analysis. The focus of this analysis was on nontechnical and interpersonal skills of clinicians and nurses within the scenario, mirroring what happens in real life. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's alpha was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twenty-two participants completed TBS resuscitation scenario. Mean face and content validity ratings were high (4.4 and 4.7 respectively; range 4-5). The internal consistency of questions was high. Qualitative data analysis revealed two new themes. Participants reported that the experience felt particularly authentic because the simulation had high psychological and social fidelity, and there was a demand for such a facility to be made available to improve nontechnical skills and interprofessional relations. TBS provides a realistic, novel tool for SBTT, addressing both nontechnical and interprofessional team skills. Recreating clinical challenge is crucial to optimize SBTT. With a better understanding of the theories underpinning simulation and interprofessional education, future simulation scenarios can be designed to provide unique educational experiences whereby team members will learn with and from other specialties and professions in a safe, controlled environment.
Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo
2016-09-01
Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.
DOT National Transportation Integrated Search
2012-02-01
A wide variety of advanced technological tools have been implemented throughout Georgias : transportation network to increase its efficiency. These systems are credited with reducing or : maintaining freeway congestion levels in light of increasin...
Using Business Simulations as Authentic Assessment Tools
ERIC Educational Resources Information Center
Neely, Pat; Tucker, Jan
2012-01-01
New modalities for assessing student learning exist as a result of advances in computer technology. Conventional measurement practices have been transformed into computer based testing. Although current testing replicates assessment processes used in college classrooms, a greater opportunity exists to use computer technology to create authentic…
Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching H.
2011-01-01
Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.
Combining medical informatics and bioinformatics toward tools for personalized medicine.
Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M
2003-01-01
Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.
ARC integration into the NEAMS Workbench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.; Gaughan, N.; Kim, T.
2017-01-01
One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes developed within the program. The Workbench initiative was launched in FY-2017 by the IPL to facilitate the transition from conventional tools to high fidelity tools. The Workbench provides a common user interface for model creation, real-time validation, execution, output processing, and visualization for integrated codes.
Optics simulations: a Python workshop
NASA Astrophysics Data System (ADS)
Ghalila, H.; Ammar, A.; Varadharajan, S.; Majdi, Y.; Zghal, M.; Lahmar, S.; Lakshminarayanan, V.
2017-08-01
Numerical simulations allow teachers and students to indirectly perform sophisticated experiments that cannot be realizable otherwise due to cost and other constraints. During the past few decades there has been an explosion in the development of numerical tools concurrently with open source environments such as Python software. This availability of open source software offers an incredible opportunity for advancing teaching methodologies as well as in research. More specifically it is possible to correlate theoretical knowledge with experimental measurements using "virtual" experiments. We have been working on the development of numerical simulation tools using the Python program package and we have concentrated on geometric and physical optics simulations. The advantage of doing hands-on numerical experiments is that it allows the student learner to be an active participant in the pedagogical/learning process rather than playing a passive role as in the traditional lecture format. Even in laboratory classes because of constraints of space, lack of equipment and often-large numbers of students, many students play a passive role since they work in groups of 3 or more students. Furthermore these new tools help students get a handle on numerical methods as well simulations and impart a "feel" for the physics under investigation.
The Environmental Control and Life Support System (ECLSS) advanced automation project
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.; Carnes, Ray
1990-01-01
The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.
NASA Astrophysics Data System (ADS)
Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed
2018-04-01
With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.
Future Automotive Systems Technology Simulator (FASTSim)
DOE Office of Scientific and Technical Information (OSTI.GOV)
An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ronald W.; Collins, Benjamin S.; Godfrey, Andrew T.
2016-12-09
In order to support engineering analysis of Virtual Environment for Reactor Analysis (VERA) model results, the Consortium for Advanced Simulation of Light Water Reactors (CASL) needs a tool that provides visualizations of HDF5 files that adhere to the VERAOUT specification. VERAView provides an interactive graphical interface for the visualization and engineering analyses of output data from VERA. The Python-based software provides instantaneous 2D and 3D images, 1D plots, and alphanumeric data from VERA multi-physics simulations.
NEAMS Update. Quarterly Report for October - December 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, K.
2012-02-16
The Advanced Modeling and Simulation Office within the DOE Office of Nuclear Energy (NE) has been charged with revolutionizing the design tools used to build nuclear power plants during the next 10 years. To accomplish this, the DOE has brought together the national laboratories, U.S. universities, and the nuclear energy industry to establish the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program. The mission of NEAMS is to modernize computer modeling of nuclear energy systems and improve the fidelity and validity of modeling results using contemporary software environments and high-performance computers. NEAMS will create a set of engineering-level codes aimedmore » at designing and analyzing the performance and safety of nuclear power plants and reactor fuels. The truly predictive nature of these codes will be achieved by modeling the governing phenomena at the spatial and temporal scales that dominate the behavior. These codes will be executed within a simulation environment that orchestrates code integration with respect to spatial meshing, computational resources, and execution to give the user a common 'look and feel' for setting up problems and displaying results. NEAMS is building upon a suite of existing simulation tools, including those developed by the federal Scientific Discovery through Advanced Computing and Advanced Simulation and Computing programs. NEAMS also draws upon existing simulation tools for materials and nuclear systems, although many of these are limited in terms of scale, applicability, and portability (their ability to be integrated into contemporary software and hardware architectures). NEAMS investments have directly and indirectly supported additional NE research and development programs, including those devoted to waste repositories, safeguarded separations systems, and long-term storage of used nuclear fuel. NEAMS is organized into two broad efforts, each comprising four elements. The quarterly highlights October-December 2011 are: (1) Version 1.0 of AMP, the fuel assembly performance code, was tested on the JAGUAR supercomputer and released on November 1, 2011, a detailed discussion of this new simulation tool is given; (2) A coolant sub-channel model and a preliminary UO{sub 2} smeared-cracking model were implemented in BISON, the single-pin fuel code, more information on how these models were developed and benchmarked is given; (3) The Object Kinetic Monte Carlo model was implemented to account for nucleation events in meso-scale simulations and a discussion of the significance of this advance is given; (4) The SHARP neutronics module, PROTEUS, was expanded to be applicable to all types of reactors, and a discussion of the importance of PROTEUS is given; (5) A plan has been finalized for integrating the high-fidelity, three-dimensional reactor code SHARP with both the systems-level code RELAP7 and the fuel assembly code AMP. This is a new initiative; (6) Work began to evaluate the applicability of AMP to the problem of dry storage of used fuel and to define a relevant problem to test the applicability; (7) A code to obtain phonon spectra from the force-constant matrix for a crystalline lattice has been completed. This important bridge between subcontinuum and continuum phenomena is discussed; (8) Benchmarking was begun on the meso-scale, finite-element fuels code MARMOT to validate its new variable splitting algorithm; (9) A very computationally demanding simulation of diffusion-driven nucleation of new microstructural features has been completed. An explanation of the difficulty of this simulation is given; (10) Experiments were conducted with deformed steel to validate a crystal plasticity finite-element code for bodycentered cubic iron; (11) The Capability Transfer Roadmap was completed and published as an internal laboratory technical report; (12) The AMP fuel assembly code input generator was integrated into the NEAMS Integrated Computational Environment (NiCE). More details on the planned NEAMS computing environment is given; and (13) The NEAMS program website (neams.energy.gov) is nearly ready to launch.« less
Modeling and Controls Development of 48V Mild Hybrid Electric Vehicles
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, Elizabeth; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed.
Simulated single molecule microscopy with SMeagol.
Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan
2016-08-01
SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net johan.elf@icm.uu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Advanced Simulation and Computing Business Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rummel, E.
To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsiblemore » for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.« less
Advanced Training in Laparoscopic Abdominal Surgery (Atlas): A Systematic Review
Beyer-Berjot, Laura; Palter, Vanessa; Grantcharov, Teodor; Aggarwal, Rajesh
2014-01-01
Background Simulation has widely spread this last decade, especially in laparoscopic surgery, and training out of the operating room (OR) has proven its positive impact on basic skills during real laparoscopic procedures. However, few articles dealing with advanced training in laparoscopic abdominal surgery (ATLAS) have been published so far. Such training may reduce learning curves in the OR for junior surgeons with limited access to complex laparoscopic procedures as a primary operator. Methods Two reviewers, using MEDLINE, EMBASE, and The Cochrane Library, conducted a systematic research with combinations of the following keywords: (teaching OR education OR computer simulation) AND laparoscopy AND (gastric OR stomach OR colorectal OR colon OR rectum OR small bowel OR liver OR spleen OR pancreas OR advanced surgery OR advanced procedure OR complex procedure). Additional studies were searched in the reference lists of all included articles. Results Fifty-four original studies were retrieved. Their level of evidence was low: most of the studies were case series, one fifth purely descriptive, and there were 8 randomized trials. Porcine models and video trainers, as well as gastric and colorectal procedures were mainly assessed. The retrieved studies showed some encouraging trends in terms of trainees' satisfaction, improvement after training (but mainly on the training tool itself). Some tools have been proven to be construct-valid. Conclusions Higher quality studies are required to appraise ATLAS educational value. PMID:24947643
PyOperators: Operators and solvers for high-performance computing
NASA Astrophysics Data System (ADS)
Chanial, P.; Barbey, N.
2012-12-01
PyOperators is a publicly available library that provides basic operators and solvers for small-to-very large inverse problems ({http://pchanial.github.com/pyoperators}). It forms the backbone of the package PySimulators, which implements specific operators to construct an instrument model and means to conveniently represent a map, a timeline or a time-dependent observation ({http://pchanial.github.com/pysimulators}). Both are part of the Tamasis (Tools for Advanced Map-making, Analysis and SImulations of Submillimeter surveys) toolbox, aiming at providing versatile, reliable, easy-to-use, and optimal map-making tools for Herschel and future generation of sub-mm instruments. The project is a collaboration between 4 institutes (ESO Garching, IAS Orsay, CEA Saclay, Univ. Leiden).
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
Leveraging e-Science infrastructure for electrochemical research.
Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F
2011-08-28
As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.
Advanced educational program in optoelectronics for undergraduates and graduates in electronics
NASA Astrophysics Data System (ADS)
Vladescu, Marian; Schiopu, Paul
2015-02-01
The optoelectronics education included in electronics curricula at Faculty of Electronics, Telecommunications and Information Technology of "Politehnica" University of Bucharest started in early '90s, and evolved constantly since then, trying to address the growing demand of engineers with a complex optoelectronics profile and to meet the increased requirements of microelectronics, optoelectronics, and lately nanotechnologies. Our goal is to provide a high level of theoretical background combined with advanced experimental tools in laboratories, and also with simulation platforms. That's why we propose an advanced educational program in optoelectronics for both grades of our study program, bachelor and master.
Modeling and Validation of Lithium-ion Automotive Battery Packs (SAE 2013-01-1539)
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...
Summary appraisals of the Nation's ground-water resources; Lower Mississippi region
Terry, J.E.; Hosman, R.L.; Bryant, C.T.
1979-01-01
Great advances have been made in hydrologic technology in recent years. Predictive models have been developed that make it possible for the hydroiogist to simulate aquifer responses to proposed development or other stresses. These models would be invaluable tools in progressive water-resources planning and management.
New tools for aquatic habitat modeling
D. Tonina; J. A. McKean; C. Tang; P. Goodwin
2011-01-01
Modeling of aquatic microhabitat in streams has been typically done over short channel reaches using one-dimensional simulations, partly because of a lack of high resolution. subaqueous topographic data to better define model boundary conditions. The Experimental Advanced Airborne Research Lidar (EAARL) is an airborne aquatic-terrestrial sensor that allows simultaneous...
Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA (SAE Paper 2015-01-1140)
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David; Shaver, Dillon; Liu, Yang
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less
Haji, Faizal A; Hoppe, Daniel J; Morin, Marie-Paule; Giannoulakis, Konstantine; Koh, Jansen; Rojas, David; Cheung, Jeffrey J H
2014-05-01
Rapid technological advances and concern for patient safety have increased the focus on simulation as a pedagogical tool for educating health care providers. To date, simulation research scholarship has focused on two areas; evaluating instructional designs of simulation programs, and the integration of simulation into a broader educational context. However, these two categories of research currently exist under a single label-Simulation-Based Medical Education. In this paper we argue that introducing a more refined nomenclature within which to frame simulation research is necessary for researchers, to appropriately design research studies and describe their findings, and for end-point users (such as program directors and educators), to more appropriately understand and utilize this evidence.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo
2016-12-13
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J.; Wang, Liliang; Lin, Jianguo
2016-01-01
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions. PMID:28060298
NASA Astrophysics Data System (ADS)
Alves, J. L.; Oliveira, M. C.; Menezes, L. F.
2004-06-01
Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.
Guided wave energy trapping to detect hidden multilayer delamination damage
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Seebo, Jeffrey P.
2015-03-01
Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) simulation tools capable of modeling three-dimensional (3D) realistic energy-damage interactions are needed for aerospace composites. Current practice in NDE/SHM simulation for composites commonly involves over-simplification of the material parameters and/or a simplified two-dimensional (2D) approach. The unique damage types that occur in composite materials (delamination, microcracking, etc) develop as complex 3D geometry features. This paper discusses the application of 3D custom ultrasonic simulation tools to study wave interaction with multilayer delamination damage in carbon-fiber reinforced polymer (CFRP) composites. In particular, simulation based studies of ultrasonic guided wave energy trapping due to multilayer delamination damage were performed. The simulation results show changes in energy trapping at the composite surface as additional delaminations are added through the composite thickness. The results demonstrate a potential approach for identifying the presence of hidden multilayer delamination damage in applications where only single-sided access to a component is available. The paper also describes recent advancements in optimizing the custom ultrasonic simulation code for increases in computation speed.
The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diachin, L F; Garaizar, F X; Henson, V E
2009-10-12
In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE andmore » the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.« less
Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J
2014-02-01
A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.
Validation and learning in the Procedicus KSA virtual reality surgical simulator.
Ström, P; Kjellin, A; Hedman, L; Johnson, E; Wredmark, T; Felländer-Tsai, L
2003-02-01
Advanced simulator training within medicine is a rapidly growing field. Virtual reality simulators are being introduced as cost-saving educational tools, which also lead to increased patient safety. Fifteen medical students were included in the study. For 10 medical students performance was monitored, before and after 1 h of training, in two endoscopic simulators (the Procedicus KSA with haptic feedback and anatomical graphics and the established MIST simulator without this haptic feedback and graphics). Five medical students performed 50 tests in the Procedicus KSA in order to analyze learning curves. One of these five medical students performed multiple training sessions during 2 weeks and performed more than 300 tests. There was a significant improvement after 1 h of training regarding time, movement economy, and total score. The results in the two simulators were highly correlated. Our results show that the use of surgical simulators as a pedagogical tool in medical student training is encouraging. It shows rapid learning curves and our suggestion is to introduce endoscopic simulator training in undergraduate medical education during the course in surgery when motivation is high and before the development of "negative stereotypes" and incorrect practices.
Thibault, J. C.; Roe, D. R.; Eilbeck, K.; Cheatham, T. E.; Facelli, J. C.
2015-01-01
Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data – both within the same organization and among different ones – remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations. PMID:26387907
Thibault, J C; Roe, D R; Eilbeck, K; Cheatham, T E; Facelli, J C
2015-01-01
Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations.
Muralha, Nuno; Oliveira, Manuel; Ferreira, Maria Amélia; Costa-Maia, José
2017-05-31
Virtual reality simulation is a topic of discussion as a complementary tool to traditional laparoscopic surgical training in the operating room. However, it is unclear whether virtual reality training can have an impact on the surgical performance of advanced laparoscopic procedures. Our objective was to assess the ability of the virtual reality simulator LAP Mentor to identify and quantify changes in surgical performance indicators, after LAP Mentor training for digestive anastomosis. Twelve surgeons from Centro Hospitalar de São João in Porto (Portugal) performed two sessions of advanced task 5: anastomosis in LAP Mentor, before and after completing the tutorial, and were evaluated on 34 surgical performance indicators. The results show that six surgical performance indicators significantly changed after LAP Mentor training. The surgeons performed the task significantly faster as the median 'total time' significantly reduced (p < 0.05) from 759.5 to 523.5 seconds. Significant decreases (p < 0.05) were also found in median 'total needle loading time' (303.3 to 107.8 seconds), 'average needle loading time' (38.5 to 31.0 seconds), 'number of passages in which the needle passed precisely through the entrance dots' (2.5 to 1.0), 'time the needle was held outside the visible field' (20.9 to 2.4 seconds), and 'total time the needle-holders' ends are kept outside the predefined operative field' (88.2 to 49.6 seconds). This study raises the possibility of using virtual reality training simulation as a benchmark tool to assess the surgical performance of Portuguese surgeons. LAP Mentor is able to identify variations in surgical performance indicators of digestive anastomosis.
NASA Astrophysics Data System (ADS)
Duffy, C.
2008-12-01
The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.
SSAGES: Software Suite for Advanced General Ensemble Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods, and that facilitates implementation of new techniquesmore » as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite.« less
SSAGES: Software Suite for Advanced General Ensemble Simulations.
Sidky, Hythem; Colón, Yamil J; Helfferich, Julian; Sikora, Benjamin J; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S; Reid, Daniel R; Sevgen, Emre; Thapar, Vikram; Webb, Michael A; Whitmer, Jonathan K; de Pablo, Juan J
2018-01-28
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
SSAGES: Software Suite for Advanced General Ensemble Simulations
NASA Astrophysics Data System (ADS)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian; Sikora, Benjamin J.; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z.; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J.; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S.; Reid, Daniel R.; Sevgen, Emre; Thapar, Vikram; Webb, Michael A.; Whitmer, Jonathan K.; de Pablo, Juan J.
2018-01-01
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
NASA Astrophysics Data System (ADS)
Farina, Simone; Thepsonti, Thanongsak; Ceretti, Elisabetta; Özel, Tugrul
2011-05-01
Titanium alloys offer superb properties in strength, corrosion resistance and biocompatibility and are commonly utilized in medical devices and implants. Micro-end milling process is a direct and rapid fabrication method for manufacturing medical devices and implants in titanium alloys. Process performance and quality depend upon an understanding of the relationship between cutting parameters and forces and resultant tool deflections to avoid tool breakage. For this purpose, FE simulations of chip formation during micro-end milling of Ti-6Al-4V alloy with an ultra-fine grain solid carbide two-flute micro-end mill are investigated using DEFORM software. At first, specific forces in tangential and radial directions of cutting during micro-end milling for varying feed advance and rotational speeds have been determined using designed FE simulations for chip formation process. Later, these forces are applied to the micro-end mill geometry along the axial depth of cut in 3D analysis of ABAQUS. Consequently, 3D distributions for tool deflections & von Misses stress are determined. These analyses will yield in establishing integrated multi-physics process models for high performance micro-end milling and a leap-forward to process improvements.
Assessment of the National Combustion Code
NASA Technical Reports Server (NTRS)
Liu, nan-Suey; Iannetti, Anthony; Shih, Tsan-Hsing
2007-01-01
The advancements made during the last decade in the areas of combustion modeling, numerical simulation, and computing platform have greatly facilitated the use of CFD based tools in the development of combustion technology. Further development of verification, validation and uncertainty quantification will have profound impact on the reliability and utility of these CFD based tools. The objectives of the present effort are to establish baseline for the National Combustion Code (NCC) and experimental data, as well as to document current capabilities and identify gaps for further improvements.
Mixed reality ventriculostomy simulation: experience in neurosurgical residency.
Hooten, Kristopher G; Lister, J Richard; Lombard, Gwen; Lizdas, David E; Lampotang, Samsun; Rajon, Didier A; Bova, Frank; Murad, Gregory J A
2014-12-01
Medicine and surgery are turning toward simulation to improve on limited patient interaction during residency training. Many simulators today use virtual reality with augmented haptic feedback with little to no physical elements. In a collaborative effort, the University of Florida Department of Neurosurgery and the Center for Safety, Simulation & Advanced Learning Technologies created a novel "mixed" physical and virtual simulator to mimic the ventriculostomy procedure. The simulator contains all the physical components encountered for the procedure with superimposed 3-D virtual elements for the neuroanatomical structures. To introduce the ventriculostomy simulator and its validation as a necessary training tool in neurosurgical residency. We tested the simulator in more than 260 residents. An algorithm combining time and accuracy was used to grade performance. Voluntary postperformance surveys were used to evaluate the experience. Results demonstrate that more experienced residents have statistically significant better scores and completed the procedure in less time than inexperienced residents. Survey results revealed that most residents agreed that practice on the simulator would help with future ventriculostomies. This mixed reality simulator provides a real-life experience, and will be an instrumental tool in training the next generation of neurosurgeons. We have now implemented a standard where incoming residents must prove efficiency and skill on the simulator before their first interaction with a patient.
The Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Flight Dynamic Simulation of Fighter In the Asymmetric External Store Release Process
NASA Astrophysics Data System (ADS)
Safi’i, Imam; Arifianto, Ony; Nurohman, Chandra
2018-04-01
In the fighter design, it is important to evaluate and analyze the flight dynamic of the aircraft earlier in the development process. One of the case is the dynamics of external store release process. A simulation tool can be used to analyze the fighter/external store system’s dynamics in the preliminary design stage. This paper reports the flight dynamics of Jet Fighter Experiment (JF-1 E) in asymmetric Advance Medium Range Air to Air Missile (AMRAAM) release process through simulations. The JF-1 E and AIM 120 AMRAAAM models are built by using Advanced Aircraft Analysis (AAA) and Missile Datcom software. By using these softwares, the aerodynamic stability and control derivatives can be obtained and used to model the dynamic characteristic of the fighter and the external store. The dynamic system is modeled by using MATLAB/Simulink software. By using this software, both the fighter/external store integration and the external store release process is simulated, and the dynamic of the system can be analyzed.
Software Framework for Advanced Power Plant Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Widmann; Sorin Munteanu; Aseem Jain
2010-08-01
This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. Thesemore » include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.« less
NASA Astrophysics Data System (ADS)
Wilson, H. F.
2013-12-01
First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-06-08
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less
Coupling the System Analysis Module with SAS4A/SASSYS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, T. H.; Hu, R.
2016-09-30
SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated events as well as design basis and beyond design basis accidents for advanced reactors, with an emphasis on sodium fast reactors. SAS4A/SASSYS-1 has been under development and in active use for nearly forty-five years, and is currently maintained by the U.S. Department of Energy under the Office of Advanced Reactor Technology. Although SAS4A/SASSYS-1 contains a very capable primary and intermediate system modeling component, PRIMAR-4, it also has some shortcomings: outdated data management and code structure makes extension of the PRIMAR-4 module somewhat difficult. The user input format formore » PRIMAR-4 also limits the number of volumes and segments that can be used to describe a given system. The System Analysis Module (SAM) is a fairly new code development effort being carried out under the U.S. DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM is being developed with advanced physical models, numerical methods, and software engineering practices; however, it is currently somewhat limited in the system components and phenomena that can be represented. For example, component models for electromagnetic pumps and multi-layer stratified volumes have not yet been developed. Nor is there support for a balance of plant model. Similarly, system-level phenomena such as control-rod driveline expansion and vessel elongation are not represented. This report documents fiscal year 2016 work that was carried out to couple the transient safety analysis capabilities of SAS4A/SASSYS-1 with the system modeling capabilities of SAM under the joint support of the ART and NEAMS programs. The coupling effort was successful and is demonstrated by evaluating an unprotected loss of flow transient for the Advanced Burner Test Reactor (ABTR) design. There are differences between the stand-alone SAS4A/SASSYS-1 simulations and the coupled SAS/SAM simulations, but these are mainly attributed to the limited maturity of the SAM development effort. The severe accident modeling capabilities in SAS4A/SASSYS-1 (sodium boiling, fuel melting and relocation) will continue to play a vital role for a long time. Therefore, the SAS4A/SASSYS-1 modernization effort should remain a high priority task under the ART program to ensure continued participation in domestic and international SFR safety collaborations and design optimizations. On the other hand, SAM provides an advanced system analysis tool, with improved numerical solution schemes, data management, code flexibility, and accuracy. SAM is still in early stages of development and will require continued support from NEAMS to fulfill its potential and to mature into a production tool for advanced reactor safety analysis. The effort to couple SAS4A/SASSYS-1 and SAM is the first step on the integration of these modeling capabilities.« less
Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.
2014-11-23
This study describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis.
Carvalho, Henrique F; Barbosa, Arménio J M; Roque, Ana C A; Iranzo, Olga; Branco, Ricardo J F
2017-01-01
Recent advances in de novo protein design have gained considerable insight from the intrinsic dynamics of proteins, based on the integration of molecular dynamics simulations protocols on the state-of-the-art de novo protein design protocols used nowadays. With this protocol we illustrate how to set up and run a molecular dynamics simulation followed by a functional protein dynamics analysis. New users will be introduced to some useful open-source computational tools, including the GROMACS molecular dynamics simulation software package and ProDy for protein structural dynamics analysis.
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1990-01-01
The utilization of advanced simulation technology in the development of the non-real-time MANPRINT design tools in the Army/NASA Aircrew-Aircraft Integration (A3I) program is described. A description is then given of the Crew Station Research and Development Facilities, the primary tool for the application of MANPRINT principles. The purpose of the A3I program is to develop a rational, predictive methodology for helicopter cockpit system design that integrates human factors engineering with other principles at an early stage in the development process, avoiding the high cost of previous system design methods. Enabling technologies such as the MIDAS work station are examined, and the potential of low-cost parallel-processing systems is indicated.
Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...
2016-09-01
other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for
ERIC Educational Resources Information Center
Castet, Frédéric; Méreau, Raphaël; Liotard, Daniel
2014-01-01
In this computational experiment, students use advanced quantum chemistry tools to simulate the photochromic reaction mechanism in naphthopyran derivatives. The first part aims to make students familiar with excited-state reaction mechanisms and addresses the photoisomerization of the benzopyran molecule by means of semiempirical quantum chemical…
Progress in Modeling and Simulation of Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A
2016-01-01
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilitiesmore » * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.« less
In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects
Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen
2010-01-01
Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147
NASA Astrophysics Data System (ADS)
Lin, Hai-Nan; Li, Jin; Li, Xin
2018-05-01
The detection of gravitational waves (GWs) provides a powerful tool to constrain the cosmological parameters. In this paper, we investigate the possibility of using GWs as standard sirens in testing the anisotropy of the universe. We consider the GW signals produced by the coalescence of binary black hole systems and simulate hundreds of GW events from the advanced laser interferometer gravitational-wave observatory and Virgo. It is found that the anisotropy of the universe can be tightly constrained if the redshift of the GW source is precisely known. The anisotropic amplitude can be constrained with an accuracy comparable to the Union2.1 complication of type-Ia supernovae if ≳ 400 GW events are observed. As for the preferred direction, ≳ 800 GW events are needed in order to achieve the accuracy of Union2.1. With 800 GW events, the probability of pseudo anisotropic signals with an amplitude comparable to Union2.1 is negligible. These results show that GWs can provide a complementary tool to supernovae in testing the anisotropy of the universe.
Fully-Coupled Thermo-Electrical Modeling and Simulation of Transition Metal Oxide Memristors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David
2016-11-01
Transition metal oxide (TMO) memristors have recently attracted special attention from the semiconductor industry and academia. Memristors are one of the strongest candidates to replace flash memory, and possibly DRAM and SRAM in the near future. Moreover, memristors have a high potential to enable beyond-CMOS technology advances in novel architectures for high performance computing (HPC). The utility of memristors has been demonstrated in reprogrammable logic (cross-bar switches), brain-inspired computing and in non-CMOS complementary logic. Indeed, the potential use of memristors as logic devices is especially important considering the inevitable end of CMOS technology scaling that is anticipated by 2025. Inmore » order to aid the on-going Sandia memristor fabrication effort with a memristor design tool and establish a clear physical picture of resistance switching in TMO memristors, we have created and validated with experimental data a simulation tool we name the Memristor Charge Transport (MCT) Simulator.« less
NASA Astrophysics Data System (ADS)
Chęciński, Jakub; Frankowski, Marek
2016-10-01
We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.
Simulation of Guided Wave Interaction with In-Plane Fiber Waviness
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.
2016-01-01
Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.
Simulation of guided wave interaction with in-plane fiber waviness
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Juarez, Peter D.
2017-02-01
Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.
MACHETE: Environment for Space Networking Evaluation
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John S.; Woo, Simon
2010-01-01
Space Exploration missions requires the design and implementation of space networking that differs from terrestrial networks. In a space networking architecture, interplanetary communication protocols need to be designed, validated and evaluated carefully to support different mission requirements. As actual systems are expensive to build, it is essential to have a low cost method to validate and verify mission/system designs and operations. This can be accomplished through simulation. Simulation can aid design decisions where alternative solutions are being considered, support trade-studies and enable fast study of what-if scenarios. It can be used to identify risks, verify system performance against requirements, and as an initial test environment as one moves towards emulation and actual hardware implementation of the systems. We describe the development of Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) and its use cases in supporting architecture trade studies, protocol performance and its role in hybrid simulation/emulation. The MACHETE environment contains various tools and interfaces such that users may select the set of tools tailored for the specific simulation end goal. The use cases illustrate tool combinations for simulating space networking in different mission scenarios. This simulation environment is useful in supporting space networking design for planned and future missions as well as evaluating performance of existing networks where non-determinism exist in data traffic and/or link conditions.
Full 3D opto-electronic simulation tool for nanotextured solar cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Michallon, Jérôme; Collin, Stéphane
2017-04-01
Increasing efforts on the photovoltaics research have recently been devoted to material savings, leading to the emergence of new designs based on nanotextured and nanowire-based solar cells. The use of small absorber volumes, light-trapping nanostructures and unconventional carrier collection schemes (radial nanowire junctions, point contacts in planar structures,…) increases the impact of surfaces recombination and induces homogeneity in the photogenerated carrier concentrations. The investigation of their impacts on the device performances need to be addressed using full 3D coupled opto-electrical modeling. In this context, we have developed a new tool for full 3D opto-electrical simulation using the most advanced optical and electrical simulation techniques. We will present an overview of its simulation capabilities and the key issues that have been solved to make it fully operational and reliable. We will provide various examples of opto-electronic simulation of (i) nanostructured solar cells with localized contacts and (ii) nanowire solar cells. We will also show how opto-electronic simulation can be used to simulate light- and electron-beam induced current (LBIC/EBIC) experiments, targeting quantitative analysis of the passivation properties of surfaces.
Advanced computations in plasma physics
NASA Astrophysics Data System (ADS)
Tang, W. M.
2002-05-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
Advanced Computation in Plasma Physics
NASA Astrophysics Data System (ADS)
Tang, William
2001-10-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
An approach for coupled-code multiphysics core simulations from a common input
Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; ...
2014-12-10
This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which ismore » built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.« less
INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat
Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less
Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa
2018-01-01
The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.
Pydna: a simulation and documentation tool for DNA assembly strategies using python.
Pereira, Filipa; Azevedo, Flávio; Carvalho, Ângela; Ribeiro, Gabriela F; Budde, Mark W; Johansson, Björn
2015-05-02
Recent advances in synthetic biology have provided tools to efficiently construct complex DNA molecules which are an important part of many molecular biology and biotechnology projects. The planning of such constructs has traditionally been done manually using a DNA sequence editor which becomes error-prone as scale and complexity of the construction increase. A human-readable formal description of cloning and assembly strategies, which also allows for automatic computer simulation and verification, would therefore be a valuable tool. We have developed pydna, an extensible, free and open source Python library for simulating basic molecular biology DNA unit operations such as restriction digestion, ligation, PCR, primer design, Gibson assembly and homologous recombination. A cloning strategy expressed as a pydna script provides a description that is complete, unambiguous and stable. Execution of the script automatically yields the sequence of the final molecule(s) and that of any intermediate constructs. Pydna has been designed to be understandable for biologists with limited programming skills by providing interfaces that are semantically similar to the description of molecular biology unit operations found in literature. Pydna simplifies both the planning and sharing of cloning strategies and is especially useful for complex or combinatorial DNA molecule construction. An important difference compared to existing tools with similar goals is the use of Python instead of a specifically constructed language, providing a simulation environment that is more flexible and extensible by the user.
An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.
Zare, Fatima; Dow, Michelle; Monteleone, Nicholas; Hosny, Abdelrahman; Nabavi, Sheida
2017-05-31
Recently copy number variation (CNV) has gained considerable interest as a type of genomic/genetic variation that plays an important role in disease susceptibility. Advances in sequencing technology have created an opportunity for detecting CNVs more accurately. Recently whole exome sequencing (WES) has become primary strategy for sequencing patient samples and study their genomics aberrations. However, compared to whole genome sequencing, WES introduces more biases and noise that make CNV detection very challenging. Additionally, tumors' complexity makes the detection of cancer specific CNVs even more difficult. Although many CNV detection tools have been developed since introducing NGS data, there are few tools for somatic CNV detection for WES data in cancer. In this study, we evaluated the performance of the most recent and commonly used CNV detection tools for WES data in cancer to address their limitations and provide guidelines for developing new ones. We focused on the tools that have been designed or have the ability to detect cancer somatic aberrations. We compared the performance of the tools in terms of sensitivity and false discovery rate (FDR) using real data and simulated data. Comparative analysis of the results of the tools showed that there is a low consensus among the tools in calling CNVs. Using real data, tools show moderate sensitivity (~50% - ~80%), fair specificity (~70% - ~94%) and poor FDRs (~27% - ~60%). Also, using simulated data we observed that increasing the coverage more than 10× in exonic regions does not improve the detection power of the tools significantly. The limited performance of the current CNV detection tools for WES data in cancer indicates the need for developing more efficient and precise CNV detection methods. Due to the complexity of tumors and high level of noise and biases in WES data, employing advanced novel segmentation, normalization and de-noising techniques that are designed specifically for cancer data is necessary. Also, CNV detection development suffers from the lack of a gold standard for performance evaluation. Finally, developing tools with user-friendly user interfaces and visualization features can enhance CNV studies for a broader range of users.
EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.
Jenness, Samuel M; Goodreau, Steven M; Morris, Martina
2018-04-01
Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.
EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks
Jenness, Samuel M.; Goodreau, Steven M.; Morris, Martina
2018-01-01
Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel, designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel, designed to facilitate the exploration of novel research questions for advanced modelers. PMID:29731699
Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alexander J.; Slattery, Stuart; Billings, Jay Jay
The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy's Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. Theremore » is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report details a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To achieve this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. This report describes this work in full. We begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from across the NEAMS toolkit to enable BISON-PROTEUS integration. Furthermore, we show how Warthog leverages a tool known as DataTransferKit to seamlessly enable the transfer for solution data between disparate frameworks and mesh formats. To end, we demonstrate tests for the direct software coupling of BISON and PROTEUS using Warthog, and discuss current impediments and solutions to the construction of physically realistic input models for this coupled BISON-PROTEUS system.« less
A Tool to Simulate the Transmission, Reception, and Execution of Interactive TV Applications
Kulesza, Raoni; Rodrigues, Thiago; Machado, Felipe A. L.; Santos, Celso A. S.
2017-01-01
The emergence of Interactive Digital Television (iDTV) opened a set of technological possibilities that go beyond those offered by conventional TV. Among these opportunities we can highlight interactive contents that run together with linear TV program (television service where the viewer has to watch a scheduled TV program at the particular time it is offered and on the particular channel it is presented on). However, developing interactive contents for this new platform is not as straightforward as, for example, developing Internet applications. One of the options to make this development process easier and safer is to use an iDTV simulator. However, after having investigated some of the existing iDTV simulation environments, we have found a limitation: these simulators mainly present solutions focused on the TV receiver, whose interactive content must be loaded in advance by the programmer to a local repository (e.g., Hard Drive, USB). Therefore, in this paper, we propose a tool, named BiS (Broadcast iDTV content Simulator), which makes possible a broader solution for the simulation of interactive contents. It allows simulating the transmission of interactive content along with the linear TV program (simulating the transmission of content over the air and in broadcast to the receivers). To enable this, we defined a generic and easy-to-customize communication protocol that was implemented in the tool. The proposed environment differs from others because it allows simulating reception of both linear content and interactive content while running Java applications to allow such a content presentation. PMID:28280770
Uchida, Masafumi
2014-04-01
A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Tempest: Tools for Addressing the Needs of Next-Generation Climate Models
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.; Pinheiro, M. C.; Fong, J.
2015-12-01
Tempest is a comprehensive simulation-to-science infrastructure that tackles the needs of next-generation, high-resolution, data intensive climate modeling activities. This project incorporates three key components: TempestDynamics, a global modeling framework for experimental numerical methods and high-performance computing; TempestRemap, a toolset for arbitrary-order conservative and consistent remapping between unstructured grids; and TempestExtremes, a suite of detection and characterization tools for identifying weather extremes in large climate datasets. In this presentation, the latest advances with the implementation of this framework will be discussed, and a number of projects now utilizing these tools will be featured.
NASA Astrophysics Data System (ADS)
Spies, M.; Rieder, H.; Orth, Th.; Maack, S.
2012-05-01
In this contribution we address the beam field simulation of 2D ultrasonic arrays using the Generalized Point Source Synthesis technique. Aiming at the inspection of cylindrical components (e.g. pipes) the influence of concave and convex surface curvatures, respectively, has been evaluated for a commercial probe. We have compared these results with those obtained using a commercial simulation tool. In civil engineering, the ultrasonic inspection of highly attenuating concrete structures has been advanced by the development of dry contact point transducers, mainly applied in array arrangements. Our respective simulations for a widely used commercial probe are validated using experimental results acquired on concrete half-spheres with diameters from 200 mm up to 650 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryden, Mark; Tucker, David A.
The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
Computational mechanics and physics at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
South, Jerry C., Jr.
1987-01-01
An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.
Richard M. DeGraaf; Anna M. Lester; Mariko Yamasaki; William B. Leak
2007-01-01
Visualization is a powerful tool for depicting projections of forest structure and landscape conditions, for communicating habitat management practices, and for providing a landscape context to private landowners and to those concerned with public land management. Recent advances in visualization technology, especially in graphics quality, ease of use, and relative...
Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar
2016-12-01
A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less
Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O
2006-03-01
The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.
Review of hardware-in-the-loop simulation and its prospects in the automotive area
NASA Astrophysics Data System (ADS)
Fathy, Hosam K.; Filipi, Zoran S.; Hagena, Jonathan; Stein, Jeffrey L.
2006-05-01
Hardware-in-the-loop (HIL) simulation is rapidly evolving from a control prototyping tool to a system modeling, simulation, and synthesis paradigm synergistically combining many advantages of both physical and virtual prototyping. This paper provides a brief overview of the key enablers and numerous applications of HIL simulation, focusing on its metamorphosis from a control validation tool into a system development paradigm. It then describes a state-of-the art engine-in-the-loop (EIL) simulation facility that highlights the use of HIL simulation for the system-level experimental evaluation of powertrain interactions and development of strategies for clean and efficient propulsion. The facility comprises a real diesel engine coupled to accurate real-time driver, driveline, and vehicle models through a highly responsive dynamometer. This enables the verification of both performance and fuel economy predictions of different conventional and hybrid powertrains. Furthermore, the facility can both replicate the highly dynamic interactions occurring within a real powertrain and measure their influence on transient emissions and visual signature through state-of-the-art instruments. The viability of this facility for integrated powertrain system development is demonstrated through a case study exploring the development of advanced High Mobility Multipurpose Wheeled Vehicle (HMMWV) powertrains.
TOPICAL REVIEW: Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.; Chan, V. S.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Investigation of roughing machining simulation by using visual basic programming in NX CAM system
NASA Astrophysics Data System (ADS)
Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed
2018-03-01
This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Schumann, Johann
2004-01-01
High reliability of mission- and safety-critical software systems has been identified by NASA as a high-priority technology challenge. We present an approach for the performance analysis of a neural network (NN) in an advanced adaptive control system. This problem is important in the context of safety-critical applications that require certification, such as flight software in aircraft. We have developed a tool to measure the performance of the NN during operation by calculating a confidence interval (error bar) around the NN's output. Our tool can be used during pre-deployment verification as well as monitoring the network performance during operation. The tool has been implemented in Simulink and simulation results on a F-15 aircraft are presented.
Effects of an Approach Spacing Flight Deck Tool on Pilot Eyescan
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa M.; Nadler, Eric D.
2004-01-01
An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. Eyetracker data showed only slight changes in instrument scan patterns, and no significant change in the amount of time spent looking out the window with ATAAS, versus standard ILS procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
Darras, Kathryn E; de Bruin, Anique B H; Nicolaou, Savvas; Dahlström, Nils; Persson, Anders; van Merriënboer, Jeroen; Forster, Bruce B
2018-03-23
Educators must select the best tools to teach anatomy to future physicians and traditionally, cadavers have always been considered the "gold standard" simulator for living anatomy. However, new advances in technology and radiology have created new teaching tools, such as virtual dissection, which provide students with new learning opportunities. Virtual dissection is a novel way of studying human anatomy through patient computed tomography (CT) scans. Through touchscreen technology, students can work together in groups to "virtually dissect" the CT scans to better understand complex anatomic relationships. This article presents the anatomic and pedagogic limitations of cadaveric dissection and explains what virtual dissection is and how this new technology may be used to overcome these limitations.
Microsurgery Training for the Twenty-First Century
Myers, Simon Richard; Froschauer, Stefan; Akelina, Yelena; Tos, Pierluigi; Kim, Jeong Tae
2013-01-01
Current educational interventions and training courses in microsurgery are often predicated on theories of skill acquisition and development that follow a 'practice makes perfect' model. Given the changing landscape of surgical training and advances in educational theories related to skill development, research is needed to assess current training tools in microsurgery education and devise alternative methods that would enhance training. Simulation is an increasingly important tool for educators because, whilst facilitating improved technical proficiency, it provides a way to reduce risks to both trainees and patients. The International Microsurgery Simulation Society has been founded in 2012 in order to consolidate the global effort in promoting excellence in microsurgical training. The society's aim to achieve standarisation of microsurgical training worldwide could be realised through the development of evidence based educational interventions and sharing best practices. PMID:23898422
L3:PHI.CMD.P13.02 Support for CILC L1 Milestone Using STAR-CCM+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R.; Gurecky, William L.
2016-10-07
This report documents work performed to support Consortium for the Advanced Simulation of LWRs (CASL) modeling of Chalk River Unidentified Deposit (CRUD) Induced Power Shift (CIPS) and CRUD Induced Local Corrosion (CILC) using the Cicada package. The work documented here is intended to complement current and future CIPS and CILC modeling activities in CASL. We provide tools for crud and corrosion-related simulation and analysis by developing a better understanding of the interplay between the coupled physics that describe the phenomena at different time and length scales. We intend to use these models to better inform future simulation capability and development.
Amiel, Imri; Simon, Daniel; Merin, Ofer; Ziv, Amitai
2016-01-01
Medical simulation is an increasingly recognized tool for teaching, coaching, training, and examining practitioners in the medical field. For many years, simulation has been used to improve trauma care and teamwork. Despite technological advances in trauma simulators, including better means of mobilization and control, most reported simulation-based trauma training has been conducted inside simulation centers, and the practice of mobile simulation in hospitals' trauma rooms has not been investigated fully. The emergency department personnel from a second-level trauma center in Israel were evaluated. Divided into randomly formed trauma teams, they were reviewed twice using in situ mobile simulation training at the hospital's trauma bay. In all, 4 simulations were held before and 4 simulations were held after a structured learning intervention. The intervention included a 1-day simulation-based training conducted at the Israel Center for Medical Simulation (MSR), which included video-based debriefing facilitated by the hospital's 4 trauma team leaders who completed a 2-day simulation-based instructors' course before the start of the study. The instructors were also trained on performance rating and thus were responsible for the assessment of their respective teams in real time as well as through reviewing of the recorded videos; thus enabling a comparison of the performances in the mobile simulation exercise before and after the educational intervention. The internal reliability of the experts' evaluation calculated in the Cronbach α model was found to be 0.786. Statistically significant improvement was observed in 4 of 10 parameters, among which were teamwork (29.64%) and communication (24.48%) (p = 0.00005). The mobile in situ simulation-based training demonstrated efficacy both as an assessment tool for trauma teams' function and an educational intervention when coupled with in vitro simulation-based training, resulting in a significant improvement of the teams' function in various aspects of treatment. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)
1996-01-01
This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.
Challenges Facing Design and Analysis Tools
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)
2001-01-01
The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools will be described.
Mastoidectomy performance assessment of virtual simulation training using final-product analysis.
Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S
2015-02-01
The future development of integrated automatic assessment in temporal bone virtual surgical simulators calls for validation against currently established assessment tools. This study aimed to explore the relationship between mastoidectomy final-product performance assessment in virtual simulation and traditional dissection training. Prospective trial with blinding. A total of 34 novice residents performed a mastoidectomy on the Visible Ear Simulator and on a cadaveric temporal bone. Two blinded senior otologists assessed the final-product performance using a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. A modified version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency in simulation has been achieved. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.
2013-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).
[Use of Simulated Pacients in Psychiatry].
Corso, Silvia J Franco; Delgado, Marta Beatriz; Gómez-Restrepo, Carlos
2012-01-01
Scientific advances and the complexity of human knowledge generate a constant need for creating new tools intended to facilitate learning in an agreeable and lasting form. Simulated patients are one of such tools in medical education. Standardized or simulated patients are actors or people vigorously trained to represent a medical history or, if possible, specific physical findings with the purpose of using such representations as an educational and evaluating supplement in clinic practice. The use of simulated patients has been very well received, particularly in the psychiatric field; however, its usefulness in areas such as psychotherapy or evaluation of residents remains questionable. A search was made in PubMed with the MESH words ("Psychiatry/education" and "Patient Simulation"); a search was also made in LILACS and scholar Google using similar words. Simulated patients are widely used throughout the world in the psychiatry field and their usefulness as an academic tool for pre-graduate students is confirmed in most of the literature reviewed. One of the main benefits of the use of this kind of patients is the acquisition of specific abilities (e.g.: medical history recording); nevertheless, its efficacy in more complex experiences like psychotherapy or certification of psychiatry residents is questioned. Notwithstanding the controversy, most of the literature reviewed confirms the benefits and acceptance of this methodology in the formation of students and psychiatrists. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
“Elegant Tool” Delivers Genome-Level Science for Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith Arterburn
Now, a ‘disruptive, virtual scientific simulation tool’ delivers a new, genome-level investigation for electrolytes to develop better, more efficient batteries. Dr. Kevin Gering, an Idaho National Laboratory researcher, has developed the Advanced Electrolyte Model (AEM), a copyrighted molecular-based simulation tool that has been scientifically proven and validated using at least a dozen ‘real-world’ physical metrics. Nominated for the 2014 international R&D 100 Award, AEM revolutionizes electrolyte materials selection, optimizing combinations and key design elements to make battery design and experimentation quick, accurate and responsive to specific needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialasiewicz, J.T.
1995-07-01
This work uses the theory developed in NREL/TP--442-7110 to analyze simulated data from an ADAMS (Automated Dynamic Analysis of Mechanical Systems) model of the MICON 65/13 wind turbine. The Observer/Kalman Filter identification approach is expanded to use input-output time histories from ADAMS simulations or structural test data. A step by step outline is offered on how the tools developed in this research, can be used for validation of the ADAMS model.
NASA Astrophysics Data System (ADS)
da Silva, A. M. R.; de Macêdo, J. A.
2016-06-01
On the basis of the technological advancement in the middle and the difficulty of learning by the students in the discipline of physics, this article describes the process of elaboration and implementation of a hypermedia system for high school teachers involving computer simulations for teaching basic concepts of electromagnetism, using free tool. With the completion and publication of the project there will be a new possibility of interaction of students and teachers with the technology in the classroom and in labs.
Graphics simulation and training aids for advanced teleoperation
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1993-01-01
Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.
An approach to high speed ship ride quality simulation
NASA Technical Reports Server (NTRS)
Malone, W. L.; Vickery, J. M.
1975-01-01
The high speeds attained by certain advanced surface ships result in a spectrum of motion which is higher in frequency than that of conventional ships. This fact along with the inclusion of advanced ride control features in the design of these ships resulted in an increased awareness of the need for ride criteria. Such criteria can be developed using data from actual ship operations in varied sea states or from clinical laboratory experiments. A third approach is to simulate ship conditions using measured or calculated ship motion data. Recent simulations have used data derived from a math model of Surface Effect Ship (SES) motion. The model in turn is based on equations of motion which have been refined with data from scale models and SES of up to 101 600-kg (100-ton) displacement. Employment of broad band motion emphasizes the use of the simulators as a design tool to evaluate a given ship configuration in several operational situations and also serves to provide data as to the overall effect of a given motion on crew performance and physiological status.
Advances in Integrated Computational Materials Engineering "ICME"
NASA Astrophysics Data System (ADS)
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena
2018-01-01
The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results.
Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena
2018-01-01
The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results. PMID:29765315
A review of simulation platforms in surgery of the temporal bone.
Bhutta, M F
2016-10-01
Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.
NBodyLab: A Testbed for Undergraduates Utilizing a Web Interface to NEMO and MD-GRAPE2 Hardware
NASA Astrophysics Data System (ADS)
Johnson, V. L.; Teuben, P. J.; Penprase, B. E.
An N-body simulation testbed called NBodyLab was developed at Pomona College as a teaching tool for undergraduates. The testbed runs under Linux and provides a web interface to selected back-end NEMO modeling and analysis tools, and several integration methods which can optionally use an MD-GRAPE2 supercomputer card in the server to accelerate calculation of particle-particle forces. The testbed provides a framework for using and experimenting with the main components of N-body simulations: data models and transformations, numerical integration of the equations of motion, analysis and visualization products, and acceleration techniques (in this case, special purpose hardware). The testbed can be used by students with no knowledge of programming or Unix, freeing such students and their instructor to spend more time on scientific experimentation. The advanced student can extend the testbed software and/or more quickly transition to the use of more advanced Unix-based toolsets such as NEMO, Starlab and model builders such as GalactICS. Cosmology students at Pomona College used the testbed to study collisions of galaxies with different speeds, masses, densities, collision angles, angular momentum, etc., attempting to simulate, for example, the Tadpole Galaxy and the Antenna Galaxies. The testbed framework is available as open-source to assist other researchers and educators. Recommendations are made for testbed enhancements.
Donnelly, William
2008-11-01
To present a commercially available software tool for creating eye models to assist the development of ophthalmic optics and instrumentation, simulate ailments or surgery-induced changes, explore vision research questions, and provide assistance to clinicians in planning treatment or analyzing clinical outcomes. A commercially available eye modeling system was developed, the Advanced Human Eye Model (AHEM). Two mainstream optical software engines, ZEMAX (ZEMAX Development Corp) and ASAP (Breault Research Organization), were used to construct a similar software eye model and compared. The method of using the AHEM is described and various eye modeling scenarios are created. These scenarios consist of retinal imaging of targets and sources; optimization capability; spectacles, contact lens, and intraocular lens insertion and correction; Zernike surface deformation on the cornea; cataract simulation and scattering; a gradient index lens; a binocular mode; a retinal implant; system import/export; and ray path exploration. Similarity of the two different optical software engines showed validity to the mechanism of the AHEM. Metrics and graphical data are generated from the various modeling scenarios particular to their input specifications. The AHEM is a user-friendly commercially available software tool from Breault Research Organization, which can assist the design of ophthalmic optics and instrumentation, simulate ailments or refractive surgery-induced changes, answer vision research questions, or assist clinicians in planning treatment or analyzing clinical outcomes.
ORNL Pre-test Analyses of A Large-scale Experiment in STYLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Paul T; Yin, Shengjun; Klasky, Hilda B
Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes work-in-kind support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current statusmore » of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finiteelement solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardle, Kent E.; Frey, Kurt; Pereira, Candido
2014-02-02
This task is aimed at predictive modeling of solvent extraction processes in typical extraction equipment through multiple simulation methods at various scales of resolution. We have conducted detailed continuum fluid dynamics simulation on the process unit level as well as simulations of the molecular-level physical interactions which govern extraction chemistry. Through combination of information gained through simulations at each of these two tiers along with advanced techniques such as the Lattice Boltzmann Method (LBM) which can bridge these two scales, we can develop the tools to work towards predictive simulation for solvent extraction on the equipment scale (Figure 1). Themore » goal of such a tool-along with enabling optimized design and operation of extraction units-would be to allow prediction of stage extraction effrciency under specified conditions. Simulation efforts on each of the two scales will be described below. As the initial application of FELBM in the work performed during FYl0 has been on annular mixing it will be discussed in context of the continuum-scale. In the future, however, it is anticipated that the real value of FELBM will be in its use as a tool for sub-grid model development through highly refined DNS-like multiphase simulations facilitating exploration and development of droplet models including breakup and coalescence which will be needed for the large-scale simulations where droplet level physics cannot be resolved. In this area, it can have a significant advantage over traditional CFD methods as its high computational efficiency allows exploration of significantly greater physical detail especially as computational resources increase in the future.« less
Toward Interactive Scenario Analysis and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayle, Thomas R.; Summers, Kenneth Lee; Jungels, John
2015-01-01
As Modeling and Simulation (M&S) tools have matured, their applicability and importance have increased across many national security challenges. In particular, they provide a way to test how something may behave without the need to do real world testing. However, current and future changes across several factors including capabilities, policy, and funding are driving a need for rapid response or evaluation in ways that many M&S tools cannot address. Issues around large data, computational requirements, delivery mechanisms, and analyst involvement already exist and pose significant challenges. Furthermore, rising expectations, rising input complexity, and increasing depth of analysis will only increasemore » the difficulty of these challenges. In this study we examine whether innovations in M&S software coupled with advances in ''cloud'' computing and ''big-data'' methodologies can overcome many of these challenges. In particular, we propose a simple, horizontally-scalable distributed computing environment that could provide the foundation (i.e. ''cloud'') for next-generation M&S-based applications based on the notion of ''parallel multi-simulation''. In our context, the goal of parallel multi- simulation is to consider as many simultaneous paths of execution as possible. Therefore, with sufficient resources, the complexity is dominated by the cost of single scenario runs as opposed to the number of runs required. We show the feasibility of this architecture through a stable prototype implementation coupled with the Umbra Simulation Framework [6]. Finally, we highlight the utility through multiple novel analysis tools and by showing the performance improvement compared to existing tools.« less
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.
Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A
2010-03-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).
The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software
Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung
2010-01-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162
Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Mustafa Sacit; none,; Flanagan, George F.
2014-07-30
An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less
Sloane, E B; Gelhot, V
2004-01-01
This research is motivated by the rapid pace of medical device and information system integration. Although the ability to interconnect many medical devices and information systems may help improve patient care, there is no way to detect if incompatibilities between one or more devices might cause critical events such as patient alarms to go unnoticed or cause one or more of the devices to become stuck in a disabled state. Petri net tools allow automated testing of all possible states and transitions between devices and/or systems to detect potential failure modes in advance. This paper describes an early research project to use Petri nets to simulate and validate a multi-modality central patient monitoring system. A free Petri net tool, HPSim, is used to simulate two wireless patient monitoring networks: one with 44 heart monitors and a central monitoring system and a second version that includes an additional 44 wireless pulse oximeters. In the latter Petri net simulation, a potentially dangerous heart arrhythmia and pulse oximetry alarms were detected.
Opportunities for Breakthroughs in Large-Scale Computational Simulation and Design
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Alter, Stephen J.; Atkins, Harold L.; Bey, Kim S.; Bibb, Karen L.; Biedron, Robert T.; Carpenter, Mark H.; Cheatwood, F. McNeil; Drummond, Philip J.; Gnoffo, Peter A.
2002-01-01
Opportunities for breakthroughs in the large-scale computational simulation and design of aerospace vehicles are presented. Computational fluid dynamics tools to be used within multidisciplinary analysis and design methods are emphasized. The opportunities stem from speedups and robustness improvements in the underlying unit operations associated with simulation (geometry modeling, grid generation, physical modeling, analysis, etc.). Further, an improved programming environment can synergistically integrate these unit operations to leverage the gains. The speedups result from reducing the problem setup time through geometry modeling and grid generation operations, and reducing the solution time through the operation counts associated with solving the discretized equations to a sufficient accuracy. The opportunities are addressed only at a general level here, but an extensive list of references containing further details is included. The opportunities discussed are being addressed through the Fast Adaptive Aerospace Tools (FAAST) element of the Advanced Systems Concept to Test (ASCoT) and the third Generation Reusable Launch Vehicles (RLV) projects at NASA Langley Research Center. The overall goal is to enable greater inroads into the design process with large-scale simulations.
Advanced capability of air quality simulation models towards accurate performance at finer scales will be needed for such models to serve as tools for performing exposure and risk assessments in urban areas. It is recognized that the impact of urban features such as street and t...
Multiscale simulation of a prescribed fire event in the New Jersey Pine Barrens using ARPS-CANOPY
Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. Charney; Xindi Bian; Nicholas S. Skowronski; John L. Hom; Kenneth L. Clark; Matthew Patterson; Michael R. Gallagher
2014-01-01
Smoke prediction products are one of the tools used by land management personnel for decision making regarding prescribed fires. This study documents the application to a prescribed fire of a smoke prediction system that employs ARPS-CANOPY, a modified version of the Advanced Regional Prediction System (ARPS) model containing a canopy submodel, as the meteorological...
Advanced Productivity Analysis Methods for Air Traffic Control Operations
1976-12-01
Routine Work ............................... 37 4.2.2. Surveillance Work .......................... 40 4.2.3. Conflict Prcessing Work ................... 41...crossing and overtake conflicts) includes potential- conflict recognition, assessment, and resolution decision making and A/N voice communications...makers to utilize £ .quantitative and dynamic analysis as a tool for decision - making. 1.1.3 Types of Simulation Models Although there are many ways to
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.
Application of the finite element method in orthopedic implant design.
Saha, Subrata; Roychowdhury, Amit
2009-01-01
The finite element method (FEM) was first introduced to the field of orthopedic biomechanics in the early 1970s to evaluate stresses in human bones. By the early 1980s, the method had become well established as a tool for basic research and design analysis. Since the late 1980s and early 1990s, FEM has also been used to study bone remodeling. Today, it is one of the most reliable simulation tools for evaluating wear, fatigue, crack propagation, and so forth, and is used in many types of preoperative testing. Since the introduction of FEM to orthopedic biomechanics, there have been rapid advances in computer processing speeds, the finite element and other numerical methods, understanding of mechanical properties of soft and hard tissues and their modeling, and image-processing techniques. In light of these advances, it is accepted today that FEM will continue to contribute significantly to further progress in the design and development of orthopedic implants, as well as in the understanding of other complex systems of the human body. In the following article, different main application areas of finite element simulation will be reviewed including total hip joint arthroplasty, followed by the knee, spine, shoulder, and elbow, respectively.
Analysis of post-mining excavations as places for municipal waste
NASA Astrophysics Data System (ADS)
Górniak-Zimroz, Justyna
2018-01-01
Waste management planning is an interdisciplinary task covering a wide range of issues including costs, legal requirements, spatial planning, environmental protection, geography, demographics, and techniques used in collecting, transporting, processing and disposing of waste. Designing and analyzing this issue is difficult and requires the use of advanced analysis methods and tools available in GIS geographic information systems containing readily available graphical and descriptive databases, data analysis tools providing expert decision support while selecting the best-designed alternative, and simulation models that allow the user to simulate many variants of waste management together with graphical visualization of the results of performed analyzes. As part of the research study, there have been works undertaken concerning the use of multi-criteria data analysis in waste management in areas located in southwestern Poland. These works have proposed the inclusion in waste management of post-mining excavations as places for the final or temporary collection of waste assessed in terms of their suitability with the tools available in GIS systems.
A Facility and Architecture for Autonomy Research
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Clancy, Daniel (Technical Monitor)
2002-01-01
Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.
Simulation-based medical education in pediatrics.
Lopreiato, Joseph O; Sawyer, Taylor
2015-01-01
The use of simulation-based medical education (SBME) in pediatrics has grown rapidly over the past 2 decades and is expected to continue to grow. Similar to other instructional formats used in medical education, SBME is an instructional methodology that facilitates learning. Successful use of SBME in pediatrics requires attention to basic educational principles, including the incorporation of clear learning objectives. To facilitate learning during simulation the psychological safety of the participants must be ensured, and when done correctly, SBME is a powerful tool to enhance patient safety in pediatrics. Here we provide an overview of SBME in pediatrics and review key topics in the field. We first review the tools of the trade and examine various types of simulators used in pediatric SBME, including human patient simulators, task trainers, standardized patients, and virtual reality simulation. Then we explore several uses of simulation that have been shown to lead to effective learning, including curriculum integration, feedback and debriefing, deliberate practice, mastery learning, and range of difficulty and clinical variation. Examples of how these practices have been successfully used in pediatrics are provided. Finally, we discuss the future of pediatric SBME. As a community, pediatric simulation educators and researchers have been a leading force in the advancement of simulation in medicine. As the use of SBME in pediatrics expands, we hope this perspective will serve as a guide for those interested in improving the state of pediatric SBME. Published by Elsevier Inc.
Objective assessment of technique in laparoscopic colorectal surgery: what are the existing tools?
Foster, J D; Francis, N K
2015-01-01
Assessment can improve the effectiveness of surgical training and enable valid judgments of competence. Laparoscopic colon resection surgery is now taught within surgical residency programs, and assessment tools are increasingly used to stimulate formative feedback and enhance learning. Formal assessment of technical performance in laparoscopic colon resection has been successfully applied at the specialist level in the English "LAPCO" National Training Program. Objective assessment tools need to be developed for training and assessment in laparoscopic rectal cancer resection surgery. Simulation may have a future role in assessment and accreditation in laparoscopic colorectal surgery; however, existing virtual reality models are not ready to be used for assessment of this advanced surgery.
Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.
2018-04-01
Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-10-11
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows
NASA Astrophysics Data System (ADS)
Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.
2014-12-01
The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.
NASA Technical Reports Server (NTRS)
Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.
1989-01-01
The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.
Designsafe-Ci a Cyberinfrastructure for Natural Hazard Simulation and Data
NASA Astrophysics Data System (ADS)
Dawson, C.; Rathje, E.; Stanzione, D.; Padgett, J.; Pinelli, J. P.
2017-12-01
DesignSafe is the web-based research platform of the Natural Hazards Engineering Research Infrastructure (NHERI) network that provides the computational tools needed to manage and analyze critical data for natural hazards research, with wind and storm surge related hazards being a primary focus. One of the simulation tools under DesignSafe is the Advanced Circulation (ADCIRC) model, a coastal ocean model used in storm surge analysis. ADCIRC is an unstructured, finite element model with high resolution capabilities for studying storm surge impacts, and has long been used in storm surge hind-casting and forecasting. In this talk, we will demonstrate the use of ADCIRC within the DesignSafe platform and its use for forecasting Hurricane Harvey. We will also demonstrate how to analyze, visualize and archive critical storm surge related data within DesignSafe.
PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation
NASA Astrophysics Data System (ADS)
España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M
2009-03-01
Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.
Construct validation of a novel hybrid surgical simulator.
Broe, D; Ridgway, P F; Johnson, S; Tierney, S; Conlon, K C
2006-06-01
Simulated minimal access surgery has improved recently as both a learning and assessment tool. The construct validation of a novel simulator, ProMis, is described for use by residents in training. ProMis is a surgical simulator that can design tasks in both virtual and actual reality. A pilot group of surgical residents ranging from novice to expert completed three standardized tasks: orientation, dissection, and basic suturing. The tasks were tested for construct validity. Two experienced surgeons examined the recorded tasks in a blinded fashion using an objective structured assessment of technical skills format (OSATS: task-specific checklist and global rating score) as well as metrics delivered by the simulator. The findings showed excellent interrater reliability (Cronbach's alpha of 0.88 for the checklist and 0.93 for the global rating). The median scores in the experience groups were statistically different in both the global rating and the task-specific checklists (p < 0.05). The scores for the orientation task alone did not reach significance (p = 0.1), suggesting that modification is required before ProMis could be used in isolation as an assessment tool. The three simulated tasks in combination are construct valid for differentiating experience levels among surgeons in training. This hybrid simulator has potential added benefits of marrying the virtual with actual, and of combining simple box traits and advanced virtual reality simulation.
Mission Systems Open Architecture Science and Technology (MOAST) program
NASA Astrophysics Data System (ADS)
Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.
2017-04-01
The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.
In vitro models for the prediction of in vivo performance of oral dosage forms.
Kostewicz, Edmund S; Abrahamsson, Bertil; Brewster, Marcus; Brouwers, Joachim; Butler, James; Carlert, Sara; Dickinson, Paul A; Dressman, Jennifer; Holm, René; Klein, Sandra; Mann, James; McAllister, Mark; Minekus, Mans; Muenster, Uwe; Müllertz, Anette; Verwei, Miriam; Vertzoni, Maria; Weitschies, Werner; Augustijns, Patrick
2014-06-16
Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract. Copyright © 2013 Elsevier B.V. All rights reserved.
Corrias, A.; Jie, X.; Romero, L.; Bishop, M. J.; Bernabeu, M.; Pueyo, E.; Rodriguez, B.
2010-01-01
In this paper, we illustrate how advanced computational modelling and simulation can be used to investigate drug-induced effects on cardiac electrophysiology and on specific biomarkers of pro-arrhythmic risk. To do so, we first perform a thorough literature review of proposed arrhythmic risk biomarkers from the ionic to the electrocardiogram levels. The review highlights the variety of proposed biomarkers, the complexity of the mechanisms of drug-induced pro-arrhythmia and the existence of significant animal species differences in drug-induced effects on cardiac electrophysiology. Predicting drug-induced pro-arrhythmic risk solely using experiments is challenging both preclinically and clinically, as attested by the rise in the cost of releasing new compounds to the market. Computational modelling and simulation has significantly contributed to the understanding of cardiac electrophysiology and arrhythmias over the last 40 years. In the second part of this paper, we illustrate how state-of-the-art open source computational modelling and simulation tools can be used to simulate multi-scale effects of drug-induced ion channel block in ventricular electrophysiology at the cellular, tissue and whole ventricular levels for different animal species. We believe that the use of computational modelling and simulation in combination with experimental techniques could be a powerful tool for the assessment of drug safety pharmacology. PMID:20478918
MASTODON: A geosciences simulation tool built using the open-source framework MOOSE
NASA Astrophysics Data System (ADS)
Slaughter, A.
2017-12-01
The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture (extended finite-element method), and porous media, among others. The tensor mechanics and contact modules, in particular, are well suited for nonlinear geosciences problems. Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON; https://seismic-research.inl.gov/SitePages/Mastodon.aspx)--a MOOSE-based application--is capable of analyzing the response of 3D soil-structure systems to external hazards with current development focused on earthquakes. It is capable of simulating seismic events and can perform extensive "source-to-site" simulations including earthquake fault rupture, nonlinear wave propagation, and nonlinear soil-structure interaction analysis. MASTODON also includes a dynamic probabilistic risk assessment capability that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment. Although MASTODON has been developed for the nuclear industry, it can be used to assess the risk for any structure subjected to earthquakes.The geosciences community can learn from the nuclear industry and harness the enormous effort underway to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The geosciences community could benefit from existing tools by enabling collaboration between researchers and practitioners throughout the world and advance the state-of-the-art in line with other scientific research efforts.
ERIC Educational Resources Information Center
Calgary Univ. (Alberta). Centre for Gifted Education.
This document presents the conference proceedings of the primary stakeholders in gifted education in Alberta (Canada): "Activities in Math for the Gifted Student" (Ballheim); "The Self Awareness Growth Experiences Approach" (Balogun); "Computer Simulations: An Integrating Tool" (Bilan); "The Portrayal of Gifted…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy
2013-01-01
NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.
Teaching and assessing procedural skills using simulation: metrics and methodology.
Lammers, Richard L; Davenport, Moira; Korley, Frederick; Griswold-Theodorson, Sharon; Fitch, Michael T; Narang, Aneesh T; Evans, Leigh V; Gross, Amy; Rodriguez, Elliot; Dodge, Kelly L; Hamann, Cara J; Robey, Walter C
2008-11-01
Simulation allows educators to develop learner-focused training and outcomes-based assessments. However, the effectiveness and validity of simulation-based training in emergency medicine (EM) requires further investigation. Teaching and testing technical skills require methods and assessment instruments that are somewhat different than those used for cognitive or team skills. Drawing from work published by other medical disciplines as well as educational, behavioral, and human factors research, the authors developed six research themes: measurement of procedural skills; development of performance standards; assessment and validation of training methods, simulator models, and assessment tools; optimization of training methods; transfer of skills learned on simulator models to patients; and prevention of skill decay over time. The article reviews relevant and established educational research methodologies and identifies gaps in our knowledge of how physicians learn procedures. The authors present questions requiring further research that, once answered, will advance understanding of simulation-based procedural training and assessment in EM.
Simulation of the space station information system in Ada
NASA Technical Reports Server (NTRS)
Spiegel, James R.
1986-01-01
The Flexible Ada Simulation Tool (FAST) is a discrete event simulation language which is written in Ada. FAST has been used to simulate a number of options for ground data distribution of Space Station payload data. The fact that Ada language is used for implementation has allowed a number of useful interactive features to be built into FAST and has facilitated quick enhancement of its capabilities to support new modeling requirements. General simulation concepts are discussed, and how these concepts are implemented in FAST. The FAST design is discussed, and it is pointed out how the used of the Ada language enabled the development of some significant advantages over classical FORTRAN based simulation languages. The advantages discussed are in the areas of efficiency, ease of debugging, and ease of integrating user code. The specific Ada language features which enable these advances are discussed.
Evans, Andrea B; Hulme, Jennifer M; Nugus, Peter; Cranmer, Hilarie H; Coutu, Melanie; Johnson, Kirsten
2017-06-01
The evaluation tool was first derived from the formerly Consortium of British Humanitarian Agencies' (CBHA; United Kingdom), now "Start Network's," Core Humanitarian Competency Framework and formatted in an electronic data capture tool that allowed for offline evaluation. During a 3-day humanitarian simulation event, participants in teams of eight to 10 were evaluated individually at multiple injects by trained evaluators. Participants were assessed on five competencies and a global rating scale. Participants evaluated both themselves and their team members using the same tool at the end of the simulation exercise (SimEx). All participants (63) were evaluated. A total of 1,008 individual evaluations were completed. There were 90 (9.0%) missing evaluations. All 63 participants also evaluated themselves and each of their teammates using the same tool. Self-evaluation scores were significantly lower than peer-evaluations, which were significantly lower than evaluators' assessments. Participants with a medical degree, and those with humanitarian work experience of one month or more, scored significantly higher on all competencies assessed by evaluators compared to other participants. Participants with prior humanitarian experience scored higher on competencies regarding operating safely and working effectively as a team member. This study presents a novel electronic evaluation tool to assess individual performance in five of six globally recognized humanitarian competency domains in a 3-day humanitarian SimEx. The evaluation tool provides a standardized approach to the assessment of humanitarian competencies that cannot be evaluated through knowledge-based testing in a classroom setting. When combined with testing knowledge-based competencies, this presents an approach to a comprehensive competency-based assessment that provides an objective measurement of competency with respect to the competencies listed in the Framework. There is an opportunity to advance the use of this tool in future humanitarian training exercises and potentially in real time, in the field. This could impact the efficiency and effectiveness of humanitarian operations. Evans AB , Hulme JM , Nugus P , Cranmer HH , Coutu M , Johnson K . An electronic competency-based evaluation tool for assessing humanitarian competencies in a simulated exercise. Prehosp Disaster Med. 2017;32(3):253-260.
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.
2003-01-01
The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.
Developing a neurosurgical simulation-based educational curriculum: an overview.
Harrop, James; Lobel, Darlene A; Bendok, Bernard; Sharan, Ashwini; Rezai, Ali R
2013-10-01
The science of medicine has undergone rapid advancement and expansion as a result of significant technological innovations, and this has affected the training of neurosurgical residents. To develop a simulation-based neurosurgical educational curriculum to improve resident education. The Congress of Neurological Surgeons established a Simulation Committee to explore the use of this technology in maximizing neurosurgical education. Simulators were incorporated into an educational curriculum with both a didactic and a technical component. The simulators and didactic portions were validated with objective pretests and posttests. The Simulator Committee has continued to expand the use of simulators in neurosurgical education and has organized several practical courses. The simulator use continues to expand into vasculature, spinal, and cranial modules. Each module has independently shown improved training scores in both didactic and technical skills. The Congress of Neurological Surgeons has successfully incorporated simulation into an educational curriculum with both didactic and technical components. This appears to be a powerful educational tool, and its uses are being further expanded.
Strom, Suzanne L; Anderson, Craig L; Yang, Luanna; Canales, Cecilia; Amin, Alpesh; Lotfipour, Shahram; McCoy, C Eric; Osborn, Megan Boysen; Langdorf, Mark I
2015-11-01
Traditional Advanced Cardiac Life Support (ACLS) courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. We performed a prospective cohort study to determine the correlation between simulation-based evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. The composite average score on the written evaluation was substantially higher (93.6%) than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6-14.0%], p<0.00005). We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04), validating the new evaluation method. Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation.
Advanced helmet mounted display (AHMD)
NASA Astrophysics Data System (ADS)
Sisodia, Ashok; Bayer, Michael; Townley-Smith, Paul; Nash, Brian; Little, Jay; Cassarly, William; Gupta, Anurag
2007-04-01
Due to significantly increased U.S. military involvement in deterrent, observer, security, peacekeeping and combat roles around the world, the military expects significant future growth in the demand for deployable virtual reality trainers with networked simulation capability of the battle space visualization process. The use of HMD technology in simulated virtual environments has been initiated by the demand for more effective training tools. The AHMD overlays computer-generated data (symbology, synthetic imagery, enhanced imagery) augmented with actual and simulated visible environment. The AHMD can be used to support deployable reconfigurable training solutions as well as traditional simulation requirements, UAV augmented reality, air traffic control and Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications. This paper will describe the design improvements implemented for production of the AHMD System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
Recent advances in superconducting-mixer simulations
NASA Technical Reports Server (NTRS)
Withington, S.; Kennedy, P. R.
1992-01-01
Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.
Using OPC technology to support the study of advanced process control.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2015-03-01
OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A review of the available urology skills training curricula and their validation.
Shepherd, William; Arora, Karan Singh; Abboudi, Hamid; Shamim Khan, Mohammed; Dasgupta, Prokar; Ahmed, Kamran
2014-01-01
The transforming field of urological surgery continues to demand development of novel training devices and curricula for its trainees. Contemporary trainees have to balance workplace demands while overcoming the cognitive barriers of acquiring skills in rapidly multiplying and advancing surgical techniques. This article provides a brief review of the process involved in developing a surgical curriculum and the current status of real and simulation-based curricula in the 4 subgroups of urological surgical practice: open, laparoscopic, endoscopic, and robotic. An informal literature review was conducted to provide a snapshot into the variety of simulation training tools available for technical and nontechnical urological surgical skills within all subgroups of urological surgery using the following keywords: "urology, surgery, training, curriculum, validation, non-technical skills, technical skills, LESS, robotic, laparoscopy, animal models." Validated training tools explored in research were tabulated and summarized. A total of 20 studies exploring validated training tools were identified. Huge variation was noticed in the types of validity sought by researchers and suboptimal incorporation of these tools into curricula was noted across the subgroups of urological surgery. The following key recommendations emerge from the review: adoption of simulation-based curricula in training; better integration of dedicated training time in simulated environments within a trainee's working hours; better incentivization for educators and assessors to improvise, research, and deliver teaching using the technologies available; and continued emphasis on developing nontechnical skills in tandem with technical operative skills. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.
Pika: A snow science simulation tool built using the open-source framework MOOSE
NASA Astrophysics Data System (ADS)
Slaughter, A.; Johnson, M.
2017-12-01
The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the state-of-the-art in line with other scientific research efforts.
Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca
2018-01-01
Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268
Conducting Simulation Studies in the R Programming Environment.
Hallgren, Kevin A
2013-10-12
Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.
Wong, Lai Fun; Chan, Sally Wai-Chi; Ho, Jasmine Tze Yin; Mordiffi, Siti Zubaidah; Ang, Sophia Bee Leng; Goh, Poh Sun; Ang, Emily Neo Kim
2015-01-01
Background Web-based learning is becoming an increasingly important instructional tool in nursing education. Multimedia advancements offer the potential for creating authentic nursing activities for developing nursing competency in clinical practice. Objective This study aims to describe the design, development, and evaluation of an interactive multimedia Web-based simulation for developing nurses’ competencies in acute nursing care. Methods Authentic nursing activities were developed in a Web-based simulation using a variety of instructional strategies including animation video, multimedia instructional material, virtual patients, and online quizzes. A randomized controlled study was conducted on 67 registered nurses who were recruited from the general ward units of an acute care tertiary hospital. Following a baseline evaluation of all participants’ clinical performance in a simulated clinical setting, the experimental group received 3 hours of Web-based simulation and completed a survey to evaluate their perceptions of the program. All participants were re-tested for their clinical performances using a validated tool. Results The clinical performance posttest scores of the experimental group improved significantly (P<.001) from the pretest scores after the Web-based simulation. In addition, compared to the control group, the experimental group had significantly higher clinical performance posttest scores (P<.001) after controlling the pretest scores. The participants from the experimental group were satisfied with their learning experience and gave positive ratings for the quality of the Web-based simulation. Themes emerging from the comments about the most valuable aspects of the Web-based simulation include relevance to practice, instructional strategies, and fostering problem solving. Conclusions Engaging in authentic nursing activities using interactive multimedia Web-based simulation can enhance nurses’ competencies in acute care. Web-based simulations provide a promising educational tool in institutions where large groups of nurses need to be trained in acute nursing care and accessibility to repetitive training is essential for achieving long-term retention of clinical competency. PMID:25583029
Liaw, Sok Ying; Wong, Lai Fun; Chan, Sally Wai-Chi; Ho, Jasmine Tze Yin; Mordiffi, Siti Zubaidah; Ang, Sophia Bee Leng; Goh, Poh Sun; Ang, Emily Neo Kim
2015-01-12
Web-based learning is becoming an increasingly important instructional tool in nursing education. Multimedia advancements offer the potential for creating authentic nursing activities for developing nursing competency in clinical practice. This study aims to describe the design, development, and evaluation of an interactive multimedia Web-based simulation for developing nurses' competencies in acute nursing care. Authentic nursing activities were developed in a Web-based simulation using a variety of instructional strategies including animation video, multimedia instructional material, virtual patients, and online quizzes. A randomized controlled study was conducted on 67 registered nurses who were recruited from the general ward units of an acute care tertiary hospital. Following a baseline evaluation of all participants' clinical performance in a simulated clinical setting, the experimental group received 3 hours of Web-based simulation and completed a survey to evaluate their perceptions of the program. All participants were re-tested for their clinical performances using a validated tool. The clinical performance posttest scores of the experimental group improved significantly (P<.001) from the pretest scores after the Web-based simulation. In addition, compared to the control group, the experimental group had significantly higher clinical performance posttest scores (P<.001) after controlling the pretest scores. The participants from the experimental group were satisfied with their learning experience and gave positive ratings for the quality of the Web-based simulation. Themes emerging from the comments about the most valuable aspects of the Web-based simulation include relevance to practice, instructional strategies, and fostering problem solving. Engaging in authentic nursing activities using interactive multimedia Web-based simulation can enhance nurses' competencies in acute care. Web-based simulations provide a promising educational tool in institutions where large groups of nurses need to be trained in acute nursing care and accessibility to repetitive training is essential for achieving long-term retention of clinical competency.
NASA Technical Reports Server (NTRS)
Chatterjee, Sharmista
1993-01-01
Our first goal in this project was to perform a systems analysis of a closed loop Environmental Control Life Support System (ECLSS). This pertains to the development of a model of an existing real system from which to assess the state or performance of the existing system. Systems analysis is applied to conceptual models obtained from a system design effort. For our modelling purposes we used a simulator tool called ASPEN (Advanced System for Process Engineering). Our second goal was to evaluate the thermodynamic efficiency of the different components comprising an ECLSS. Use is made of the second law of thermodynamics to determine the amount of irreversibility of energy loss of each component. This will aid design scientists in selecting the components generating the least entropy, as our penultimate goal is to keep the entropy generation of the whole system at a minimum.
Validation of structural analysis methods using the in-house liner cyclic rigs
NASA Technical Reports Server (NTRS)
Thompson, R. L.
1982-01-01
Test conditions and variables to be considered in each of the test rigs and test configurations, and also used in the validation of the structural predictive theories and tools, include: thermal and mechanical load histories (simulating an engine mission cycle; different boundary conditions; specimens and components of different dimensions and geometries; different materials; various cooling schemes and cooling hole configurations; several advanced burner liner structural design concepts; and the simulation of hot streaks. Based on these test conditions and test variables, the test matrices for each rig and configurations can be established to verify the predictive tools over as wide a range of test conditions as possible using the simplest possible tests. A flow chart for the thermal/structural analysis of a burner liner and how the analysis relates to the tests is shown schematically. The chart shows that several nonlinear constitutive theories are to be evaluated.
The Shale Hills Critical Zone Observatory for Embedded Sensing and Simulation
NASA Astrophysics Data System (ADS)
Duffy, C.; Davis, K.; Kane, T.; Boyer, E.
2009-04-01
The future of environmental observing systems will utilize embedded sensor networks with continuous real-time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models deployed and coordinated at a testbed within the Penn State Experimental Forest. The NSF-funded CZO is designed to observe the detailed space and time complexities of the water and energy cycle for a watershed and ultimately the river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. (PIHM; http://sourceforge.net/projects/pihmmodel/; http://sourceforge.net/projects/pihmgis/ ) The CZO sensor and simulation system is being developed to have the following elements: 1) extensive, spatially-distributed smart sensor networks to gather intensive soil, geologic, hydrologic, geochemical and isotopic data; 2) spatially-explicit multiphysics models/solutions of the land-subsurface-vegetation-atmosphere system; and 3) parallel/distributed, adaptive algorithms for rapidly simulating the states of the watershed at high resolution, and 4) signal processing tools for data mining and parameter estimation. The prototype proposed sensor array and simulation system proposed is demonstrated with preliminary results from our first year.
Skjerdal, Taran; Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; de Cecare, Alessandra; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Trevisiani, Marcello; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine
2017-01-01
A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes , quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as "good"; "sufficient"; or "corrective action needed" based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users.
Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch.; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine
2017-01-01
A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes, quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as “good”; “sufficient”; or “corrective action needed” based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users. PMID:29457031
Rahm, Stefan; Wieser, Karl; Bauer, David E; Waibel, Felix Wa; Meyer, Dominik C; Gerber, Christian; Fucentese, Sandro F
2018-05-16
Most studies demonstrated, that training on a virtual reality based arthroscopy simulator leads to an improvement of technical skills in orthopaedic surgery. However, how long and what kind of training is optimal for young residents is unknown. In this study we tested the efficacy of a standardized, competency based training protocol on a validated virtual reality based knee- and shoulder arthroscopy simulator. Twenty residents and five experts in arthroscopy were included. All participants performed a test including knee -and shoulder arthroscopy tasks on a virtual reality knee- and shoulder arthroscopy simulator. The residents had to complete a competency based training program. Thereafter, the previously completed test was retaken. We evaluated the metric data of the simulator using a z-score and the Arthroscopic Surgery Skill Evaluation Tool (ASSET) to assess training effects in residents and performance levels in experts. The residents significantly improved from pre- to post training in the overall z-score: - 9.82 (range, - 20.35 to - 1.64) to - 2.61 (range, - 6.25 to 1.5); p < 0.001. The overall ASSET score improved from 55 (27 to 84) percent to 75 (48 to 92) percent; p < 0.001. The experts, however, achieved a significantly higher z-score in the shoulder tasks (p < 0.001 and a statistically insignificantly higher z-score in the knee tasks with a p = 0.921. The experts mean overall ASSET score (knee and shoulder) was significantly higher in the therapeutic tasks (p < 0.001) compared to the residents post training result. The use of a competency based simulator training with this specific device for 3-5 h is an effective tool to advance basic arthroscopic skills of resident in training from 0 to 5 years based on simulator measures and simulator based ASSET testing. Therefore, we conclude that this sort of training method appears useful to learn the handling of the camera, basic anatomy and the triangulation with instruments.
Generating classes of 3D virtual mandibles for AR-based medical simulation.
Hippalgaonkar, Neha R; Sider, Alexa D; Hamza-Lup, Felix G; Santhanam, Anand P; Jaganathan, Bala; Imielinska, Celina; Rolland, Jannick P
2008-01-01
Simulation and modeling represent promising tools for several application domains from engineering to forensic science and medicine. Advances in 3D imaging technology convey paradigms such as augmented reality (AR) and mixed reality inside promising simulation tools for the training industry. Motivated by the requirement for superimposing anatomically correct 3D models on a human patient simulator (HPS) and visualizing them in an AR environment, the purpose of this research effort was to develop and validate a method for scaling a source human mandible to a target human mandible within a 2 mm root mean square (RMS) error. Results show that, given a distance between 2 same landmarks on 2 different mandibles, a relative scaling factor may be computed. Using this scaling factor, results show that a 3D virtual mandible model can be made morphometrically equivalent to a real target-specific mandible within a 1.30 mm RMS error. The virtual mandible may be further used as a reference target for registering other anatomic models, such as the lungs, on the HPS. Such registration will be made possible by physical constraints among the mandible and the spinal column in the horizontal normal rest position.
The role of virtual reality in surgical training in otorhinolaryngology.
Fried, Marvin P; Uribe, José I; Sadoughi, Babak
2007-06-01
This article reviews the rationale, current status and future directions for the development and implementation of virtual reality surgical simulators as training tools. The complexity of modern surgical techniques, which utilize advanced technology, presents a dilemma for surgical training. Hands-on patient experience - the traditional apprenticeship method for teaching operations - may not apply because of the learning curve for skill acquisition and patient safety expectation. The paranasal sinuses and temporal bone have intricate anatomy with a significant amount of vital structures either within the surgical field or in close proximity. The current standard of surgical care in these areas involves the use of endoscopes, cameras and microscopes, requiring additional hand-eye coordination, an accurate command of fine motor skills, and a thorough knowledge of the anatomy under magnified vision. A surgeon's disorientation or loss of perspective can lead to complications, often catastrophic and occasionally lethal. These considerations define the ideal environment for surgical simulation; not surprisingly, significant research and validation of simulators in these areas have occurred. Virtual reality simulators are demonstrating validity as training and skills assessment tools. Future prototypes will find application for routine use in teaching, surgical planning and the development of new instruments and computer-assisted devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozana, Stepan, E-mail: stepan.ozana@vsb.cz; Pies, Martin, E-mail: martin.pies@vsb.cz; Docekal, Tomas, E-mail: docekalt@email.cz
REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a widemore » variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.« less
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2008-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2007-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
Data-Informed Large-Eddy Simulation of Coastal Land-Air-Sea Interactions
NASA Astrophysics Data System (ADS)
Calderer, A.; Hao, X.; Fernando, H. J.; Sotiropoulos, F.; Shen, L.
2016-12-01
The study of atmospheric flows in coastal areas has not been fully addressed due to the complex processes emerging from the land-air-sea interactions, e.g., abrupt change in land topography, strong current shear, wave shoaling, and depth-limited wave breaking. The available computational tools that have been applied to study such littoral regions are mostly based on open-ocean assumptions, which most times do not lead to reliable solutions. The goal of the present study is to better understand some of these near-shore processes, employing the advanced computational tools, developed in our research group. Our computational framework combines a large-eddy simulation (LES) flow solver for atmospheric flows, a sharp-interface immersed boundary method that can deal with real complex topographies (Calderer et al., J. Comp. Physics 2014), and a phase-resolved, depth-dependent, wave model (Yang and Shen, J. Comp. Physics 2011). Using real measured data taken in the FRF station in Duck, North Carolina, we validate and demonstrate the predictive capabilities of the present computational framework, which are shown to be in overall good agreement with the measured data under different wind-wave scenarios. We also analyse the effects of some of the complex processes captured by our simulation tools.
Investigating the Impact of Off-Nominal Events on High-Density "Green" Arrivals
NASA Technical Reports Server (NTRS)
Callatine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Martin, Lynne; Mercer, Joey; Palmer, Everett A.
2012-01-01
Trajectory-based controller tools developed to support a schedule-based terminal-area air traffic management (ATM) concept have been shown effective for enabling green arrivals along Area Navigation (RNAV) routes in moderately high-density traffic conditions. A recent human-in-the-loop simulation investigated the robustness of the concept and tools to off-nominal events events that lead to situations in which runway arrival schedules require adjustments and controllers can no longer use speed control alone to impose the necessary delays. Study participants included a terminal-area Traffic Management Supervisor responsible for adjusting the schedules. Sector-controller participants could issue alternate RNAV transition routes to absorb large delays. The study also included real-time winds/wind-forecast changes. The results indicate that arrival spacing accuracy, schedule conformance, and tool usage and usefulness are similar to that observed in simulations of nominal operations. However, the time and effort required to recover from an off-nominal event is highly context-sensitive, and impacted by the required schedule adjustments and control methods available for managing the evolving situation. The research suggests ways to bolster the off-nominal recovery process, and highlights challenges related to using human-in-the-loop simulation to investigate the safety and robustness of advanced ATM concepts.
Computer Aided Battery Engineering Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad
A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modelingmore » of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.« less
Clarke, Samuel; Horeczko, Timothy; Carlisle, Matthew; Barton, Joseph D.; Ng, Vivienne; Al-Somali, Sameerah; Bair, Aaron E.
2014-01-01
Background Simulation has been identified as a means of assessing resident physicians’ mastery of technical skills, but there is a lack of evidence for its utility in longitudinal assessments of residents’ non-technical clinical abilities. We evaluated the growth of crisis resource management (CRM) skills in the simulation setting using a validated tool, the Ottawa Crisis Resource Management Global Rating Scale (Ottawa GRS). We hypothesized that the Ottawa GRS would reflect progressive growth of CRM ability throughout residency. Methods Forty-five emergency medicine residents were tracked with annual simulation assessments between 2006 and 2011. We used mixed-methods repeated-measures regression analyses to evaluate elements of the Ottawa GRS by level of training to predict performance growth throughout a 3-year residency. Results Ottawa GRS scores increased over time, and the domains of leadership, problem solving, and resource utilization, in particular, were predictive of overall performance. There was a significant gain in all Ottawa GRS components between postgraduate years 1 and 2, but no significant difference in GRS performance between years 2 and 3. Conclusions In summary, CRM skills are progressive abilities, and simulation is a useful modality for tracking their development. Modification of this tool may be needed to assess advanced learners’ gains in performance. PMID:25499769
NASA Astrophysics Data System (ADS)
Konnik, Mikhail V.; Welsh, James
2012-09-01
Numerical simulators for adaptive optics systems have become an essential tool for the research and development of the future advanced astronomical instruments. However, growing software code of the numerical simulator makes it difficult to continue to support the code itself. The problem of adequate documentation of the astronomical software for adaptive optics simulators may complicate the development since the documentation must contain up-to-date schemes and mathematical descriptions implemented in the software code. Although most modern programming environments like MATLAB or Octave have in-built documentation abilities, they are often insufficient for the description of a typical adaptive optics simulator code. This paper describes a general cross-platform framework for the documentation of scientific software using open-source tools such as LATEX, mercurial, Doxygen, and Perl. Using the Perl script that translates M-files MATLAB comments into C-like, one can use Doxygen to generate and update the documentation for the scientific source code. The documentation generated by this framework contains the current code description with mathematical formulas, images, and bibliographical references. A detailed description of the framework components is presented as well as the guidelines for the framework deployment. Examples of the code documentation for the scripts and functions of a MATLAB-based adaptive optics simulator are provided.
Study of the Time Response of a Simulated Hydroelectric System
NASA Astrophysics Data System (ADS)
Simani, S.; Alvisi, S.; Venturini, M.
2014-12-01
This paper addresses the design of an advanced control strategy for a typical hydroelectric dynamic process, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solution, the proposed methodology relies on an adaptive control designed by means of the on-line identification of the system model under monitoring. Extensive simulations and comparison with respect to a classic hydraulic turbine speed PID regulator show the effectiveness of the proposed modelling and control tools.
Building Airport Surface HITL Simulation Capability
NASA Technical Reports Server (NTRS)
Chinn, Fay Cherie
2016-01-01
FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.
NASA Astrophysics Data System (ADS)
Schafhirt, S.; Kaufer, D.; Cheng, P. W.
2014-12-01
In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.
NASA Astrophysics Data System (ADS)
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J S; Tsui, Benjamin M W
2008-07-01
The authors developed and validated an efficient Monte Carlo simulation (MCS) workflow to facilitate small animal pinhole SPECT imaging research. This workflow seamlessly integrates two existing MCS tools: simulation system for emission tomography (SimSET) and GEANT4 application for emission tomography (GATE). Specifically, we retained the strength of GATE in describing complex collimator/detector configurations to meet the anticipated needs for studying advanced pinhole collimation (e.g., multipinhole) geometry, while inserting the fast SimSET photon history generator (PHG) to circumvent the relatively slow GEANT4 MCS code used by GATE in simulating photon interactions inside voxelized phantoms. For validation, data generated from this new SimSET-GATE workflow were compared with those from GATE-only simulations as well as experimental measurements obtained using a commercial small animal pinhole SPECT system. Our results showed excellent agreement (e.g., in system point response functions and energy spectra) between SimSET-GATE and GATE-only simulations, and, more importantly, a significant computational speedup (up to approximately 10-fold) provided by the new workflow. Satisfactory agreement between MCS results and experimental data were also observed. In conclusion, the authors have successfully integrated SimSET photon history generator in GATE for fast and realistic pinhole SPECT simulations, which can facilitate research in, for example, the development and application of quantitative pinhole and multipinhole SPECT for small animal imaging. This integrated simulation tool can also be adapted for studying other preclinical and clinical SPECT techniques.
Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D
2015-07-15
Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.
A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.
King, Neil; Kunac, Anastasia; Merchant, Aziz M
2016-01-01
Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuohy, Aidan; Smith, Jeff; Rylander, Matt
2016-07-11
Increasing levels of distributed and utility scale Solar Photovoltaics (PV) will have an impact on many utility functions, including distribution system operations, bulk system performance, business models and scheduling of generation. In this project, EPRI worked with Southern Company Services and its affiliates and the Tennessee Valley Authority to assist these utilities in their strategic planning efforts for integrating PV, based on modeling, simulation and analysis using a set of innovative tools. Advanced production simulation models were used to investigate operating reserve requirements. To leverage existing work and datasets, this last task was carried out on the California system. Overall,more » the project resulted in providing useful information to both of the utilities involved and through the final reports and interactions during the project. The results from this project can be used to inform the industry about new and improved methodologies for understanding solar PV penetration, and will influence ongoing and future research. This report summarizes each of the topics investigated over the 2.5-year project period.« less
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
2017-06-01
Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
ST-analyzer: a web-based user interface for simulation trajectory analysis.
Jeong, Jong Cheol; Jo, Sunhwan; Wu, Emilia L; Qi, Yifei; Monje-Galvan, Viviana; Yeom, Min Sun; Gorenstein, Lev; Chen, Feng; Klauda, Jeffery B; Im, Wonpil
2014-05-05
Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment--minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design--working with any existing operating system, (iv) easy integration into job queuing systems--providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules--making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations. Copyright © 2014 Wiley Periodicals, Inc.
See one, do one, teach one: advanced technology in medical education.
Vozenilek, John; Huff, J Stephen; Reznek, Martin; Gordon, James A
2004-11-01
The concept of "learning by doing" has become less acceptable, particularly when invasive procedures and high-risk care are required. Restrictions on medical educators have prompted them to seek alternative methods to teach medical knowledge and gain procedural experience. Fortunately, the last decade has seen an explosion of the number of tools available to enhance medical education: web-based education, virtual reality, and high fidelity patient simulation. This paper presents some of the consensus statements in regard to these tools agreed upon by members of the Educational Technology Section of the 2004 AEM Consensus Conference for Informatics and Technology in Emergency Department Health Care, held in Orlando, Florida. Web-based teaching: 1) Every ED should have access to medical educational materials via the Internet, computer-based training, and other effective education methods for point-of-service information, continuing medical education, and training. 2) Real-time automated tools should be integrated into Emergency Department Information Systems [EDIS] for contemporaneous education. Virtual reality [VR]: 1) Emergency physicians and emergency medicine societies should become more involved in VR development and assessment. 2) Nationally accepted protocols for the proper assessment of VR applications should be adopted and large multi-center groups should be formed to perform these studies. High-fidelity simulation: Emergency medicine residency programs should consider the use of high-fidelity patient simulators to enhance the teaching and evaluation of core competencies among trainees. Across specialties, patient simulation, virtual reality, and the Web will soon enable medical students and residents to... see one, simulate many, do one competently, and teach everyone.
Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre
2009-01-01
The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.
Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2010-07-01
Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.
Construct and face validity of a virtual reality-based camera navigation curriculum.
Shetty, Shohan; Panait, Lucian; Baranoski, Jacob; Dudrick, Stanley J; Bell, Robert L; Roberts, Kurt E; Duffy, Andrew J
2012-10-01
Camera handling and navigation are essential skills in laparoscopic surgery. Surgeons rely on camera operators, usually the least experienced members of the team, for visualization of the operative field. Essential skills for camera operators include maintaining orientation, an effective horizon, appropriate zoom control, and a clean lens. Virtual reality (VR) simulation may be a useful adjunct to developing camera skills in a novice population. No standardized VR-based camera navigation curriculum is currently available. We developed and implemented a novel curriculum on the LapSim VR simulator platform for our residents and students. We hypothesize that our curriculum will demonstrate construct and face validity in our trainee population, distinguishing levels of laparoscopic experience as part of a realistic training curriculum. Overall, 41 participants with various levels of laparoscopic training completed the curriculum. Participants included medical students, surgical residents (Postgraduate Years 1-5), fellows, and attendings. We stratified subjects into three groups (novice, intermediate, and advanced) based on previous laparoscopic experience. We assessed face validity with a questionnaire. The proficiency-based curriculum consists of three modules: camera navigation, coordination, and target visualization using 0° and 30° laparoscopes. Metrics include time, target misses, drift, path length, and tissue contact. We analyzed data using analysis of variance and Student's t-test. We noted significant differences in repetitions required to complete the curriculum: 41.8 for novices, 21.2 for intermediates, and 11.7 for the advanced group (P < 0.05). In the individual modules, coordination required 13.3 attempts for novices, 4.2 for intermediates, and 1.7 for the advanced group (P < 0.05). Target visualization required 19.3 attempts for novices, 13.2 for intermediates, and 8.2 for the advanced group (P < 0.05). Participants believe that training improves camera handling skills (95%), is relevant to surgery (95%), and is a valid training tool (93%). Graphics (98%) and realism (93%) were highly regarded. The VR-based camera navigation curriculum demonstrates construct and face validity for our training population. Camera navigation simulation may be a valuable tool that can be integrated into training protocols for residents and medical students during their surgery rotations. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
1994-01-01
An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.
Faster Aerodynamic Simulation With Cart3D
NASA Technical Reports Server (NTRS)
2003-01-01
A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.
Hedger, George; Sansom, Mark S. P.
2017-01-01
Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)
2002-01-01
Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.
Tools for surveying and improving the quality of life: people with special needs in focus.
Hoyningen-Süess, Ursula; Oberholzer, David; Stalder, René; Brügger, Urs
2012-01-01
This article seeks to describe online tools for surveying and improving quality of life for people with disabilities living in assisted living centers and special education service organizations. Ensuring a decent quality of life for disabled people is an important welfare state goal. Using well-accepted quality of life conceptions, online diagnostic and planning tools were developed during an Institute for Education, University of Zurich, research project. The diagnostic tools measure, evaluate and analyze disabled people's quality of life. The planning tools identify factors that can affect their quality of life and suggest improvements. Instrument validity and reliability are not tested according to the standard statistical procedures. This will be done at a more advanced stage of the project. Instead, the tool is developed, refined and adjusted in cooperation with practitioners who are constantly judging it according to best practice standards. The tools support staff in assisted living centers and special education service organizations. These tools offer comprehensive resources for surveying, quantifying, evaluating, describing and simulating quality of life elements.
A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz
NASA Astrophysics Data System (ADS)
Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu
2015-09-01
Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.
Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.
Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R
Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Khosronejad, Ali
2016-02-01
Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.
Using Simulation in Interprofessional Education.
Paige, John T; Garbee, Deborah D; Brown, Kimberly M; Rojas, Jose D
2015-08-01
Simulation-based training (SBT) is a powerful educational tool permitting the acquisition of surgical knowledge, skills, and attitudes at both the individual- and team-based level in a safe, nonthreatening learning environment at no risk to a patient. Interprofessional education (IPE), in which participants from 2 or more health or social care professions learn interactively, can help improve patient care through the promotion of efficient coordination, dissemination of advances in care across specialties and professions, and optimization of individual- and team-based function. Nonetheless, conducting SBT IPE sessions poses several tactical and strategic challenges that must be effectively overcome to reap IPE's benefits. Copyright © 2015 Elsevier Inc. All rights reserved.
High-power graphic computers for visual simulation: a real-time--rendering revolution
NASA Technical Reports Server (NTRS)
Kaiser, M. K.
1996-01-01
Advances in high-end graphics computers in the past decade have made it possible to render visual scenes of incredible complexity and realism in real time. These new capabilities make it possible to manipulate and investigate the interactions of observers with their visual world in ways once only dreamed of. This paper reviews how these developments have affected two preexisting domains of behavioral research (flight simulation and motion perception) and have created a new domain (virtual environment research) which provides tools and challenges for the perceptual psychologist. Finally, the current limitations of these technologies are considered, with an eye toward how perceptual psychologist might shape future developments.
Assessment of COTS IR image simulation tools for ATR development
NASA Astrophysics Data System (ADS)
Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal
2005-05-01
Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a recommendation. The synthetic image data that are used for the investigation are generated using the recommended tool. Within the scope of this study, ATR performance on IR imagery using classifiers trained on real, synthetic and mixed image sets was evaluated. The performance of the adapted classifiers is assessed using recorded IR imagery with known ground-truth and recommendations are given for the use of COTS IR image simulation tools for ATR development.
PyRhO: A Multiscale Optogenetics Simulation Platform
Evans, Benjamin D.; Jarvis, Sarah; Schultz, Simon R.; Nikolic, Konstantin
2016-01-01
Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences. PMID:27148037
PyRhO: A Multiscale Optogenetics Simulation Platform.
Evans, Benjamin D; Jarvis, Sarah; Schultz, Simon R; Nikolic, Konstantin
2016-01-01
Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences.
FY17 Status Report on NEAMS Neutronics Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Jung, Y. S.; Smith, M. A.
2017-09-30
Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less
Advances in the production of freeform optical surfaces
NASA Astrophysics Data System (ADS)
Tohme, Yazid E.; Luniya, Suneet S.
2007-05-01
Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.
Amanzi: An Open-Source Multi-process Simulator for Environmental Applications
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Molins, S.; Johnson, J. N.; Coon, E.; Lipnikov, K.; Day, M.; Barker, E.
2014-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments begin with simplified models, and add geometric and geologic complexity as understanding is gained. The Platform toolsets (Akuna) generates these conceptual models and Amanzi provides the computational engine to perform the simulations, returning the results for analysis and visualization. In this presentation we highlight key elements of the design, algorithms and implementations used in Amanzi. In particular, the hierarchical and modular design is aligned with the coupled processes being sumulated, and naturally supports a wide range of model complexity. This design leverages a dynamic data manager and the synergy of two graphs (one from the high-level perspective of the models the other from the dependencies of the variables in the model) to enable this flexible model configuration at run time. Moreover, to model sites with complex hydrostratigraphy, as well as engineered systems, we are developing a dual unstructured/structured capability. Recently, these capabilities have been collected in a framework named Arcos, and efforts have begun to improve interoperability between the unstructured and structured AMR approaches in Amanzi. To leverage a range of biogeochemistry capability from the community (e.g., CrunchFlow, PFLOTRAN, etc.), a biogeochemistry interface library was developed called Alquimia. To ensure that Amanzi is truly an open-source community code we require a completely open-source tool chain for our development. We will comment on elements of this tool chain, including the testing and documentation development tools such as docutils, and Sphinx. Finally, we will show simulation results from our phased demonstrations, including the geochemically complex Savannah River F-Area seepage basins.
Process Simulation and Modeling for Advanced Intermetallic Alloys.
1994-06-01
calorimetry, using a Stanton Redfera/Omnitherm DOC 1500 thermal analysis system, was the primary experimental tool for this investigation...samples during both heating and cooling in a high purity argon atmosphere at a rate of 20K/min. The DSC instrumental baseline was obtained using both empty...that is capable of fitting the observed data to given cell structures using a least squares procedure. RESULTS The results of the DOC observations are
Analysis of Simulation Tools for the Study of Advanced Marine Power Systems.
1992-09-01
model of a steam turbine prime mover which accounts for both plant and servo/steam valve time constants is given in Fig. 14. 41 + Figure 14 Second order...given in Fig. 12 of Chapter VI. The parameters for this device as given by Mayer are [14]: "* KE=l "* KA= 2 0 0 "* KF=0.3 "* TA=0.0 2 seconds 92 " TF1
Combustor liner durability analysis
NASA Technical Reports Server (NTRS)
Moreno, V.
1981-01-01
An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.
Immersive virtual reality platform for medical training: a "killer-application".
2000-01-01
The Medical Readiness Trainer (MRT) integrates fully immersive Virtual Reality (VR), highly advanced medical simulation technologies, and medical data to enable unprecedented medical education and training. The flexibility offered by the MRT environment serves as a practical teaching tool today and in the near future the will serve as an ideal vehicle for facilitating the transition to the next level of medical practice, i.e., telepresence and next generation Internet-based collaborative learning.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.
2016-01-01
Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process procedures and residual strain predications, and discusses pertinent experimental results from the validation studies.
Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil
NASA Technical Reports Server (NTRS)
Liever, Peter; Tosh, Abhijit; Curtis, Jennifer
2012-01-01
This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket plume flow impingement under lunar vacuum conditions. Applications and improvements to the granular flow simulation tools contributed by the University of Florida were tested against Earth environment experimental results. Requirements for developing, validating, and demonstrating this solution environment were clearly identified, and an effective second phase execution plan was devised. In this phase, the physics models were refined and fully integrated into a production-oriented simulation tool set. Three-dimensional simulations of Apollo Lunar Excursion Module (LEM) and Altair landers (including full-scale lander geometry) established the practical applicability of the UFS simulation approach and its advanced performance level for large-scale realistic problems.
Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment
NASA Astrophysics Data System (ADS)
Asuni, Ganiyu Adeniyi
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
Validation of virtual-reality-based simulations for endoscopic sinus surgery.
Dharmawardana, N; Ruthenbeck, G; Woods, C; Elmiyeh, B; Diment, L; Ooi, E H; Reynolds, K; Carney, A S
2015-12-01
Virtual reality (VR) simulators provide an alternative to real patients for practicing surgical skills but require validation to ensure accuracy. Here, we validate the use of a virtual reality sinus surgery simulator with haptic feedback for training in Otorhinolaryngology - Head & Neck Surgery (OHNS). Participants were recruited from final-year medical students, interns, resident medical officers (RMOs), OHNS registrars and consultants. All participants completed an online questionnaire after performing four separate simulation tasks. These were then used to assess face, content and construct validity. anova with post hoc correlation was used for statistical analysis. The following groups were compared: (i) medical students/interns, (ii) RMOs, (iii) registrars and (iv) consultants. Face validity results had a statistically significant (P < 0.05) difference between the consultant group and others, while there was no significant difference between medical student/intern and RMOs. Variability within groups was not significant. Content validity results based on consultant scoring and comments indicated that the simulations need further development in several areas to be effective for registrar-level teaching. However, students, interns and RMOs indicated that the simulations provide a useful tool for learning OHNS-related anatomy and as an introduction to ENT-specific procedures. The VR simulations have been validated for teaching sinus anatomy and nasendoscopy to medical students, interns and RMOs. However, they require further development before they can be regarded as a valid tool for more advanced surgical training. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
McElroy, Mack; de Carvalho, Nelson; Estes, Ashley; Lin, Shih-yung
2017-01-01
Use of lightweight composite materials in space and aircraft structure designs is often challenging due to high costs associated with structural certification. Of primary concern in the use of composite structures is durability and damage tolerance. This concern is due to the inherent susceptibility of composite materials to both fabrication and service induced flaws. Due to a lack of general industry accepted analysis tools applicable to composites damage simulation, a certification procedure relies almost entirely on testing. It is this reliance on testing, especially compared to structures comprised of legacy metallic materials where damage simulation tools are available, that can drive costs for using composite materials in aerospace structures. The observation that use of composites can be expensive due to testing requirements is not new and as such, research on analysis tools for simulating damage in composite structures has been occurring for several decades. A convenient approach many researchers/model-developers in this area have taken is to select a specific problem relevant to aerospace structural certification and develop a model that is accurate within that scope. Some examples are open hole tension tests, compression after impact tests, low-velocity impact, damage tolerance of an embedded flaw, and fatigue crack growth to name a few. Based on the premise that running analyses is cheaper than running tests, one motivation that many researchers in this area have is that if generally applicable and reliable damage simulation tools were available the dependence on certification testing could be lessened thereby reducing overall design cost. It is generally accepted that simulation tools if applied in this manner would still need to be thoroughly validated and that composite testing will never be completely replaced by analysis. Research and development is currently occurring at NASA to create numerical damage simulation tools applicable to damage in composites. The Advanced Composites Project (ACP) at NASA Langley has supported the development of composites damage simulation tools in a consortium of aerospace companies with a goal of reducing the certification time of a commercial aircraft by 30%. And while the scope of ACP does not include spacecraft, much of the methodology and simulation capabilities can apply to spacecraft certification in the Space Launch System and Orion programs as well. Some specific applications of composite damage simulation models in a certification program are (1) evaluation of damage during service when maintenance may be difficult or impossible, (2) a tool for early design iterations, (3) gaining insight into a particular damage process and applying this insight towards a test coupon or structural design, and (4) analysis of damage scenarios that are difficult or impossible to recreate in a test. As analysis capabilities improve, these applications and more will become realized resulting in a reduction in cost for use of composites in aerospace vehicles. NASA is engaged in this process from both research and application perspectives. In addition to the background information discussed previously, this presentation covers a look at recent research at NASA in this area and some current/potential applications in the Orion program.
The Role of Simulation in Microsurgical Training.
Evgeniou, Evgenios; Walker, Harriet; Gujral, Sameer
Simulation has been established as an integral part of microsurgical training. The aim of this study was to assess and categorize the various simulation models in relation to the complexity of the microsurgical skill being taught and analyze the assessment methods commonly employed in microsurgical simulation training. Numerous courses have been established using simulation models. These models can be categorized, according to the level of complexity of the skill being taught, into basic, intermediate, and advanced. Microsurgical simulation training should be assessed using validated assessment methods. Assessment methods vary significantly from subjective expert opinions to self-assessment questionnaires and validated global rating scales. The appropriate assessment method should carefully be chosen based on the simulation modality. Simulation models should be validated, and a model with appropriate fidelity should be chosen according to the microsurgical skill being taught. Assessment should move from traditional simple subjective evaluations of trainee performance to validated tools. Future studies should assess the transferability of skills gained during simulation training to the real-life setting. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Baluev, Roman V.
2013-08-01
We present PlanetPack, a new software tool that we developed to facilitate and standardize the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter, that can run either in an interactive mode or in a batch mode of automatic script interpretation. Its major abilities include: (i) advanced RV curve fitting with the proper maximum-likelihood treatment of unknown RV jitter; (ii) user-friendly multi-Keplerian as well as Newtonian N-body RV fits; (iii) use of more efficient maximum-likelihood periodograms that involve the full multi-planet fitting (sometimes called as “residual” or “recursive” periodograms); (iv) easily calculatable parametric 2D likelihood function level contours, reflecting the asymptotic confidence regions; (v) fitting under some useful functional constraints is user-friendly; (vi) basic tasks of short- and long-term planetary dynamical simulation using a fast Everhart-type integrator based on Gauss-Legendre spacings; (vii) fitting the data with red noise (auto-correlated errors); (viii) various analytical and numerical methods for the tasks of determining the statistical significance. It is planned that further functionality may be added to PlanetPack in the future. During the development of this software, a lot of effort was made to improve the calculational speed, especially for CPU-demanding tasks. PlanetPack was written in pure C++ (standard of 1998/2003), and is expected to be compilable and useable on a wide range of platforms.
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
Java simulations of embedded control systems.
Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco
2010-01-01
This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.
Java Simulations of Embedded Control Systems
Farias, Gonzalo; Cervin, Anton; Årzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco
2010-01-01
This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt. PMID:22163674
Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions
NASA Technical Reports Server (NTRS)
Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William
2005-01-01
As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.
High performance hybrid functional Petri net simulations of biological pathway models on CUDA.
Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.
Realization of planning design of mechanical manufacturing system by Petri net simulation model
NASA Astrophysics Data System (ADS)
Wu, Yanfang; Wan, Xin; Shi, Weixiang
1991-09-01
Planning design is to work out a more overall long-term plan. In order to guarantee a mechanical manufacturing system (MMS) designed to obtain maximum economical benefit, it is necessary to carry out a reasonable planning design for the system. First, some principles on planning design for MMS are introduced. Problems of production scheduling and their decision rules for computer simulation are presented. Realizable method of each production scheduling decision rule in Petri net model is discussed. Second, the solution of conflict rules for conflict problems during running Petri net is given. Third, based on the Petri net model of MMS which includes part flow and tool flow, according to the principle of minimum event time advance, a computer dynamic simulation of the Petri net model, that is, a computer dynamic simulation of MMS, is realized. Finally, the simulation program is applied to a simulation exmple, so the scheme of a planning design for MMS can be evaluated effectively.
Bryce, Richard A
2011-04-01
The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.
Overview of codes and tools for nuclear engineering education
NASA Astrophysics Data System (ADS)
Yakovlev, D.; Pryakhin, A.; Medvedeva, L.
2017-01-01
The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.
Image-based deep learning for classification of noise transients in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Razzano, Massimiliano; Cuoco, Elena
2018-05-01
The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.
Freebairn, L; Atkinson, J; Kelly, P; McDonnell, G; Rychetnik, L
2016-09-21
Evidence-informed decision-making is essential to ensure that health programs and services are effective and offer value for money; however, barriers to the use of evidence persist. Emerging systems science approaches and advances in technology are providing new methods and tools to facilitate evidence-based decision-making. Simulation modelling offers a unique tool for synthesising and leveraging existing evidence, data and expert local knowledge to examine, in a robust, low risk and low cost way, the likely impact of alternative policy and service provision scenarios. This case study will evaluate participatory simulation modelling to inform the prevention and management of gestational diabetes mellitus (GDM). The risks associated with GDM are well recognised; however, debate remains regarding diagnostic thresholds and whether screening and treatment to reduce maternal glucose levels reduce the associated risks. A diagnosis of GDM may provide a leverage point for multidisciplinary lifestyle modification interventions. This research will apply and evaluate a simulation modelling approach to understand the complex interrelation of factors that drive GDM rates, test options for screening and interventions, and optimise the use of evidence to inform policy and program decision-making. The study design will use mixed methods to achieve the objectives. Policy, clinical practice and research experts will work collaboratively to develop, test and validate a simulation model of GDM in the Australian Capital Territory (ACT). The model will be applied to support evidence-informed policy dialogues with diverse stakeholders for the management of GDM in the ACT. Qualitative methods will be used to evaluate simulation modelling as an evidence synthesis tool to support evidence-based decision-making. Interviews and analysis of workshop recordings will focus on the participants' engagement in the modelling process; perceived value of the participatory process, perceived commitment, influence and confidence of stakeholders in implementing policy and program decisions identified in the modelling process; and the impact of the process in terms of policy and program change. The study will generate empirical evidence on the feasibility and potential value of simulation modelling to support knowledge mobilisation and consensus building in health settings.
Dinov, Ivo D; Sanchez, Juana; Christou, Nicolas
2008-01-01
Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment.The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual classes; however, pooling the results across all courses and sections, SOCR effects on the treatment groups were exceptionally robust and significant. Coupling these findings with a clear decrease in the variance of the quantitative examination measures in the treatment groups indicates that employing technology, like SOCR, in a sound pedagogical and scientific manner enhances overall the students' understanding and suggests better long-term knowledge retention.
Dinov, Ivo D.; Sanchez, Juana; Christou, Nicolas
2009-01-01
Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment. The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual classes; however, pooling the results across all courses and sections, SOCR effects on the treatment groups were exceptionally robust and significant. Coupling these findings with a clear decrease in the variance of the quantitative examination measures in the treatment groups indicates that employing technology, like SOCR, in a sound pedagogical and scientific manner enhances overall the students’ understanding and suggests better long-term knowledge retention. PMID:19750185
The experiences of undergraduate nursing students with bots in Second LifeRTM
NASA Astrophysics Data System (ADS)
Rose, Lesele H.
As technology continues to transform education from the status quo of traditional lecture-style instruction to an interactive engaging learning experience, students' experiences within the learning environment continues to change as well. This dissertation addressed the need for continuing research in advancing implementation of technology in higher education. The purpose of this phenomenological study was to discover more about the experiences of undergraduate nursing students using standardized geriatric evaluation tools when interacting with scripted geriatric patient bots tools in a simulated instructional intake setting. Data was collected through a Demographics questionnaire, an Experiential questionnaire, and a Reflection questionnaire. Triangulation of data collection occurred through an automatically created log of the interactions with the two bots, and by an automatically recorded log of the participants' movements while in the simulated geriatric intake interview. The data analysis consisted of an iterative review of the questionnaires and the participants' logs in an effort to identify common themes, recurring comments, and issues which would benefit from further exploration. Findings revealed that the interactions with the bots were perceived as a valuable experience for the participants from the perspective of interacting with the Geriatric Evaluation Tools in the role of an intake nurse. Further research is indicated to explore instructional interactions with bots in effectively mastering the use of established Geriatric Evaluation Tools.
NextGen Operational Improvements: Will they Improve Human Performance
NASA Technical Reports Server (NTRS)
Beard, Bettina L.; Johnston, James C.; Holbrook, Jon
2013-01-01
Modernization of the National Airspace System depends critically on the development of advanced technology, including cutting-edge automation, controller decision-support tools and integrated on-demand information. The Next Generation Air Transportation System national plan envisions air traffic control tower automation that proposes solutions for seven problems: 1) departure metering, 2) taxi routing, 3) taxi and runway scheduling, 4) departure runway assignments, 5) departure flow management, 6) integrated arrival and departure scheduling and 7) runway configuration management. Government, academia and industry are simultaneously pursuing the development of these tools. For each tool, the development process typically begins by assessing its potential benefits, and then progresses to designing preliminary versions of the tool, followed by testing the tool's strengths and weaknesses using computational modeling, human-in-the-loop simulation and/or field tests. We compiled the literature, evaluated the methodological rigor of the studies and served as referee for partisan conclusions that were sometimes overly optimistic. Here we provide the results of this review.
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo
2017-04-01
In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.
ATK-ForceField: a new generation molecular dynamics software package
NASA Astrophysics Data System (ADS)
Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt
2017-12-01
ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.
Crashworthiness: Planes, trains, and automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, R.W.; Tokarz, F.J.; Whirley, R.G.
A powerful DYNA3D computer code simulates the dynamic effects of stress traveling through structures. It is the most advanced modeling tool available to study crashworthiness problems and to analyze impacts. Now used by some 1000 companies, government research laboratories, and universities in the U.S. and abroad, DYNA3D is also a preeminent example of successful technology transfer. The initial interest in such a code was to simulate the structural response of weapons systems. The need was to model not the explosive or nuclear events themselves but rather the impacts of weapons systems with the ground, tracking the stress waves as theymore » move through the object. This type of computer simulation augmented or, in certain cases, reduced the need for expensive and time-consuming crash testing.« less
Recent Advances in Transferable Coarse-Grained Modeling of Proteins
Kar, Parimal; Feig, Michael
2017-01-01
Computer simulations are indispensable tools for studying the structure and dynamics of biological macromolecules. Biochemical processes occur on different scales of length and time. Atomistic simulations cannot cover the relevant spatiotemporal scales at which the cellular processes occur. To address this challenge, coarse-grained (CG) modeling of the biological systems are employed. Over the last few years, many CG models for proteins continue to be developed. However, many of them are not transferable with respect to different systems and different environments. In this review, we discuss those CG protein models that are transferable and that retain chemical specificity. We restrict ourselves to CG models of soluble proteins only. We also briefly review recent progress made in the multi-scale hybrid all-atom/coarse-grained simulations of proteins. PMID:25443957
Pastor, Nina; Amero, Carlos
2015-01-01
Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971
Agur, Zvia; Elishmereni, Moran; Kheifetz, Yuri
2014-01-01
Despite its great promise, personalized oncology still faces many hurdles, and it is increasingly clear that targeted drugs and molecular biomarkers alone yield only modest clinical benefit. One reason is the complex relationships between biomarkers and the patient's response to drugs, obscuring the true weight of the biomarkers in the overall patient's response. This complexity can be disentangled by computational models that integrate the effects of personal biomarkers into a simulator of drug-patient dynamic interactions, for predicting the clinical outcomes. Several computational tools have been developed for personalized oncology, notably evidence-based tools for simulating pharmacokinetics, Bayesian-estimated tools for predicting survival, etc. We describe representative statistical and mathematical tools, and discuss their merits, shortcomings and preliminary clinical validation attesting to their potential. Yet, the individualization power of mathematical models alone, or statistical models alone, is limited. More accurate and versatile personalization tools can be constructed by a new application of the statistical/mathematical nonlinear mixed effects modeling (NLMEM) approach, which until recently has been used only in drug development. Using these advanced tools, clinical data from patient populations can be integrated with mechanistic models of disease and physiology, for generating personal mathematical models. Upon a more substantial validation in the clinic, this approach will hopefully be applied in personalized clinical trials, P-trials, hence aiding the establishment of personalized medicine within the main stream of clinical oncology. © 2014 Wiley Periodicals, Inc.
Evaluation of Phosphorus Site Assessment Tools: Lessons from the USA.
Sharpley, Andrew; Kleinman, Peter; Baffaut, Claire; Beegle, Doug; Bolster, Carl; Collick, Amy; Easton, Zachary; Lory, John; Nelson, Nathan; Osmond, Deanna; Radcliffe, David; Veith, Tamie; Weld, Jennifer
2017-11-01
Critical source area identification through phosphorus (P) site assessment is a fundamental part of modern nutrient management planning in the United States, yet there has been only sparse testing of the many versions of the P Index that now exist. Each P site assessment tool was developed to be applicable across a range of field conditions found in a given geographic area, making evaluation extremely difficult. In general, evaluation with in-field monitoring data has been limited, focusing primarily on corroborating manure and fertilizer "source" factors. Thus, a multiregional effort (Chesapeake Bay, Heartland, and Southern States) was undertaken to evaluate P Indices using a combination of limited field data, as well as output from simulation models (i.e., Agricultural Policy Environmental eXtender, Annual P Loss Estimator, Soil and Water Assessment Tool [SWAT], and Texas Best Management Practice Evaluation Tool [TBET]) to compare against P Index ratings. These comparisons show promise for advancing the weighting and formulation of qualitative P Index components but require careful vetting of the simulation models. Differences among regional conclusions highlight model strengths and weaknesses. For example, the Southern States region found that, although models could simulate the effects of nutrient management on P runoff, they often more accurately predicted hydrology than total P loads. Furthermore, SWAT and TBET overpredicted particulate P and underpredicted dissolved P, resulting in correct total P predictions but for the wrong reasons. Experience in the United States supports expanded regional approaches to P site assessment, assuming closely coordinated efforts that engage science, policy, and implementation communities, but limited scientific validity exists for uniform national P site assessment tools at the present time. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, Richard
2013-08-22
The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith Alice; Long, Kevin Nicholas
2018-05-01
Sylgard® 184/Glass Microballoon (GMB) potting material is currently used in many NW systems. Analysts need a macroscale constitutive model that can predict material behavior under complex loading and damage evolution. To address this need, ongoing modeling and experimental efforts have focused on study of damage evolution in these materials. Micromechanical finite element simulations that resolve individual GMB and matrix components promote discovery and better understanding of the material behavior. With these simulations, we can study the role of the GMB volume fraction, time-dependent damage, behavior under confined vs. unconfined compression, and the effects of partial damage. These simulations are challengingmore » and push the boundaries of capability even with the high performance computing tools available at Sandia. We summarize the major challenges and the current state of this modeling effort, as an exemplar of micromechanical modeling needs that can motivate advances in future computing efforts.« less
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
Magnetic biosensors: Modelling and simulation.
Nabaei, Vahid; Chandrawati, Rona; Heidari, Hadi
2018-04-30
In the past few years, magnetoelectronics has emerged as a promising new platform technology in various biosensors for detection, identification, localisation and manipulation of a wide spectrum of biological, physical and chemical agents. The methods are based on the exposure of the magnetic field of a magnetically labelled biomolecule interacting with a complementary biomolecule bound to a magnetic field sensor. This Review presents various schemes of magnetic biosensor techniques from both simulation and modelling as well as analytical and numerical analysis points of view, and the performance variations under magnetic fields at steady and nonstationary states. This is followed by magnetic sensors modelling and simulations using advanced Multiphysics modelling software (e.g. Finite Element Method (FEM) etc.) and home-made developed tools. Furthermore, outlook and future directions of modelling and simulations of magnetic biosensors in different technologies and materials are critically discussed. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2017-07-01
A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.
Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...
2008-01-01
Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less
Barnes, Samuel R; Ng, Thomas S C; Santa-Maria, Naomi; Montagne, Axel; Zlokovic, Berislav V; Jacobs, Russell E
2015-06-16
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI. A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP .
RotCFD Analysis of the AH-56 Cheyenne Hub Drag
NASA Technical Reports Server (NTRS)
Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen
2016-01-01
In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.
Improving the Analysis Capabilities of the Synthetic Theater Operations Research Model (STORM)
2014-09-01
course of action CSG carrier strike group DMSO defense modeling and simulation DOD Department of Defense DOE design of experiments ESG...development of an overall objective or end-state; a ways ( courses of action); and a means (available resources). STORM is a campaign analysis tool that...refers to the courses of action (COA) that are carefully planned out in advance by individuals relevant to a specific campaign (such as N81). For
2014-09-01
Analysis Simulation for Advanced Tracking (TASAT) satellite modeling tool [8,9]. The method uses the bi-reflectance distribution functions ( BRDF ...directional Reflectance Model Validation and Utilization, Air Force Avionics Laboratory Technical Report, AFAL-TR-73-303, October 1973. [10] Hall, D...failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP 2014 2. REPORT
Collaborative Mission Design at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.
2005-01-01
NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.
14 CFR Appendix H to Part 121 - Advanced Simulation
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...
14 CFR Appendix H to Part 121 - Advanced Simulation
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...
14 CFR Appendix H to Part 121 - Advanced Simulation
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...
Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric
This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accountsmore » for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not suffice. Current market penetration of new engine technologies is simply too slow—it must be dramatically accelerated. These challenges present a unique opportunity to marshal U.S. leadership in science-based simulation to develop predictive computational design tools for use by the transportation industry. The use of predictive simulation tools for enhancing combustion engine performance will shrink engine development timescales, accelerate time to market, and reduce development costs, while ensuring the timely achievement of energy security and emissions targets and enhancing U.S. industrial competitiveness. In 2007 Cummins achieved a milestone in engine design by bringing a diesel engine to market solely with computer modeling and analysis tools. The only testing was after the fact to confirm performance. Cummins achieved a reduction in development time and cost. As important, they realized a more robust design, improved fuel economy, and met all environmental and customer constraints. This important first step demonstrates the potential for computational engine design. But, the daunting complexity of engine combustion and the revolutionary increases in efficiency needed require the development of simulation codes and computation platforms far more advanced than those available today. Based on these needs, a Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) convened over 60 U.S. leaders in the engine combustion field from industry, academia, and national laboratories to focus on two critical areas of advanced simulation, as identified by the U.S. automotive and engine industries. First, modern engines require precise control of the injection of a broad variety of fuels that is far more subtle than achievable to date and that can be obtained only through predictive modeling and simulation. Second, the simulation, understanding, and control of these stochastic in-cylinder combustion processes lie on the critical path to realizing more efficient engines with greater power density. Fuel sprays set the initial conditions for combustion in essentially all future transportation engines; yet today designers primarily use empirical methods that limit the efficiency achievable. Three primary spray topics were identified as focus areas in the workshop: The fuel delivery system, which includes fuel manifolds and internal injector flow, The multi-phase fuel–air mixing in the combustion chamber of the engine, and The heat transfer and fluid interactions with cylinder walls. Current understanding and modeling capability of stochastic processes in engines remains limited and prevents designers from achieving significantly higher fuel economy. To improve this situation, the workshop participants identified three focus areas for stochastic processes: Improve fundamental understanding that will help to establish and characterize the physical causes of stochastic events, Develop physics-based simulation models that are accurate and sensitive enough to capture performance-limiting variability, and Quantify and manage uncertainty in model parameters and boundary conditions. Improved models and understanding in these areas will allow designers to develop engines with reduced design margins and that operate reliably in more efficient regimes. All of these areas require improved basic understanding, high-fidelity model development, and rigorous model validation. These advances will greatly reduce the uncertainties in current models and improve understanding of sprays and fuel–air mixture preparation that limit the investigation and development of advanced combustion technologies. The two strategic focus areas have distinctive characteristics but are inherently coupled. Coordinated activities in basic experiments, fundamental simulations, and engineering-level model development and validation can be used to successfully address all of the topics identified in the PreSICE workshop. The outcome will be: New and deeper understanding of the relevant fundamental physical and chemical processes in advanced combustion technologies, Implementation of this understanding into models and simulation tools appropriate for both exploration and design, and Sufficient validation with uncertainty quantification to provide confidence in the simulation results. These outcomes will provide the design tools for industry to reduce development time by up to 30% and improve engine efficiencies by 30% to 50%. The improved efficiencies applied to the national mix of transportation applications have the potential to save over 5 million barrels of oil per day, a current cost savings of $500 million per day.« less
Critical issues in medical education and the implications for telemedicine technology.
Mahapatra, Ashok Kumar; Mishra, Saroj Kanta; Kapoor, Lily; Singh, Indra Pratap
2009-01-01
Ensuring quality medical education in all the medical colleges across India based on uniform curriculum prescribed by a regulatory body and maintaining a uniform standard are dependent on availability of an excellent infrastructure. Such infrastructure includes qualified teachers, knowledge resources, learning materials, and advanced education technology, which is a challenge in developing countries due to financial and logistic constraints. Advancement in telecommunication, information science, and technology provides an opportunity to exchange knowledge and skill across geographically dispersed organizations by networking academic medical centers of excellence with medical colleges and institutes to practice distance learning using information and communication technology (ICT)-based tools. These may be as basic as commonly used Web-based tools or may be as advanced as virtual reality, simulation, and telepresence-based collaborative learning environment. The scenario in India is no different from any developing country, but there is considerable progress due to technical advancement in these sectors. Telemedicine and tele-education in health science, is gradually getting adopted into the Indian Health System after decade-long pilot studies across the country. A recent recommendation of the National Knowledge Commission, once implemented, would ensure a gigabyte network across all the educational institutions of the country including medical colleges. Availability of indigenous satellite communication technology and the government policy of free bandwidth provision for societal development sector have added strength to set up infrastructure to pilot several telemedicine educational projects across the country.
Stefan, Mihaela S.; Belforti, Raquel K.; Langlois, Gerard; Rothberg, Michael B.
2014-01-01
Background Medical residents are often responsible for leading and performing cardiopulmonary resuscitation; however, their levels of expertise and comfort as leaders of advanced cardiovascular life support (ACLS) teams vary widely. While the current American Heart Association ACLS course provides education in recommended resuscitative protocols, training in leadership skills is insufficient. In this article, we describe the design and implementation in our institution of a formative curriculum aimed at improving residents’ readiness for being leaders of ACLS teams using human patient simulation. Human patient simulation refers to a variety of technologies using mannequins with realistic features, which allows learners to practice through scenarios without putting patients at risk. We discuss the limitations of the program and the challenges encountered in implementation. We also provide a description of the initiation and organization of the program. Case scenarios and assessment tools are provided. Description of the Institutional Training Program Our simulation-based training curriculum consists of 8 simulated patient scenarios during four 1-hour sessions. Postgraduate year–2 and 3 internal medicine residents participate in this program in teams of 4. Assessment tools are utilized only for formative evaluation. Debriefing is used as a teaching strategy for the individual resident leader of the ACLS team to facilitate learning and improve performance. To evaluate the impact of the curriculum, we administered a survey before and after the intervention. The survey consisted of 10 questions answered on a 5-point Likert scale, which addressed residents’ confidence in leading ACLS teams, management of the equipment, and management of cardiac rhythms. Respondents’ mean presimulation (ie, baseline) and postsimulation (outcome) scores were compared using a 2-sample t test. Residents’ overall confidence score improved from 2.8 to 3.9 (P < 0.001; mean improvement, 1.1; 95% confidence interval, 0.7–1.6). The average score for performing and leading ACLS teams improved from 2.8 to 4 (P < 0.001; mean difference, 1.2; 95% confidence interval, 0.7–1.7). There was a uniform increase in the residents’ self-confidence in their role as effective leaders of ACLS teams, and residents valued this simulation-based training program. PMID:22056824
Load index model: An advanced tool to support decision making during mass-casualty incidents.
Adini, Bruria; Aharonson-Daniel, Limor; Israeli, Avi
2015-03-01
In mass-casualty events, accessing information concerning hospital congestion levels is crucial to improving patient distribution and optimizing care. The study aimed to develop a decision support tool for distributing casualties to hospitals in an emergency scenario involving multiple casualties. A comprehensive literature review and structured interviews with 20 content experts produced a shortlist of relevant criteria for inclusion in the model. A "load index model" was prepared, incorporating results of a modified Delphi survey of 100 emergency response experts. The model was tested in three simulation exercises in which an emergency scenario was presented to six groups of senior emergency managers. Information was provided regarding capacities of 11 simulated admitting hospitals in the region, and evacuation destinations were requested for 600 simulated casualties. Of the three simulation rounds, two were performed without the model and one after its presentation. Following simulation experiments and implementation during a real-life security threat, the efficacy of the model was assessed. Variability between experts concerning casualties' evacuation destinations decreased significantly following the model's introduction. Most responders (92%) supported the need for standardized data, and 85% found that the model improved policy setting regarding casualty evacuation in an emergency situation. These findings were reaffirmed in a real-life emergency scenario. The proposed model improved capacity to ensure evacuation of patients to less congested medical facilities in emergency situations, thereby enhancing lifesaving medical services. The model supported decision-making processes in both simulation exercises and an actual emergency situation.
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation
Sherfey, Jason S.; Soplata, Austin E.; Ardid, Salva; Roberts, Erik A.; Stanley, David A.; Pittman-Polletta, Benjamin R.; Kopell, Nancy J.
2018-01-01
DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community. PMID:29599715
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.
Sherfey, Jason S; Soplata, Austin E; Ardid, Salva; Roberts, Erik A; Stanley, David A; Pittman-Polletta, Benjamin R; Kopell, Nancy J
2018-01-01
DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.
Sweet, Robert M; Hananel, David; Lawrenz, Frances
2010-02-01
To present modern educational psychology theory and apply these concepts to validity and reliability of surgical skills training and assessment. In a series of cross-disciplinary meetings, we applied a unified approach of behavioral science principles and theory to medical technical skills education given the recent advances in the theories in the field of behavioral psychology and statistics. While validation of the individual simulation tools is important, it is only one piece of a multimodal curriculum that in and of itself deserves examination and study. We propose concurrent validation throughout the design of simulation-based curriculum rather than once it is complete. We embrace the concept that validity and curriculum development are interdependent, ongoing processes that are never truly complete. Individual predictive, construct, content, and face validity aspects should not be considered separately but as interdependent and complementary toward an end application. Such an approach could help guide our acceptance and appropriate application of these exciting new training and assessment tools for technical skills training in medicine.
An advanced environment for hybrid modeling of biological systems based on modelica.
Pross, Sabrina; Bachmann, Bernhard
2011-01-20
Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process. The Modelica-models can be connected to Simulink-models for parameter optimization, sensitivity analysis and stochastic simulation in Matlab. The present paper illustrates the implementation of the Petri Net component models, their usage within the modeling process and the coupling between the Modelica-tool Dymola and Matlab/Simulink. The application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, George; Glotzer, Sharon; McCurdy, Bill
This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together 160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in simulation and modeling. Uncertainty quantification becomes increasingly challenging as simulations become more complex. Robust and sustainable computational infrastructure, including software and applications. For modeling and simulation, software equals infrastructure. To validate the computational tools, software is critical infrastructure that effectively translates huge arrays of experimental data into useful scientific understanding. An integrated approach for managing this infrastructure is essential. Efficient transfer and incorporation of simulation-based engineering and science in industry. Strategies for bridging the gap between research and industrial applications and for widespread industry adoption of integrated computational materials engineering are needed.« less
Phylogenetic Tools for Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison
Ratmann, Oliver; Hodcroft, Emma B.; Pickles, Michael; Cori, Anne; Hall, Matthew; Lycett, Samantha; Colijn, Caroline; Dearlove, Bethany; Didelot, Xavier; Frost, Simon; Hossain, A.S. Md Mukarram; Joy, Jeffrey B.; Kendall, Michelle; Kühnert, Denise; Leventhal, Gabriel E.; Liang, Richard; Plazzotta, Giacomo; Poon, Art F.Y.; Rasmussen, David A.; Stadler, Tanja; Volz, Erik; Weis, Caroline; Leigh Brown, Andrew J.; Fraser, Christophe
2017-01-01
Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epidemics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium generates full-genome viral sequences from across sub-Saharan Africa. Analyzing these data presents new challenges, since epidemics are principally driven by heterosexual transmission and a smaller fraction of cases is sampled. Here, we show that viral phylogenetic tools can be adapted and used to estimate epidemiological quantities of central importance to HIV-1 prevention in sub-Saharan Africa. We used a community-wide methods comparison exercise on simulated data, where participants were blinded to the true dynamics they were inferring. Two distinct simulations captured generalized HIV-1 epidemics, before and after a large community-level intervention that reduced infection levels. Five research groups participated. Structured coalescent modeling approaches were most successful: phylogenetic estimates of HIV-1 incidence, incidence reductions, and the proportion of transmissions from individuals in their first 3 months of infection correlated with the true values (Pearson correlation > 90%), with small bias. However, on some simulations, true values were markedly outside reported confidence or credibility intervals. The blinded comparison revealed current limits and strengths in using HIV phylogenetics in challenging settings, provided benchmarks for future methods’ development, and supports using the latest generation of phylogenetic tools to advance HIV surveillance and prevention. PMID:28053012
Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; West, Jeffrey S.
2014-01-01
NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.
Concept of Operations Visualization for Ares I Production
NASA Technical Reports Server (NTRS)
Chilton, Jim; Smith, David Alan
2008-01-01
Establishing Computer Aided Design models of the Ares I production facility, tooling and vehicle components and integrating them into manufacturing visualizations/simulations allows Boeing and NASA to collaborate real time early in the design/development cycle. This collaboration identifies cost effective and lean solutions that can be easily shared with Ares stakeholders (e.g., other NASA Centers and potential science users). These Ares I production visualizations and analyses by their nature serve as early manufacturing improvement precursors for other Constellation elements to be built at the Michoud Assembly Facility such as Ares V and the Altair Lander. Key to this Boeing and Marshall Space Flight Center collaboration has been the use of advanced virtual manufacturing tools to understand the existing Shuttle era infrastructure and trade potential modifications to support Ares I production. These approaches are then used to determine an optimal manufacturing configuration in terms of labor efficiency, safety and facility enhancements. These same models and tools can be used in an interactive simulation of Ares I and V flight to the Space Station or moon to educate the human space constituency (e.g., government, academia, media and the public) in order to increase national and international understanding of Constellation goals and benefits.
Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas
2006-01-01
A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.
Evaluating interactive computer-based scenarios designed for learning medical technology.
Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Wallergård, Mattias; Johansson, Gerd
2014-11-01
The use of medical equipment is growing in healthcare, resulting in an increased need for resources to educate users in how to manage the various devices. Learning the practical operation of a device is one thing, but learning how to work with the device in the actual clinical context is more challenging. This paper presents a computer-based simulation prototype for learning medical technology in the context of critical care. Properties from simulation and computer games have been adopted to create a visualization-based, interactive and contextually bound tool for learning. A participatory design process, including three researchers and three practitioners from a clinic for infectious diseases, was adopted to adjust the form and content of the prototype to the needs of the clinical practice and to create a situated learning experience. An evaluation with 18 practitioners showed that practitioners were positive to this type of tool for learning and that it served as a good platform for eliciting and sharing knowledge. Our conclusion is that this type of tools can be a complement to traditional learning resources to situate the learning in a context without requiring advanced technology or being resource-demanding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toward A Simulation-Based Tool for the Treatment of Vocal Fold Paralysis
Mittal, Rajat; Zheng, Xudong; Bhardwaj, Rajneesh; Seo, Jung Hee; Xue, Qian; Bielamowicz, Steven
2011-01-01
Advances in high-performance computing are enabling a new generation of software tools that employ computational modeling for surgical planning. Surgical management of laryngeal paralysis is one area where such computational tools could have a significant impact. The current paper describes a comprehensive effort to develop a software tool for planning medialization laryngoplasty where a prosthetic implant is inserted into the larynx in order to medialize the paralyzed vocal fold (VF). While this is one of the most common procedures used to restore voice in patients with VF paralysis, it has a relatively high revision rate, and the tool being developed is expected to improve surgical outcomes. This software tool models the biomechanics of airflow-induced vibration in the human larynx and incorporates sophisticated approaches for modeling the turbulent laryngeal flow, the complex dynamics of the VFs, as well as the production of voiced sound. The current paper describes the key elements of the modeling approach, presents computational results that demonstrate the utility of the approach and also describes some of the limitations and challenges. PMID:21556320
Larsen, C R; Grantcharov, T; Aggarwal, R; Tully, A; Sørensen, J L; Dalsgaard, T; Ottesen, B
2006-09-01
Safe realistic training and unbiased quantitative assessment of technical skills are required for laparoscopy. Virtual reality (VR) simulators may be useful tools for training and assessing basic and advanced surgical skills and procedures. This study aimed to investigate the construct validity of the LapSimGyn VR simulator, and to determine the learning curves of gynecologists with different levels of experience. For this study, 32 gynecologic trainees and consultants (juniors or seniors) were allocated into three groups: novices (0 advanced laparoscopic procedures), intermediate level (>20 and <60 procedures), and experts (>100 procedures). All performed 10 sets of simulations consisting of three basic skill tasks and an ectopic pregnancy program. The simulations were carried out on 3 days within a maximum period of 2 weeks. Assessment of skills was based on time, economy of movement, and error parameters measured by the simulator. The data showed that expert gynecologists performed significantly and consistently better than intermediate and novice gynecologists. The learning curves differed significantly between the groups, showing that experts start at a higher level and more rapidly reach the plateau of their learning curve than do intermediate and novice groups of surgeons. The LapSimGyn VR simulator package demonstrates construct validity on both the basic skills module and the procedural gynecologic module for ectopic pregnancy. Learning curves can be obtained, but to reach the maximum performance for the more complex tasks, 10 repetitions do not seem sufficient at the given task level and settings. LapSimGyn also seems to be flexible and widely accepted by the users.
Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.
Pedrizzetti, Gianni; Domenichini, Federico
2015-01-01
The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.
Road safety and simulation conferences: an interdisciplinary network for safer roads.
Benedetto, Andrea; Calvi, Alessandro
2014-06-01
From 23rd to 25th October 2013 more than 300 researchers attended the 4th International Conference on Road Safety and Simulation (RSS 2013) in Rome, Italy, hosted by the Inter Universities Research Centre for Road Safety (CRISS) at the Department of Engineering of Roma Tre University. The aim of the Conference was to create a common interdisciplinary arena for researchers and professionals involved in road safety, facilitate the exchange of know-how and progress in the last advanced techniques, methods and tools and their applications to safety analysis. This special issue highlights some of the research presented at the Conference. Copyright © 2014 Elsevier B.V. All rights reserved.
From printed color to image appearance: tool for advertising assessment
NASA Astrophysics Data System (ADS)
Bonanomi, Cristian; Marini, Daniele; Rizzi, Alessandro
2012-07-01
We present a methodology to calculate the color appearance of advertising billboards set in indoor and outdoor environments, printed on different types of paper support and viewed under different illuminations. The aim is to simulate the visual appearance of an image printed on a specific support, observed in a certain context and illuminated with a specific source of light. Knowing in advance the visual rendering of an image in different conditions can avoid problems related to its visualization. The proposed method applies a sequence of transformations to convert a four channels image (CMYK) into a spectral one, considering the paper support, then it simulates the chosen illumination, and finally computes an estimation of the appearance.
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
NASA Astrophysics Data System (ADS)
Marconi, S.; Orfanelli, S.; Karagounis, M.; Hemperek, T.; Christiansen, J.; Placidi, P.
2017-02-01
A dedicated power analysis methodology, based on modern digital design tools and integrated with the VEPIX53 simulation framework developed within RD53 collaboration, is being used to guide vital choices for the design and optimization of the next generation ATLAS and CMS pixel chips and their critical serial powering circuit (shunt-LDO). Power consumption is studied at different stages of the design flow under different operating conditions. Significant effort is put into extensive investigations of dynamic power variations in relation with the decoupling seen by the powering network. Shunt-LDO simulations are also reported to prove the reliability at the system level.
Abraham, Mark James; Murtola, Teemu; Schulz, Roland; ...
2015-07-15
GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. This work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. Finally, the latest best-in-class compressed trajectory storage format is supported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Mark James; Murtola, Teemu; Schulz, Roland
GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. This work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. Finally, the latest best-in-class compressed trajectory storage format is supported.
NASA Technical Reports Server (NTRS)
Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal
2002-01-01
A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.
Center for Extended Magnetohydrodynamics Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Jesus
This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification ofmore » the numerical codes. This activity was funded for twelve years.« less
Challenges in process marginality for advanced technology nodes and tackling its contributors
NASA Astrophysics Data System (ADS)
Narayana Samy, Aravind; Schiwon, Roberto; Seltmann, Rolf; Kahlenberg, Frank; Katakamsetty, Ushasree
2013-10-01
Process margin is getting critical in the present node shrinkage scenario due to the physical limits reached (Rayleigh's criterion) using ArF lithography tools. K1 is used to its best for better resolution and to enhance the process margin (28nm metal patterning k1=0.31). In this paper, we would like to give an overview of various contributors in the advanced technology nodes which limit the process margins and how the challenges have been tackled in a modern foundry model. Advanced OPC algorithms are used to make the design content at the mask optimum for patterning. However, as we work at the physical limit, critical features (Hot-spots) are very susceptible to litho process variations. Furthermore, etch can have a significant impact as well. Pattern that still looks healthy at litho can fail due to etch interactions. This makes the traditional 2D contour output from ORC tools not able to predict accurately all defects and hence not able to fully correct it in the early mask tapeout phase. The above makes a huge difference in the fast ramp-up and high yield in a competitive foundry market. We will explain in this paper how the early introduction of 3D resist model based simulation of resist profiles (resist top-loss, bottom bridging, top-rounding, etc.,) helped in our prediction and correction of hot-spots in the early 28nm process development phase. The paper also discusses about the other overall process window reduction contributors due to mask 3D effects, wafer topography (focus shifts/variations) and how this has been addressed with different simulation efforts in a fast and timely manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Steve
Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing andmore » material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.« less
Optimization of Microelectronic Devices for Sensor Applications
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
2000-01-01
The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.
Virtual reality simulation for the optimization of endovascular procedures: current perspectives.
Rudarakanchana, Nung; Van Herzeele, Isabelle; Desender, Liesbeth; Cheshire, Nicholas J W
2015-01-01
Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.
Rater Training to Support High-Stakes Simulation-Based Assessments
Feldman, Moshe; Lazzara, Elizabeth H.; Vanderbilt, Allison A.; DiazGranados, Deborah
2013-01-01
Competency-based assessment and an emphasis on obtaining higher-level outcomes that reflect physicians’ ability to demonstrate their skills has created a need for more advanced assessment practices. Simulation-based assessments provide medical education planners with tools to better evaluate the 6 Accreditation Council for Graduate Medical Education (ACGME) and American Board of Medical Specialties (ABMS) core competencies by affording physicians opportunities to demonstrate their skills within a standardized and replicable testing environment, thus filling a gap in the current state of assessment for regulating the practice of medicine. Observational performance assessments derived from simulated clinical tasks and scenarios enable stronger inferences about the skill level a physician may possess, but also introduce the potential of rater errors into the assessment process. This article reviews the use of simulation-based assessments for certification, credentialing, initial licensure, and relicensing decisions and describes rater training strategies that may be used to reduce rater errors, increase rating accuracy, and enhance the validity of simulation-based observational performance assessments. PMID:23280532
A Simulation and Modeling Framework for Space Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S S
This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less
Ito, Yasushi; Cheng, Gary C.; Shih, Alan M.; Koomullil, Roy P.; Soni, Bharat K.; Sittitavornwong, Somsak; Waite, Peter D.
2011-01-01
The objective of this paper is the reconstruction of upper airway geometric models as hybrid meshes from clinically used Computed Tomography (CT) data sets in order to understand the dynamics and behaviors of the pre- and postoperative upper airway systems of Obstructive Sleep Apnea Syndrome (OSAS) patients by viscous Computational Fluid Dynamics (CFD) simulations. The selection criteria for OSAS cases studied are discussed because two reasonable pre- and postoperative upper airway models for CFD simulations may not be created for every case without a special protocol for CT scanning. The geometry extraction and manipulation methods are presented with technical barriers that must be overcome so that they can be used along with computational simulation software as a daily clinical evaluation tool. Eight cases are presented in this paper, and each case consists of pre- and postoperative configurations. The results of computational simulations of two cases are included in this paper as demonstration. PMID:21625395
An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R Tonks; Derek R Gaston; Paul C Millett
2012-01-01
The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of newmore » models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.« less
Virtual reality lead extraction as a method for training new physicians: a pilot study.
Maytin, Melanie; Daily, Thomas P; Carillo, Roger G
2015-03-01
It is estimated that the demand for transvenous lead extraction (TLE) has reached an annual extraction rate of nearly 24,000 patients worldwide. Despite technologic advances, TLE still has the potential for significant morbidity and mortality. Complication rates with TLE directly parallel operator experience. However, obtaining adequate training during and postfellowship can be difficult. Given the potential for catastrophic complications and the steep learning curve (up to 300 cases) associated with this procedure, we sought to validate a virtual reality (VR) lead extraction simulator as an innovative training and evaluation tool for physicians new to TLE. We randomized eight electrophysiology fellows to VR simulator versus conventional training. We compared procedural skill competency between the groups using simulator competency, tactile measurements, markers of proficiency and attitudes, and cognitive abilities battery. Practical skills and simulator complications differed significantly between the VR simulator and conventional training groups. The VR simulator group executed patient preparation and procedure performance better than the conventional group (P < 0.01). All four fellows randomized to conventional training experienced a simulator complication (two superior vena cava [SVC] tears, three right ventricle [RV] avulsions) versus one fellow in the VR simulator group (one SVC tear) (P = 0.02). Tactile measurements revealed a trend toward excess pushing versus pulling forces among the conventionally trained group. The time for lead removal was also significantly higher in the conventional training group (12.46 minutes vs 5.54 minutes, P = 0.02). There was no significant difference in baseline or posttraining cognitive ability. We contend that the implementation of alternative training tools such as a VR simulation model will improve physician training and allow for an innovative pathway to assess the achievement of competency. ©2014 Wiley Periodicals, Inc.
Recent advances on terrain database correlation testing
NASA Astrophysics Data System (ADS)
Sakude, Milton T.; Schiavone, Guy A.; Morelos-Borja, Hector; Martin, Glenn; Cortes, Art
1998-08-01
Terrain database correlation is a major requirement for interoperability in distributed simulation. There are numerous situations in which terrain database correlation problems can occur that, in turn, lead to lack of interoperability in distributed training simulations. Examples are the use of different run-time terrain databases derived from inconsistent on source data, the use of different resolutions, and the use of different data models between databases for both terrain and culture data. IST has been developing a suite of software tools, named ZCAP, to address terrain database interoperability issues. In this paper we discuss recent enhancements made to this suite, including improved algorithms for sampling and calculating line-of-sight, an improved method for measuring terrain roughness, and the application of a sparse matrix method to the terrain remediation solution developed at the Visual Systems Lab of the Institute for Simulation and Training. We review the application of some of these new algorithms to the terrain correlation measurement processes. The application of these new algorithms improves our support for very large terrain databases, and provides the capability for performing test replications to estimate the sampling error of the tests. With this set of tools, a user can quantitatively assess the degree of correlation between large terrain databases.
plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry
NASA Astrophysics Data System (ADS)
Venkattraman, Ayyaswamy; Verma, Abhishek Kumar
2016-09-01
As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.
Interoperability of Neuroscience Modeling Software
Cannon, Robert C.; Gewaltig, Marc-Oliver; Gleeson, Padraig; Bhalla, Upinder S.; Cornelis, Hugo; Hines, Michael L.; Howell, Fredrick W.; Muller, Eilif; Stiles, Joel R.; Wils, Stefan; De Schutter, Erik
2009-01-01
Neuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse. Development practices and technologies that support interoperability between software systems therefore play an important role in making the modeling process more efficient and in ensuring that published models can be reliably and easily reused. Various forms of interoperability are possible including the development of portable model description standards, the adoption of common simulation languages or the use of standardized middleware. Each of these approaches finds applications within the broad range of current modeling activity. However more effort is required in many areas to enable new scientific questions to be addressed. Here we present the conclusions of the “Neuro-IT Interoperability of Simulators” workshop, held at the 11th computational neuroscience meeting in Edinburgh (July 19-20 2006; http://www.cnsorg.org). We assess the current state of interoperability of neural simulation software and explore the future directions that will enable the field to advance. PMID:17873374
Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony
2009-01-01
Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.
Self-learning computers for surgical planning and prediction of postoperative alignment.
Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J
2018-02-01
In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.
Simulation-Based Cryosurgery Training: Variable Insertion-Depth Planning in Prostate Cryosurgery
Sehrawat, Anjali; Keelan, Robert; Shimada, Kenji; Wilfong, Dona M.; McCormick, James T.; Rabin, Yoed
2015-01-01
A proof-of-concept for an advanced-level computerized training tool for cryosurgery is demonstrated, based on three-dimensional cryosurgery simulations and a variable insertion-depth strategy for cryoprobes. The objective for system development is twofold: to identify a cryoprobe layout in order to best-match a planning isotherm with the target region shape, and to verify that cryoprobe placement does not violate accepted geometric constraints. System validation has been performed by collecting training data from 17 surgical residents, having no prior experience or advanced knowledge of cryosurgery. This advanced-level study includes an improved training-session design, in order to enhance knowledge dissemination and elevate participant motivation to excel. In terms of match between a planning isotherm and the target region shape, results of this demonstrate trainee performance improvement from 4.4% in a pretest to 44.4% in a posttest over a course of 50 minutes of training. In terms of combined performance, including the above geometrical match and constraints on cryoprobe placement, this study demonstrates trainee performance improvement from 2.2% in the pretest to 31.1% in the posttest. Given the relatively short training session and the lack of prior knowledge, these improvements are significant and encouraging. These results are of particular significance, as they have been obtained from a surgical resident population, which are exposed to the typical stress and constraints in advanced surgical education. PMID:26546576
Development and application of incrementally complex tools for wind turbine aerodynamics
NASA Astrophysics Data System (ADS)
Gundling, Christopher H.
Advances and availability of computational resources have made wind farm design using simulation tools a reality. Wind farms are battling two issues, affecting the cost of energy, that will make or break many future investments in wind energy. The most significant issue is the power reduction of downstream turbines operating in the wake of upstream turbines. The loss of energy from wind turbine wakes is difficult to predict and the underestimation of energy losses due to wakes has been a common problem throughout the industry. The second issue is a shorter lifetime of blades and past failures of gearboxes due to increased fluctuations in the unsteady loading of waked turbines. The overall goal of this research is to address these problems by developing a platform for a multi-fidelity wind turbine aerodynamic performance and wake prediction tool. Full-scale experiments in the field have dramatically helped researchers understand the unique issues inside a large wind farm, but experimental methods can only be used to a limited extent due to the cost of such field studies and the size of wind farms. The uncertainty of the inflow is another inherent drawback of field experiments. Therefore, computational fluid dynamics (CFD) predictions, strategically validated using carefully performed wind farm field campaigns, are becoming a more standard design practice. The developed CFD models include a blade element model (BEM) code with a free-vortex wake, an actuator disk or line based method with large eddy simulations (LES) and a fully resolved rotor based method with detached eddy simulations (DES) and adaptive mesh refinement (AMR). To create more realistic simulations, performance of a one-way coupling between different mesoscale atmospheric boundary layer (ABL) models and the three microscale CFD solvers is tested. These methods are validated using data from incrementally complex test cases that include the NREL Phase VI wind tunnel test, the Sexbierum wind farm and the Lillgrund offshore wind farm. By cross-comparing the lowest complexity free-vortex method with the higher complexity methods, a fast and accurate simulation tool has been generated that can perform wind farm simulations in a few hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-02-01
This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
Calibration and simulation of two large wastewater treatment plants operated for nutrient removal.
Ferrer, J; Morenilla, J J; Bouzas, A; García-Usach, F
2004-01-01
Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration and simulation process was finished, a study for each WWTP was done with the aim of improving its performance. Modifications focused on reactor configuration and operation strategies were proposed.
Performance and Weight Estimates for an Advanced Open Rotor Engine
NASA Technical Reports Server (NTRS)
Hendricks, Eric S.; Tong, Michael T.
2012-01-01
NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.
Generation of large scale urban environments to support advanced sensor and seeker simulation
NASA Astrophysics Data System (ADS)
Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan
2009-05-01
One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.
Tuluri, Francis; Reddy, R. Suseela; Anjaneyulu, Y.; Colonias, John; Tchounwou, Paul
2010-01-01
Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF) simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax) using Convective Available Kinetic Energy (CAPE) obtained at the equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS) for land falling tropical cyclones/hurricanes. PMID:20623002
State of the art and future needs in S.I. engine combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maly, R.R.
1994-12-31
The paper reviews, in short, the state-of-the-art in SI engine combustion by addressing its main features: mixture formation, ignition, homogeneous combustion, pollutant formation, knock, and engine modeling. Necessary links between fundamental and practical work are clarified and discussed along with advanced diagnostics and simulation tools. The needs for further work are identified, the most important one being integration of all fundamental and practical resources to meet R and D requirements for future engines.
Engine dynamic analysis with general nonlinear finite element codes
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1991-01-01
A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, John
Chisel is a new open-source hardware construction language developed at UC Berkeley that supports advanced hardware design using highly parameterized generators and layered domain-specific hardware languages. Chisel is embedded in the Scala programming language, which raises the level of hardware design abstraction by providing concepts including object orientation, functional programming, parameterized types, and type inference. From the same source, Chisel can generate a high-speed C++-based cycle-accurate software simulator, or low-level Verilog designed to pass on to standard ASIC or FPGA tools for synthesis and place and route.
Research in Computational Astrobiology
NASA Technical Reports Server (NTRS)
Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.
2003-01-01
We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.
Development and Integration of Control System Models
NASA Technical Reports Server (NTRS)
Kim, Young K.
1998-01-01
The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.
Optimizing the ASC WAN: evaluating network performance tools for comparing transport protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydick, Christopher L.
2007-07-01
The Advanced Simulation & Computing Wide Area Network (ASC WAN), which is a high delay-bandwidth network connection between US Department of Energy National Laboratories, is constantly being examined and evaluated for efficiency. One of the current transport-layer protocols which is used, TCP, was developed for traffic demands which are different from that on the ASC WAN. The Stream Control Transport Protocol (SCTP), on the other hand, has shown characteristics which make it more appealing to networks such as these. Most important, before considering a replacement for TCP on any network, a testing tool that performs well against certain criteria needsmore » to be found. In order to try to find such a tool, two popular networking tools (Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) were tested. These tools implement both TCP and SCTP and were evaluated using four metrics: (1) How effectively can the tool reach a throughput near the bandwidth? (2) How much of the CPU does the tool utilize during operation? (3) Is the tool freely and widely available? And, (4) Is the tool actively developed? Following the analysis of those tools, this paper goes further into explaining some recommendations and ideas for future work.« less
Advanced Prosthetic Gait Training Tool
2014-10-01
AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...October 2014 2. REPORT TYPE Annual Report 3. DATES COVERED 20 Sep 2013 to 19 Sep 2014 4. TITLE AND SUBTITLE Advanced Prosthetic Gait Training...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Kate; Field, Patrick; Fierman, Elizabeth
The project team consisting of the Consensus Building Institute, Inc., Raab Associates, Ltd., and the MIT-Harvard Program on Negotiation created a model and set of tools for building the capacity of state officials to effectively collaborate with diverse stakeholders in advancing wind development policy formation, wind facility siting, and transmission policy and siting. The model was used to enhance the ability of state officials to advance wind development in their states. Training was delivered in Cambridge, MA, in Spring 2011. The training and associated materials, including a Wind Energy Workbook, website, and simulations, is available for ongoing and widespread disseminationmore » throughout the US.« less
Allison, J.; Amako, K.; Apostolakis, J.; ...
2016-07-01
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. In conclusion, the adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions tomore » the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.« less
NSWC-NADC interactive communication links for AN/UYS-1 loadtape creation and retrieval
NASA Astrophysics Data System (ADS)
Greathouse, D. M.
1984-09-01
This report contains an alternative method of communication (interactive vs. remote batch) with the Naval Air Development Center for the creation and retrieval of AN/UYS-1 Advanced Signal Processor (ASP) operational software loadtapes. Operational software for the Digital Acoustic Sensor Simulator (DASS) program is developed and maintained at the Naval Air Development Center (NADC). The Facility for Automated Software Production (FASP), an NADC-resident software generation facility, provides the support tools necessary for data base creation, software development and maintenance, and loadtape generation. Once a loadtape file is generated at NADC, it must be retrieved via telephone transmission and placed in a format suitable for loading into the AN/UYS-1 Advanced Signal Processor (ASP).
NASA Technical Reports Server (NTRS)
Watson, Richard D.
2014-01-01
The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.
Harnessing the power of emerging petascale platforms
NASA Astrophysics Data System (ADS)
Mellor-Crummey, John
2007-07-01
As part of the US Department of Energy's Scientific Discovery through Advanced Computing (SciDAC-2) program, science teams are tackling problems that require computational simulation and modeling at the petascale. A grand challenge for computer science is to develop software technology that makes it easier to harness the power of these systems to aid scientific discovery. As part of its activities, the SciDAC-2 Center for Scalable Application Development Software (CScADS) is building open source software tools to support efficient scientific computing on the emerging leadership-class platforms. In this paper, we describe two tools for performance analysis and tuning that are being developed as part of CScADS: a tool for analyzing scalability and performance, and a tool for optimizing loop nests for better node performance. We motivate these tools by showing how they apply to S3D, a turbulent combustion code under development at Sandia National Laboratory. For S3D, our node performance analysis tool helped uncover several performance bottlenecks. Using our loop nest optimization tool, we transformed S3D's most costly loop nest to reduce execution time by a factor of 2.94 for a processor working on a 503 domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Neubauer, J.; Burton, E.
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patternsmore » using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.« less
The Outdoor Atmospheric Simulation Chamber of Orleans-France (HELIOS)
NASA Astrophysics Data System (ADS)
Mellouki, A.; Véronique, D.; Grosselin, B.; Peyroux, F.; Benoit, R.; Ren, Y.; Idir, M.
2016-12-01
Atmospheric simulation chambers are among the most advanced tools for investigating the atmospheric processes to derive physico-chemical parameters which are required for air quality and climate models. Recently, the ICARE-CNRS at Orléans (France) has set up a new large outdoor simulation chamber, HELIOS. HELIOS is one of the most advanced simulation chambers in Europe. It is one of the largest outdoor chambers and is especially suited to processes studies performed under realistic atmospheric conditions. HELIOS is a large hemispherical outdoor simulation chamber (volume of 90 m3) positioned on the top of ICARE-CNRS building at Orléans (47°50'18.39N; 1°56'40.03E). The chamber is made of FEP film ensuring more than 90 % solar light transmission. The chamber is protected against severe meteorological conditions by a moveable "box" which contains a series of Xenon lamps enabling to conduct experiments using artificial light. This special design makes HELIOS a unique platform where experiments can be made using both types of irradiations. HELIOS is dedicated mainly to the investigation of the chemical processes under different conditions (sunlight, artificial light and dark). The platform allows conducting the same type of experiments under both natural and artificial light irradiation. The available large range of complementary and highly sensitive instruments allows investigating the radical chemistry, gas phase processes and aerosol formation under realistic conditions. The characteristics of HELIOS will be presented as well as the first series of experimental results obtained so far.
NASA Astrophysics Data System (ADS)
Ambroglini, Filippo; Jerome Burger, William; Battiston, Roberto; Vitale, Vincenzo; Zhang, Yu
2014-05-01
During last decades, few space experiments revealed anomalous bursts of charged particles, mainly electrons with energy larger than few MeV. A possible source of these bursts are the low-frequency seismo-electromagnetic emissions, which can cause the precipitation of the electrons from the lower boundary of their inner belt. Studies of these bursts reported also a short-term pre-seismic excess. Starting from simulation tools traditionally used on high energy physics we developed a dedicated application SEPS (Space Perturbation Earthquake Simulation), based on the Geant4 tool and PLANETOCOSMICS program, able to model and simulate the electromagnetic interaction between the earthquake and the particles trapped in the inner Van Allen belt. With SEPS one can study the transport of particles trapped in the Van Allen belts through the Earth's magnetic field also taking into account possible interactions with the Earth's atmosphere. SEPS provides the possibility of: testing different models of interaction between electromagnetic waves and trapped particles, defining the mechanism of interaction as also shaping the area in which this takes place,assessing the effects of perturbations in the magnetic field on the particles path, performing back-tracking analysis and also modelling the interaction with electric fields. SEPS is in advanced development stage, so that it could be already exploited to test in details the results of correlation analysis between particle bursts and earthquakes based on NOAA and SAMPEX data. The test was performed both with a full simulation analysis, (tracing from the position of the earthquake and going to see if there were paths compatible with the burst revealed) and with a back-tracking analysis (tracing from the burst detection point and checking the compatibility with the position of associated earthquake).
Scientific Discovery through Advanced Computing in Plasma Science
NASA Astrophysics Data System (ADS)
Tang, William
2005-03-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.
The Business Case for Automated Software Engineering
NASA Technical Reports Server (NTRS)
Menzies, Tim; Elrawas, Oussama; Hihn, Jairus M.; Feather, Martin S.; Madachy, Ray; Boehm, Barry
2007-01-01
Adoption of advanced automated SE (ASE) tools would be more favored if a business case could be made that these tools are more valuable than alternate methods. In theory, software prediction models can be used to make that case. In practice, this is complicated by the 'local tuning' problem. Normally. predictors for software effort and defects and threat use local data to tune their predictions. Such local tuning data is often unavailable. This paper shows that assessing the relative merits of different SE methods need not require precise local tunings. STAR 1 is a simulated annealer plus a Bayesian post-processor that explores the space of possible local tunings within software prediction models. STAR 1 ranks project decisions by their effects on effort and defects and threats. In experiments with NASA systems. STARI found one project where ASE were essential for minimizing effort/ defect/ threats; and another project were ASE tools were merely optional.
VARS-TOOL: A Comprehensive, Efficient, and Robust Sensitivity Analysis Toolbox
NASA Astrophysics Data System (ADS)
Razavi, S.; Sheikholeslami, R.; Haghnegahdar, A.; Esfahbod, B.
2016-12-01
VARS-TOOL is an advanced sensitivity and uncertainty analysis toolbox, applicable to the full range of computer simulation models, including Earth and Environmental Systems Models (EESMs). The toolbox was developed originally around VARS (Variogram Analysis of Response Surfaces), which is a general framework for Global Sensitivity Analysis (GSA) that utilizes the variogram/covariogram concept to characterize the full spectrum of sensitivity-related information, thereby providing a comprehensive set of "global" sensitivity metrics with minimal computational cost. VARS-TOOL is unique in that, with a single sample set (set of simulation model runs), it generates simultaneously three philosophically different families of global sensitivity metrics, including (1) variogram-based metrics called IVARS (Integrated Variogram Across a Range of Scales - VARS approach), (2) variance-based total-order effects (Sobol approach), and (3) derivative-based elementary effects (Morris approach). VARS-TOOL is also enabled with two novel features; the first one being a sequential sampling algorithm, called Progressive Latin Hypercube Sampling (PLHS), which allows progressively increasing the sample size for GSA while maintaining the required sample distributional properties. The second feature is a "grouping strategy" that adaptively groups the model parameters based on their sensitivity or functioning to maximize the reliability of GSA results. These features in conjunction with bootstrapping enable the user to monitor the stability, robustness, and convergence of GSA with the increase in sample size for any given case study. VARS-TOOL has been shown to achieve robust and stable results within 1-2 orders of magnitude smaller sample sizes (fewer model runs) than alternative tools. VARS-TOOL, available in MATLAB and Python, is under continuous development and new capabilities and features are forthcoming.