Science.gov

Sample records for advanced sludge treatment

  1. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering.

    PubMed

    Neyens, Elisabeth; Baeyens, Jan; Dewil, Raf; De heyder, Bart

    2004-01-30

    The management of wastewater sludge, now often referred to as biosolids, accounts for a major portion of the cost of the wastewater treatment process and represents significant technical challenges. In many wastewater treatment facilities, the bottleneck of the sludge handling system is the dewatering operation. Advanced sludge treatment (AST) processes have been developed in order to improve sludge dewatering and to facilitate handling and ultimate disposal. The authors have extensively reported lab-scale, semi-pilot and pilot investigations on either thermal and thermochemical processes, or chemical oxidation using hydrogen peroxide. To understand the action of these advanced sludge technologies, the essential role played by extracellular polymeric substances (EPS) needs to be understood. EPS form a highly hydrated biofilm matrix, in which the micro-organisms are embedded. Hence they are of considerable importance in the removal of pollutants from wastewater, in bioflocculation, in settling and in dewatering of activated sludge. The present paper reviews the characteristics of EPS and the influence of thermochemical and oxidation mechanisms on degradation and flocculation of EPS. Experimental investigations on waste activated sludge are conducted by the authors to evaluate the various literature findings. From the experiments, it is concluded that AST methods enhance cake dewaterability in two ways: (i) they degrade EPS proteins and polysaccharides reducing the EPS water retention properties; and (ii) they promote flocculation which reduces the amount of fine flocs. PMID:15177096

  2. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. PMID:26540311

  3. Recent advances in membrane bio-technologies for sludge reduction and treatment.

    PubMed

    Wang, Zhiwei; Yu, Hongguang; Ma, Jinxing; Zheng, Xiang; Wu, Zhichao

    2013-12-01

    This paper is designed to critically review the recent developments of membrane bio-technologies for sludge reduction and treatment by covering process fundamentals, performances (sludge reduction efficiency, membrane fouling, pollutant removal, etc.) and key operational parameters. The future perspectives of the hybrid membrane processes for sludge reduction and treatment are also discussed. For sludge reduction using membrane bioreactors (MBRs), literature review shows that biological maintenance metabolism, predation on bacteria, and uncoupling metabolism through using oxic-settling-anaerobic (OSA) process are promising ways that can be employed in full-scale applications. Development of control methods for worm proliferation is in great need of, and a good sludge reduction and MBR performance can be expected if worm growth is properly controlled. For lysis-cryptic sludge reduction method, improvement of oxidant dispersion and increase of the interaction with sludge cells can enhance the lysis efficiency. Green uncoupler development might be another research direction for uncoupling metabolism in MBRs. Aerobic hybrid membrane system can perform well for sludge thickening and digestion in small- and medium-sized wastewater treatment plants (WWTPs), and pilot-scale/full-scale applications have been reported. Anaerobic membrane digestion (AMD) process is a very competitive technology for sludge stabilization and digestion. Use of biogas recirculation for fouling control can be a powerful way to decrease the energy requirements for AMD process. Future research efforts should be dedicated to membrane preparation for high biomass applications, process optimization, and pilot-scale/full-scale tracking research in order to push forward the real and wide applications of the hybrid membrane systems for sludge minimization and treatment. PMID:23466365

  4. Advanced thermal hydrolysis: optimization of a novel thermochemical process to aid sewage sludge treatment.

    PubMed

    Abelleira, Jose; Pérez-Elvira, Sara I; Portela, Juan R; Sánchez-Oneto, Jezabel; Nebot, Enrique

    2012-06-01

    The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%). The variables considered were operation time (t), temperature reached after initial heating (T), and oxidant coefficient (n = oxygen(supplied)/oxygen(stoichiometric)). As the model predicts, in the case of the ATH process with high levels of oxidant, it is possible to achieve an organic matter removal of up to 92%, but the conditions required are prohibitive on an industrial scale. ATH operated at optimal conditions (oxygen amount 30% of stoichiometric, 115 °C and 24 min) gave promising results as a pretreatment, with similar solubilization and markedly better dewaterability levels in comparison to those obtained with TH at 170 °C. The empirical validation of the model was satisfactory. PMID:22463756

  5. Sludge treatment studies

    SciTech Connect

    Beahm, E.C.; Weber, C.F.; Dillow, T.A.; Bush, S.A.; Lee, S.Y.; Hunt, R.D.

    1997-06-01

    Solid formation in filtered leachates and wash solutions was seen in five of the six sludges treated by Enhanced Sludge Washing. Solid formation in process solutions takes a variety of forms: very fine particles, larger particulate solids, solids floating in solution like egg whites, gels, crystals, and coatings on sample containers. A gel-like material that formed in a filtered leachate from Enhanced Sludge Washing of Hanford T-104 sludge was identified as natrophosphate, Na{sub 7}(PO{sub 4}){sub 2}F{center_dot}19H{sub 2}O. A particulate material that formed in a filtered caustic leachate from Hanford SX-113 sludge contained sodium and silicon. This could be any of a host of sodium silicates in the NaOH-SiO{sub 2}-H{sub 2}O system. Acidic treatment of Hanford B-202 sludge with 1 M, 3 M, and 6 M HNO{sub 3} sequential leaching resulted in complete dissolution at 75 C, but not at ambient temperature. This treatment resulted in the formation of solids in filtered leachates. Analyses of the solids revealed that a gel material contained silica with some potassium, calcium, iron, and manganese. Two phases were embedded in the gel. One was barium sulfate. The other could not be identified, but it was determined that the only metal it contained was bismuth.

  6. Evaluation of sludge reduction and phosphorus recovery efficiencies in a new advanced wastewater treatment system using denitrifying polyphosphate accumulating organisms.

    PubMed

    Suzuki, Y; Kondo, T; Nakagawa, K; Tsuneda, S; Hirata, A; Shimizu, Y; Inamori, Y

    2006-01-01

    A new biological nutrient removal process, anaerobic-oxic-anoxic (A/O/A) system using denitrifying polyphosphate-accumulating organisms (DNPAOs), was proposed. To attain excess sludge reduction and phosphorus recovery, the A/O/A system equipped with ozonation tank and phosphorus adsorption column was operated for 92 days, and water quality of the effluent, sludge reduction efficiency, and phosphorus recovery efficiency were evaluated. As a result, TOC, T-N and T-P removal efficiency were 85%, 70% and 85%, respectively, throughout the operating period. These slightly lower removal efficiencies than conventional anaerobic-anoxic-oxic (A/A/O) processes were due to the unexpected microbial population in this system where DNPAOs were not the dominant group but normal polyphosphate-accumulating organisms (PAOs) that could not utilize nitrate and nitrite as electron acceptor became dominant. However, it was successfully demonstrated that 34-127% of sludge reduction and around 80% of phosphorus recovery were attained. In conclusion, the A/O/A system equipped with ozonation and phosphorus adsorption systems is useful as a new advanced wastewater treatment plant (WWTP) to resolve the problems of increasing excess sludge and depleted phosphorus. PMID:16749446

  7. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  8. Investigation into cyclic utilization of carbon source in an advanced sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER) wastewater treatment process.

    PubMed

    Yan, Peng; Ji, Fang-Ying; Wang, Jing; Chen, You-Peng; Shen, Yu; Fang, Fang; Guo, Jin-Song

    2015-01-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously reduce sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The ability to recover organic substance from excess sludge to enhance nutrient removal (especially nitrogen) and its performance as a C-source were evaluated in this study. The chemical oxygen demand/total nitrogen (COD/TN) and volatile fatty acids/total phosphorus (VFA/TP) ratios for the supernatant of the alkaline-treated sludge were 3.1 times and 2.7 times those of the influent, respectively. The biodegradability of the supernatant was much better than that of the influent. The system COD was increased by 91 mg/L, and nitrogen removal was improved by 19.6% (the removal rate for TN reached 80.4%) after the return of the alkaline-treated sludge as an internal C-source. The C-source recovered from the excess sludge was successfully used to enhance nitrogen removal. The internal C-source contributed 24.1% of the total C-source, and the cyclic utilization of the system C-source was achieved by recirculation of alkaline-treated sludge in the sludge reduction, inorganic solids separation, phosphorus recovery (SIPER) process. PMID:26524455

  9. Sludge Treatment, Utilization, and Disposal.

    ERIC Educational Resources Information Center

    Dick, Richard I.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers such areas: (1) industrial and hazardous sludges; (2) chemical sludges; (3) stabilization and combustion; (4) ocean disposal; and (5) land application. A list of 411 references is also presented. (HM)

  10. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. PMID:24140682

  11. A Technology of Wastewater Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  12. SLUDGE TREATMENT AND DISPOSAL

    EPA Science Inventory

    The purpose of this manual is to present a contemporary review of sludge processing technology and the specific procedures to be considered, modified, and applied to meet unique conditions. he manual emphasizes the operational considerations and interrelationships of the various ...

  13. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process. PMID:25735007

  14. Method for the treatment of waste sludge

    SciTech Connect

    Tomyn, W.W.

    1984-10-23

    A method for the treatment of sludge to cause its solidification and render it suitable for use as landfill by admixtures of chemicals therewith, the method including the steps of feeding the sludge into a sludge hopper and feeding chemicals into a chemical hopper. The sludge and chemicals are continuously fed, each at a controlled feed rate, into a rotating mixing chamber to control the generation of heat in the mixing chamber generated by the combination of sludge and chemicals whereby the sludge and chemicals therein are mixed and caused to move upwardly and longitudinally of the chamber from the inlet opening to the outlet opening thereof.

  15. SLUDGE TREATMENT AND DISPOSAL. VOLUME 2. SLUDGE DISPOSAL

    EPA Science Inventory

    This two volume set presents in detail technical design information for the following sludge treatment and disposal processes: incineration, pyrolysis, composting, land utilization, and landfilling. The discussion of each process includes, where possible, a presentation of perfor...

  16. Design of automated oil sludge treatment unit

    NASA Astrophysics Data System (ADS)

    Chukhareva, N.; Korotchenko, T.; Yurkin, A.

    2015-11-01

    The article provides the feasibility study of contemporary oil sludge treatment methods. The basic parameters of a new resource-efficient oil sludge treatment unit that allows extracting as much oil as possible and disposing other components in efficient way have been outlined. Based on the calculation results, it has been revealed that in order to reduce the cost of the treatment unit and the expenses related to sludge disposal, it is essential to apply various combinations of the existing treatment methods.

  17. Municipal treatment plant sludge management

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a conference on the processing of municipal wastes. Topics considered at the conference included closed-loop thermal sludge processing, bioenergy, the Hyperion energy recovery system, sludge drying, fluidized bed sludge incineration with supplemental coal firing and power generation, a sludge to oil reactor system, and energy recovery from anaerobic digestion.

  18. Advanced lignin-acrylamide water treatment agent by pulp and paper industrial sludge: synthesis, properties and application.

    PubMed

    Rong, Hongyan; Gao, Baoyu; Zhao, Yanxia; Sun, Shenglei; Yang, Zhonglian; Wang, Yan; Yue, Qinyan; Li, Qian

    2013-12-01

    A novel flocculant LA (lignin-acrylamide polymer), which was used as aid for aluminum sulfate and polyaluminum chloride in this study, was prepared by grafting acrylamide onto lignin that deriving from pulp and papermaking sludge. Physicochemical properties of LA were measured by X-ray photoelectron spectroscopy and scanning electron microscopy. The experimental outcome indicated acrylamide was grafted onto the lignin backbone successfully. The effects of LA addition were evaluated on coagulation performance and floc characteristics as a function of aluminum (Al) dosage, such as floc size, growth rate, strength and recoverability. Effects of different dosing sequences, Al dosed first and LA dosed first, were also investigated. LA used as coagulant aid markedly enhanced the removal efficiency of turbidity and dissolved organic carbon, especially at low Al dosages. The dissolved organic carbon removal efficiencies of aluminum sulfate and polyaluminum chloride at the Al dosage range selected in this study were improved more than 30% and 5% by LA, respectively. LA dramatically enlarged floc size and it was in the order: Al dosed first > LA dosed first > Al. Floc strength and recoverability were also improved by LA. LA played a significant role in charge neutralization, adsorption and bridging in floc formation. PMID:24649666

  19. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect

    WESTRA, A.G.

    1999-06-24

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  20. INVESTIGATIONS OF HEAT TREATMENT FOR PAPER MILL SLUDGE CONDITIONING

    EPA Science Inventory

    The capability of oxidative and nonoxidative heat treatment processes for the conditioning of hydrous sludges originating in pulp and paper industry manufacturing or wastewater treatment operations was defined on the basis of laboratory scale investigation. Sludges employed in th...

  1. Maintenance and Operations study for K basins sludge treatment

    SciTech Connect

    WESTRA, A.G.

    1998-11-30

    This study evaluates maintenance and operating concepts for the chemical treatment of sludge from the 100 K Basins at Hanford. The sludge treatment equipment that will require remote operation or maintenance was identified. Then various maintenance and operating concepts used in the nuclear industry were evaluated for applicability to sludge treatment. A hot cell or cells is recommended as the best maintenance and operating concept for a sludge treatment facility.

  2. Biological treatment of sludge digester liquids.

    PubMed

    van Loosdrecht, M C M; Salem, S

    2006-01-01

    Nitrogen removal in side stream processes offers a good potential for upgrading wastewater treatment plants (WWTPs) that need to meet stricter effluent standards. Removing nutrients from these internal process flows significantly reduces the N-load to the main treatment plant. These internal flows mainly result from the sludge processing and have a high temperature and a high concentration of ammonia. Therefore, the required reactor volumes as well as the required aerobic SRT are small. Generally, biological treatment processes are more economical and preferred over physical-chemical processes. Recently, several biological treatment processes have been introduced for sludge water treatment. These processes are available now on the activated sludge market (e.g. SHARON, ANAMMOX and BABE processes). The technologies differ in concept and in the limitations guiding the application of these processes for upgrading WWTPs. This paper reviews and compares different biological alternatives for nitrogen removal in side streams. The limitations for selecting a technology from the available ones in the activated sludge market are noted and analysed. It is stressed that the choice for a certain process is based on more aspects than pure process engineering arguments. PMID:16889236

  3. PARASITES IN SOUTHERN SLUDGES AND DISINFECTION BY STANDARD SLUDGE TREATMENT

    EPA Science Inventory

    Major objectives were to: (a) assess types and densities of parasites in municipal wastewater sludges in the southern United States, (b) investigate the inactivation of parasites by lime stabilization of sewage sludges seeded with selected intestinal parasites, (c) assess convent...

  4. Revised sampling campaigns to provide sludge for treatment process testing

    SciTech Connect

    PETERSEN, C.A.

    1999-02-18

    The purpose of this document is to review the impact to the sludge sampling campaigns planned for FY 1999 given the recent decision to delete any further sludge sampling in the K West Basin. Requirements for Sludge sample material for Sludge treatment process testing are reviewed. Options are discussed for obtaining the volume sample material required and an optimized plan for obtaining this sludge is summarized.

  5. K Basin sludge treatment process description

    SciTech Connect

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  6. Effect of ambient temperatures on disinfection efficiency of various sludge treatment technologies.

    PubMed

    Bauerfeld, Katrin

    2014-01-01

    Sewage sludge produced during municipal wastewater treatment has to be treated efficiently in order to reduce impacts on the environment and on public health. In Germany and many countries, large quantities of sludge are reused in agriculture in order to recycle nutrients and organic material. In order to quantify the effect of different ambient temperatures on conventional and advanced sludge treatment technologies as well as on disinfection efficiency, a comprehensive research study was performed at Braunschweig Institute of Technology. The detailed results show that ambient temperature has a strong effect on biological liquid sludge stabilization and on natural dewatering and drying technologies, although microbiological quality of treated sludge, indicated by Escherichia coli concentration, does not meet the requirements for unrestricted reuse in agriculture. Composting and lime treatment of sludge are most efficient on reducing E. coli, as high temperatures and high pH values arise in the material respectively. PMID:24434963

  7. LAND TREATMENT OF PETROLEUM REFINERY SLUDGES

    EPA Science Inventory

    Petroleum API Separator sludge was applied to field plots to evaluate optimization of loading rates and frequencies for waste disposal by land treatment. Loading rates 3 to 13 weight percent and frequencies 1 to 12, respectively, per year were studied over an 18 month period. Tot...

  8. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is under way for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburn...

  9. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is underway for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburne...

  10. Stability and maturity of thickened wastewater sludge treated in pilot-scale sludge treatment wetlands.

    PubMed

    Stefanakis, Alexandros I; Komilis, Dimitrios P; Tsihrintzis, Vassilios A

    2011-12-01

    Thickened wastewater activated sludge was treated in 13 pilot-scale sludge treatment wetlands of various configurations that operated continuously for three years in North Greece. Sludge was loaded for approximately 2.5 years, and the beds were left to rest for the remaining period. Three different sludge loading rates were used that represented three different population equivalents. Residual sludge stability and maturity were monitored for the last year. Sludge was regularly sampled and microbial respiration activity indices were measured via a static respiration assay. The phytotoxicity of sludge was quantified via a seed germination bioassay. Measurements of total solids, organic matter, total coliforms, pH and electrical conductivity were also made. According to microbial respiration activity measurements, the sludge end-product was classified as stable. The germination index of the final product exceeded 100% in most wetland units, while final pH values were approximately 6.5. The presence of plants positively affected the stability and maturity of the residual sludge end-product. Passive aeration did not significantly affect the quality of the residual sludge, while the addition of chromium at high concentrations hindered the sludge decomposition process. Conclusively, sludge treatment wetlands can be successfully used, not only to dewater, but also to stabilize and mature wastewater sludge after approximately a four-month resting phase. PMID:22027385

  11. Radiofrequency-oxidation treatment of sewage sludge.

    PubMed

    Srinivasan, Asha; Young, Chris; Liao, Ping H; Lo, Kwang V

    2015-12-01

    A novel thermal-chemical treatment technology using radiofrequency heating and oxidants (hydrogen peroxide, ozone and a combination of both) was used for the treatment of sewage sludge. This was to evaluate the process effectiveness on cell disintegration and nutrient release of sludge, physical property changes such as particle size distribution, dewaterability and settleability, and their inter-relationships. The effectiveness of treatment processes was in the following order, from the most to least: thermal-oxidation process, oxidation process and thermal process. The thermal-oxidation process greatly increased cell disintegration and nutrient release, improved settleability, and decreased particle sizes. The treatment scheme involving ozone addition followed by hydrogen peroxide and radiofrequency heating yielded the highest soluble chemical oxygen demand, volatile fatty acids, ammonia and metals, while proffering the shortest capillary suction time and excellent settling properties. PMID:26233925

  12. Priority and emerging pollutants in sewage sludge and fate during sludge treatment.

    PubMed

    Mailler, R; Gasperi, J; Chebbo, G; Rocher, V

    2014-07-01

    This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n=117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM - dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols - except NP - BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.). PMID:24797622

  13. LAND APPLICATION AND SLUDGE TREATMENT

    EPA Science Inventory

    Fecal matter potentially containing pathogenic microorganisms and chemical contaminants enters community wastewater collection systems from hospitals, funeral homes, animal slaughtering operations, and dwellings. While these wastewaters are cleansed in the wastewater treatment p...

  14. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos

    2015-02-01

    Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. PMID:25463928

  15. Pre-treatment of tannery sludge for sustainable landfilling.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2016-06-01

    The wastewater produced during tanning activities are commonly conveyed to centralised industrial wastewater treatment plants. Sludge from physical-chemical treatments (i.e. primary sedimentation) and waste activated sludge from biological treatment units are called tannery sludge. Tannery sludge is a solid waste that needs to be carefully managed and its disposal represents one of the major problems in tannery industry. Conventional treatment and disposal of tannery sludge are based mainly on incineration and landfilling. The aim of this study was to evaluate the effects of a pre-treatment process composed of aerobic stabilisation, compaction and drying, for a sustainable landfilling of tannery sludge. The process produced a reduction of volume, mass and biodegradability of treated sludge. Results also demonstrated a reduced leachability of organic and inorganic compounds from treated sludge. The pre-treatment process could allow to extend landfill life time due to lower amounts of tannery sludge to be disposed off, minimise long terms landfill emissions and obtain a state of carbon sink for tannery sludge landfilling. PMID:27103400

  16. Quality assessment of digested sludges produced by advanced stabilization processes.

    PubMed

    Braguglia, C M; Coors, A; Gallipoli, A; Gianico, A; Guillon, E; Kunkel, U; Mascolo, G; Richter, E; Ternes, T A; Tomei, M C; Mininni, G

    2015-05-01

    The European Union (EU) Project Routes aimed to discover new routes in sludge stabilization treatments leading to high-quality digested sludge, suitable for land application. In order to investigate the impact of different enhanced sludge stabilization processes such as (a) thermophilic digestion integrated with thermal hydrolysis pretreatment (TT), (b) sonication before mesophilic/thermophilic digestion (UMT), and (c) sequential anaerobic/aerobic digestion (AA) on digested sludge quality, a broad class of conventional and emerging organic micropollutants as well as ecotoxicity was analyzed, extending the assessment beyond the parameters typically considered (i.e., stability index and heavy metals). The stability index was improved by adding aerobic posttreatment or by operating dual-stage process but not by pretreatment integration. Filterability was worsened by thermophilic digestion, either alone (TT) or coupled with mesophilic digestion (UMT). The concentrations of heavy metals, present in ranking order Zn > Cu > Pb > Cr ~ Ni > Cd > Hg, were always below the current legal requirements for use on land and were not removed during the processes. Removals of conventional and emerging organic pollutants were greatly enhanced by performing double-stage digestion (UMT and AA treatment) compared to a single-stage process as TT; the same trend was found as regards toxicity reduction. Overall, all the digested sludges exhibited toxicity to the soil bacterium Arthrobacter globiformis at concentrations about factor 100 higher than the usual application rate of sludge to soil in Europe. For earthworms, a safety margin of factor 30 was generally achieved for all the digested samples. PMID:24903249

  17. Toxicity assessment of a dye industry treatment sludge.

    PubMed

    Celebi, Sol; Kendir, Sevinc

    2002-12-01

    Industrial treatment sludges often contain heavy metals and a variety of other hazardous substances which can cause soil and underground water pollution. In the present work, sludge samples from a dye industry treatment plant were analysed for their heavy metal contents, and three different leaching procedures were used to assess the potential toxicity of the sludge. The sludge samples were also incinerated at 600 degrees C, and the remaining inorganic residues were also tested for their leaching characteristics by using the same leaching procedures. The treatment sludge investigated in this study contained about 55 grams of Fe per kilogram of dry sludge because iron salts are used in the chemical treatment of the wastewater. Excluding iron, the decreasing order of abundance for heavy metals in the sludge samples was found to be: Zn> Mn> Cr> Cu> Ni> Pb> Co> Cd. The average concentration of each of these heavy metals varied between 25-740 mg/kg of dry sludge. The Fe content of the inorganic residues was found to be about 140 g/kg, and the heavy metal content varied between 40-2,800 mg/kg. In all the leaching tests, Pb was the most readily extracted metal from the sludge, whereas from the inorganic residue, Cd was leached the most easily. The toxicity of the sludge is estimated according to pertinent legislation. PMID:12549666

  18. Sludge Treatment Evaluation: 1992 Technical progress

    SciTech Connect

    Silva, L J; Felmy, A R; Ding, E R

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

  19. Sludge Lagoons. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Sharman, Ronald M.

    This lesson describes three different types of sludge lagoons: (1) drying lagoons; (2) facultative lagoons; and (3) anaerobic lagoons. Normal operating sequence and equipment are also described. The lesson is designed to be used in sequence with the complete Sludge Treatment and Disposal Course #166 or as an independent lesson. The instructor's…

  20. Preliminary investigation on the effect of earthworm and vegetation for sludge treatment in sludge treatment reed beds system.

    PubMed

    Chen, Zhongbing; Hu, Shanshan; Hu, Chengxiao; Huang, Liangliang; Liu, Hongbo; Vymazal, Jan

    2016-06-01

    Sewage sludge treatment is becoming one of the most significant challenges for domestic wastewater management. Optimization of sludge management for reducing sludge handling cost in wastewater treatment plant is highly demanded. Sludge treatment reed bed system (STRB) is an eco-environmentally friendly technology which has a low investment input and reduced costs for operation and maintenance. The objective of this study is to evaluate the effect of earthworm assistant STRB in terms of sludge dewatering and stabilization of surplus sludge. The results show that draining and evapotranspiration (ET) take the main role for sludge dewatering; with maximum of 77 and 43 % water was removed through draining and ET, respectively. Plants improved ET rate up to 13.1 % in the planted STRB compare with the unplanted STRB. The combination of plants and earthworms increased ET rate of 20.9 % more than the control STRB (unplanted without earthworms). The planted STRB with earthworm reached the lowest water content in accumulated sludge of 46 %. There was a systematic increase of total solids (TS) concentration from 0.5 % in the influent to 25-54 % in the accumulated sludge. Earthworms enhanced the sludge stabilization dramatic with the ratio of volatile solids (VS)/TS decreased from 49 % in the influent to 18 % in the accumulated sludge in the earthworm assistant STRB. The results demonstrated a good efficiency for sludge dewatering and stabilization with the assistant of earthworms in STRBs, which can be an alternative technology for sludge treatment in wastewater treatment plants. PMID:26961527

  1. Treatment and disposal of refinery sludges: Indian scenario.

    PubMed

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented. PMID:12870645

  2. A comparison of ultrasound treatment on primary and secondary sludges.

    PubMed

    Mao, T; Hong, S Y; Show, K Y; Tay, J H; Lee, D J

    2004-01-01

    Ultrasound treatment of primary and secondary sludges was conducted to improve the qualities of sludges for the anaerobic digestion. The impacts of different sonication times, sonication densities and solids concentrations on ultrasonication efficiency were examined. The experimental results indicated that the significant reduction in particle size and increase in soluble organics could be achieved, implying that ultrasonication could offer a feasible treatment method to efficiently disintegrate sludge. The greater decrease in particle size and increase in soluble organics of sludge indicated that the secondary sludge has a more remarkable improvement after sonication over the primary sludge. With respects to the extent of disintegration and energy consumption, higher sonication density performed more effectively in terms of specific energy. There exists an optimal solids concentration range for both the sludges for optimum sonication. Within the optimal solids concentration range, efficient sonication can be effected and sludge would be disintegrated efficiently. The ultrasound would be attenuated by scattering and absorption if the solids concentration exceeds the optimal range. It appeared from the study that the mechanical shear forces caused by ultrasonic cavitation could be a key factor for sludge disintegration and collapse of cavitation bubbles could significantly alter the sludge characteristics. PMID:15580999

  3. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    PubMed Central

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm). The effects of changes in dissolved oxygen (DO) concentration up to 3 mg/L (run 1) and up to 6 mg/L (run 2) were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1) and 33% (run 2) in worm reactor and 16% (run 1) and 12% (run 2) in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing. PMID:23369451

  4. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant.

    PubMed

    Basim, Yalda; Farzadkia, Mahdi; Jaafarzadeh, Nematollah; Hendrickx, Tim

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm). The effects of changes in dissolved oxygen (DO) concentration up to 3 mg/L (run 1) and up to 6 mg/L (run 2) were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1) and 33% (run 2) in worm reactor and 16% (run 1) and 12% (run 2) in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing. PMID:23369451

  5. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. PMID:25443278

  6. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  7. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge.

    PubMed

    Marti, Erica J; Batista, Jacimaria R

    2014-02-01

    Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids. Estrogen removal in WWTPs has been studied in the aqueous phase; however, few researchers have determined estrogen concentration in sludge. This study focuses on estrogen concentration in wastewater sludge as a result of secondary treatment types and sludge handling processes. Grab samples were collected before and after multiple treatment steps at two WWTPs receiving wastewater from the same city. The samples were centrifuged into aqueous and solid phases and then processed using solid phase extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. Results confirmed that activated sludge treatments demonstrate greater estrogen removal compared to trickling filters and mass concentration of estrogen was measured for the first time on trickling filter solids. Physical and mechanical sludge treatment processes, such as gravity thickeners and centrifuges, did not significantly affect estrogen removal based on mass balance calculations. Dissolved air flotation thickening demonstrated a slight decrease in estrogen concentration, while anaerobic digestion resulted in increased mass concentration of estrogen on the sludge and a high estrogen concentration in the supernatant. Although there are no state or federally mandated discharge effluent standards or sludge application standards for estrogen, implications from this study are that trickling filters would need to be exchanged for activated sludge treatment or followed by an aeration basin in order to improve estrogen removal. Also, anaerobic digestion may need to be replaced

  8. An innovative sludge management system based on separation of primary and secondary sludge treatment.

    PubMed

    Mininni, G; Braguglia, C M; Ramadori, R; Tomei, M C

    2004-01-01

    An innovative sludge management system based on separation of treatment and disposal of primary and secondary sludge is discussed with reference to a sewage treatment plant of 500,000 equivalent person capacity. Secondary sludge, if treated separately from primary sludge, can be recovered in agriculture considering its relatively high content of nitrogen and phosphorus and negligible presence of pathogens and micropollutants. One typical outlet for primary sludge is still incineration which can be optimised by rendering the process auto thermal and significantly reducing the size of the incineration plant units (dryer, fluidised bed furnace, boiler and units for exhaust gas treatment) in comparison with those required for mixed sludge incineration. Biogas produced in anaerobic digestion is totally available for energy conversion when sludge treatment separation is performed, while in the other case a large proportion may be used as fuel in incineration, thus reducing the net electric energy conversion from 0.85-0.9 to 0.35-0.4 MW for the plant considered. PMID:15581006

  9. Advanced Activated Sludge. Training Module 2.117.4.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series and considers design and operation…

  10. Chemical stability of acid rock drainage treatment sludge and implications for sludge management

    SciTech Connect

    Danny M. McDonald; John A. Webb; Jeff Taylor

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by {approximately} 1 pH unit with each test, until the final pH is {approximately}2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, {approximately}4.5, {approximately}5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. 26 refs., 5 figs., 2 tabs.

  11. Chemical stability of acid rock drainage treatment sludge and implications for sludge management.

    PubMed

    McDonald, Danny M; Webb, John A; Taylor, Jeff

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. PMID:16570625

  12. Numerical and experimental evaluation of continuous ultrasonic sludge treatment system.

    PubMed

    Zhou, Cuihong; Huang, Xintong; Jin, Yanping; Li, Ge

    2016-09-01

    Ultrasonic disintegration is a very promising sludge pretreatment method that leverages the cavitation effect to produce extreme physical environments characterized by high temperatures and high pressures. This process disintegrates sludge structure features, promotes sludge dewatering, and aides resource recovery. This paper presents a newly designed continuous ultrasonic sludge treatment device. The characteristics of the ultrasonic wave propagated in the activated sludge were simulated, with the results showing that at lower frequencies, the acoustic pressure energy distribution exhibits more local concentrations, whereas at 80kHz, the energy distribution is relatively uniform as a result of the interference of standing waves. Subsequently, activated sludge was ultrasonically treated with different exposure times and frequencies. The sludge's capillary suction time, particle size, and moisture content were measured. The results showed different trends for each of the investigated parameters. The dewatering performance was best when the exposure time was 5-10s. Finally, different substances were added to the ultrasonically treated sludge to analyze the effects of ultrasonic treatment on anaerobic digestion. The gas production rate was higher when glucose was the added substance than it was for yeast. The highest total concentration of produced gas, including both hydrogen and methane, was 34% for an ultrasonic input power of 200W at a 25kHz frequency, an exposure time of 20s, and with 30g of added glucose. The gas production rate was found to be higher at the lower frequency when frequency was the only variable. These experiments demonstrate that ultrasonic treatment can change the structure of sludge particles and the moisture content of the sludge, improving sludge dewatering performance. Furthermore, after ultrasonic treatment can improve gas production. PMID:27344606

  13. A parametric study of alum recovery from water treatment sludge.

    PubMed

    Ayoub, Mohamed; Abdelfattah, Abdallah

    2016-01-01

    Alum recovery from water treatment sludge is a promising technique applied to decrease usage of fresh coagulants in the water treatment industry. In addition, alum recovery reduces sludge volume for easy handling. The undertaken work investigated the parametric conditions for alum recovery procedure by acidification. The results show that alum recovery reaches up to 69.03%, and the reduction of sludge volume reaches its highest level at 90%. Moreover, results of the parametric investigation reveal that the mixing time of 60 minutes and mixing intensity of 150 rpm are the optimum conditions of mixing for alum recovery from water treatment sludge. The optimum pH level is 1.50 for alum recovery as indicated by maximum aluminum releasing, maximum reduction of sludge volume, and reasonable dosages of added sulfuric acid. PMID:27438258

  14. Spectroscopic study of the humification process during sewage sludge treatment

    NASA Astrophysics Data System (ADS)

    Pajączkowska, J.; Sułkowska, A.; Sułkowski, W. W.; Jędrzejczyk, M.

    2003-06-01

    The aim of this work was to study the free radical transition of organic materials during the sewage treatment process. Investigations of sludge from biologic-mechanical sewage treatment plant in Sosnowiec Zagórze were carried out. The course of the humification processes during sewage treatment was studied by electron paramagnetic resonance (EPR) technique. The concentration of free radicals at each process stage and the value g were determined. Sludge samples and extracted fractions of humic acids were examined. Humic acids were extracted from sludge by means of conventional methods elaborated by Stevenson. For study of humic acids structures, besides EPR, the UV-Vis and IR spectroscopy were used.

  15. Filamentous sludge bulking control by nano zero-valent iron in activated sludge treatment systems.

    PubMed

    Xu, Shengnan; Sun, Minghao; Zhang, Chiqian; Surampalli, Rao; Hu, Zhiqiang

    2014-12-01

    Sludge bulking causes loss of biomass in the effluent and deterioration of effluent water quality. This study explored the use of nano zero-valent iron (NZVI with an average particle size of 55 ± 11 nm) for sludge bulking control. In two Modified Ludzack-Ettinger (MLE) activated sludge treatment systems, a single dose of NZVI at the final concentration of 100 mg Fe per L in the mixed liquor reduced the number of filamentous bacteria Type 021N by 2-3 log units (a reduction of 99.9 and 96.7% in MLE tank #1 and #2, respectively). The side effect of the use of NZVI depended on sludge bulking conditions and biomass concentration. In the system with sludge bulking and significant sludge loss (average biomass concentration of 1022 ± 159 COD mg per L or at the ratio of 0.098 g Fe per g biomass COD), the use of NZVI increased effluent COD, NH4(+)-N and NO2(-)-N concentrations, as also evident with the loss of nitrifying populations and nitrifying activities resulting in more than 40 days to have the full recovery of the activated sludge system. In contrast, in the system with the early stages of bulking and the biomass concentration of 1799 ± 113 COD mg per L (at the ratio of 0.056 g Fe per g biomass COD), the effluent water quality and overall bioreactor performance were only slightly affected for a few days. PMID:25386669

  16. DESIGN HANDBOOK FOR AUTOMATION OF ACTIVATED SLUDGE WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    This report is a systems engineering handbook for the automation of activated sludge wastewater treatment processes. Process control theory and application are discussed to acquaint the reader with terminology and fundamentals. Successful unit process control strategies currently...

  17. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  18. Somatic coliphages as surrogates for enteroviruses in sludge hygienization treatments.

    PubMed

    Martín-Díaz, Julia; Casas-Mangas, Raquel; García-Aljaro, Cristina; Blanch, Anicet R; Lucena, Francisco

    2016-01-01

    Conventional bacterial indicators present serious drawbacks giving information about viral pathogens persistence during sludge hygienization treatments. This calls for the search of alternative viral indicators. Somatic coliphages' (SOMCPH) ability for acting as surrogates for enteroviruses was assessed in 47 sludge samples subjected to novel treatment processes. SOMCPH, infectious enteroviruses and genome copies of enteroviruses were monitored. Only one of these groups, the bacteriophages, was present in the sludge at concentrations that allowed the evaluation of treatment's performance. An indicator/pathogen relationship of 4 log10 (PFU/g dw) was found between SOMCPH and infective enteroviruses and their detection accuracy was assessed. The obtained results and the existence of rapid and standardized methods encourage the inclusion of SOMCPH quantification in future sludge directives. In addition, an existing real-time quantitative polymerase chain reaction (RT-qPCR) for enteroviruses was adapted and applied. PMID:27148720

  19. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    PubMed

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    set by Directive 91/271/EC, a temporary increase of sludge amounts that are disposed in landfills is expected during the following years in EU-12 countries. Beside the above, sludge reuse in land and sludge incineration seem to be the main practices further adopted in EU-27 (all Member States) up to 2020. The reinforcement of these disposal practices will probably result to adoption of advanced sludge treatment technologies in order to achieve higher pathogens removal, odors control and removal of toxic compounds and ensure human health and environmental protection. PMID:22336390

  20. Economic assessment of sludge handling and environmental impact of sludge treatment in a reed bed system.

    PubMed

    Nielsen, Steen

    2015-01-01

    The effect on the environment of the establishment and operation of a sludge treatment reed bed system (STRB) is quite limited compared to mechanical sludge dewatering, with its accompanying use of energy and chemicals. The assessment presented here of the investment, operation and maintenance costs of a typical STRB, and of the related environmental impact, is based on the experiences gained from the operation of a large number of STRB in Denmark. There are differences in the environmental perspectives and costs involved in mechanical sludge dewatering and disposal on agricultural land compared to STRB. The two treatment methods were considered for comparison based on a treatment capacity of 550 tons of dry solids per year and with land application of the biosolids in Denmark. The initial capital cost for STRB is higher than a conventional mechanical system; however, an STRB would provide significant power and operating-cost savings, with a significant saving in the overall cost of the plant over 20-30 years. The assessment focuses on the use of chemicals, energy and greenhouse gas emissions and includes emptying, sludge residue quality and recycling. STRB with direct land application is the most cost-effective scenario and has the lowest environmental impact. A sludge strategy consisting of an STRB will be approximately DKK 536,894-647,636 cheaper per year than the option consisting of a new screw press or decanter. PMID:25945843

  1. Mutagenicity evaluation of industrial sludge from common effluent treatment plant.

    PubMed

    Mathur, Nupur; Bhatnagar, Pradeep; Mohan, Krishna; Bakre, Prakash; Nagar, Pankaj; Bijarnia, Mahendra

    2007-04-01

    Sludge from common effluent treatment plant (CETP) receiving effluents from textile industries at Mandia Road, Pali, was analyzed to assess the level of mutagenicity. Mutagenicity assay using Salmonella typhimurium tester strains TA 98 and TA 100 gave positive results, thus suggesting presence of genotoxic contaminants in the samples investigated. Further, mutagenic activity of chemical sludge was found to be lesser than that of biological sludge. This result is very surprising and unexpected as it is indicating that some mutagenic compounds are either being formed or certain promutagenic compounds are being converted into stable mutagenic metabolites during the biological treatment of the wastewater effluents. There have been no previous reports giving similar or contrary results. Most of the previous studies have reported effects of single combined sludge. PMID:17182078

  2. Land disposal of water treatment plant sludge -- A feasibility analysis

    SciTech Connect

    Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

    1998-07-01

    In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

  3. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    PubMed

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. PMID:26086084

  4. Reed bed systems for sludge treatment: case studies in Italy.

    PubMed

    Masciandaro, G; Iannelli, R; Chiarugi, M; Peruzzi, E

    2015-01-01

    In recent years, reed bed systems (RBSs) have been widely considered as a valid technology for sludge treatment. In this study are presented results about sludge stabilization occurring within beds in four RBSs, situated in Tuscany (Italy). The results showed that stabilization of the sludge over time occurred in all RBSs, as shown by the low content of water-soluble carbon and dehydrogenase activity, which measures indirectly the overall microbial metabolism, and by the re-synthesis of humic-like matter highlighted by the pyrolytic indices of mineralization and humification. Results about heavy metal fractionation, an appropriate technique to estimate the heavy metal bioavailability and sludge biotoxicity, showed that the process of sludge stabilization occurring in RBSs retains metals in fractions related to the stabilized organic matter, making metals less bioavailable. Moreover, the concentrations of various toxic organic compounds were below the limit of concentration suggested by the European Union's Working Document on Sludge, for land application. The effectiveness of the stabilization processes in RBs was hence clearly proven by the results that measured mineralization and humification processes, and by the low levels of bioavailable heavy metals and toxic organic compounds in stabilized sludges. PMID:26398018

  5. Heat Treatment. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Filer, Herb; Broste, Dale

    This lesson was developed for a course in sludge treatment and disposal. The lesson describes the Porteous heat treatment method of sludge conditioning and compares that system to the Zimpro wet air oxidation process. The theory of heat treatment, system of components and functions, and concepts of operation are addressed in the lesson. The…

  6. THERMAL TREATMENT OF MUNICIPAL SEWAGE SLUDGES

    EPA Science Inventory

    The thermal conditioning research program was conducted as part of an overall long-term sludge management study for the Los Angeles and Orange County metropolitan areas. The major goal of this portion of the study was to investigate the advantages of thermal conditioning of prima...

  7. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  8. TREATMENT OF MUNICIPAL SLUDGE FOR PATHOGEN REDUCTION

    EPA Science Inventory

    This presentation reviews the pathogenic microorganisms that may be found in municipal sewage sludge and the commonly employed Class A and B processes for controlling pathogens. It notes how extensively they are used and discusses issues and concerns with their application. The...

  9. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  10. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

    PubMed

    De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E

    2016-10-01

    The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. PMID:27423372

  11. Evaluation of water treatment sludge for ameliorating acid mine waste.

    PubMed

    Van Rensburg, L; Morgenthal, T L

    2003-01-01

    This study investigated the liming effect of water treatment sludge on acid mine spoils. The study was conducted with sludge from a water purification plant along the Vaal River catchments in South Africa. The optimum application rate for liming acid spoils and the speed and depth with which the sludge reacted with the mine waste were investigated. Chemical analysis indicated that the sludge is suitable as a liming agent because of its alkaline pH (8.08), high bicarbonate concentration (183.03 mg L(-1)), and low salinity (electrical conductivity = 76 mS m(-1)). The high cation exchange capacity of 15.47 cmol(c) kg(-1) and elevated nitrate concentration (73.16 mg L(-1)) also increase its value as an ameliorative material. The soluble concentrations for manganese, aluminum, lead, and selenium were high at a pH of 5 although only selenium (0.83 mg L(-1)) warranted some concern. According to experimental results, the application of 10 Mg ha(-1) of sludge to acid gold tailings increased the leach water pH from 4.5 to more than 7.5 and also increased the medium pH from 2.4 to 7.5. The addition of sludge further reduced the solubility of iron, manganese, copper, and zinc in the ameliorated gold tailings, but increased the electrical conductivity. The liming tempo was highest in the coal discard profile that had a coarse particle size distribution and took the longest to move through the gold tailings that had a fine particle size distribution. Results from this study indicate that the water treatment sludge investigated is suitable as a liming agent for rehabilitation of acid mine waste. PMID:14535306

  12. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment.

    PubMed

    Morgan-Sagastume, F; Valentino, F; Hjort, M; Cirne, D; Karabegovic, L; Gerardin, F; Johansson, P; Karlsson, A; Magnusson, P; Alexandersson, T; Bengtsson, S; Majone, M; Werker, A

    2014-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polyesters with comparable properties to some petroleum-based polyolefins. PHA production can be achieved in open, mixed microbial cultures and thereby coupled to wastewater and solid residual treatment. In this context, waste organic matter is utilised as a carbon source in activated sludge biological treatment for biopolymer synthesis. Within the EU project Routes, the feasibility of PHA production has been evaluated in processes for sludge treatment and volatile fatty acid (VFA) production and municipal wastewater treatment. This PHA production process is being investigated in four units: (i) wastewater treatment with enrichment and production of a functional biomass sustaining PHA storage capacity, (ii) acidogenic fermentation of sludge for VFA production, (iii) PHA accumulation from VFA-rich streams, and (iv) PHA recovery and characterisation. Laboratory- and pilot-scale studies demonstrated the feasibility of municipal wastewater and solid waste treatment alongside production of PHA-rich biomass. The PHA storage capacity of biomass selected under feast-famine with municipal wastewater has been increased up to 34% (g PHA g VSS(-1)) in batch accumulations with acetate during 20 h. VFAs obtained from waste activated sludge fermentation were found to be a suitable feedstock for PHA production. PMID:24434985

  13. Characterization of water treatment sludge and its reuse as coagulant.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Ahad, Abdul; Alam, Mehtab

    2016-11-01

    Coagulation-flocculation process results in the generation of large volume of waste or residue, known as water treatment sludge (WTS), in the purification of surface water for potable supplies. Sustainable management of the inevitable waste requires careful attention from the plant operators and sludge managers. In this study, WTS produced with the optimum alum dose of 30 ml/L at the laboratory scale has been treated with sulphuric acid to bring forth a product known as sludge reagent product (SRP). The performance of SRP is evaluated for its efficiency in removing the colloidal suspensions from the Yamuna river water over wide pH range of 2-13. 1% sludge acidified with sulphuric acid of normality 2.5 at the rate of 0.05 ml/ml sludge has been observed as the optimum condition for preparing SRP from WTS. The percentage turbidity removal is greater at higher pH value and increases with increasing the dosage of SRP. The optimum SRP dosage of 8 ml/L in the pH range of 6-8 performed well in removing the colloidal suspension and other impurities from the Yamuna water. The quality of treated water met the prescribed standards for most of the quality parameters. Thus, SRP has the potential to substitute the conventional coagulants partially or completely in the water treatment process, depending on the quality needed at the users end. PMID:27544647

  14. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion.

    PubMed

    Wang, Dongbo; Chen, Yinguang

    2016-10-01

    Nanoparticles (NPs), with at least one dimension less than 100 nm, are substantially employed in consumer and industrial products due to their specific physical and chemical properties. The wide uses of engineered NPs inevitably cause their release into the environment, especially wastewater treatment plants. Therefore, it is essential to systematically assess their potential impact on biological wastewater treatment and subsequent sewage sludge digestion. This review aims to provide such support. First, this paper reviews the recent advances on the analytical developments and nano-bio interface of NPs in wastewater and sewage sludge treatment. The effects of NPs on biological wastewater treatment and sewage sludge digestion and related mechanisms are discussed in detail. Finally, the key questions that need to be answered in the future are pointed out, which include on-line revelation of the changes of NPs in sewage and sludge environments, in situ assessment of the variations of microorganisms involved in these biological systems after they are exposed to NPs. Differentiation of the contribution of individual toxicity mechanisms to these systems, and the identification of under what conditions the nanoparticle-induced toxicity will be increased or decreased are also considered. PMID:26036277

  15. Evaluation of flocculation and dissolved air flotation as an advanced wastewater treatment.

    PubMed

    Pinto Filho, A C; Brandão, C C

    2001-01-01

    A bench scale study was carried out in order to evaluate the applicability of dissolved air flotation (DAF) as an advanced treatment for effluents from three different domestic wastewater treatment processes, namely: (i) a tertiary activated sludge plant; (ii) an upflow sludge blanket anaerobic reactor (UASB); and (iii) a high-rate stabilization pond. PMID:11394283

  16. ENTEROVIRUSES IN SLUDGE: MULTIYEAR EXPERIENCE WITH FOUR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The authors describe their experience with the isolation of viruses from four treatment plants located in different geographic areas. Over a period of 3 years, 297 enteroviruses were isolated from 307 sludge samples. The highest frequency of viral isolation (92%), including multi...

  17. TOXIC AND PRIORITY ORGANICS IN MUNICIPAL SLUDGE LAND TREATMENT SYSTEMS

    EPA Science Inventory

    The goal of the research reported herein was to begin a methodical investigation of organic priority pollutants applied to plant-soil systems at rates characteristic of municipal sludge land treatment. A single chemical was applied at rates of 0.1, 10, and 100-fold of the expecte...

  18. LAND TREATMENT FIELD STUDIES. VOLUME 3. LEATHER TANNERY SLUDGES

    EPA Science Inventory

    This report presents the results of field measurements and observations of a land treatment site which incorporates sludge generated from air pollution control scrubbers of a leather tannery operation. The waste contains a high concentration of nitrogen, and has other soil-amendi...

  19. EFFECTS OF THERMAL TREATMENT OF SLUDGE ON MUNICIPAL WASTEWATER TREATMENT COSTS

    EPA Science Inventory

    Data for estimating average construction costs and operation and maintenance requirements are presented for thermal treatment of municipal wastewater sludges; for handling, treatment, and disposal of the strong liquor generated; and for controlling odors produced. Size ranges cov...

  20. Aerobic sludge granulation at high temperatures for domestic wastewater treatment.

    PubMed

    Ab Halim, Mohd Hakim; Nor Anuar, Aznah; Azmi, Siti Izaidah; Jamal, Nur Syahida Abdul; Wahab, Norhaliza Abdul; Ujang, Zaini; Shraim, Amjad; Bob, Mustafa M

    2015-06-01

    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions. PMID:25851807

  1. Treatment of sewage sludge generated in municipal wastewater treatment plants.

    PubMed

    Tavares, Célia R G; Benatti, Cláudia T; Dias Filho, Benedito P

    2002-01-01

    This study was designed to evaluate the performance of a cylindrical anaerobic digester in treating secondary sewage sludge. A series of three independent batch experiments was performed for a total operation time of 60 d. The system of anaerobic digestion showed stability conditions, with no noticeable scum or foaming problems. The chemical oxygen demand reduction reached 29,21, and 45% in sludge and 95,85, and 82% in supernatant for the three experiments, respectively. Total coliform bacteria levels in the digester ranged from 10(4) to 10(5) in influent sludge and from 10(4) to 10(3) in effluent sludge, with an average reduction of 90%. Fecal coliforms of the order of 10(4) were enumerated in influent sludge and those of the order of 10(0) were enumerated in effluent sludge, with an average reduction of 99.9%. The studied system had satisfactory results, showing that both organic matter and indicator bacteria levels substantially decrease when the sludge is submitted to anaerobic digestion. PMID:12018315

  2. Water treatment plant sludge disposal into stabilization ponds.

    PubMed

    Filho, Sidney Seckler Ferreira; Piveli, Roque Passos; Cutolo, Silvana Audrá; de Oliveira, Alexandre Alves

    2013-01-01

    Researchers have paid particular attention to the disposal of sludge produced in water treatment plants (WTPs) into wastewater treatment plants (WWTPs) for further processing, mainly because it is considered an attractive alternative for the treatment of waste generated in water production processes. This study evaluated the effects of flow equalization and disposal of sludge, from a conventional WTP, into a WWTP system that includes an anaerobic stabilization pond followed by a facultative pond. During the period of sludge discharge from the WTP into the wastewater system, the influent to the WWTP presented an increase of 17% (from 171 to 200 mg L(-1)) of total suspended solids (TSS) and a 7.0% flow rate increase, without showing adverse effects on the organic load, TSS and nutrients removal. The most significant impact observed in the WWTP was the increase of solids accumulation rate in the anaerobic pond, with a value of 141 mm/year during the sludge discharge period. The operating time, before the dredging and desludging cycles required for this specific anaerobic pond, decreased from 12.7 to 10.4 years, which is consistent with previous studies in literature. Thus, based on the observed parameters of this study, it is viable to release solids from a WTP effluent into a WWTP that includes anaerobic stabilization ponds followed by a facultative pond. Indeed, this process scheme becomes a viable technical, environmental, and economical alternative for small to medium WWTPs. PMID:23416593

  3. Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production.

    PubMed

    Valentino, Francesco; Morgan-Sagastume, Fernando; Fraraccio, Serena; Corsi, Giovanna; Zanaroli, Giulio; Werker, Alan; Majone, Mauro

    2015-05-01

    An innovative approach has been recently proposed in order to link polyhydroxyalkanoates (PHA) production with sludge minimization in municipal wastewater treatment, where (1) a sequencing batch reactor (SBR) is used for the simultaneous municipal wastewater treatment and the selection/enrichment of biomass with storage ability and (2) the acidogenic fermentation of the primary sludge is used to produce a stream rich in volatile fatty acids (VFAs) as the carbon source for the following PHA accumulation stage. The reliability of the proposed process has been evaluated at lab scale by using substrate synthetic mixtures for both stages, simulating a low-strength municipal wastewater and the effluent from primary sludge fermentation, respectively. Six SBR runs were performed under the same operating conditions, each time starting from a new activated sludge inoculum. In every SBR run, despite the low VFA content (10% chemical oxygen demand, COD basis) of the substrate synthetic mixture, a stable feast-famine regime was established, ensuring the necessary selection/enrichment of the sludge and soluble COD removal to 89%. A good process reproducibility was observed, as also confirmed by denaturing gradient gel electrophoresis (DGGE) analysis of the microbial community, which showed that a high similarity after SBR steady-state had been reached. The main variation factors of the storage properties among different runs were uncontrolled changes of settling properties which in turn caused variations of both sludge retention time and specific organic loading rate. In the following accumulation batch tests, the selected/enriched consortium was able to accumulate PHA with good rate (63 mg CODPHA g CODXa(-1) h(-1)) and yield (0.23 CODPHA CODΔS(-1)) in spite that the feeding solution was different from the acclimation one. Even though the PHA production performance still requires optimization, the proposed process has a good potential especially if coupled to minimization of

  4. COLLECTION, TREATMENT, AND DISPOSAL OF SLUDGE FROM SMALL COMMUNITIES: U.S. EXPERIENCE

    EPA Science Inventory

    Sludge treatment represents almost half the cost of wastewater treatment at many facilities in the U.S. Although sludge problems are of serious concern everywhere, they are different for different locations. The approach to sludge handling and the solution to problems depends on ...

  5. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    2016-01-01

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption. PMID:27508372

  6. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. PMID:24045213

  7. Partitioning of nutrients and micropollutants along the sludge treatment line: a case study.

    PubMed

    Gianico, A; Braguglia, C M; Mascolo, G; Mininni, G

    2013-09-01

    A 2-year sampling campaign was conducted in three wastewater treatment plants of various sizes in the Rome area to assess the occurrence of nutrients and micropollutants among primary, secondary and digested sludge. The primary purpose was to evaluate the quality of different sludge types and their suitability for agricultural use. Primary sludge was consistently more polluted than secondary in terms of organic micropollutants, whereas heavy metals partitioned equally among the sludge types. In digested sludge, the heavy metal concentrations were always below limit values proposed for agricultural utilisation. In contrast, organic micropollutants concentrated during anaerobic digestion and affected the quality of the digested sludge. Secondary sludge resulted less polluted and richer in nitrogen and phosphorus (up to three times) than primary sludge and is hence more suitable for agricultural use. Separate processing of primary and secondary sludge might therefore be an innovative option for sludge management that could maximise the possibilities of agricultural use of secondary sludge and limit disposal problems only to primary sludge. In fact, primary sludge could be easily treated and disposed of by conventional processes including thickening, anaerobic digestion, centrifugation and incineration, whereas the difficult digestibility of secondary sludge could be improved by disintegration pre-treatment before stabilisation. PMID:23589264

  8. Fermentation and chemical treatment of pulp and paper mill sludge

    DOEpatents

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  9. Enteroviruses in sludge: multiyear experience with four wastewater treatment plants.

    PubMed Central

    Hamparian, V V; Ottolenghi, A C; Hughes, J H

    1985-01-01

    We describe our experience with the isolation of viruses from four treatment plants located in different geographic areas. Over a period of 3 years, 297 enteroviruses were isolated from 307 sludge samples. The highest frequency of viral isolation (92%), including multiple isolates from single samples, was obtained from a treatment plant serving the smallest population. Excluding the polioviruses, 22 different enterovirus serotypes were isolated. The methods used to isolate the viruses were relatively simple and included an elution procedure in which beef extract was used and a disinfection step. No concentration procedure was used. Of three cell culture systems used, the RD line of human rhabdomyosarcoma cells was by far the most useful for the isolation of echoviruses; BGM and HeLa cells were particularly useful for the isolation of group B coxsackieviruses. A seasonal effect on viral isolation rates from sludge was observed. PMID:2996422

  10. Fate and toxicity of melamine in activated sludge treatment systems after a long-term sludge adaptation.

    PubMed

    Xu, Shengnan; Zhang, Yanyan; Sims, Atreyee; Bernards, Matthew; Hu, Zhiqiang

    2013-05-01

    Melamine is a nitrogen-rich (67% nitrogen by mass) heterocyclic aromatic compound that could significantly increase effluent total nitrogen concentrations. In this study, we investigated the degradation of melamine and its impact on activated sludge operations by employing two common activated sludge processes, namely the Modified Ludzack-Ettinger (MLE) process and the continuous stirred tank reactor (CSTR) process. Melamine was dosed continuously from day 125 in both activated sludge treatment systems at an influent concentration of 3 mg/L for about 100 days. Even after such a long period of sludge adaptation, melamine appeared not to be easily biodegradable. The average melamine removal efficiencies in the CSTR and MLE systems were 14 ± 10% and 20 ± 15%, respectively. There was no significant difference in melamine removal between the two different activated sludge processes. The long-term input of melamine resulted in a decrease in the nitrifying bacterial activities (by 82 ± 8%) and population in both systems. Short-term microtiter assay results also showed that melamine reduced activated sludge growth by 80% when supplied at a concentration of 75.6 mg/L. These results suggest that sludge adaptation plays a minimal role in melamine degradation, as the enzymes responsible for hydrolytic deamination of melamine in activated sludge are not easily induced. The insignificant biodegradation of melamine is also attributed to bacterial growth inhibition under long-term dosing conditions with melamine, resulting in a significant decrease in effluent water quality. PMID:23466035

  11. Stabilization of simulated lead sludge with iron sludge via formation of PbFe₁₂O₁₉ by thermal treatment.

    PubMed

    Mao, Linqiang; Cui, Hao; An, Hao; Wang, Bing; Zhai, Jianping; Zhao, Yongbin; Li, Qin

    2014-12-01

    This study investigated the feasibility of stabilizing lead sludge by reaction with iron sludge via the formation of PbFe12O19 through a thermal treatment process. Lead hydroxide was used to simulate lead-laden sludge and the sintering procedure was performed by firing a mixture of this simulated sludge together with iron sludge at a Fe/Pb molar ratio of 12 over the temperature range from 650 to 1400 °C. The accompanying phase transformations as well as the surface characteristic of sintered samples were observed by XRD and SEM, while the leaching behavior of the stabilized sludge in an acidic environment was evaluated by a modified Toxicity Characteristic Leaching Procedure (TCLP) test. The results confirmed that PbFe12O19 acts as a stabilization phase for lead, and showed that the formation of a PbFe12O19 phase began at 750 °C with the lead completely incorporated into the PbFe12O19 phase at 1050 °C. Above 1100 °C, the PbFe12O19 phase began to decompose, accompanied by the reappearance of Fe2O3. The volumes of compressed sludge samples were reduced significantly after thermal treatment, with accompanying volume reductions of 40% at 1050 °C. This study compared the leaching of lead from PbO and sintered sludge samples using a prolonged TCLP test, and the data showed that the PbFe12O19 phase was superior to the PbO and that the sintered sludge sample exhibited very high stability under acidic environments. These results suggest a promising and reliable method of reducing lead sludge mobility and toxicity has been identified. PMID:25461943

  12. Alkaline treatment of high-solids sludge and its application to anaerobic digestion.

    PubMed

    Li, Chenchen; Li, Huan; Zhang, Yuyao

    2015-01-01

    High-solids anaerobic digestion is a promising new process for sludge reduction and bioenergy recovery, requiring smaller digestion tanks and less energy for heating, but a longer digestion time, than traditional low-solids anaerobic digestion. To accelerate this process, alkaline sludge disintegration was tested as a pretreatment method for anaerobic digestion of high-solids sludge. The results showed that alkaline treatment effectively disintegrated both low-solids sludge and high-solids sludge, and treatment duration of 30 min was the most efficient. The relation between sludge disintegration degree and NaOH dose can be described by a transmutative power function model. At NaOH dose lower than 0.2 mol/L, sludge disintegration degree remained virtually unchanged when sludge total solids (TS) content increased from 2.0 to 11.0%, and decreased only slightly when sludge TS increased to 14.2%. Although high-solids sludge required a slightly higher molarity of NaOH to reach the same disintegration level of low-solids sludge, the required mass of NaOH actually decreased due to sludge thickening. From the view of NaOH consumption, sludge TS of 8-12% and a NaOH dose of 0.05 mol/L were optimum conditions for alkaline pretreatment, which resulted in a slight increase in accumulative biogas yield, but a decrease by 24-29% in digestion time during the subsequent anaerobic digestion. PMID:25607671

  13. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution.

  14. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. PMID:23317554

  15. Evaluation of thickening and dewatering characteristics of SRC-I wastewater treatment sludges. Final technical report

    SciTech Connect

    Not Available

    1984-05-01

    The SRC-I Demonstration Plant in Newman, Kentucky, will generate several different sludges as a result of providing extensive wastewater treatment. Because construction of this plant has been postponed indefinitely, there has been an opportunity to generate additional data pertinent to waste treatment. Accordingly, this report presents the results of a study on the thickening and dewatering characteristics of several of the wastewater treatment sludges. The study included: evaluation of chemical conditioning agents; aerobic digestion of biological sludges; gravity thickening; and the relative effectiveness of dewatering by centrifuge, vacuum filter, belt filter, and pressure filter. Sludges were tested individually and in combination. The results indicated that the biological sludge could be best dewatered by pressure filtration. The chemical sludges should be combined prior to dewatering, which should be provided by a belt filter. The tar acid sludge will be kept separate, due to its low pH, and ultimate disposal will be by incineration. The tar acid sludge was more concentrated than had been expected. As a result, thickening, rather than centrifuging, is the recommended treatment for this sludge. All sludges were tested for leachate toxicity by the extraction procedure method. The results were negative, indicating the sludges are non-hazardous in heavy metal concentrations, according to RCRA classification. The test results have identified design changes for the proposed wastewater treatment facilities.

  16. Primary Treatment and Sludge Digestion Workshop.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to upgrade the knowledge of experienced wastewater treatment plant operators. Each of the sixteen lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: sewage characteristics;…

  17. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    SciTech Connect

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-12-31

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions.

  18. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    SciTech Connect

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-01-01

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions.

  19. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    PubMed

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen. PMID:25192669

  20. Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides.

    PubMed

    Montiel, M D; Tyagi, R D; Valero, J R

    2001-11-01

    Seven wastewater sludges of different origins and types were used as an alternate culture medium for producing Bacillus thuringiensis variety kurstaki HD-1. The sludge samples were used under three different preparations: without pre-treatment, with acid treatment (hydrolysed sludge) and the supernatant obtained after centrifugation of the hydrolysed sludge. The sludge composition varied widely with origin and the type of sludge. Growth and sporulation were evaluated by the total viable cell count and spore count of the preparations. Growth, sporulation and endotoxin production were affected by the sludge origin. Hydrolysed sludge gave the highest viable cell and spore counts while the liquid phase (supernatant) gave the lowest. Non-hydrolysed primary sludge from Valcartier was unable to sustain bacterial growth because of its low pH. Bioassays were conducted against larvae of spruce budworm to evaluate entomotoxic potential of the preparations obtained. In general, sludge hydrolysis increased the entomotoxicity yields. Similar entomotoxicity was observed in Black Lake secondary sludge (4100 IU/microL) as that obtained in the reference soya medium (3800 IU/microL). The use of the sludge supernatant (liquid phase) was not recommended due to the low entomotoxic potential obtained. PMID:12230163

  1. Emissions of CO2 and CH4 from sludge treatment reed beds depend on system management and sludge loading.

    PubMed

    Olsson, Linda; Dam Larsen, Julie; Ye, Siyuan; Brix, Hans

    2014-08-01

    Sludge treatment reed beds (STRB) are considered as eco-friendly and sustainable alternatives to conventional sludge treatment methods, although little is known about greenhouse gas emissions from such systems. We measured CO2 and CH4 emissions and substrate characteristics in a STRB, an occasionally loaded sludge depot (SD) and a natural reed wetland (NW). The aim was to compare (i) emissions among the sites in relation to substrate characteristics and (ii) emissions before and after sludge loading in the STRB. The STRB emitted twice as much CO2 (1200 mg m(-2) h(-1)) as the SD, whereas the SD emitted four times more CH4 (2 mg m(-2) h(-1)) than the STRB. The NW had the lowest emissions of both gases. The differences in gas emissions among the sites were primarily explained by differences in the availability of oxygen in the substrate. As a consequence of overloading and poor management, the SD had no vegetation and a poor dewatering capacity, which resulted in anaerobic conditions favoring CH4 emission. In contrast, the well-managed STRB had more aerobic conditions in the sludge residue resulting in low CH4 emission rates. We conclude that well-designed and well-managed STRBs have a low climate impact relative to conventional treatment alternatives, but that overloading and poor sludge management enhances the emissions of CH4. PMID:24768834

  2. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  3. Recent advances and future perspectives of nanosized zero- valent iron for extraction of heavy elements from metallurgical sludges

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. Yu; Levina, V. V.; Kolesnikov, E. A.; Chuprunov, K. O.; Gusev, A. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    Advanced oxidation processes with nanosized zero-valent iron have presented great potential in wastewater treatment technology and now experience both increasing popularity and reliable technical improvements. Besides wastewater treatment, there is another promising application for an emerging technology of iron nanoparticles - as Fenton-like catalyst for extraction of valuable elements from poor and secondary raw materials such as metallurgical sludges. In present research, we carried out a set of experiments with emphasis on the physicochemical mechanisms and their relationship to the performance. In particular, we examined complex acidic - hydrogen peroxide leaching of zinc from blast furnace sludge with nanosized zero-valent iron as Fenton-like catalyst. Results of the experiments showed promising potential for subsequent application in extraction of heavy and rare-earth elements.

  4. Sludge quality after 10-20 years of treatment in reed bed systems.

    PubMed

    Nielsen, Steen; Bruun, Esben Wilson

    2015-09-01

    The effect on the environment of the operation of sludge treatment in reed beds (STRB) system is seen as quite limited compared to traditional sludge treatment systems such as mechanical dewatering, drying and incineration with their accompanying use of chemicals and energy consumption. There are several STRB systems in Denmark receiving sludge from urban wastewater treatment plants. Stabilization and mineralization of the sludge in the STRB systems occur during a period between 10 and 20 years, where after the basins are emptied and the sludge residue typically is spread on agricultural land. In the present study, the sludge residue quality after treatment periods of 10-20 years from four Danish STRBs is presented. After reduction, dewatering and mineralization of the feed sludge (dry solid content of 0.5-3 %) in the STRB systems, the sludge residue achieved up to 26 % dry solid, depending on the sludge quality and dimensioning of the STRB system. The concentration of heavy metals and hazardous organic compounds in the sludge residue that are listed in the Danish and EU legislation for farmland application of sludge was below the limit values. The nitrogen and phosphorus concentrations as an average in the sludge residue were 28 and 36 g/kg dry solid (DS), respectively. In addition, mineralization on average across the four STRB systems removed up to 27 % of the organic solids in the sludge. The investigation showed that the sludge residue qualities of the four STRBs after a full treatment period all complied with the Danish and European Union legal limits for agricultural land disposal. PMID:25422113

  5. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. PMID:26539712

  6. Bioaugmentation to improve nitrification in activated sludge treatment.

    PubMed

    Leu, Shao-Yuan; Stenstrom, Michael K

    2010-06-01

    Bioaugmentation is a proposed technique to improve nutrient removal in municipal wastewater treatment. Compared with commonly used nitrification/denitrification (NDN) processes, bioaugmentation may be able to reduce tankage or land requirements. Many approaches for bioaugmentation have been developed, but few studies have compared the benefits among different approaches. This paper quantifies the effectiveness of bioaugmentation processes and investigates three major "onsite" bioaugmentation alternatives: 1) the parallel-plants approach, which uses acclimated biomass grown in a nitrifying "long-SRT" (sludge retention time) plant to augment a low-SRT treatment plant; 2) the enricher-reactor approach, which uses an offline reactor to produce the augmentation cultures; and 3) the enricher-reactor/return activated sludge (ER-RAS) approach, which grows enrichment culture in a reaeration reactor that receives a portion of the recycle activated sludge. Kinetic models were developed to simulate each approach, and the benefits of various approaches are presented on the same basis with controllable parameters, such as bioaugmentation levels, aeration tank volume, and temperatures. Examples were given to illustrate the potential benefits of bioaugmentation by upgrading a "carbon-only" wastewater treatment plant to nitrification. Simulation results suggested that all bioaugmentation approaches can decrease the minimum SRT for nitrification. The parallel-plants approach creates the highest concentration of biomass but may fail at too low temperature. The ER-RAS approach likely would be more useful at lower temperature and required less reactor volume; enricher-reactor approach would likely be more advantageous in the presence of inhibitory compound(s). PMID:20572460

  7. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies. PMID:24457302

  8. Impact of aerobic stabilization on the characteristics of treatment sludge in the leather tanning industry.

    PubMed

    Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin

    2014-01-01

    The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support. PMID:24645452

  9. Current state of sludge production, management, treatment and disposal in China.

    PubMed

    Yang, Guang; Zhang, Guangming; Wang, Hongchen

    2015-07-01

    Large amount of sludge has been a great trouble and raised significant concerns in China. This paper reviewed the current situation of sludge production, management, treatment and disposal in China. Total sludge production in China had an average annual growth of 13% from 2007 to 2013, and 6.25 million tons dry solids was produced in 2013. Per Capita sludge production in China is lower than that in developed countries. However, sludge management is poor in China. Administrative agents of sludge are not in accordance with each other. Laws and regulations of sludge management are incomplete and sometimes unrealistic. As to sludge treatment and disposal, many technical routes have been applied in China. Thickening, conditioning, and dewatering are three most used treatment methods, while application ratios of stabilization and drying are low in China. More than 80% of sludge is disposed by improper dumping in China. Regarding proper disposal, sanitary landfill is the commonest, followed by land application, incineration and building materials. According to the overall situation of China, "thickening-anaerobic digestion-dewatering-land application" is the priority technical route of sludge treatment and disposal. Good changes, current challenges and future perspectives of this technical route in China were analyzed and discussed in details. PMID:25912250

  10. Predicting the drying properties of sludge based on hydrothermal treatment under subcritical conditions.

    PubMed

    Mäkelä, Mikko; Fraikin, Laurent; Léonard, Angélique; Benavente, Verónica; Fullana, Andrés

    2016-03-15

    The effects of hydrothermal treatment on the drying properties of sludge were determined. Sludge was hydrothermally treated at 180-260 °C for 0.5-5 h using NaOH and HCl as additives to influence reaction conditions. Untreated sludge and attained hydrochar samples were then dried under identical conditions with a laboratory microdryer and an X-ray microtomograph was used to follow changes in sample dimensions. The effective moisture diffusivities of sludge and hydrochar samples were determined and the effect of process conditions on respective mean diffusivities evaluated using multiple linear regression. Based on the results the drying time of untreated sludge decreased from approximately 80 min to 37-59 min for sludge hydrochar. Drying of untreated sludge was governed by the falling rate period where drying flux decreased continuously as a function of sludge moisture content due to heat and mass transfer limitations and sample shrinkage. Hydrothermal treatment increased the drying flux of sludge hydrochar and decreased the effect of internal heat and mass transfer limitations and sample shrinkage especially at higher treatment temperatures. The determined effective moisture diffusivities of sludge and hydrochar increased as a function of decreasing moisture content and the mean diffusivity of untreated sludge (8.56·10(-9) m(2) s(-1)) and sludge hydrochar (12.7-27.5·10(-9) m(2) s(-1)) were found statistically different. The attained regression model indicated that treatment temperature governed the mean diffusivity of hydrochar, as the effects of NaOH and HCl were statistically insignificant. The attained results enabled prediction of sludge drying properties through mean moisture diffusivity based on hydrothermal treatment conditions. PMID:26773481

  11. Increasing the sludge energy potential of wastewater treatment plants by introducing fine mesh sieves for primary treatment.

    PubMed

    Paulsrud, Bjarne; Rusten, Bjørn; Aas, Bjørn

    2014-01-01

    The objective of this study was to compare some basic characteristics of sludge from fine mesh sieves (sieve sludge) with sludge from primary clarifiers (primary sludge) regarding their energy potential with a focus on anaerobic digestion and/or incineration. Nineteen samples of sludge from fine mesh sieve plants (most of them without fine screens and grit chambers as pre-treatment) and 10 samples of primary sludge were analysed for the content of dry solids (DS), volatile solids (VS), chemical oxygen demand (COD), calorific value and methane potential. The results demonstrated that the sieve sludges have significantly higher VS content and higher methane potential than primary sludges, clearly indicating an increased sludge energy potential if fine mesh sieves are used for primary treatment instead of primary clarifiers at wastewater treatment plants with anaerobic digesters. If the sludges from primary treatment are to be incinerated or used as fuel in cement kilns, there is no significant difference in energy potential (given as calorific values) for the two types of primary treatment. PMID:24552728

  12. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  13. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  14. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    SciTech Connect

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  15. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.

    PubMed

    Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. PMID:27265732

  16. COMPUTER-AIDED SYNTHESIS OF WASTEWATER TREATMENT AND SLUDGE DISPOSAL SYSTEMS

    EPA Science Inventory

    A computer-aided design procedure for the preliminary synthesis of wastewater treatment and sludge disposal systems is developed. It selects the components in the wastewater treatment and sludge disposal trains from a list of candidate process units with fixed design characterist...

  17. Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Serikawa, Roberto M.

    Wet electrolytic oxidation (WEO) is electrochemical oxidation conducted at subcritical water temperature and pressure. Under these conditions, the electrolytic reaction of water is very different from the reaction usually seen in water electrolysis. Electrolysis of an aqueous NaCl solution at 250°C proceeds without the evolution of any oxygen, chlorine or even hydrogen. Rapid oxidation of organics to CO2 occurs in WEO with the production of hydrogen. Further addition of an oxidizer enhances the electrochemical oxidation of organics with the suppression of hydrogen evolution. AOX compounds found in usual electrooxidation are not formed in WEO treatment. When WEO is applied to sludge treatment, colors are drastically reduced and there is an increase in the yield of organic acids. The biodegradability increases by up to 50% and the treated water shows higher methane yields during anaerobic fermentation.

  18. Thermal hydrolysis of waste activated sludge at Hengelo Wastewater Treatment Plant, the Netherlands.

    PubMed

    Oosterhuis, Mathijs; Ringoot, Davy; Hendriks, Alexander; Roeleveld, Paul

    2014-01-01

    The thermal hydrolysis process (THP) is a sludge treatment technique which affects anaerobic biodegradability, viscosity and dewaterability of waste activated sludge (WAS). In 2011 a THP-pilot plant was operated, connected to laboratory-scale digesters, at the water board Regge en Dinkel and in cooperation with Cambi A.S. and MWH Global. Thermal hydrolysis of WAS resulted in a 62% greater volatile solids (VS) reduction compared to non-hydrolysed sludge. Furthermore, the pilot digesters could be operated at a 2.3 times higher solids loading rate compared to conventional sludge digesters. By application of thermal sludge hydrolysis, the overall efficiency of the sludge treatment process can be improved. PMID:25026572

  19. Sludge Characteristics. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    A description of the general characteristics of sludge is provided in this lesson. It is intended as introductory material to acquaint students with the physical, chemical and biological characteristics of sludge. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated…

  20. Treatment of pulp mill sludges by supercritical water oxidation

    SciTech Connect

    Modell, M.

    1990-07-01

    Supercritical water oxidation (SCWO) is new process that can oxidize organics very effectively at moderate temperatures (400 to 650{degree}C) and high pressure (3700 psi). It is an environmentally acceptable alternative for sludge treatment. In bench scale tests, total organic carbon (TOC) and total organic halide (TOX) reductions of 99 to 99.9% were obtained; dioxin reductions were 95 to 99.9%. A conceptual design for commercial systems has been completed and preliminary economics have been estimated. Comparisons confirm that SCWO is less costly than dewatering plus incineration for treating pulp mill sludges. SCWO can also compete effectively with dewatering plus landfilling where tipping fees exceed $35/yd{sup 3}. In some regions of the US, tipping fees are now $75/yd{sup 3} and rising steadily. In the 1995 to 2000 time frame, SCWO has a good chance of becoming the method of choice. MODEC's objective is to bring the technology to commercial availability by 1993. 10 refs., 6 figs., 19 tabs.

  1. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    SciTech Connect

    FRANZ GR; MEICHLE RH

    2011-07-18

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  2. Ecotoxicological evaluation of the bioleaching treatment of sewage sludges contaminated with heavy metals

    SciTech Connect

    Renoux, A.Y.; Tyagi, R.D.; Paquette, L.; Samson, R.

    1995-12-31

    A new decontamination technology of sewage sludge, the bioleaching of heavy metals, was assessed using ecotoxicity bioassays. Sewage sludges, treated or non-treated, were mixed with a non-contaminated soil used as a negative control at a rate of 1 to 100 g per liter of soil. Aqueous elutriates (TCLP) of the sludges were used for the aqueous bioassays. The bioleaching of metals reduced the toxic effects associated with sludge for most of the bioassays, although the sludge after treatment exhibited an inherent level of toxicity at high loading rates. With respect to seed germination, bioleached sludge was less toxic (EC50 barley: 53 g/L; lettuce: 13.6) than the non-treated (72; 16.8 g/L). The treated sludge stimulated the barley growth at > 5 6 g/L. The non-treated causes an inhibition at 100 g/L. Earthworms survived in up to 56 g/L of bioleached sludge, compared to 32 g/L of the non-treated. The Microtox{reg_sign} EC50s were 4.0% and 8.4% for nontreated and treated sludges respectively. No genotoxicity (SOS Chromotest) in the sludge elutriates was detected, and no significant treatment effects were noticeable using the lettuce root elongation bioassay. The Daphnia magna mortality of the elutriate was increased with sludge treatment. However, the lettuce root elongation and D. magna mortality bioassay results were difficult to interpret due to variability in standard deviations. This study demonstrated that the ecotoxicological battery of bioassays, and particularly direct contact bioassays, can be used to assess sewage sludge remediation technologies.

  3. Musk fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system.

    PubMed

    Matamoros, Víctor; Nguyen, Loc Xuan; Arias, Carlos A; Nielsen, Steen; Laugen, Maria Mølmer; Brix, Hans

    2012-08-01

    The Sludge Treatment Reed Bed (STRB) technology is a cost-efficient and environmentally friendly technology to dewater and mineralize surplus sludge from conventional wastewater treatment systems. Primary and secondary liquid sludge is loaded onto the surface of the bed over several years, where it is dewatered, mineralized and turned into a biosolid with a high dry matter content for use as an organic fertilizer on agricultural land. We analysed the concentrations of five organic micropollutants (galaxolide, tonalide, cashmeran, celestolide and DEHP) and six heavy metals (Pb, Ni, Cu, Cd, Zn and Cr) in the accumulated sludge in a 20-year old STRB in Denmark in order to assess the degradation and fate of these contaminants in a STRB and the relation to sludge composition. The results showed that the deposited sludge was dewatered to reach a dry matter content of 29%, and that up to a third of the organic content of the sludge was mineralized. The concentrations of heavy metals generally increased with depth in the vertical sludge profile due to the dewatering and mineralization of organic matter, but in all cases the concentrations were below the European Union legal limits for agricultural land disposal. The concentrations of fragrances and DEHP ranged from 10 to 9000 ng g(-1) dry mass. The attenuation of hydrophobic micropollutants from the top to the bottom layer of the reed bed ranged from 40 to 98%, except for tonalide which increased significantly with sludge depth, and consequently showed an unusual depth distribution of the galaxolide/tonalide ratio. This unexpected pattern may reflect changes imposed by a long storage time and/or different composition of the fresh sludge in the past. The lack of a significant decreasing DEHP concentration with sludge age might indicate that this compound is very persistent in STRBs. In conclusion the STRB was a feasible technology for sludge treatment before its land disposal. PMID:22608611

  4. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity. PMID:26942526

  5. Landfill leachate characterization for simulation of biological treatment with Activated Sludge Model No. 1 and Activated Sludge Model No. 3.

    PubMed

    Galleguillos, Marcelo; Vasel, Jean-Luc

    2011-01-01

    Landfill leachates can be characterized correctly in terms of Activated Sludge Model No. 1 (ASM1) and Activated Sludge Model No. 3 (ASM3) variables. The wastewater characterization of leachate from a Luxembourg landfill was based on a physical-chemical method combined with a BOD analysis for the COD fractions and on standard analysis for forms of nitrogen. The results show important differences compared with municipal wastewater. High amounts of organic matter with low biodegradability were found, as well as a high concentration of ammonium nitrogen. Based on average values, a generic ASM characterization is proposed for landfill leachates. It can be directly employed in the early stages of the simulation of landfill leachate treatment with activated sludge models. PMID:21970168

  6. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants.

    PubMed

    Roig, Neus; Sierra, Jordi; Nadal, Martí; Martí, Esther; Navalón-Madrigal, Pedro; Schuhmacher, Marta; Domingo, José L

    2012-05-15

    Chemical and ecotoxicological properties of 28 sewage sludge samples from Spanish wastewater treatment plants were studied in order to assess their suitability for agricultural purposes. Sludge samples were classified into five categories according to specific treatment processes in terms of digestion (aerobic/anaerobic) and drying (mechanical/thermal). Composted samples, as indicative of the most refined process, were also considered. Sludges were subjected to physical-chemical characterization, being the sludge stabilization degree respirometrically assessed. The concentrations of seven metals (Cd, Cr, Cu, Pb, Zn, Ni, Hg) and organic substances (phenolic compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated naphthalenes, polybrominated diphenyl ethers, and perfluorinated compounds) were determined. Finally, two ecotoxicological tests were performed: i) Microtox® toxicity test with Vibrio fischeri, and ii) root elongation test with Allium cepa, Lolium perenne and Raphanus sativus seeds. Significant differences were found in the following parameters: dry matter, electrical conductivity, nitrogen, organic matter and its stability, phytotoxicity and ecotoxicity, depending on the sludge treatment. In turn, no significant differences were found between categories in the concentrations of most metals and organic pollutants, with the exception of free phenolic compounds. Furthermore, no correlation between total heavy metal burden and ecotoxicity was observed. However, a good correlation was found between phenolic compounds and most ecotoxicological tests. These results suggest that sludge stability (conditioned by sludge treatment) might have a greater influence on sludge ecotoxicity than the pollutant load. Composting was identified as the treatment resulting in the lowest toxicity. PMID:22483948

  7. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater.

    PubMed

    Bal Krishna, K C; Aryal, Ashok; Jansen, Troy

    2016-09-15

    Alum- and iron-based sludge obtained from water treatment plant produced during a unit treatment process (coagulation and flocculation) have been widely tested as a low-cost adsorbent to remove phosphorous (P) from wastewater. However, the effectiveness of iron-based sludge generated from the oxidation of iron which naturally occurs in the ground water has not been investigated. Moreover, influences of dominant metals ions comprised in the treatment plants sludges on P adsorption capacity and rate from wastewater are not yet known. This study, therefore, employed four different groundwater treatment plants sludges iron-based (from the oxidation of iron) and alum-based (from coagulation and flocculation process) to determine their P adsorption capacities and adsorption rates from the synthetic wastewater (SWW) and secondary effluent wastewater (SEWW). Although metals ions concentrations were the highest in the iron-based sludge amongst the sludge used in this study, it appeared to have the lowest P adsorption capacity and adsorption rate. A good correlation between aluminium to iron mass ratio and adsorption capacity for both types of waters were noted. However, a poor relation between aluminium to iron mass ratio and adsorption rates for the SEWW was observed. Further, the tested sludges were found to have a better P removal efficiency and adsorption capacity from the SEWW than from the SWW. Thus, this study demonstrates the ground water treatment plants sludges could be a low cost and effective adsorbent in removing P from wastewater. PMID:27192387

  8. Electro-coagulation treatment of oily wastewater with sludge analysis.

    PubMed

    Ibrahim, Dhorgham Skban; Sakthipriya, N; Balasubramanian, N

    2012-01-01

    Experiments were carried out in a batch reactor to treat the oily effluent by electro-coagulation. The influence of operating parameters such as applied current, type of electrode and electrolysis time on electro-coagulation efficiency has been critically examined. The maximum percentage removal of chemical oxygen demand (COD) was 94% under optimum experimental conditions of pH 6.7, current density 6 mA/cm², electrolysis time 40 min, and using mild steel as anode. The remaining sludge in the reactor was analyzed by energy disperse analysis of X-rays (EDAX) and scanning electron microscope (SEM) analysis. The analysis confirms that the oily pollutant was removed by electroflotation and adsorption of the oily particles of precipitate during the electro-coagulation process. Electro-coagulation can be used as an efficient treatment technique for oily wastewater. PMID:23109567

  9. Evaluation of a microwave based reactor for the treatment of blackwater sludge.

    PubMed

    Mawioo, Peter M; Rweyemamu, Audax; Garcia, Hector A; Hooijmans, Christine M; Brdjanovic, Damir

    2016-04-01

    A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. PMID:26799809

  10. Evaluation of a microwave based reactor for the treatment of blackwater sludge

    PubMed Central

    Mawioo, Peter M.; Rweyemamu, Audax; Garcia, Hector A.; Hooijmans, Christine M.; Brdjanovic, Damir

    2016-01-01

    A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. PMID:26799809

  11. Characterization and dewaterability of raw and stabilized sludge using different treatment methods.

    PubMed

    Mijaylova Nacheva, P; Moeller, G; Chávez; Ramírez Camperos, E; Cardaso Vigueros, L

    2002-01-01

    A comparison of the characteristics and stabilization potential of the four most used sludge treatment systems in Mexico was made. A pilot plant constituted by separate systems for anaerobic and aerobic digestion, lime stabilization, conditioning and dewatering, was built and operated during four months in one of the biological wastewater treatment plants in Acapulco, Mexico. Composting of sludge was also made. An aerobic static pile was built using bulking materials available in the region. A turbine centrifuge was used for dewatering the stabilized sludge and results showed good performance of the device. The main problem for the beneficial use of treated sludge was its pathogenicity. The composting process allowed us to obtain a product with approximately 20 fecal coliform density (MPN/g); with lime stabilization, the sludge produced had a fecal coliform density of 2 MPN/g. From these results, it is concluded that both the composting process and the alkaline stabilization with lime produce a well stabilized sludge, bacteriologically safe that accomplishes the requirements for its use on soil without restrictions. Related to parasitological removal, the best helminth egg removals were obtained also using these two processes. Ascaris sp. densities in raw sludge (309-430 eggs/g) were reduced to a final density of 3-14 eggs/g in the aerobic composting process and to 4-18 eggs/g in the lime stabilized sludge. Removal is not high enough to reach the recommended level for unrestricted use of stabilized sludge. PMID:12479461

  12. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    PubMed

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant. PMID:26204067

  13. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    PubMed Central

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. Results The Archaea community was dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. Conclusions The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge. PMID:22784022

  14. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  15. Belt Filtration. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Broste, Dale

    This lesson, an introduction to belt management, was developed for a course in sludge treatment and disposal. Fundamental principles of belt filter operation are described. Chemical conditioning and the effect on sludge characteristics are discussed, and a detailed description of the different zones of dewatering is presented. Information on…

  16. DEMONSTRATION BULLETIN: THE BASIC EXTRACTIVE SLUDGE TREATMENT (B.E.S.T.) RESOURCES CONSERVATION COMPANY (RCC)

    EPA Science Inventory

    The Basic Extractive Sludge Treatment (B.E.S.T.®) process is a solvent extraction system that separates organic contaminants from sludges, soils, and sediments. The primary distinguishing feature of the process is the extraction agent, triethylamine. The key to the success of tri...

  17. REVIEW OF TECHNIQUES FOR TREATMENT AND DISPOSAL OF PHOSPHORUS-LADEN CHEMICAL SLUDGES

    EPA Science Inventory

    The report summarizes the effects of phosphorus removal by chemical addition on sludge handling and disposal options at full-scale wastewater treatment plants. American and Canadian plants which generate phosphorus-laden chemical sludges were surveyed by questionnaire, and 174 re...

  18. AMMONIUM-CARBONATE LEACHING OF METAL VALUES FROM WATER-TREATMENT SLUDGES

    EPA Science Inventory

    This project was undertaken to explore and develop processes based on ammoniacal leaching to recover metal values from metal-finishing wastewater treatment sludges. The objective was to eliminate or to reduce sufficiently the heavy metal content of the sludge so that it would no ...

  19. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    SciTech Connect

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected

  20. Arsenic in an Alkaline AMD Treatment Sludge: Characterization and Stability Under Prolonged Anoxic Conditions

    SciTech Connect

    Beauchemin, S.; Fiset, J; Poirier, G; Ablett, J

    2010-01-01

    Lime treatment of acid mine drainage (AMD) generates large volumes of neutralization sludge that are often stored under water covers. The sludge consists mainly of calcite, gypsum and a widespread ferrihydrite-like Fe phase with several associated species of metal(loid) contaminants. The long-term stability of metal(loid)s in this chemically ill-defined material remains unknown. In this study, the stability and speciation of As in AMD sludge subjected to prolonged anoxic conditions is determined. The total As concentration in the sludge is 300 mg kg{sup -1}. In the laboratory, three distinct water cover treatments were imposed on the sludge to induce different redox conditions (100%N{sub 2}, 100%N{sub 2} + glucose, 95%N{sub 2}:5%H{sub 2}). These treatments were compared against a control of oxidized, water-saturated sludge. Electron micro-probe (EMP) analysis and spatially resolved synchrotron X-ray fluorescence (SXRF) results indicate that As is dominantly associated with Fe in the sludge. In all treatments and throughout the experiment, measured concentrations of dissolved As were less than 5 {micro}g L{sup -1}. Dissolved Mn concentration in the N{sub 2} + glucose treatment increased significantly compared to other treatments. Manganese and As K-edge X-ray absorption near edge structure spectroscopy (XANES) analyses showed that Mn was the redox-active element in the solid-phase, while As was stable. Arsenic(V) was still the dominant species in all water-covered sludges after 9 months of anoxic treatments. In contrast, Mn(IV) in the original sludge was partially reduced into Mn(II) in all water-covered sludges. The effect was most pronounced in the N{sub 2} + glucose treatment, suggesting microbial reduction. Micro-scale SXRF and XANES analysis of the treated sludge showed that Mn(II) accumulated in areas already enriched in Fe and As. Overall, the study shows that AMD sludges remain stable under prolonged anoxic conditions. External sources of chemical reductants

  1. Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment.

    PubMed

    Oh, Joo-Yeon; Choi, Sung-Deuk; Kwon, Hye-Ok; Lee, Sung-Eun

    2016-11-01

    Ultrasonic treatment for sludge reduction in wastewater treatment plants (WWTPs) can substantially affect the fate of trace pollutants. However, their fates in the different phases of sludge and mass balances have rarely been reported. In this study, wastewater sludge samples were ultrasonicated at 600W for 0-30min. Then, the leaching of the 16 priority polycyclic aromatic hydrocarbons (PAHs) from the sludge solids (sediment) to the liquid phase (supernatant) was investigated. The total concentration of PAHs (∑16 PAHs) in the sludge sediment (2.10μg/g) was comparable with those of previous worldwide studies. Among the 16 PAHs, naphthalene and acenaphthylene were dominant. The total concentrations of PAHs in the supernatant generally increased with sonication time, indicating that PAHs associated with sludge materials, such as microorganisms, were released into the supernatant. Lighter and more water soluble PAHs were released preferentially into the supernatant in dissolved form, whereas heavier and more hydrophobic PAHs were strongly bound to particles. According to mass balance calculations, 21% of the PAHs in the sludge sediment moved to the supernatant without discernible sonodegradation. An additional experiment for degradation of PAHs supported this interpretation, and several reasons for the no significant sonodegradation were discussed. This result suggests that leaching trace pollutants may significantly contaminate the sludge filtrate after ultrasonic treatment, and therefore their fates should be investigated. PMID:27245957

  2. Treatment of nitrous off-gas from dissolution of sludges

    SciTech Connect

    Flament, T.A.

    1998-08-25

    Several configurations have been reviewed for the NO{sub x} removal of dissolver off-gas. A predesign has been performed and operating conditions have been optimized. Simple absorption columns seems to be sufficient. NHC is in charge of the treatment of sludges containing mainly uranium dioxide and metallic uranium. The process is based on the following processing steps a dissolution step to oxidize the pyrophoric materials and to dissolve radionuclides (uranium, plutonium, americium and fission products), a solid/liquid separation to get rid of the insoluble solids (to be disposed at ERDF), an adjustment of the acid liquor with neutronic poisons, and neutralization of the acid liquor with caustic soda. The dissolution step generates a flow of nitrous fumes which was evaluated in a previous study. This NO{sub x} flow has to be treated. The purpose of this report is to study the treatment process of the nitrous vapors and to 0482 perform a preliminary design. Several treatment configurations are studied and the most effective process option with respect to the authorized level of discharge into atmosphere is discussed. As a conclusion, recommendations concerning the unit preliminary design are given.

  3. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. PMID:26645649

  4. Optimization of diclofenac quantification from wastewater treatment plant sludge by ultrasonication assisted extraction.

    PubMed

    Topuz, Emel; Sari, Sevgi; Ozdemir, Gamze; Aydin, Egemen; Pehlivanoglu-Mantas, Elif; Okutman Tas, Didem

    2014-05-01

    A rapid quantification method of diclofenac from sludge samples through ultrasonication assisted extraction and solid phase extraction (SPE) was developed and used for the quantification of diclofenac concentrations in sludge samples with liquid chromatography/tandem mass spectrometry (LC-MS/MS). Although the concentration of diclofenac in sludge samples taken from different units of wastewater treatment plants in Istanbul was below the limit of quantification (LOQ; 5ng/g), an optimized method for sludge samples along with the total mass balances in a wastewater treatment plant can be used to determine the phase with which diclofenac is mostly associated. Hence, the results will provide information on fate and transport of diclofenac, as well as on the necessity of alternative removal processes. In addition, since the optimization procedure is provided in detail, it is possible for other researchers to use this procedure as a starting point for the determination of other emerging pollutants in wastewater sludge samples. PMID:24704687

  5. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  6. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    PubMed

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. PMID:26261236

  7. Recent development in the treatment of oily sludge from petroleum industry: a review.

    PubMed

    Hu, Guangji; Li, Jianbing; Zeng, Guangming

    2013-10-15

    Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions. PMID:23978722

  8. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. PMID:25682559

  9. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. PMID:23831747

  10. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China.

    PubMed

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. PMID:23410857

  11. Use of alum water treatment sludge to stabilize C and immobilize P and metals in composts.

    PubMed

    Haynes, R J; Zhou, Y-F

    2015-09-01

    Alum water treatment sludge is composed of amorphous hydroxyl-Al, which has variable charge surfaces with a large Brunauer-Emmett-Teller (BET) surface area (103 m(-2) g(-1)) capable of specific adsorption of organic matter molecules, phosphate, and heavy metals. The effects of adding dried, ground, alum water treatment sludge (10% w/w) to the feedstock for composting municipal green waste alone, green waste plus poultry manure, or green waste plus biosolids were determined. Addition of water treatment sludge reduced water soluble C, microbial biomass C, CO2 evolution, extractable P, and extractable heavy metals during composting. The decrease in CO2 evolution (i.e., C sequestration) was greatest for poultry manure and least for biosolid composts. The effects of addition of water treatment sludge to mature green waste-based poultry manure and biosolid composts were also determined in a 24-week incubation experiment. The composts were either incubated alone or after addition to a soil. Extractable P and heavy metal concentrations were decreased by additions of water treatment sludge in all treatments, and CO2 evolution was also reduced from the poultry manure compost over the first 16-18 weeks. However, for biosolid compost, addition of water treatment sludge increased microbial biomass C and CO2 evolution rate over the entire 24-week incubation period. This was attributed to the greatly reduced extractable heavy metal concentrations (As, Cr, Cu, Pb, and Zn) present following addition of water treatment sludge, and thus increased microbial activity. It was concluded that addition of water treatment sludge reduces concentrations of extractable P and heavy metals in composts and that its effect on organic matter stabilization is much greater during the composting process than for mature compost because levels of easily decomposable organic matter are initially much higher in the feedstock than those in matured composts. PMID:25948380

  12. Biodegradation of 14C-dicofol in wastewater aerobic treatment and sludge anaerobic biodigestion.

    PubMed

    Oliveira, Jaime L da M; Silva, Denise P; Martins, Edir M; Langenbach, Tomaz; Dezotti, Marcia

    2012-01-01

    Organic micropollutants are often found in domestic and industrial effluents. Thus, it is important to learn their fate, the metabolites generated and their sorption during biological treatment processes. This work investigated the biodegradation of 14C-dicofol organochloride during wastewater aerobic treatment and sludge anaerobic biodigestion. The performance of these processes was evaluated by physical-chemical parameters. Radioactivity levels were monitored in both treatments, and residues of dicofol (DCF) and dichlorobenzophenone (DBP) were quantified by HPLC/UV. The efficiency of the aerobic and anaerobic processes was slightly reduced in the presence of DCF and DBP. After aerobic treatment, only 0.1% of DCF was mineralized, and 57% of radioactivity remained sorbed on biological sludge as DBP. After 18 days of anaerobiosis, only 3% of DCF and 5% of DBP were detected in the sludge. However, 70% of radioactivity remained in the sludge, probably as other metabolites. Dicofol was biodegraded in the investigated process, but not mineralized. PMID:22629645

  13. A CRITICAL REVIEW OF WASTEWATER TREATMENT PLANT SLUDGE DISPOSAL BY LANDFILLING

    EPA Science Inventory

    This report evaluates the landfilling of wastewater treatment plant sludge for purposes of describing current practices, determining environmental and public health impacts, describing available control technology, and evaluating management options. The potential environmental/pu...

  14. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    ERIC Educational Resources Information Center

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  15. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production.

    PubMed

    Gajaraj, Shashikanth; Hu, Zhiqiang

    2014-12-01

    Bioelectrochemical systems are emerging for wastewater treatment, yet little is known about how well they can be integrated with current wastewater treatment processes. In this bench-scale study, the microbial fuel cell (MFC) technique was incorporated into the Modified Ludzack-Ettinger (MLE) process (phase I) and later with the membrane bioreactor (MBR) process (phase II) to evaluate the performance of MFC assisted wastewater treatment systems (i.e., MLE-MFC and MBR-MFC). There was no significant difference in the effluent NH4(+)-N concentration between the systems integrating MFC and the open circuit controls. The average effluent COD concentration was significantly lower in the MLE-MFC, but it did not change much in the MBR-MFC because of the already low COD concentrations in MBR operation. The MLE-MFC and MBR-MFC systems increased the NO3(-)-N removal efficiencies by 31% (±12%) and 20% (±12%), respectively, and reduced sludge production by 11% and 6%, respectively, while generating an average voltage of 0.13 (±0.03) V in both systems. Analysis of the bacterial specific oxygen uptake rate, the sludge volume index, and ammonia-oxidizing bacterial population (dominated by Nitrosomonas through terminal restriction fragment length polymorphism analysis) indicated that there was no significant difference in sludge activity, settling property, and nitrifying community structure between the MFC assisted systems and the open circuit controls. The results suggest that the wastewater treatment systems could achieve higher effluent water quality and lower sludge production if it is integrated well with MFC techniques. PMID:25014565

  16. Temperature effect on shear flow and thixotropic behavior of residual sludge from wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Hammadi, L.; Ponton, A.; Belhadri, M.

    2013-08-01

    The temperature and shear rate effects on rheological behavior of residual sludge from wastewater treatment plant was investigated in this work. The model of Herschel-Bulkley was used to fit the shear rate dependence of the shear stress. The temperature increase induced not only an increase in the yield stress and the flow index of sludge but also a decrease of the consistency index of sludge. The temperature dependence of limit viscosity at high shear rate of the residual sludge was fitted by an Arrhenius equation. For constant shear rate applied on the sludge at 20 °C a thixotropic behavior was observed and analyzed using a modified model of Herschel-Bulkley in which a structural parameter λ was included in order to account for the time-dependent effect.

  17. Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant.

    PubMed

    da Silva, E M; Morita, D M; Lima, A C M; Teixeira, L Girard

    2015-01-01

    The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge. PMID:26038928

  18. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.

    PubMed

    Fan, Ji; Lu, Shu-Guang; Qiu, Zhao-fu; Wang, Xiao-Xia; Li, Wen-Zhen

    2009-06-01

    A modified model based on the activated sludge model no. 3 was established to simulate a full-scale municipal wastewater treatment plant in Shanghai, China. The activated sludge model no. 3 was modified to describe the simultaneous storage and growth processes occurring in activated sludge systems under aerobic and anoxic conditions. The mechanism of soluble microbial product formation and degradation by microorganisms was considered in this proposed model. Three months simulation was conducted including soluble chemical oxygen demand, NH4(+)-N, NO(X)(-)-N and T-N parameters, and compared with measured data from the Quyang wastewater treatment plant. Results indicated that the calculated effluent chemical oxygen demand and NH4(+)-N using this proposed model were in good agreement with the measured data. Results also showed that besides inert soluble organic matter contributing to the effluent chemical oxygen demand, soluble microbial products played an important part in the effluent chemical oxygen demand and, therefore, demonstrated that these products composed an important portion of effluent soluble chemical oxygen demand in wastewater treatment plants and should not be neglected. PMID:19705601

  19. Sludge Incineration. Multiple Hearth. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This lesson introduces the basics of sludge incineration and focuses on the multiple hearth furnace in accomplishing this task. Attention is given to component identification and function process control fundamentals, theory of incineration, safety, and other responsibilites of furnace operation. The material is rather technical and assumes an…

  20. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment.

    PubMed

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale

    2010-04-01

    Secondary pulp/paper-mill sludge (SPP) and sewage sludges (primary, secondary, and digested sewage sludges) were treated in supercritical water at temperatures ranging between 400 degrees Celsius and 550 degrees Celsius over 20-120 min for energy recovery. Low temperature and short reaction time favored the formation of heavy oil (HO) products, which were mainly composed of a variety of phenol and phenolic compounds, as well as some nitrogen-containing compounds, long-chain alkenes and alcohols, etc., with high gross calorific values (>36 MJ/kg). By contrast, the formation of synthetic gases, a mixture of hydrogen, carbon monoxide, carbon dioxide, methane, and other light hydrocarbons, were not significantly affected by reaction time but greatly enhanced with increasing temperature. The highest gas yield was obtained at 550 degrees Celsius, where 37.7 wt.% of the SPP (on dry basis) was converted into gases, with hydrogen yields as high as 14.5 mol H(2)/kg SPP (on a dry basis). In comparison to sewage sludges, SPP exhibited a greater capability for the production of HO and gases owing to its higher contents of volatiles and alkali metals, indicating a prospective utilization potential for SPP as a source of bio-energy. PMID:20044251

  1. Sludge Conditioning. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This lesson is an introduction to sludge conditioning. Topics covered include a brief explanation of colloidal systems, theory of chemical and heat conditioning, and conditioning aids. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated presentation time,…

  2. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    SciTech Connect

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  3. [Microbial composition of the activated sludges of the Moscow wastewater treatment plants].

    PubMed

    Kallistova, A Iu; Pimenov, N V; Kozlov, M N; Nikolaev, Iu A; Dorofeev, A G; Aseeva, V G; Grachev, V A; Men'ko, E V; Berestovskaia, Iu Iu; Nozhevnikova, A N; Kevbrina, M V

    2014-01-01

    The contribution of the major technologically important microbial groups (ammonium- and nitrite-oxidizing, phosphate-accumulating, foam-inducing, and anammox bacteria, as well as planctomycetes and methanogenic archaea) was characterized for the aeration tanks of the Moscow wastewater treatment facilities. FISH investigation revealed that aerobic sludges were eubacterial communities; the metabolically active archaea contributed insignificantly. Stage II nitrifying microorganisms and planctomycetes were significant constituents of the bacterial component of activated sludge, with Nitrobacter spp. being the dominant nitrifier. No metabolically active anammox bacteria were revealed in the sludge from aeration tanks. The sludge from the aeration tanks using different wastewater treatment technologies were found to differ in characteristics. Abundance of the nitrifying and phosphate-accumulating bacteria in the sludges generally correlated with microbial activity, in microcosms and with efficiency of nitrogen and phosphorus removal from wastewater. The highest microbial numbers and activity were found in the sludges of the tanks operating according to the technologies developed in the universities of Hanover and Cape Town. The activated sludge from the Novokur yanovo facilities, where abundant growth of filamentous bacteria resulted in foam formation, exhibited the lowest activity The group of foaming bacteria included Gordonia spp. and Acinetobacter spp., utilizing petroleum and motor oils, Sphaerotilus spp. utilizing unsaturated fatty acids, and Candidatus 'Microthrix parvicella'. Thus, the data on abundance and composition of metabolically active microorganisms obtained by FISH may be used for the technological control of wastewater treatment. PMID:25844473

  4. The challenge of faecal sludge management in urban areas--strategies, regulations and treatment options.

    PubMed

    Ingallinella, A M; Sanguinetti, G; Koottatep, T; Montanger, A; Strauss, M

    2002-01-01

    In urban centres of industrialising countries, the majority of houses are served by on-site sanitation systems such as septic tanks and unsewered toilets. The faecal sludges (FS) collected from these systems are usually discharged untreated into the urban and peri-urban environment, posing great risks to water resources and to public health. Contrary to wastewater management, the development of strategies to cope with faecal sludges, adapted to the conditions prevailing in developing countries, have long been neglected. The authors describe the current situation and discuss selected issues of FS management. A proposal is made for a rational setting of sludge quality or treatment standards in economically emerging countries. The authors stipulate that regulatory setting should take into account local economic, institutional and technical conditions. Defining suitable treatment options as critical control points in securing adequate sludge quality is better than setting and relying on numerical sludge quality standards. A separate section is devoted to the practice and to regulatory aspects of (faecal) sludge use in Argentina. An overview of treatment options, which may prove sustainable in less industrialized countries is provided. Planted sludge drying beds are one of these options. It has been piloted in Thailand for four years and details on its performance and operation are presented along with data on the hygienic quality of treated biosolids. PMID:12479483

  5. Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant

    SciTech Connect

    Maranon, E. . E-mail: emara@uniovi.es; Castrillon, L.; Fernandez, Y.; Fernandez, E.

    2006-07-01

    The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

  6. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  7. Tank 241-Z-361 Sludge Retrieval and Treatment Alternatives

    SciTech Connect

    HAMPTON, B.K.

    2000-05-24

    The Plutonium Finishing Plant (PFP) Tank 241-Z-361 (Z-361) contains legacy sludge resulting from waste discharges from past missions at PFP. A sketch of the tank is shown in Figure 1. In this view various risers and penetrations are shown along with the sludge level depicted by the horizontal line halfway up the tank, and the ground level depicted by the horizontal line above the tank. The HEPA filter installed for breathing is also shown on one of the risers.

  8. SLUDGE TREATMENT PROJECT ALTERNATIVES ANALYSIS SUMMARY REPORT [VOLUME 1

    SciTech Connect

    FREDERICKSON JR; ROURK RJ; HONEYMAN JO; JOHNSON ME; RAYMOND RE

    2009-01-19

    Highly radioactive sludge (containing up to 300,000 curies of actinides and fission products) resulting from the storage of degraded spent nuclear fuel is currently stored in temporary containers located in the 105-K West storage basin near the Columbia River. The background, history, and known characteristics of this sludge are discussed in Section 2 of this report. There are many compelling reasons to remove this sludge from the K-Basin. These reasons are discussed in detail in Section1, and they include the following: (1) Reduce the risk to the public (from a potential release of highly radioactive material as fine respirable particles by airborne or waterborn pathways); (2) Reduce the risk overall to the Hanford worker; and (3) Reduce the risk to the environment (the K-Basin is situated above a hazardous chemical contaminant plume and hinders remediation of the plume until the sludge is removed). The DOE-RL has stated that a key DOE objective is to remove the sludge from the K-West Basin and River Corridor as soon as possible, which will reduce risks to the environment, allow for remediation of contaminated areas underlying the basins, and support closure of the 100-KR-4 operable unit. The environmental and nuclear safety risks associated with this sludge have resulted in multiple legal and regulatory remedial action decisions, plans,and commitments that are summarized in Table ES-1 and discussed in more detail in Volume 2, Section 9.

  9. Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant.

    PubMed

    Meunier, N; Blais, J F; Lounès, M; Tyagi, R D; Sasseville, J L

    2002-01-01

    The MUG (Montreal Urban Community) treatment plant produces approximately 270 tons of dry sludge daily (270 tds/day) during the physico-chemical treatment of wastewater. Recently, this treatment plant endowed a system of drying and granulation of sludge for valorization as an agricultural fertilizer having a capacity of 70 tds/day (25% of the daily sludge production). However, the metal content (mainly Cu and Cd) of the sludge surpasses the norms for biosolids valorization. In order to solve this problem, a demonstration project, from the lab scale to the industrial pilot plant, was carried out to test the Metix-AC technology for the removal of metals. A strongly metal-loaded filtrate was generated during the sludge decontamination. Tests concerned the study of the metal recovery by total precipitation and selective precipitation, as well as the use of alternative products for the metal precipitation. Other works consisted to simulate the acid filtrate recirculation from the decontaminated sludge (25% of the total volume) in the untreated sludge (75% of the total volume) intended for the incineration. The total precipitation with hydrated limeappearedeffectivefortherecoveryof metals (87% Cd, 96% Cr, 97% Cu, 98% Fe, 71% Ni, 100% Pb, 98% Zn). However, this option entails the production of an important quantity of metallic residue, which should be disposed of expensively as dangerous material. The selective iron precipitation does not appear to bean interesting option because the iron in solution within the leached sludge was principally present in the form of ferrous iron, which cannot be precipitated at pH lower than five. On the other hand, the use of commercial precipitating agents (TMT-15, CP-33Z, CP-NB and CPX) without pH adjustment of filtrate gave good results for the recovery of Cu and, to a lesser degree for the recovery of Pb. However, the efficiency for the other metals' (Cd, Cr, Fe, Ni and Zn) recovery was weaker (< 25%). Finally, the acid filtrate

  10. Long term in-line sludge storage in wastewater treatment plants: the potential for phosphorus release.

    PubMed

    Johannessen, Erik; Eikum, Arild Schanke; Krogstad, Tore

    2012-12-01

    Phosphorus removal in on-site wastewater treatment plants is normally obtained by chemical precipitation. Aluminium-based chemicals are the favoured coagulants as they are not affected by redox potential. On-site wastewater treatment package plants do not have separate sludge treatment facilities, and sludge is normally collected on an annual basis. This can potentially increase the risk of phosphorus release into the water phase, subsequently reducing treatment efficiency. This study aimed to detect release of phosphorus as a result of chemical and biological processes. Variables in the study were time, aluminium dosage and pH. Wastewater sludge was monitored for 46 weeks to investigate the different mechanisms of phosphorus release and the longevity of the aluminium treatment involving varying aluminium dosages. Phosphorus compounds were analysed based on a modified Psenner sequential fractionation method. Both pH and aluminium dosage affect the longevity of the phosphorus retention of chemically precipitated wastewater sludge, where sufficient longevity is obtained with pH control and increased aluminium dosages. Chemical dosages similar to what is considered normal levels are sufficient to retain the phosphorus in the sludge for annual sludge collection intervals. Release of soluble phosphorus was attributed to microbial activity and crystallization of Al-hydroxide complexes. PMID:23437673

  11. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion.

    PubMed

    Pazos, M; Kirkelund, G M; Ottosen, L M

    2010-04-15

    Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative to treat sewage sludge. By its use, the high amount of sludge is reduced to a small quantity of ash and thermal destruction of toxic organic constituents is obtained. Conversely, heavy metals are retained in the ash. In this work the possibility for electrodialytic metal removal for sewage sludge ash from FBSC was studied. A detailed characterization of the sewage sludge ash was done initially, determining that, with the exception of Cd, the other heavy metals (Cr, Cu, Pb, Ni and Zn) were under the limiting levels of Danish legislation for the use of sewage sludge as fertilizer. After 14 days of electrodialytic treatment, the Cd concentration was reduced to values below the limiting concentration. In all experiments the concentrations of other metals were under limiting values of the Danish legislation. It can be concluded that the electrodialytic treatment is an adequate alternative to reduce the Cd concentration in FBSC ash prior to use as fertilizer. PMID:20034740

  12. Comparison of polycyclic aromatic hydrocarbons levels in sludges from municipal and industrial wastewater treatment plants.

    PubMed

    Salihoglu, N Kamil; Salihoglu, Güray; Tasdemir, Yücel; Cindoruk, S Siddik; Yolsal, Didem; Ogulmus, Ruken; Karaca, Gizem

    2010-04-01

    This study was carried out to investigate the concentrations and potential sources of the polycyclic aromatic hydrocarbons (PAHs) in sludge of 14 wastewater treatment plants (WWTPs). Sludge samples were collected from 2 municipal WWTPs, 11 industrial WWTPs, and 1 sanitary landfill leachate treatment plant within the city of Bursa, Turkey during the summer of 2008. Ultrasonication was applied for extraction and gas chromatography-mass spectrometry was used to analyze the PAH contents of the samples. Twelve of the 16 EPA-listed PAH compounds were determined. Total PAH concentrations (Sigma(12) PAHs) determined in all of the sludge samples ranged from 1,781 to 19,866 microg/kg dry matter (dm). The sum of 8 of the 11 EU PAHs varied between 1,481 and 17,314 microg/kg dm, and 3 of the samples exceeded the proposed EU limit for land application. One of the automotive industry sludges contained the highest level of PAHs, followed by one of the municipal sludges. The average sum of 5- and 6-ring PAH compounds in all of the sludge samples amounted to almost 65% of the total PAHs. The diagnostic ratios of specific PAHs were calculated to determine the dominant sources for the PAHs in the sludge samples. PMID:19763678

  13. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  15. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  16. Rheology measurements for online monitoring of solids in activated sludge reactors of municipal wastewater treatment plant.

    PubMed

    Piani, Luciano; Rizzardini, Claudia Bruna; Papo, Adriano; Goi, Daniele

    2014-01-01

    Rheological behaviour of recycled sludge from a secondary clarifier of a municipal wastewater treatment plant was studied by using the rate controlled coaxial cylinder viscometer Rotovisko-Haake 20, system M5-osc., measuring device NV. The tests (hysteresis cycles) were performed under continuous flow conditions and following an ad hoc measurement protocol. Sludge shear stress versus shear rate curves were fitted very satisfactorily by rheological models. An experimental equation correlating the solid concentration of sludge to relative viscosity and fitting satisfactorily flow curves at different Total Suspended Solids (TTS%) was obtained. Application of the empirical correlation should allow the monitoring of the proper functioning of a wastewater treatment plant measuring viscosity of sludge. PMID:24550715

  17. Rheology Measurements for Online Monitoring of Solids in Activated Sludge Reactors of Municipal Wastewater Treatment Plant

    PubMed Central

    Papo, Adriano; Goi, Daniele

    2014-01-01

    Rheological behaviour of recycled sludge from a secondary clarifier of a municipal wastewater treatment plant was studied by using the rate controlled coaxial cylinder viscometer Rotovisko-Haake 20, system M5-osc., measuring device NV. The tests (hysteresis cycles) were performed under continuous flow conditions and following an ad hoc measurement protocol. Sludge shear stress versus shear rate curves were fitted very satisfactorily by rheological models. An experimental equation correlating the solid concentration of sludge to relative viscosity and fitting satisfactorily flow curves at different Total Suspended Solids (TTS%) was obtained. Application of the empirical correlation should allow the monitoring of the proper functioning of a wastewater treatment plant measuring viscosity of sludge. PMID:24550715

  18. A study on sludge minimization during the treatment of pickling effluent.

    PubMed

    Singhal, Anupam; Tewari, V K; Prakash, Satya

    2006-04-01

    In pickling industries, a lot of sludge is generated during the treatment of pickling effluent and there is severe problem of its disposal. Disposal of this sludge as per the Hazardous Waste (Management & Handling) Rules, 1989 is not easy. Its transportation and construction of lined disposal sites pose very severe problems. In the normal practice, the sludge is being disposed of at the sides of roads and railway tracks to fill low lying areas. This may cause serious health hazards. Considering these problems, a study has been undertaken to minimize the sludge generation during the treatment of pickling effluent by neutralizing it with lime, sodium hydroxide and combination of both. An attempt has been made to do an economic evaluation of the above process. PMID:17913186

  19. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  20. Environmental assessment of sewage sludge recycling options and treatment processes in Tokyo.

    PubMed

    Hara, K; Mino, T

    2008-12-01

    Tokyo has historically suffered from a shortage of final disposal sites for the treated sewage sludge. Given this situation, sludge recycling and incineration have been promoted to reduce the volume of treated sludge conveyed to the disposal site, and the recycling options have changed since the late 1990s. This study aims to revisit the sewage sludge treatment and recycling processes in Tokyo and to evaluate different recycling options (brick, aggregate, refuse derived fuel and slag) from the energy consumption perspective by clarifying the complex flow of treated sludge within Tokyo's 23 wards. The study also estimates environmental loads associated with the operation of the whole sludge management system in the area. The environmental loads include: (1) total energy consumption and (2) gas emissions (greenhouse and acidification gases). The estimation was carried out for the years 1995, 1997, 1999 and 2001, during which a drastic change in recycling options occurred. The results indicated that the production of refuse derived fuel was the most energy consuming recycling option while aggregate production is the least energy consuming. They also showed that despite the increasing sludge volume, the energy consumption associated with the operation of the whole system decreased during the period while the gas emissions increased. PMID:18439814

  1. Anaerobic digestion with partial ozonation minimises greenhouse gas emission from sludge treatment and disposal.

    PubMed

    Yasui, H; Matsuhashi, R; Noike, T; Harada, H

    2006-01-01

    A novel anaerobic digestion process combined with partial ozonation on digested sludge was demonstrated for improving sludge digestion and biogas recovery by full-scale testing for 2 years and its performance was compared with a simultaneously operated conventional anaerobic digestion process. The novel process requires two essential modifications, which are ozonation for enhancing the biological degradability of sludge organics and concentrating of solids in the digester through a solid/liquid separation for extension of SRT. These modifications resulted in high VSS degradation efficiency of ca. 88%, as much as 1.3 times of methane production and more than 70% reduction in dewatered sludge cake production. Based on the performance, its energy demands and contribution for minimisation of greenhouse gas emission was evaluated throughout an entire study of sludge treatment and disposal schemes in a municipality for 130,000 p.e. The analysis indicated that the novel process with power generation from biogas would lead to minimal greenhouse gas emission because the extra energy production from the scheme was expected to cover all of the energy demand for the plant operation, and the remarkable reduction in dewatered sludge cake volumes makes it possible to reduce N2O discharge and consumption of fossil fuel in the subsequent sludge incineration processes. PMID:16605039

  2. Operation of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery.

    PubMed

    Saktaywin, W; Tsuno, H; Nagare, H; Soyama, T

    2006-01-01

    This paper shows the potential application of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. The process incorporated ozonation for excess sludge reduction and crystallisation process for phosphorus recovery to a conventional anaerobic/oxic (A/O) phosphorus removal process. A lab-scale continuous operation experiment was conducted with the ratio of sludge flow rate to ozonation tank of 1.1% of sewage inflow under 30 to 40 mgO3/gSS of ozone consumption and with sludge wasting ratio of 0.34% (one-fifth of a conventional A/O process). Throughout the operational experiment, a 60% reduction of excess sludge production was achieved in the new process. A biomass concentration of 2300 mg/L was maintained, and the accumulation of inactive biomass was not observed. The new process was estimated to give a phosphorus recovery degree of more than 70% as an advantage of excess sludge reduction. The slight increase in effluent COD was observed, but the process performance was maintained at a satisfactory level. These facts demonstrate an effectiveness of the new process for excess sludge reduction as well as for phosphorus recovery. PMID:16889258

  3. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    SciTech Connect

    Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary

    2013-07-01

    Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of the subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially

  4. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.

    PubMed

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E

    2016-07-15

    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W. PMID:27107391

  5. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    PubMed

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  6. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.

    PubMed

    Drouin, M; Lai, C K; Tyagi, R D; Surampalli, R Y

    2008-01-01

    Wastewater sludge is a complex raw material that can support growth and protease production by Bacillus licheniformis. In this study, sludge was treated by different thermo-alkaline pre-treatment methods and subjected to Bacillus licheniformis fermentation in bench scale fermentors under controlled conditions. Thermo-alkaline treatment was found to be an effective pre-treatment process in order to enhance the proteolytic activity. Among the different pre-treated sludges tested, a mixture of raw and hydrolysed sludge caused an increase of 15% in the protease activity, as compared to the untreated sludge. The benefit of hydrolysis has been attributed to a better oxygen transfer due to decrease in media viscosity and to an increase in nutrient availability. Foam formation was a major concern during fermentation with hydrolysed sludge. The studies showed that addition of a chemical anti-foaming agent (polypropylene glycol) during fermentation to control foam could negatively influence the protease production by increasing the viscosity of sludge. PMID:18309222

  7. Aerobic granular sludge formation for high strength agro-based wastewater treatment.

    PubMed

    Abdullah, Norhayati; Ujang, Zaini; Yahya, Adibah

    2011-06-01

    The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m(-3) d(-1). The biomass concentration was 7600 mg L(-1) while the sludge volume index (SVI) was 31.3 mL g SS(-1) indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment. PMID:21524907

  8. Activated Sludge. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.

    This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…

  9. EVALUATION OF SORBENTS FOR INDUSTRIAL SLUDGE LEACHATE TREATMENT

    EPA Science Inventory

    A laboratory and outdoor pilot-scale investigation was conducted on the use of selected sorbents for removing leachate contaminants from three industrial sludges. The laboratory results indicated that, rather than a single sorbent, a combination of acidic and basic sorbents is re...

  10. Image analysis of sludge aggregates obtained at preliminary treatment of sewage.

    PubMed

    Smoczyński, L; Ratnaweera, H; Kosobucka, M; Kvaal, K; Smoczyński, M

    2014-01-01

    The results of wastewater treatment by Al and Fe salts and by electrocoagulation with aluminum electrodes are discussed and interpreted. Those processes used alone or combined with biological treatment, were analyzed for 50 and 90% removal of phosphates. Scanning electron microscopy (SEM) of the resulting sludge from three coagulation processes defined the perimeter P and area A of 129-142 differently sized objects in each contrast-enhanced image. Plots of lg A against lg P revealed that the analyzed sludge samples were made of self-similar aggregates-flocs with fractal characteristics. The slope of 'log plots' was used to determine surface fractal dimension Da, which was extrapolated to volumetric fractal dimension Dv. Dv was applied in a quantitative description of sludge aggregates-flocs. Aggregates-flocs of sludge obtained by Al ions (pre-polymerized Al and electrocoagulation) were characterized by higher values of Dv in comparison with sludge obtained by iron salts. The structure of {Al(OH)(3)} and {Fe(OH)(3)} aggregate-flocs was graphically simulated to determine the effect of size distribution and Dv on sweep flocculation and sludge separation and dehydration. Phosphate removal efficiency of 50% occurred at low ratios of Al:P and Fe:P. Adsorption-charge neutralization was suggested during coagulation with pre-polymerized coagulants, and sweep flow mechanism during electrocoagulation. PMID:25259494

  11. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-01

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge. PMID:26642353

  12. Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess.

    PubMed

    Lim, Sungjin; Jeon, Wangi; Lee, Jaebok; Lee, Kwanho; Kim, Namho

    2002-10-01

    The purpose of this research was to present engineering properties of modified sludge from water/wastewater treatment by modifiers such as hydrated lime, loess, and fly ash. The proper mixing ratio was determined to hold the pH of the modified sludge above 12.0 for 2 h. Laboratory tests carried out in this research included particle analysis, compaction and CBR, SEM and X-ray diffraction, unconfined compression test, permeability test, and TCLP test. The main role of lime was to sterilize microorganisms in the sludge. The unconfined strength of the modified sludge by fly ash and loess satisfied the criteria for construction materials, which was above 100 kPa. The permeability of all the mixtures was around 1.0 x 10(-7) cm/s. Extraction tests for hazardous components in modified sludge revealed below the regulated criteria, especially for cadmium, copper, and lead. The present study suggested that the use of lime, fly ash, and loess be an another alternative to modify or stabilize water/wastewater treatment sludge as construction materials in civil engineering. PMID:12420922

  13. Full scale validation of helminth ova (Ascaris suum) inactivation by different sludge treatment processes.

    PubMed

    Paulsrud, B; Gjerde, B; Lundar, A

    2004-01-01

    The Norwegian sewage sludge regulation requires disinfection (hygienisation) of all sludges for land application, and one of the criteria is that disinfected sludge should not contain viable helminth ova. All disinfection processes have to be designed and operated in order to comply with this criterion, and four processes employed in Norway (thermophilic aerobic pre-treatment, pre-pasteurisation, thermal vacuum drying in membrane filter presses and lime treatment) have been tested in full scale by inserting semipermeable bags of Ascaris suum eggs into the processes for certain times. For lime treatment supplementary laboratory tests have been conducted. The paper presents the results of the experiments, and it could be concluded that all processes, except lime treatment, could be operated at less stringent time-temperature regimes than commonly experienced at Norwegian plants today. PMID:15259948

  14. [Performance and Factors Analysis of Sludge Dewatering in Different Wastewater Treatment Processes].

    PubMed

    Liu, Ji-bao; Li, Ya-ming; Lü, Jian; Wei, Yuan-song; Yang, Min; Yu, Da-wei

    2015-10-01

    Sludge dewatering is one of the keys for sludge disposal and treatment of municipal wastewater treatment plants. In this study, the sludge dewaterability, flocculant consumption and costs of sludge dewatering for different wastewater treatment processes including A2/O and A2/O-MBR processes were analyzed, as well as the factors of sludge dewatering were analyzed by redundancy analysis (RDA) method, based on the data of one municipal wastewater treatment plant of Beijing in 2013. Results showed that both sludge dewaterability and flocculant consumption presented the seasonal variation, which means sludge dewatering was harder and coupled with higher flocculant consumption in the winter. Although the lower moisture content of dewatered sludge was obtained in the A2/O-MBR process (81.92% ± 1.64% ) compared with that in the A2/O process (82.56% ± 1.35%), the consumptions of flocculant [ (8.70 ± 7.25) kg x t(-1) DS] and electric energy (331.82 kW x h x t(-1) DS) in the A2/O-MBR process were higher than those in the A2/O process [(7.42 ± 2.96) kg x t(-1) DS, 121.57 kW x h x t(-1) DS for flocculant consumption and electric energy respectively], resulting in higher operation costs (RMB 204.76 yuan x t(-1) DS of flocculant consumption and RMB 231.61 yuan x t(-1) DS of energy consumption for the A2/O-MBR, RMB 175.00 yuan x t(-1) DS of flocculant consumption and RMB 84.86 yuan x t(-1) DS of energy consumption for the A2/O, respectively). Results of RDA showed that the seasonal variation of sludge dewaterability mainly depended on the content of organic matter in sludge which was related to the seasonal factors such as temperature, and was also impacted by the operating parameters such as SRT in wastewater treatment. PMID:26841614

  15. Methodology for technical and economic assessment of advanced routes for sludge processing and disposal.

    PubMed

    Bertanza, Giorgio; Canato, Matteo; Laera, Giuseppe; Tomei, Maria Concetta

    2015-05-01

    In order to meet the environmental legislative framework in force in Europe and reduce sludge processing and disposal costs, several sludge treatment technologies and management strategies have been proposed in the last two decades. The evaluation of their technical and economic suitability, case by case, may be a challenge, since many aspects are involved, so that a robust decision support system should be used. Within the ROUTES project (founded within the EU Seventh Framework Programme), the authors have developed an assessment procedure which allows rating several technical factors (such as system reliability, complexity, safety aspects, modularity, etc.) and estimating capital and operating costs, in case a plant is being upgraded. The comparison between the original (reference) plant and the modified configuration informs about technical hot spots (which are expressed by a traffic light-type colour code) and cost gaps resulting from the implementation of the new solution. PMID:24906829

  16. 40 CFR 35.2101 - Advanced treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Advanced treatment. 35.2101 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2101 Advanced treatment. Projects proposing advanced treatment shall be awarded grant assistance only after the project has...

  17. 40 CFR 35.2101 - Advanced treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Advanced treatment. 35.2101 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2101 Advanced treatment. Projects proposing advanced treatment shall be awarded grant assistance only after the project has...

  18. 40 CFR 35.2101 - Advanced treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Advanced treatment. 35.2101 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2101 Advanced treatment. Projects proposing advanced treatment shall be awarded grant assistance only after the project has...

  19. 40 CFR 35.2101 - Advanced treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Advanced treatment. 35.2101 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2101 Advanced treatment. Projects proposing advanced treatment shall be awarded grant assistance only after the project has...

  20. 40 CFR 35.2101 - Advanced treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Advanced treatment. 35.2101 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2101 Advanced treatment. Projects proposing advanced treatment shall be awarded grant assistance only after the project has...

  1. Identical full-scale biogas-lift reactors (Blrs) with anaerobic granular sludge and residual activated sludge for brewery wastewater treatment and kinetic modeling.

    PubMed

    Xu, Fu; Huang, Zhenxing; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing; Ruan, Wenquan

    2013-10-01

    Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3 x day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m3 x day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics, biogas compositions, and biogas-lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 > 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time. PMID:24494489

  2. Removal of endocrine-disrupting chemicals in activated sludge treatment works.

    PubMed

    Johnson, A C; Sumpter, J P

    2001-12-15

    The release of endocrine-disrupting chemicals into the aquatic environment has raised the awareness of the central role played by sewage treatment in lowland water quality. This review focuses on the activated sludge process, which is commonly used to treat sewage in large towns and cities and which successfully removes the bulk of the organic compounds that enter the works. However, not all compounds are completely broken down or converted to biomass. For example, the estrogenic alkylphenols and steroid estrogens found in effluent are the breakdown products of incomplete breakdown of their respective parent compounds. Batch microcosm studies have indicated that estrone, ethinylestradiol, and alkylphenols will not be completely eliminated in activated sludge over typical treatment times. Field data suggest that the activated sludge treatment process can consistently remove over 85% of estradiol, estriol, and ethinylestradiol. The removal performance for estrone appears to be less and is more variable. Because of its relatively high hydrophobicity, the accumulation of alkylphenol in sludge has been observed. Although it has not been examined, accumulation of ethinylestradiol in sludge is a possibility due to its recalcitrance and hydrophobicity. A comparison between the concentrations of some of the major endocrine-active chemicals in effluents and their biological potencies has been made, to direct attention to the chemicals of most concern. While water purification techniques such as UV or activated charcoal could significantly remove these microorganic contaminants, the high costs involved suggest that research into the potential for treatment optimization should receive more attention. PMID:11775141

  3. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    PubMed

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-06-29

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint. PMID:24980032

  4. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    SciTech Connect

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-26

    Technologies are being developed by the US Department of Energy`s (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory`s (ORNL) West End Treatment Facility`s (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid.

  5. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge.

    PubMed

    Martín, María Ángeles; González, Inmaculada; Serrano, Antonio; Siles, José Ángel

    2015-01-01

    Sewage sludge is a polluting and hazardous waste generated in wastewater treatment plants with severe management problems. The high content in heavy metal, pathogens and micropolluting compounds limit the implementation of the available management methods. Anaerobic digestion could be an interesting treatment method, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A sonication pre-treatment at lab scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. Sonication time was optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) at different pre-treatment times. The pre-treatment time was fixed at 45 min under the study conditions given that the solubilisation of organic matter did not increase significantly at lower sonication times, whereas the concentration of total nitrogen increased markedly at higher times. The volatile fatty acids generation rate was also evaluated for the pre-treatment conditions. The anaerobic digestion of untreated and pre-treated sewage sludge was subsequently compared and promising results were obtained for loads of 1.0 g VS/L (VS, total volatile solids). The methane yield coefficient increased from 88 to 172 mLSTP/g VS (STP, 0 °C, 1 atm) after the pre-treatment, while biodegradability was found to be around 81% (in VS). Moreover, the allowed organic loading rate and methane production rate observed for the sewage sludge reached values of up to 4.1 kg VS/m(3)·d and 1270 LSTP/m(3)·d, respectively. PMID:25284801

  6. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  7. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  8. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  9. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Slimes and sludges, aluminum and iron... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  10. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Slimes and sludges, aluminum and iron... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  11. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  12. Engineering evaluation of neutralization and precipitation processes applicable to sludge treatment project

    SciTech Connect

    Klem, M.J.

    1998-08-25

    Engineering evaluations have been performed to determine likely unit operations and methods required to support the removal, storage, treatment and disposal of solids/sludges present in the K Basins at the Hanford Site. This evaluation was initiated to select a neutralization process for dissolver product solution resulting from nitric acid treatment of about 50 m{sup 3} of Hanford Site K Basins sludge. Neutralization is required to meet Tank Waste Remediation Waste System acceptance criteria for storage of the waste in the double shell tanks after neutralization, the supernate and precipitate will be transferred to the high level waste storage tanks in 200E Area. Non transuranic (TRU) solids residue will be transferred to the Environmental Restoration Disposal Facility (ERDF). This report presents an overview of neutralization and precipitation methods previously used and tested. This report also recommends a neutralization process to be used as part of the K Basins Sludge Treatment Project and identifies additional operations requiring further evaluation.

  13. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

    PubMed

    Huang, Hua-Jun; Yuan, Xing-Zhong

    2016-01-01

    Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. PMID:26577578

  14. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.

    PubMed

    Martínez-García, C; Eliche-Quesada, D; Pérez-Villarejo, L; Iglesias-Godino, F J; Corpas-Iglesias, F A

    2012-03-01

    The main aim of this study is to assess the effect of incorporating waste sludge on the properties and microstructure of clay used for bricks manufacturing. Wastewater treatment plants produce annually a great volume of sludge. Replacing clay in a ceramic body with different proportions of sludge can reduce the cost due to the utilization of waste and, at the same time, it can help to solve an environmental problem. Compositions were prepared with additions of 1%, 2.5%, 5%, 7.5%, 10% and 15% wt% waste sludge in body clay. In order to determine the technological properties, such as bulk density, linear shrinkage, water suction, water absorption and compressive strength, press-moulded bodies were fired at 950 °C for coherently bonding particles in order to enhance the strength and the other engineering properties of the compacted particles. Thermal heating destroys organic remainder and stabilizes inorganic materials and metals by incorporating oxides from the elemental constituent into a ceramic-like material. Results have shown that incorporating up to 5 wt% of sludge is beneficial for clay bricks. By contrast, the incorporation of sludge amounts over 5 wt% causes deterioration on the mechanical properties, therefore producing low-quality bricks. PMID:21723033

  15. Polychlorinated naphthalenes in sewage sludge from wastewater treatment plants in China.

    PubMed

    Zhang, Haiyan; Xiao, Ke; Liu, Jiyan; Wang, Thanh; Liu, Guorui; Wang, Yawei; Jiang, Guibin

    2014-08-15

    Polychlorinated naphthalenes (PCNs) were nominated as persistent organic pollutants candidate in the Stockholm Convention in 2011. In this study, the profiles, concentrations and spatial distributions of PCNs were analyzed in 30 sewage sludge samples from wastewater treatment plants (WWTPs) in China. Concentrations of Σ75PCNs in sludge samples were in the range of 1.05-10.9 ng/g dry weight (dw) with a mean value of 3.98 ng/g dw. The predominant homologues in the sludge were mono- to tetra-CNs, accounting for approximately 85% of total PCNs. The total toxic equivalent quantities (TEQs) of dioxin-like PCN congeners ranged from 0.04 to 2.28 pg/g dw with a mean value of 0.36 pg/g dw, which were lower than the maximum permissible TEQ concentrations in sludge for land application in China. Levels of PCNs and TEQs in sludge were relatively higher in samples from highly industrialized and developed cities in eastern China, implying a possible link between PCN contamination and the local economic development, but more studies are warranted to corroborate this. Industrial sources might be important contributors of PCNs to sewage sludge in China. PMID:24880545

  16. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. PMID:25616115

  17. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    SciTech Connect

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

  18. Treatment of advanced esophageal cancer

    SciTech Connect

    Kelsen, D.

    1982-12-01

    When radiation therapy is used for palliation of obstruction in patients with advanced esophageal carcinoma, an improvement in dysphagia can be expected in approximately 50% of patients. Major objective responses have rarely been quantitied but, in one study, were seen in 33% patients. Recurrence of dysphagia is usually seen within 2-6 months of treatment. Radiation toxicities and complications, even when used with palliative intent, can be substantial and include esophagitis, tracheoesophageal or esophageal-aortic fistula, mediastinitis, hemorrhage, pneumonitis, and myelosuppression. (JMT)

  19. Mercury-contaminated sludge treatment by dredging in Minamata Bay

    SciTech Connect

    Yoshinaga, Kiyoto

    1995-12-31

    To eradicate Minamata Disease, caused by the discharge of sewage containing methyl mercury and its accumulation in fish and shellfish through the food cycle, a large-scale sediment disposal project was conducted with special care taken to prevent new pollution resulting from the project itself. The basic approach to sediment disposal was to construct a highly watertight revetment to reclaim the inner area of the bay and then confine sediment dredged from the remaining contaminated area in the reclamation area through surface treatment. Before sediment disposal, boundary nets were installed to enclose the work area to prevent the mixing of contaminated and noncontaminated fish. Dredging work was successfully carried out by using four cutterless suction dredgers, newly developed in advance for minimizing resuspension of sediments. Dredged material was discharged into the reclamation area, filled up to sea level, and covered with a sandproof membrane, lightweight volcanic ash earth, and mountain soil.

  20. Aluminium Salts Hydrolysis Products from Industrial Anodising Sludges in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Chambino, Teresa; Correia, Anabela; Barany, Sandor

    The wastewaters resulting from industrial aluminium anodising processes must be treated in a wastewater treatment plant usually involving the main operations of neutralisation, flocculation, settling and filtration with a press-filter. In Portugal the annual quantity of sludges, resulting from these wastewaters treatment, is estimated in 15 000 t/year (2002) and in the EU a large quantity is also involved. No use has been found for these sludges and they are sent to landfills or disposed of in uncontrolled places. Recycling is an economical and environmentally friendly way to handle hazardous wastes, reducing the amounts disposed in landfills. So the effect of the anodising sludge as flocculant of municipal wastewaters instead of inorganic salts commonly used was studied.

  1. Disintegration of excess sludge enhanced by a combined treatment of gamma irradiation and modified coal fly ash

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Wang, Lipeng; Jiao, Yurong

    2016-03-01

    In order to improve the disintegration performance and accelerate the disintegration rate of excess sludge, the individual and combined influences of γ-ray irradiation and modified coal fly ash treatment on the disintegration of excess sludge were investigated based on physicochemical properties of excess sludge. The changes in constituents of excess sludge were examined by means of UV/vis spectra and SEM images. The results showed that the disintegration performance of excess sludge was effectively improved by gamma ray irradiation in the presence of modified coal fly ash. A new band from 250 nm to 290 nm appeared on all irradiated sludge samples. The SEM images illustrated the cells surfaces of the sludge by the combined treatment were disfigured. The SCOD, soluble carbohydrate and protein from sludge supernatant increased obviously with increasing modified CFA dosage from 0 to 0.2 g ml-1 and dose from 0 to 10 kGy. The sludge SRF and filter cake moisture declined significantly, and the filtration speed was faster. In conclusion, γ-ray irradiation-modified coal fly ash pretreatment is an effective method to disintegrate excess sludge.

  2. DEVELOPMENT OF WET-OXIDATION TREATMENT SYSTEM FOR FILTER BACKWASH SLUDGE AND ION EXCHANGE RESINS

    SciTech Connect

    Miyamoto, T.; Motoyama, M.; Shibuya, M.; Wada, H.; Yamazaki, K.

    2003-02-27

    Decomposition of organic compounds contained in filter backwash sludge and spent ion exchange resins is considered effective in reducing the waste volume. A system using the wet-oxidation process has been studied for the treatment of the sludge and resins stored at Tsuruga Power Station Unit 1, 357MWe BWR, owned by The Japan Atomic Power Company. Compared with various processes for treating sludge and resin, the wet-oxidation system is rather simple and the process conditions are mild. Waste samples collected from storage tanks were processed by wet-oxidation and appropriate decomposition of the organic compounds was verified. After the decomposition the residue can be solidified with cement or bitumen for final disposal. When compared with direct solidification without decomposition, the number of waste packages can be reduced by a factor of a few dozens for the sludge and three for the resin. Additional measures for conditioning secondary waste products have also been studied, and their applicability to the Tsuruga Power Station was verified. Some of the conditions studied were specific to the Tsuruga Power Station, but it is expected that the system will provide an effective solution for sludge and resin treatment at other NPPs.

  3. Response of activated sludge to the treatment of oxytetracycline production waste stream.

    PubMed

    Liu, Miaomiao; Zhang, Yu; Ding, Ran; Gao, Yingxin; Yang, Min

    2013-10-01

    To investigate how the microbial community in activated sludge responded to high antibiotic levels, a bench-scale aerobic wastewater treatment system was used to treat oxytetracycline (OTC) mother liquor (OTC-ML). Removal efficiency of chemical oxygen demand decreased from 64.9 to 51.0 % when the OTC level increased from 191.6 to 620.5 mg/L, respectively. According to the cloning results, Psychrobacter and Cryptophyta were the dominant bacterium and eukaryote in the inoculated sludge, respectively, both of which related to low temperature. After OTC exposure, Alphaproteobacteria and Betaproteobacteria became the dominant bacteria, with a small proportion of Firmicutes, Actinobacteria appeared, and fungi (mainly Saccharomycotina) became the dominant eukaryotes, indicating the possible functions of these microorganisms in the wastewater treatment of OTC-ML. The relative abundance of nine tetracycline resistance genes and four mobile elements (class 1 integron, class 2 integron, transposon Tn916/1545, and pattern 1 insertion sequence common region) significantly increased from undetectable to 2.1 × 10(-3) in the inoculated sludge to 1.7 × 10(-4)-9.8 × 10(-1) in sludge exposed to 620.5 mg/L OTC by using real-time PCR. The variety of gene cassette arrays of class 1 integron in the sludge samples increased with increasing OTC exposure concentration. PMID:23188460

  4. Aerobic thermophilic treatment of sewage sludge at pilot plant scale. 1. Operating conditions.

    PubMed

    Ponti, C; Sonnleitner, B; Fiechter, A

    1995-01-15

    The aerobic thermophilic treatment process of sewage sludge was studied at different bioreactor scales in a pilot plant installation. Since, for a satisfactory sludge disinfection, the Swiss legislation requires minimal incubation times of all volume elements, the bioreactors were operated in repetitive batch mode (draw and fill). Different retention times and frequencies of the volume changes were applied in order to prove the capability of the particular operation modes in assuring high degradative potential. The main enzymatic activity involved during the aerobic treatment was proteolysis: the RQ values ranged between 0.8 and 0.9 depending on the applied operating conditions. Although not in a linear manner, the efficiency of the microflora decreased as the bioreactor scale increased, when this increase corresponded with a reduction of the specific power input. The sludge oxidation rates can be tuned by some process operating conditions such as the volume change frequency, the changed volume quantities and the retention times. It was possible to improve the microbial degradative efficiency by an increased frequency of the changes, while the mean retention time influenced in particular the ultimate product quality, described as residual organic matter content of the sludge. The microflora present was also satisfactorily active at mean hydraulic retention times of less than 10 h. The organic matter concentration of the inlet sewage sludge plays an important role: it influences the aerobic degradation process positively. PMID:7765808

  5. Full scale performance of the aerobic granular sludge process for sewage treatment.

    PubMed

    Pronk, M; de Kreuk, M K; de Bruin, B; Kamminga, P; Kleerebezem, R; van Loosdrecht, M C M

    2015-11-01

    Recently, aerobic granular sludge technology has been scaled-up and implemented for industrial and municipal wastewater treatment under the trade name Nereda(®). With full-scale references for industrial treatment application since 2006 and domestic sewage since 2009 only limited operating data have been presented in scientific literature so far. In this study performance, granulation and design considerations of an aerobic granular sludge plant on domestic wastewater at the WWTP Garmerwolde, the Netherlands were analysed. After a start-up period of approximately 5 months, a robust and stable granule bed (>8 g L(-1)) was formed and could be maintained thereafter, with a sludge volume index after 5 min settling of 45 mL g(-1). The granular sludge consisted for more than 80% of granules larger than 0.2 mm and more than 60% larger than 1 mm. Effluent requirements (7 mg N L(-1) and 1 mg P L(-1)) were easily met during summer and winter. Maximum volumetric conversion rates for nitrogen and phosphorus were respectively 0.17 and 0.24 kg (m(3) d)(-1). The energy usage was 13.9 kWh (PE150·year)(-1) which is 58-63 % lower than the average conventional activated sludge treatment plant in the Netherlands. Finally, this study demonstrated that aerobic granular sludge technology can effectively be implemented for the treatment of domestic wastewater. PMID:26233660

  6. Speciation Dynamics of Phosphorus during (Hydro)Thermal Treatments of Sewage Sludge.

    PubMed

    Huang, Rixiang; Tang, Yuanzhi

    2015-12-15

    (Hydro)thermal treatments of sewage sludge from wastewater treatment process can significantly reduce waste volume and transform sludge into valuable products such as pyrochar and hydrochar. Given the global concern with phosphorus (P) resource depletion, P recycling/reclamation from or direct soil application of the derived chars can be potential P recycling practices. In order to evaluate P recyclability as well as the selection and optimization of treatment techniques, it is critical to understand the effects of different treatment techniques and conditions on P speciation and distribution. In the present study, we systematically characterized P speciation in chars derived from thermal (i.e., pyrolysis) and hydrothermal treatments of municipal sewage sludge using complementary chemical extraction and nuclear magnetic resonance (NMR) spectroscopy methods. P species in the raw activated sludge was dominated by orthophosphate and long-chain polyphosphates, whereas increased amounts of pyrophosphate and short-chain polyphosphates formed after pyrolysis at 250-600 °C. In contrast, hydrothermal treatments resulted in the production of only inorganic orthophosphate in the hydrochar. In addition to the change of molecular speciation, thermal treatments also altered the physical state and extractability of different P species in the pyrochars from pyrolysis, with both total P and polyphosphate being less extractable with increasing pyrolysis temperature. Results from this study suggest that P speciation and availability in sludge-derived chars are tunable by varying treatment techniques and conditions, and provide fundamental knowledge basis for the design and selection of waste management strategies for better nutrient (re)cycling and reclamation. PMID:26633236

  7. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment.

    PubMed

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen

    2015-12-01

    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively. PMID:26320815

  8. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals.

    PubMed

    Li, Yuan-Cheng; Min, Xiao-Bo; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liyang, Wen-Jun

    2016-10-01

    Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials. PMID:27449964

  9. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA. PMID:23323416

  10. Evaluation Of FWENC Process For Treatment Of MVST Sludges, Supernates, And Surrogates

    SciTech Connect

    Barton, JW

    2003-01-30

    In 1998, the Foster Wheeler Environmental Corporation (FWENC) was awarded an 11-year contract to treat transuranic waste at the Oak Ridge National Laboratory, including Melton Valley Storage Tank (MVST) waste. Their baseline tank waste process consists of: (1) Separating the supernate from the sludge, (2) Washing the sludge with water and adding this wash water to the supernate, (3) Stabilizing the supernate/wash water or the washed sludge with additives if either are projected to fail Resource Conservation Recovery Act (RCRA) Toxic Characteristics Leaching Protocol (TCLP) criteria, and (4) Stabilizing both the washed sludge and supernate/wash water by vacuum evaporation. An ''Optimum'' treatment procedure consisted of adding a specified quantity of two stabilizers--ThioRed{reg_sign} and ET Soil Polymer{reg_sign}--and an ''Alternate'' treatment simply increased the amount of ThioRed{reg_sign} added. This report presents the results of a study funded by the Tanks Focus Area (TFA) to provide Oak Ridge Operations (ORO) with independent laboratory data on the performance of the baseline process for treating the sludges, including washing the sludge and treating the wash water (although supernates were not included in the wash water tests). Two surrogate and seven actual tank wastes were used in this evaluation. Surrogate work, as well as the initial work with actual tank sludge, was based on an existing sludge sample from Bethel Valley Evaporator Storage Tank (BVEST) W23. One surrogate was required to be based on a surrogate previously developed to mimic the weighted average chemical composition of the MVST-BVEST using a simple mix of reagent grade chemicals and water, called the ''Quick and Dirty'' surrogate (QnD). The composition of this surrogate was adjusted toward the measured composition of W23 samples. The other surrogate was prepared to be more representative of the W23 sludge sample by precipitation of a nitrate solution at high pH, separating the solution

  11. HANDLING AND DISPOSAL OF SLUDGES FROM COMBINED SEWER OVERFLOW TREATMENT. PHASE II - IMPACT ASSESSMENT

    EPA Science Inventory

    This report documents the results of an assessment of the effort that the United States will have to exert in the area of sludge handling and disposal if, in fact, full-scale treatment of combined sewer overflows is to become a reality. The results indicate that nationwide an ave...

  12. RECYCLING OF WATER TREATMENT PLANT SLUDGE VIA LAND APPLICATION: ASSESSMENT OF RISK

    EPA Science Inventory

    Water treatment sludges (WTS) offer potential benefits when applied to soil and recycling of the waste stream via land application has been proposed as a management option. Recycling of WTS to the land helps conserve landfill disposal capacity and natural resources, but potential...

  13. Sludge dewatering: Sewage treatment. (Latest citations from the COMPENDEX database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning dewatering techniques and equipment for sewage treatment. Sewage sludge dewatering design, development, and evaluation are discussed. Essential types of dewatering equipment such as centrifuges, filters, presses, and drums are considered. (Contains 250 citations and includes a subject term index and title list.)

  14. Sludge dewatering: Sewage treatment. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning dewatering techniques and equipment for sewage treatment. Sewage sludge dewatering design, development, and evaluation are discussed. Essential types of dewatering equipment such as centrifuges, filters, presses, and drums are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. EVALUATION OF THE HEALTH RISKS ASSOCIATED WITH THE TREATMENT AND DISPOSAL OF MUNICIPAL WASTEWATER AND SLUDGE

    EPA Science Inventory

    In this study, started in 1977, clinical and serologic evaluations of workers involved in composting of wastewater treatment plant sludge by the aerated pile method was initiated to evaluate the potential health effects of exposure to Aspergillus fumigatus and other viable and no...

  16. Composting. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    Composting is a lesson developed for a sludge treatment and disposal course. The lesson discusses the basic theory of composting and the basic operation, in a step-by-step sequence, of the two typical composting procedures: windrow and forced air static pile. The lesson then covers basic monitoring and operational procedures. The instructor's…

  17. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles.

    PubMed

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio

    2015-10-01

    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h. PMID:26233586

  18. Melanoma Treatments: Advances and Mechanisms.

    PubMed

    Marzuka, Alexander; Huang, Laura; Theodosakis, Nicholas; Bosenberg, Marcus

    2015-11-01

    Advances in the understanding of the molecular pathogenesis of melanoma and in cancer immunology have led to the rational design and recent clinical implementation of a variety of novel therapies for metastatic melanoma. BRAF and MEK inhibitors that target the MAPK pathway have high rates of clinical response in BRAF-mutant melanoma. Therapies that modulate the immune response to melanoma, including monoclonal antibodies that interfere with pathways that inhibit T-cell function, have been shown to be effective in melanoma. Lessons learned from these encouraging results are driving the development of new treatments for melanoma and other cancers. This review will focus on the science and clinical findings related to targeted therapies that inhibit BRAF or MEK as well as the immunotherapies that block the CTLA-4 or PD-1 pathways. Other experimental and combinatorial therapeutic approaches will also be discussed. PMID:25899612

  19. Waste form development for use with ORNL waste treatment facility sludge

    SciTech Connect

    Abotsi, G.M.K.; Bostick, W.D.

    1996-05-01

    A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

  20. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A.; Bickford, D.F.

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  1. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l. PMID:25027236

  2. Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Gao, Wei; Liang, Heng; Li, Guibai

    2012-01-01

    Drinking water treatment sludge, characterized as accumulated suspended solids and organic and inorganic matter, is produced in large quantities during the coagulation process. The proper disposal, regeneration or reuse of sludge is, therefore, a significant environmental issue. Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency. In the present study, the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency. We determined that the appropriate dosage of mixed sludge was 60 mL/L, effective initial turbidity ranges were below 45.0 NTU, and optimal pH for DOMs and turbidity removal was 6.5-7.0 and 8.0, respectively. Furthermore, by comparing the flocs characteristics with and without recycling sludge, we found that floc structures with sludge were more irregular with average size growth to 64.7 microm from 48.1 microm. Recycling sludge was a feasible and successful method for enhancing pollutants removal, and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure. Applied during the coagulation process, recycling sludge could be significant for the treatment of low temperature and micro-polluted source water. PMID:23505868

  3. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities.

    PubMed

    Oshita, Kazuyuki; Okumura, Takuya; Takaoka, Masaki; Fujimori, Takashi; Appels, Lise; Dewil, Raf

    2014-11-01

    Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509±72 mg/m(3)-influent (wastewater) and 7.1±2.6 mg/m(3)-influent, respectively. These values accounted for 22.4±3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant. PMID:25194911

  4. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    PubMed

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery. PMID:21099053

  5. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review.

    PubMed

    Fonollosa, E; Nieto, A; Peñalver, A; Aguilar, C; Borrull, F

    2015-03-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies. PMID:25500063

  6. High-frequency ultrasound treatment of sludge: combined effect of surfactants removal and floc disintegration.

    PubMed

    Gallipoli, A; Braguglia, C M

    2012-07-01

    Ultrasounds represent an effective technology in many research fields. In sewage sludge treatment, low-frequency ultrasound, particularly at 20 kHz, are widely used for sludge disintegration before the anaerobic digestion, while in the last years novel application of high-frequency ultrasound regards the decontamination of water and wastewater through sonochemical reactions. The innovative approach presented in this paper is the treatment of sewage sludge with ultrasound at 200 kHz for obtaining efficient sludge disintegration and the removal of the linear alkylbenzenesulphonates (LAS) at the same time. Results of the sonolysis experiments showed that native LAS degradation up to 40% can be achieved with low power input in less than 1h. The degradation pattern was different for each LAS homologue (from C10 to C13), because of their physical-chemical properties, in particular as regards the alkyl chain length. This high-frequency ultrasound irradiation resulted effective also in terms of floc disintegration and soluble organic matter release, in particular for energy inputs higher than 30,000 kJ/kg TS. The disrupting effect of the 200 kHz treatment was also evaluated by microscope analyses and determination of the extracellular polymeric substances release in the liquid phase. PMID:22245371

  7. Fate of organic matter during moderate heat treatment of sludge: kinetics of biopolymer and hydrolytic activity release and impact on sludge reduction by anaerobic digestion.

    PubMed

    Lefebvre, D; Dossat-Létisse, V; Lefebvre, X; Girbal-Neuhauser, E

    2014-01-01

    Temperature-phased anaerobic digestion with a 50-70 °C pre-treatment is widely proposed for sludge. Here, such a sludge pre-treatment (65 °C) was studied against the physical, enzymatic and biodegradation processes. The soluble and particulate fractions were analysed in terms of biochemical composition and hydrolytic enzymatic activities. Two kinetics of organic matter solubilisation were observed: a rapid transfer of the weak-linked biopolymers to the water phase, including sugars, proteins or humic acid-like substances, to the water phase, followed by a slow and long-term solubilisation of proteins and humic acid-like substances. In addition, during the heat treatment a significant pool of thermostable hydrolytic enzymes including proteases, lipases and glucosidases remains active. Consequently, a global impact on organic matter was the transfer of the biodegradable chemical oxygen demand (COD) from the particulate to the soluble fraction as evaluated by the biological methane potential test. However, the total biodegradable COD content of the treated sludge remained constant. The heat process improves the bio-accessibility of the biodegradable molecules but doesn't increase the inherent sludge biodegradability, suggesting that the chemistry of the refractory proteins and humic acids seems to be the real limit to sludge digestion. PMID:24804656

  8. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge.

    PubMed

    Tian, Xinbo; Wang, Chong; Trzcinski, Antoine Prandota; Lin, Leonard; Ng, Wun Jern

    2015-03-01

    This work provides insights on the solubilization products after a simultaneous combination of alkaline and ultrasonic (ALK+ULS) pre-treatment of sewage sludge. Soluble chemical oxygen demand (SCOD) increased from 1200 to 11,000 mg/L after such treatment. Organics with molecular weight around 5.6 kDa were solubilized because of the synergistic effect of ultrasound and alkali. Organics with molecular weight larger than 300 kDa increased from 7.8% to 60%, 16% and 42.3% after ULS, ALK and ALK+ULS treatment, respectively. Excitation emission matrix fluorescence spectroscopy analysis identified soluble microbial product-like and humic acid-like matters as the main solubilization products. Sludge anaerobic biodegradability was significantly enhanced with the simultaneous application of ALK+ULS pre-treatment. ALK+ULS pre-treatment resulted in 37.8% biodegradability increase compared to the untreated sludge. This value was higher compared to the biodegradability increase induced by individual ALK pre-treatment (5.7%) or individual ULS pre-treatment (20.7%) under the same conditions applied. PMID:25766017

  9. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant.

    PubMed

    Yoshida, H; Christensen, T H; Guildal, T; Scheutz, C

    2015-11-01

    The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl and polycyclic aromatic hydrocarbons) in a conventional wastewater treatment plant were assessed. Mass balances showed reasonable closures for most of the elements. However, gaseous emissions were accompanied by large uncertainties and show the limitation of mass balance based substance flow analysis. Based on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while the organic pollutants were effectively destroyed by both biological and thermal processes. Side streams from the sludge treatment process (dewatering and incineration) back to the wastewater treatment represented less than 1% of the total volume entering the wastewater treatment processes, but represented significant substance flows. In contrast, the contribution by spent water from the flue gas treatment process was almost negligible. Screening of human and eco-toxicity by applying the consensus-based environmental impact assessment method USEtox addressing 15 inorganic constituents showed that removal of inorganic constituents by the wastewater treatment plant reduced the toxic impact potential by 87-92%. PMID:24231042

  10. Model development with defined biological mechanisms for xenobiotic treatment activated sludge at steady state.

    PubMed

    Chong, Nyuk-Min

    2015-06-01

    Activated sludge treatment of a xenobiotic organic compound, much different from treatment of biogenic organics, must be modeled with interactions involving a two-part biomass of degrader and nondegrader, which selectively or competitively grow on a two-part substrate of input xenobiotic and its biogenic metabolites. A xenobiotic treatment model was developed which incorporates kinetics of the growth of degrader and nondegrader, the line dividing metabolites into xenobiotic and biogenic, yields of degrader and nondegrader from utilization of their parts of substrates, and kinetics of degrader reversion to nondegrader due to instability of the degradative element degraders carry. Experimental activated sludge operated for treatment of a xenobiotic generated data for calibration of the model. With the input of influent xenobiotic concentration, mean cell and hydraulic residence times, and calibrated parameters, the model readily outputs concentrations of degrader, nondegrader, and effluent biogenic residue that closely match the results obtained from experiments. PMID:25561268

  11. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  12. Metaproteomics Applied to Activated Sludge for Industrial Wastewater Treatment Revealed a Dominant Methylotrophic Metabolism of Hyphomicrobium zavarzinii.

    PubMed

    Salerno, Carlo; Benndorf, Dirk; Kluge, Sabine; Palese, Luigi Leonardo; Reichl, Udo; Pollice, Alfieri

    2016-07-01

    In biological wastewater treatments, microbial populations of the so-called activated sludge work together in the abatement of pollutants. In this work, the metabolic behavior of the biomass of a lab-scale plant treating industrial pharmaceutical wastewater was investigated through a metaproteomic approach. The complete treatment process included a membrane biological reactor (MBR) coupled with an advanced oxidation process (AOP) for partial breakdown of non-biodegradable molecules. Proteins from biomass samples collected pre- and post-AOP application were investigated by two-dimensional gel electrophoresis (2DE), mass spectrometry (MS), and finally identified by database search. Results showed that most proteins remained constant between pre- and post-AOP. Methanol dehydrogenase (MDH) belonging to Hyphomicrobium zavarzinii appeared as the most constantly expressed protein in the studied consortium. Other identified proteins belonging to Hyphomicrobium spp. revealed a predominant methylotrophic metabolism, and H. zavarzinii appeared as a key actor in the studied microbial community. PMID:27090901

  13. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions. PMID:25837566

  14. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. PMID:23810950

  15. Interpreting the synergistic effect in combined ultrasonication-ozonation sewage sludge pre-treatment.

    PubMed

    Tian, Xinbo; Wang, Chong; Trzcinski, Antoine Prandota; Lin, Leonard; Ng, Wun Jern

    2015-12-01

    The sequential combination of ultrasonication and ozonation as sewage sludge treatment prior to anaerobic digestion was investigated. Synergistic volatile suspended solids (VSS) solubilization was observed when low energy ultrasonication (⩽12kJg(-1) TS) was followed by ozonation. 0.048gO3g(-1) TS ozonation induced the maximum VSS solubilization of 41.3% when the sludge was pre-ultrasonicated at 9kJg(-1) TS; while, the same ozone dosage applied without prior ultrasonication only induced 21.1% VSS solubilization. High molecular weight (MW) components (MW>500kDa) were found to be the main solubilization products when sludge was only ozonated. However, solubilization products by ozone were mainly in the form of low MW components (MW<27kDa) when sludge was pre-ultrasonicated. The high MW products generated by ultrasound were effectively degraded in the subsequent ozonation. Anaerobic biodegradability increased by 34.7% when ultrasonication (9kJg(-1) TS) and ozonation (0.036gO3g(-1) TS) were combined sequentially. The maximum methane production rate increased from 3.53 to 4.32, 4.21 and 4.54mL CH4d(-1) after ultrasonication, ozonation and ultrasonication-ozonation pre-treatments, respectively. PMID:25282627

  16. Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants.

    PubMed

    Mininni, G; Laera, G; Bertanza, G; Canato, M; Sbrilli, A

    2015-05-01

    This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE × day) in reference plants to 14-49 g SS/(PE × day) in the upgraded ones, with reduction up to 79% when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE × year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of -11% and +28% of the reference scenarios. PMID:25598155

  17. Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons.

    PubMed

    Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Quej-Aké, L; Marín-Cruz, J; Olguín-Lora, P

    2009-12-01

    Microcosm assays and Taguchi experimental design was used to assess the biodegradation of an oil sludge produced by a gas processing unit. The study showed that the biodegradation of the sludge sample is feasible despite the high level of pollutants and complexity involved in the sludge. The physicochemical and microbiological characterization of the sludge revealed a high concentration of hydrocarbons (334,766+/-7001 mg kg(-1) dry matter, d.m.) containing a variety of compounds between 6 and 73 carbon atoms in their structure, whereas the concentration of Fe was 60,000 mg kg(-1) d.m. and 26,800 mg kg(-1) d.m. of sulfide. A Taguchi L(9) experimental design comprising 4 variables and 3 levels moisture, nitrogen source, surfactant concentration and oxidant agent was performed, proving that moisture and nitrogen source are the major variables that affect CO(2) production and total petroleum hydrocarbons (TPH) degradation. The best experimental treatment yielded a TPH removal of 56,092 mg kg(-1) d.m. The treatment was carried out under the following conditions: 70% moisture, no oxidant agent, 0.5% of surfactant and NH(4)Cl as nitrogen source. PMID:19635663

  18. Assessment of free nitrous acid pre-treatment on a mixture of primary sludge and waste activated sludge: Effect of exposure time and concentration.

    PubMed

    Zahedi, S; Icaran, P; Yuan, Z; Pijuan, M

    2016-09-01

    Free nitrous acid (FNA) has been shown to enhance the biodegradability of waste activated sludge (WAS) but its effectiveness on the pre-treatment of mixed sludge is not known. This study explores the effectiveness of four different FNA concentrations (0, 2.49, 3.55, 4.62mgN-HNO2/L) and three exposure times (2, 5, 9h) lower than the ones reported in literature (24h) on WAS characteristics and specific methane production (SMP). FNA pre-treatment reduced sludge cell viability below 10% in all cases after an exposure time of 5h, increasing the solubility of the organic matter. The treated mixed sludge was used as substrate for the biochemical methane production tests to assess its SMP. Results showed a significant increase (up to 25%) on SMP when the sludge was pretreated with the lowest FNA concentration (2.49mgN-HNO2/L) during 2 and 5h but did not show any improvement at longer exposure times or higher FNA concentrations. PMID:27318660

  19. Effect of K2FeO4/US treatment on textile dyeing sludge disintegration and dewaterability.

    PubMed

    Ning, Xun-an; Feng, Yinfang; Wu, Junji; Chen, Changmin; Wang, Yujie; Sun, Jian; Chang, Kenlin; Zhang, Yaping; Yang, Zuoyi; Liu, Jingyong

    2015-10-01

    The effect of potassium ferrate/ultrasonic (K2FeO4/US) treatment on the physicochemical features of textile dyeing sludge was studied. The soluble chemical oxygen demand (SCOD), deoxyribonucleic acid (DNA), sludge volume index (SVI), sludge viscosity, capillary suction time (CST) and particle size were measured to understand the observed changes in the sludge physicochemical features. The results showed that the combined K2FeO4/US treatment presented great advantages for disrupting the sludge floc structure over K2FeO4 or ultrasonic treatments alone. The optimal parameters of sludge disintegration were found to be a K2FeO4 treatment time of 60 min, a K2FeO4 dosage of 0.5936 g/g SS, an ultrasonic time of 15 min and an ultrasonic intensity of 0.72 W/mL. The initial median diameter of the sludge particles was 15.24 μm, and this value decreased by 35.89%. The CST was initially 59.6 s and increased by 231%, whereas the SVI was 97.78 mL/g and decreased by 25.89%. Scanning electron microscope (SEM) images indicated that the sludge surface was irregular and loose with a large amount of channels or voids during K2FeO4/US treatment. K2FeO4/US treatment synergistically enhanced the sludge solubilization and reached 668.67 mg/L SCOD, which is 31.81% greater than the additive value obtained with K2FeO4 treatment alone (215.95 mg/L) or with ultrasonic treatment alone (240 mg/L). PMID:26232567

  20. Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation.

    PubMed

    Kim, A-Leum; Park, Son-Young; Lee, Chi-Ho; Lee, Chung-Hak; Lee, Jung-Kee

    2014-11-28

    Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHLdegrading bacteria were isolated from the sludge sample by enrichment culture. To identify the enzyme responsible for AHL degradation in QQ bacteria, AHL-degrading activities were analyzed using cell-free lysate, culture supernatant, and whole cells. Afipia sp. and Acinetobacter sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp. and Micrococcus sp. produced the extracellular QQ enzyme that was most likely to produce AHLacylase. AHL-degrading activity was observed in whole-cell assay with the Microbacterium sp. and Rhodococcus sp. strains. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms. PMID:25112313

  1. Ozonation effects for excess sludge reduction on bacterial communities composition in a full-scale activated sludge plant for domestic wastewater treatment.

    PubMed

    Chiellini, C; Gori, R; Tiezzi, A; Brusetti, L; Pucciarelli, S; D'Amato, E; Chiavola, A; Sirini, P; Lubello, C; Petroni, G

    2014-01-01

    Activated sludge process is the most widely diffused system to treat wastewater to control the discharge of pollutants into the environment. Microorganisms are responsible for the removal of organic matter, nitrogen, phosphorous and other emerging contaminants. The environmental conditions of biological reactors significantly affects the ecology of the microbial community and, therefore, the performance of the treatment process. In the last years, ozone has been used to reduce excess sludge production by wastewater treatment plants (WWTPs), whose disposal represents one of the most relevant operational costs. The ozonation process has demonstrated to be a viable method to allow a consistent reduction in excess sludge. This study was carried out in a full-scale plant treating municipal wastewater in two parallel lines, one ozonated in the digestion tank and another used as a control. Bacterial communities of samples collected from both lines of digestion thanks were then compared to assess differences related to the ozonation treatment. Data were then analysed with terminal restriction fragment length polymorphism (T-RFLP) analysis on 16S rRNA gene. Differences between bacterial communities of both treated and untreated line appeared 2 weeks after the beginning of the treatment. Results demonstrated that ozonation treatment significantly affected the activated sludge in WWTP. PMID:24701944

  2. CHEMICAL AND BIOLOGICAL TREATMENT OF THERMALLY CONDITIONED SLUDGE RECYCLE LIQUORS

    EPA Science Inventory

    The objective of this research project was to demonstrate and evaluate the feasibility of treating undiluted heat treatment liquor prior to its rerouting back to the head of the sewage treatment plant. Chemical and biological treatment processes were studied. Chemical treatment w...

  3. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. PMID:20570506

  4. Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment.

    PubMed

    Heidler, Jochen; Sapkota, Amir; Halden, Rolf U

    2006-06-01

    The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent, and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean +/- standard deviation) entering and exiting the plant in influent (6.1 +/- 2.0 microg/L) and effluent (0.17 +/- 0.03 microg/ L) was 3737 +/- 694 and 127 +/- 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 +/- 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 +/- 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 +/- 15 mg/kg dry weight (2815 +/- 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 +/- 1%), 76 +/- 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three-quarters of the mass of TCC disposed of by consumers in the sewershed of the plant ultimately is released into the environment by application

  5. Partitioning, Persistence, and Accumulation in Digested Sludge of the Topical Antiseptic Triclocarban During Wastewater Treatment

    PubMed Central

    Heidler, Jochen; Sapkota, Amir; Halden, Rolf U.

    2009-01-01

    The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean ± standard deviation) entering and exiting the plant in influent (6.1 ± 2.0 μg/L) and effluent (0.17 ± 0.03 μg/L) was 3,737 ± 694 and 127 ± 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 ± 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 ± 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 ± 15 mg/kg dry weight (2,815 ± 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 ± 1%), 76 ± 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three quarters of the mass of TCC disposed of by consumers in the catchment area of the plant ultimately is released into the environment by application of municipal

  6. Essence of disposing the excess sludge and optimizing the operation of wastewater treatment: rheological behavior and microbial ecosystem.

    PubMed

    Tang, Bing; Zhang, Zi

    2014-06-01

    Proper disposal of excess sludge and steady maintenance of the high bioactivity of activated sludge in bioreactors are essential for the successful operation of wastewater treatment plants (WWTPs). Since sludge is a non-Newtonian fluid, the rheological behavior of sludge can therefore have a significant impact on various processes in a WWTP, such as fluid transportation, mixing, oxygen diffusion, mass transfer, anaerobic digestion, chemical conditioning and mechanical dewatering. These are key factors affecting the operation efficiency and the energy consumption of the entire process. In the past decade-due to the production of large quantities of excess sludge associated with the extensive construction of WWTPs and the emergence of some newly-developed techniques for wastewater purification characterized by high biomass concentrations-investigations into the rheology of sludge are increasingly important and this topic has aroused considerable interests. We reviewed a number of investigations into the rheology of sludge, with the purpose of providing systematic and detailed analyses on the related aspects of the rheological behavior of sludge. It is clear that, even though considerable research has focused on the rheology of sludge over a long time period, there is still a need for further thorough investigation into this field. Due to the complex process of bio-treatment in all WWTPs, biological factors have a major influence on the properties of sludge. These influences are however still poorly understood, particularly with respect to the mechanisms involved and magnitude of such impacts. When taking note of the conspicuous biological characteristics of sludge, it becomes important that biological factors, such as the species composition and relative abundance of various microorganisms, as well as the microbial community characteristics that affect relevant operating processes, should be considered. PMID:24462086

  7. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  8. Development of biological process with pure bacterial cultures for effective bioconversion of sewage treatment plant sludge.

    PubMed

    Alam, Zahangir; Muyibi, Suleyman A; Jamal, Parveen

    2007-02-15

    Forty-six bacterial strains were isolated from nine different sources in four treatment plants namely Indah Water Konsortium (IWK) sewage treatment plant (STP), International Islamic University Malaysia (IIUM) wastewater treatment plant-1,-2 and -3 to evaluate the bioconversion process in terms of efficient biodegradation and bioseparation. The bacterial strains isolated were found to be 52.2% (24 isolates) and 47.8% (22 isolates) in the IWK and IIUM treatment plants, respectively. The results showed that higher microbial population (9-10 x 10(4) cfu/mL) was observed in the secondary clarifier of IWK treatment plant. Among the isolates, 23 isolates were gram-positive bacillus (GPB) and gram-positive cocci (GPC), 19 isolates were gram-negative bacillus (GNB) and gram-negative cocci (GNC), and the rest were undetermined. Gram-negative cocci (GNC) were not found in the isolates from IWK. A total of 15 bacterial strains were selected for effective and efficient sludge bioconversion. All the strains were tested against sludge (1% total suspended solids, TSS) to evaluate the biosolids production (TSS% content), chemical oxygen demand (COD) removal and filtration rate (filterability test). The strain S-1 (IWK1001) showed lower TSS content (0.8% TSS), maximum COD removal (84%) and increased filterability (1.1 min/10 mL of filtrate) of treated sludge followed by the strains S-11, S-14, S-2, S-15, S-13, S-7, S-8, S-4, S-3, S-6, S-12, S-16, S-17 and S-9. The pH values in the fermentation broth were affected by the bacterial cultures and recorded as well. Effective bioconversion was observed during the first three days of sludge treatment. PMID:17365300

  9. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  10. From pre-treatment toward inter-treatment. Getting some clues from sewage sludge biomethanation.

    PubMed

    Ortega-Martinez, Eduardo; Sapkaite, Ieva; Fdz-Polanco, Fernando; Donoso-Bravo, Andres

    2016-07-01

    The conventional application of thermal pretreatment of sewage sludge has been to apply it prior to the anaerobic digestion. In this study, the thermal treatment of the digestate was assessed at lab-scale under several temperature and time conditions. Biochemical methane potential (BMP) tests were set up to evaluate the methane production kinetic by using the Gompertz modified and the first order equation. A full-scale digester evaluation was done by using the ADM1 model under different scenarios and by using the parameters drawn from the BMP tests. The best results were obtained at 180°C and 200°C both at 30min where an improvement of 50% in the methane yield in regards to raw digestate. Full-scale simulations show that a scenario with two anaerobic reactors with thermal inter-treatment would improve the methane production by 45% and 20% compared to conventional anaerobic digestion and pretreatments followed by anaerobic digestion, respectively. PMID:27107339

  11. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    PubMed

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. PMID:26086561

  12. Determination of polycyclic aromatic compounds and heavy metals in sludges from biological sewage treatment plants.

    PubMed

    Bodzek, D; Janoszka, B; Dobosz, C; Warzecha, L; Bodzek, M

    1997-07-11

    The procedure of the analysis of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in the sludges from biological sewage treatment plants has been worked out. The analysis included isolation of organic matter from sludges, separation of the extract into fractions of similar chemical character, qualitative-quantitative analysis of individual PAHs and their nitrogenated and oxygenated derivatives. Liquid-solid chromatography, solid-phase extraction and semipreparative band thin-layer chromatography techniques were used for the separation. Capillary gas chromatography-mass spectrometry analysis of the separated fractions enabled identification of more than 21 PAHs, including hydrocarbons which contained 2-6 aromatic rings as well as their alkyl derivatives, 10 oxygen derivatives, 9 nitroarenes, aminoarenes and over 20 azaarenes and carbazoles. Using the capillary gas chromatography-flame ionization detection technique the content of 17 dominant PAHs was determined. The content of heavy metals was determined in investigated sludges with the use of atomic absorption spectrometry. The concentrations of the respective metals could be ranked in the order Cd < Co < Ni < Pb < Cr < or = Cu < Mn < Zn < Fe. The sludges were analysed for the first time in Poland in view of their possible utilisation in agriculture and in cultivating dumps of coal mine wastes, taking into consideration the contents of toxic organic pollutants and heavy metals. PMID:9253190

  13. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.

    PubMed

    Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi

    2016-03-01

    All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production. PMID:26810030

  14. Application of sludge from urban wastewater treatment plants in road's embankments.

    PubMed

    De Oña, J; Osorio, F

    2006-04-17

    While different kinds of compost have been tested for highway revegetation, sewage sludge has only been used for agricultural purposes. In this work, its application for helping vegetation establishment on roads embankments is studied. Testing areas measuring 4x5m were constructed on a new highway embankment in an arid location. Several variables are analyzed: side slope (2); sludge dosage (4); vegetative species (4). Results are presented on growth, survival rate and germination of the plants; colonization of other species; cover crop for the plots; estimation of the erosion. The species planted manually showed satisfactory results although any variable was specially significant in this case. However, in relation to the species planted using hydroseeding, 2:1 side slope presented better results than 3:2 side slope. Using hydroseeding, the performance of different species was significantly different, thyme did not grow if sludge was not applied and the cover crop was higher in plots with 3:2 side slope than in plots with 2:1 side slope, essentially due to the presence of colonizing species. Finally, the costs of the proposed treatments are figured out, being concluded that, so much from the technical as the economic point of view, it is a viable proposal for sewage sludge management. PMID:16233951

  15. Comparison of sludge treatment by O3 and O3/H2O2.

    PubMed

    Yuxin, Zhao; Liang, Wang; Helong, Yu; Baojun, Jiang; Jinming, Jiang

    2014-01-01

    This work focuses on the comparison of sludge decomposition caused by ozone (O3) alone and by ozone/hydrogen peroxide (O3/H2O2). The content of carbonaceous organic materials, nitrogenous compounds and phosphoric substances in sludge supernatant were measured. The release of soluble chemical oxygen demand, total nitrogen (TN) and total phosphorus (TP) caused by O3/H2O2 treatment were more than by O3 alone. As a result, it can be concluded that the efficiency of sludge breakup in O3/H2O2 was better than that in O3 alone. However, a peak appeared in both systems for the biodegradable substances such as carbohydrate. Carbohydrate could be used as the carbon source for denitrification, and the releasing of TN and TP may become an additional burden for a subsequent biological system. So, it was of benefit for the enhancement of cryptic growth and cost reduction by raising and maintaining the content of biodegradable substance and reducing the concentrations of the nitrogenous and phosphoric substances as far as possible. Therefore, sludge treated by O3/H2O2 with lower O3 dose would be more suitable than O3 alone. PMID:25026588

  16. Heavy metal speciation and acid treatment of activated sludge developed in a membrane bioreactor.

    PubMed

    Daskalakis, N; Katsou, E; Malamis, S; Haralambous, K J

    2013-01-01

    The aim of this study was to identify the heavy metals forms (exchangeable and bound to carbonate, Fe/Mn oxides, bound to organic matter and sulphide, and residual) associated with different fractions of excess sludge produced by a membrane bioreactor (MBR). Furthermore, the release of metals from the sludge to the liquid was investigated by applying acid treatment using 10% (v/v) H2SO4 (T = 25 degrees C, solid-liquid ratio 1:5 w/v) for contact time ranging from 15 min to 4 h. Metal partitioning in sludge, as determined by the sequential chemical extraction showed that the dominant form of both Ni and Zn was bound to the exchangeable and carbonate fraction; the latter were very unstable and sensitive to environmental conditions. The dominant Cu fraction was bound to organic matter and sulphide, while Pb was found to be mainly in the residual fraction which is very stable. Metal speciation after acidification with H2SO4 indicates changes of metal content in sludge and an increase of the exchangeable and bound to carbonate fraction for all metals except Cu. Acidification resulted in removal of 82% for Ni, 78% for Zn, 47% for Cu and 45% for Pb. PMID:24527621

  17. Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery.

    PubMed

    Lacroix, Nicolas; Rousse, Daniel R; Hausler, Robert

    2014-06-27

    Sewage sludge management is an energy intensive process. Anaerobic digestion contributes to energy efficiency improvement but is limited by the biological process. A review has been conducted prior to experimentation in order to evaluate the mass and energy balances on anaerobic digestion followed by gasification of digested sludge. The purpose was to improve energy recovery and reuse. Calculations were based on design parameters and tests that are conducted with the anaerobic digester of a local wastewater treatment plant and a small commercial gasification system. Results showed a very significant potential of energy recovery. More than 90% of the energy content from sludge was extracted. Also, approximately the same amount of energy would be transferred in both directions between the digester (biogas) and the gasifier (thermal energy). This extraction resulted in the same use of biogas as the reference scenario but final product was a totally dry biochar, which represented a fraction of the initial mass. Phosphorus was concentrated and significantly preserved. This analysis suggests that anaerobic digestion followed by dehydration, drying and gasification could be a promising and viable option for energy and nutrient recovery from municipal sludge in replacement of conventional paths. PMID:24972600

  18. Filamentous fungi in Indah Water Konsortium (IWK) sewage treatment plant for biological treatment of domestic wastewater sludge.

    PubMed

    Fakhrul-Razi, A; Alam, M Zahangir; Idris, Azni; Abd-Aziz, Suraini; Molla, Abul H

    2002-03-01

    A study was carried out to isolate and identify filamentous fungi for the treatment of domestic wastewater sludge by enhancing biodegradability, settleability and dewaterability of treated sludge using liquid state bioconversion process. A total of 70 strains of filamentous fungi were isolated from three different sources (wastewater, sewage sludge and leachate) of IWK's (Indah Water Konsortium) sewage treatment plant, Malaysia. The isolated strains were purified by conventional techniques and identified by microscopic examination. The strains isolated belonged to the genera of Penicillium, Aspergillus, Trichoderma, Spicaria and Hyaloflorae The distribution of observed isolated fungi were 41% in sewage sludge followed by 39% in wastewater and 20% in leachate. The predominant fungus was Penicillium (39 strains). The second and third most common isolates were Aspergillus (14 strains) and Trichoderma (12 strains). The other isolates were Spicaria (3 strains) and Hyaloflorae (2 strains). Three strains (WWZP1003, LZP3001, LZP3005) of Penicillium (P. corylophilum, P. waksmanii, and P. citrinum respectively), 2 strains (WWZA1006 and SS2017) of Aspergillus (A. terrues and A. flavus respectively) and one strain (SSZT2008) of Trichoderma (T. harzianum) were tentatively identified up to species level and finally verified by CABI Bioscience Identification Services, UK. PMID:11929070

  19. The shift of the microbial community in activated sludge with calcium treatment and its implication to sludge settleability.

    PubMed

    Ye, Chengchen; Yang, Xinping; Zhao, Fang-Jie; Ren, Lifei

    2016-05-01

    The sludge settleability is of prime importance for the activated sludge process. The effect of calcium ion on the biological performance of sludge was investigated in a lab-scale activated sludge system with varying Ca(2+) concentration. Results indicated that addition of 150mg/L Ca(2+) to the influent significantly improved the settling characteristics and metabolic reactivity of activated sludge in the bioreactors. Analyses using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA sequencing showed that a significant difference in the presence of certain bacterial groups between the sludge systems with 150mg/L Ca(2+) and those with 0-100mg/L Ca(2+) addition. Ca(2+) also increased the production of the extracellular polymeric substance (EPS) and facilitated the development of microbial cluster in the bioreactor. Study showed that an addition of 150mg/L Ca(2+) to the influent provides a simple approach to improve the settling properties of activated sludge and maintain high pollutant removal efficiency. PMID:26868150

  20. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment

    PubMed Central

    Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

    2014-01-01

    Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

  1. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment.

    PubMed

    Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

    2014-10-01

    Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

  2. Land Application of Treated Sewage Sludge in the United States: Regulatory Considerations for Risk Reduction and Determining Treatment Process Equivalency

    EPA Science Inventory

    In the United States, municipal wastewater includes discharges from households, commercial businesses and various industries. Microorganisms associated with these wastes can be concentrated in the solids (sludge) which are removed during treatment operations. Beneficial reuse a...

  3. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    PubMed

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment. PMID:22766882

  4. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics.

    PubMed

    Agridiotis, V; Forster, C F; Carliell-Marquet, C

    2007-11-01

    Metal salts, ferrous sulphate and aluminium chloride, were added to laboratory-scale activated sludge plant treating paper mill effluents to investigate the effect on settlement characteristics. Before treatment the sludge was filamentous, had stirred sludge volume index (SSVI) values in excess of 300 and was moderately hydrophobic. The use of FeSO4.7H2O took three weeks to reduce the SSVI to 90. Microscopic examination showed that Fe had converted the filamentous flocs into a compact structure. When the iron dosing was stopped, the sludge returned to its bulking state within four weeks. In a subsequent trial, the addition of AlCl3 initially resulted in an improvement of the settlement index but then caused deterioration of the sludge properties. It is possible that aluminium was overdosed and caused charge reversal, increasing the SSVI. PMID:17113285

  5. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    PubMed

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment. PMID:26995615

  6. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    SciTech Connect

    SCHULTZ, M.V.

    2000-08-22

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  7. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms - Water, BOD, carbon and nutrient removal

    SciTech Connect

    Gustavsson, L.; Engwall, M.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer It is necessary to improve existing and develop new sludge management techniques. Black-Right-Pointing-Pointer One method is dewatering and biodegradation of compounds in constructed wetlands. Black-Right-Pointing-Pointer The result showed high reduction of all tested parameters after treatment. Black-Right-Pointing-Pointer Plants improve degradation and Phragmites australis is tolerant to xenobiotics. Black-Right-Pointing-Pointer The amount of sludge could be reduced by 50-70%. - Abstract: Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50-70%, mainly by dewatering and biodegradation of organic compounds.

  8. Phosphorus extraction and sludge dissolution by acid and alkali treatments of polyaluminum chloride (PAC) treated wastewater sludge.

    PubMed

    Ali, Toor Umair; Kim, Dong-Jin

    2016-10-01

    Phosphorus (P) leaching characteristics of polyaluminium chlorides (PAC) treated wastewater sludge was investigated by wet chemicals (acid and alkali). Sludge fractionation showed non-apatite inorganic P was the dominant P (90.9% of TP) while apatite P only accounted for 3.7%. After 2h extraction with 1N NaOH or 2N HCl, 80.5% and 77.9% of total P was leached, while sludge dissolution reached 72.7% and 75.6%, respectively. Kinetic study with HCl and NaOH showed that P release and sludge dissolution follow first order reaction with rate constants of 0.50 and 0.35min(-1) (P release) and 0.47×10(-2) and 0.15×10(-2)min(-1) (sludge dissolution), respectively. Sequential extraction by NaOH/HCl leached 91.7% of the total P. This study will help in understanding the P release behavior of the PAC treated wastewater sludge. PMID:26879203

  9. Occurrence of organotins in municipal wastewater and sewage sludge and behavior in a treatment plant

    SciTech Connect

    Fent, K. ); Mueller, M.D. )

    1991-03-01

    THe behavior of selected organotin species in a wastewater treatment plant of Zurich, Switzerland, was studied. In untreated wastewater, monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were detected in the range of 136-564, 127-1,026, and 64-217 ng/L, respectively, of which 81-92% were associated with suspended solids. During treatment, the fraction of organotins in the particulate phase decreased with decreasing suspended solids concentration. All organotin species monitored were found to be efficiently removed from wastewater, mainly by sedimentation in the primary clarifier. In the secondary effluent, levels of different organotins were in the range of 7-47 ng/L. These compounds were transferred into sewage sludge, indicating that the most important process for the elimination of organotins was adsorption into sludge. Residues of MBT, DBT, and TBT in digested sludges were in the range of 0.10-0.97, 0.41-1.24, and 0.28-1.51 mg/kg (dry weight), respectively.

  10. Optimization of the preparation process of biological sludge adsorbents for application in water treatment.

    PubMed

    Gómez-Pacheco, C V; Rivera-Utrilla, J; Sánchez-Polo, M; López-Peñalver, J J

    2012-05-30

    The objective of this study was to optimize the preparation of treatment plant wastewater sludge adsorbents for application in water treatment. The optimal adsorption capacity was obtained with adsorbents prepared by pyrolysis at 700°C for 3h. We studied the effect of binder type on the adsorbents, finding that their textural properties were not substantially affected by the addition of phenolic resins but their surface area was reduced by the presence of clayey soil. Analysis of the composition of surface groups in these materials revealed: (i) a high concentration of basic surface groups in non-activated pyrolyzed sludge, (ii) an increase in the concentration of basic surface groups after chemical activation, (iii) no modification in the concentration of carboxyl or basic groups with the addition of binding agent before the activation, and (iv) total disappearance of carbonyl groups from sample surfaces with the addition of humic acid or clayey soil as binder. All these adsorbents had a low C content. The capacity of these sludge-derived materials to adsorb methylene blue, 2,4-dichlorophenol, tetracycline, and (Cd(II)) was studied. Their adsorption capacity was considerably increased by the chemical activation but reduced by the pre-activation addition of a binding agent (humic acid, phenolic resin, and clayey soil). PMID:22472426

  11. Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion.

    PubMed

    Samaras, Vasilios G; Stasinakis, Athanasios S; Mamais, Daniel; Thomaidis, Nikolaos S; Lekkas, Themistokles D

    2013-01-15

    The concentrations of nine emerging contaminants, including pharmaceutically active compounds (PhACs) (ibuprofen, IBF; naproxen, NPX; diclofenac, DCF; ketoprofen, KFN) and endocrine disrupting chemicals (triclosan, TCS; bisphenol, BPA; nonylphenol, NP; nonylphenol monoethoxylate, NP1EO; nonylphenol diethoxylate, NP2EO), were determined in wastewater and sludge samples of two wastewater treatment plants (WWTPs) in Greece. Average concentrations in raw and treated wastewater ranged from 0.39 (KFN) to 12.52 μg L(-1) (NP) and from treatment ranged between 39% (DCF) and 100% (IBF). Except of DCF and BPA, similar removal efficiencies were observed in both WWTPs and no effect of WWTP's size and operational conditions was noticed. Use of mass balances showed that accumulation on sludge was a significant removal mechanism for NPs and TCS, while biodegradation/biotransformation was the major mechanism for the other compounds. Sampling of raw and digested sludge demonstrated that IBF and NPX are significantly removed (>80%) during anaerobic digestion, whereas removal of EDCs was lower, ranging up to 55% for NP1EO. PMID:23257325

  12. Occurrence and risk assessment of nonylphenol and nonylphenol ethoxylates in sewage sludge from different conventional treatment processes.

    PubMed

    González, M M; Martín, J; Santos, J L; Aparicio, I; Alonso, E

    2010-01-01

    In the present work, the concentrations of the organic pollutants nonylphenol (NP) and nonylphenol mono- and diethoxylates (NP1EO and NP2EO, respectively) in primary, secondary, mixed, aerobically-digested, anaerobically-digested, dehydrated, compost and lagoon sludge samples from different sludge treatments have been evaluated. Toxicological risk assessment of these compounds in sludge and sludge-amended soil has also been reported. NP, NP1EO and NP2EO were monitored in sludge samples obtained from treatment plants located in Andalusia (south of Spain) based on anaerobic treatments (11 anaerobic-digestion wastewater treatment plants and 3 anaerobic wastewater stabilization ponds) or on aerobic treatments (3 aerobic-digestion wastewater treatment plants, 1 dehydration treatment plant and 2 composting plants). The sum of NP, NP1EO and NP2EO (NPE) concentrations has been evaluated in relation to the limit value of 50 mg/kg set by the European Union Sludge Directive draft published in April 2000 (Working Document on Sludge). In most of the samples, NP was present at higher concentration levels (mean value 88.0 mg/kg dm) than NP1EO (mean value 33.8 mg/kg dm) and NP2EO (mean value 14.0 mg/kg dm). The most contaminated samples were compost, anaerobically-digested sludge, lagoon sludge and aerobically-digested sludge samples, which contained NPE concentrations in the ranges 44-962 mg/kg dm, 8-669 mg/kg dm, 27-319 mg/kg dm and 61-282 mg/kg dm, respectively. Risk quotients, expressed as the ratios between environmental concentrations and the predicted no-effect concentrations, were higher than 1 for NP, NP1EO and NP2EO in the 99%, 92% and 36% of the studied samples, respectively; and higher than 1 in the 86%, 6% and 2%, respectively, after sludge application to soil, leading to a significant ecotoxicological risk mainly due to the presence of NP. PMID:19896162

  13. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.

    PubMed

    Ongen, Atakan; Ozcan, H Kurtulus; Arayıcı, Semiha

    2013-12-15

    This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. PMID:23608748

  14. OXYGEN UTILIZATION IN ACTIVATED SLUDGE PLANTS: SIMULATION AND MODEL CALIBRATION

    EPA Science Inventory

    The objective of the research described in the report is to apply recent advances in activated sludge process modeling to the simulation of oxygen utilization rates in full scale activated sludge treatment plants. This is accomplished by calibrating the International Association ...

  15. NASA Bioreactors Advance Disease Treatments

    NASA Technical Reports Server (NTRS)

    2009-01-01

    the body. Experiments conducted by Johnson scientist Dr. Thomas Goodwin proved that the NASA bioreactor could successfully cultivate cells using simulated microgravity, resulting in three-dimensional tissues that more closely approximate those in the body. Further experiments conducted on space shuttle missions and by Wolf as an astronaut on the Mir space station demonstrated that the bioreactor s effects were even further expanded in space, resulting in remarkable levels of tissue formation. While the bioreactor may one day culture red blood cells for injured astronauts or single-celled organisms like algae as food or oxygen producers for a Mars colony, the technology s cell growth capability offers significant opportunities for terrestrial medical research right now. A small Texas company is taking advantage of the NASA technology to advance promising treatment applications for diseases both common and obscure.

  16. An energy- and resource-saving technology for utilizing the sludge from thermal power station water treatment facilities

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Khusaenova, A. Z.

    2014-05-01

    A method for utilizing production wastes is considered, and a process circuit arrangement is proposed for utilizing a mixture of activated silt and sludge from chemical water treatment by incinerating it with possible heat recovery. The sorption capacity of the products from combusting a mixture of activated silt and sludge with respect to gaseous emissions is experimentally determined. A periodic-duty adsorber charged with a fixed bed of sludge is calculated, and the heat-recovery boiler efficiency is estimated together with the technical-economic indicators of the proposed utilization process circuit arrangement.

  17. Primary Treatment and Sludge Digestion Workshop. Second Edition (Revised).

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to upgrade the knowledge of experienced wastewater treatment plant operators. Each of the sixteen lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. The body of the text provides content information, procedure outlines,…

  18. Effect of wastewater treatment processes on the pyrolysis properties of the pyrolysis tars from sewage sludges

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Xie, Li-Ping; Li, Xin-Yu; Dai, Xiao-Hong; Fei, Xue-Ning; Jiang, Yuan-Guang

    2011-06-01

    The pyrolysis properties of five different pyrolysis tars, which the tars from 1# to 5# are obtained by pyrolyzing the sewage sludges of anaerobic digestion and indigestion from the A2/O wastewater treatment process, those from the activated sludge process and the indigested sludge from the continuous SBR process respectively, were studied by thermal gravimetric analysis at a heating rate of 10 °C/min in the nitrogen atmosphere. The results show that the pyrolysis processes of the pyrolysis tars of 1#, 2#, 3# and 5# all can be divided into four stages: the stages of light organic compounds releasing, heavy polar organic compounds decomposition, heavy organic compounds decomposition and the residual organic compounds decomposition. However, the process of 4# pyrolysis tar is only divided into three stages: the stages of light organic compounds releasing, decomposition of heavy polar organic compounds and the residual heavy organic compounds respectively. Both the sludge anaerobic digestion and the "anaerobic" process in wastewater treatment processes make the content of light organic compounds in tars decrease, but make that of heavy organic compounds with complex structure increase. Besides, both make the pyrolysis properties of the tars become worse. The pyrolysis reaction mechanisms of the five pyrolysis tars have been studied with Coats-Redfern equation. It shows that there are the same mechanism functions in the first stage for the five tars and in the second and third stage for the tars of 1#, 2#, 3# and 5#, which is different with the function in the second stage for 4# tar. The five tars are easy to volatile.

  19. Fate and removal of permethrin by conventional activated sludge treatment.

    PubMed

    Santos, A; Reif, R; Hillis, P; Judd, S J

    2011-01-01

    The fate and removal of permethrin during conventional wastewater treatment were evaluated at pilot-plant scale at different concentrations of mixed liquor suspended solids (MLSS) and, hence, different solids retention times (SRT). At feed concentrations of 0.26-0.86 microg L(-1), the permethrin was removed by primary treatment at an efficiency rate of 37%, similar to previously reported data, and from 40% to 83% for secondary treatment, decreasing with decreasing SRT. Comparable ranges, from 37% up to 98%, have been reported for micropollutants with similar physicochemical properties to permethrin, such as galaxolide and tonalide. Little difference in removal was noted between the medium and low MLSS concentrations trials, the main difference in treated effluent permethrin concentration arising on changing from high to medium MLSS levels. This was attributed to the limited acclimatization period employed in these two trials, leading to higher levels of soluble organic matter in the treated water, with which the permethrin appeared to be associated. PMID:21970178

  20. [Effects of Hydrothermal Treatment Time on the Transformations of N, P, K and Heavy Metals in Sewage Sludge].

    PubMed

    Wang, Xing-dong; Lin, Jing-jiang; Li, Zhi-wei; Chao, Huan-ping; Yu, Guang-wei; Wang, Yin

    2016-03-15

    Hydrothermal treatment (HTT) of sewage sludge was conducted, focusing on the influence of HTT time on the dewaterability of sludge and transformations of elements N, P, K and heavy metals. The results showed that at a hydrotherma temperature of 160°C, with HTT time increasing from 30 to 120 min, the sludge dewatering performance was significantly improved. The transfer rate of N element in the sludge transferring to aqueous product increased gradually. Almost all of P element remained in the solid phase, and most of K element (57%-62%) was still in the solid phase although it was more easily transferred to the liquid phase than P element. The transferring behavior of heavy metals during the HTT related to their own properties, and their transferring behaviors were different with the increase of HTT time. Compared with the raw sludge, the contents of Cu, Zn, Cr and Pb in the dewatered sludge increased significantly, As increased slowly, while Ni and Cd were first lower than those in raw sludge, and then increased with the prolonging HTT time. PMID:27337899

  1. Characteristic of the sludge from the wastewater treatment plants near Varna city and possibilities for use in agriculture.

    PubMed

    Marinova-Garvanska, S

    2005-01-01

    During the last few years numerous stations were built for purification of wastewaters in the country. Such a station was opened in Varna town on the Black sea cost. At purification of wastewaters a huge amount of sludge is received. The sludge is accumulated in the WWTP premises, thus hampering its functioning and polluting the environment. The aim of this investigation was to determine the chemical characteristics of the sludge from this station, considering the different modes of treatment: the sludge compactor and the drying beds after some stay. With the sludge from Varna Purification station a pot experiment was set to determine at what levels of loading with sludge the soils differ from each other by the biomass yield and heavy metals content. During the experiment two crops were grown: rape-fodder and rye-grass harvested in two cuts to follow the effects of the sludge use and the post effect in controlled conditions. The experiment was carried out on four soil units: Calcareous Chernozem, Leached Smolnitsa, Leached Cinnamonic Forest soil and Grey Forest soil (Calcic Chernozem, Haplic Vertisol, and two Chromic Luvisols from South and North Bulgaria, respectively). PMID:16114620

  2. Continuous flow aerobic granular sludge reactor for dairy wastewater treatment.

    PubMed

    Bumbac, C; Ionescu, I A; Tiron, O; Badescu, V R

    2015-01-01

    The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100-500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81-93% and 85-94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH(+)(4) was nitrified with removal efficiencies of 83-99% while the nitrate produced was simultaneously denitrified - highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3-76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L. PMID:25714645

  3. Cost-effective treatment of organic sludges in a high rate bioreactor

    SciTech Connect

    Dhuldhoya, N.; Lemen, J.; Martin, B.; Myers, J.

    1996-12-31

    The design and pilot testing of a deep fixed bed/attached growth high rate bioreactor (HRB) for treatment and disposal of refinery oily sludges and biosolids are described. The HRB technology is being jointly developed by Texaco Inc. and Stone & Webster Engineering Corporation to allow for the processing of refinery oily sludges, biosolids, and contaminated soils. A key feature of the technology is its integral combination of dewatering, landfarming, and digestion operations. In essence, the technology operates as a combination of landfarm, aerobic digester, and trickling filter for semi-solids/sludges. The system provides biological degradation of wastes, and features optimal air, water and/or solids recycling, and easy of maintenance. The technology is covered by three separate patents and is particularly applicable at facilities where regulations, climatic conditions, and/or land availability limit the use of conventional land-based units. This paper reviews current and proposed regulations pertaining to {open_quotes}land-banned{close_quotes} wastes, and presents our experience with regard to design and operation of the prototype unit. 6 refs., 4 figs., 3 tabs.

  4. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale.

    PubMed

    Morgan-Sagastume, F; Hjort, M; Cirne, D; Gérardin, F; Lacroix, S; Gaval, G; Karabegovic, L; Alexandersson, T; Johansson, P; Karlsson, A; Bengtsson, S; Arcos-Hernández, M V; Magnusson, P; Werker, A

    2015-04-01

    A pilot-scale process was operated over 22 months at the Brussels North Wastewater Treatment Plant (WWTP) in order to evaluate polyhydroxyalkanoate (PHA) production integration with services of municipal wastewater and sludge management. Activated sludge was produced with PHA accumulation potential (PAP) by applying feast-famine selection while treating the readily biodegradable COD from influent wastewater (average removals of 70% COD, 60% CODsol, 24% nitrogen, and 46% phosphorus). The biomass PAP was evaluated to be in excess of 0.4gPHA/gVSS. Batch fermentation of full-scale WWTP sludge at selected temperatures (35, 42 and 55 °C) produced centrate (6-9.4 gCODVFA/L) of consistent VFA composition, with optimal fermentation performance at 42 °C. Centrate was used to accumulate PHA up to 0.39 gPHA/gVSS. The centrate nutrients are a challenge to the accumulation process but producing a biomass with 0.5 gPHA/gVSS is considered to be realistically achievable within the typically available carbon flows at municipal waste management facilities. PMID:25638407

  5. Evaluation of granular sludge for secondary treatment of saline municipal sewage.

    PubMed

    van den Akker, Ben; Reid, Katherine; Middlemiss, Kyra; Krampe, Joerg

    2015-07-01

    This study examined the impact of chemical oxygen demand (COD) loading and dissolved oxygen (DO) concentration on the stability and performance of granular sludge treating high saline municipal sewage. Under high DO concentrations of 4.0-7.0 mg/L, and COD loading rates of 0.98 and 1.55 kg/m(3)/d, rapid settling granules were established within four weeks of start-up. Under the highest COD load, a reduction in DO lead to the rapid deterioration of the sludge volume index (SVI) and washout of granules due to prolific growth of the filament Thiothrix Type 021N. Conversely, when operated under a lower COD load, a reduction in DO concentration had no adverse impact on the stability of SVI and granules. A decrease in DO also improved nitrogen removal performance, where simultaneous removal of ammonium (98%), total nitrogen (86%) and BOD5 (98%) were achieved when median DO concentrations were between 1.0 and 1.5 mg/L. Phosphate removal was lower than expected, however the level of biological phosphate removal activity observed appeared sufficient to maintain granule stability, even under low DO concentrations. Nitrous oxide emissions were also characterised, which ranged between 2.3 and 6.8% of the total nitrogen load. Our results confirmed that granular sludge is a viable option for the treatment of saline sewage. PMID:25897508

  6. Oxidative and thermo-oxidative co-treatment with anaerobic digestion of excess municipal sludge.

    PubMed

    Cacho Rivero, J A; Madhavan, N; Suidan, M T; Ginestet, P; Audic, J M

    2005-01-01

    The effect of oxidative and thermo-oxidative co-treatment of excess municipal sludge was investigated. A mixture of primary and waste activated sludge was anaerobically treated using two different configurations: i) two stages and ii) a single stage with recycling. Oxidative or thermo-oxidative co-treatment placed in between the reactor or in the recycle line was studied. A two-stage configuration with no co-treatment served as a control and resulted in 50.1% overall solids removal. Compared to the control, an increase in solids removal of 10.8 and 2.7% was observed when oxidative co-treatment was placed between reactors and in the recycle line respectively. When thermo-oxidative co-treatment was placed between the two stages or in the recycle line an increase in solids removal of 25.1 and 26.9% respectively was observed. The performances of the different configurations were also evaluated with parameters such as COD, TKN, ammonia, and fecal coliform concentration. PMID:16180434

  7. A review and assessment of emerging technologies for the minimization of excess sludge production in wastewater treatment plants.

    PubMed

    Andreottola, Gianni; Foladori, Paola

    2006-01-01

    This paper focuses on the most promising technologies, available for full-scale applications, aimed to the on-site reduction of the excess sludge produced in municipal wastewater treatment plants. New techniques are added to the conventional stages of wastewater treatment, both integrated in the activated sludge bioreactors or applied as pretreatment for the enhancement of anaerobic digestion. A concise review about the alternatives based on physical, chemical or biological mechanisms is described. The present work highlights the efficiency of two such techniques, sonolysis and alkaline thermolysis integrated on the return flow from the secondary settler into the activated sludge bioreactors. The investigation on the effect of sonolysis and alkaline thermolysis on activated sludge samples was carried out by evaluating the COD concentration released in soluble and colloidal form and biodegradability measured by respirometry. The physicochemical treatments of sludge have several advantages (easy management, stability in performances and flexibility), but are associated with high operational costs that often limit the wide-scale applications. The application of hybrid methods, that couple almost two techniques for the enhancement of efficiency with respect to a single one, could optimise the sludge reduction, giving a significant saving in energy consumption for large-scale operations, but further research is needed. PMID:16849131

  8. [Nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants in Beijing region].

    PubMed

    Bai, Li-Ping; Qi, Hong-Tao; Fu, Ya-Ping; Li, Ping

    2014-12-01

    Changes of nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants (as represented by CSS-A and CSS-B, respectively) in Beijing region were investigated. The results showed that the pH values, nutrient contents, trace elements and heavy metals in CSS-A and CSS-B depended on the sludge resources and particular years. The average of organic matter content in different years (203 338.0 mg x kg(-1)) from CSS-A met both the requirement of sludge quality standard for agricultural use (CJ/T 309-2009) and land improvement (GB/T 24600-2009) in China except the permitted limit of sludge quality standards for garden or park use (GB/T 23486-2009) in China. Moreover, the average of organic matter in different years (298531.5 mg x kg(-1)) from CSS-B and the averages of pH values (7.1 and 7.2, respectively) and NPK concentrations (41 111.7 mg x kg(-1) and 65 901.5 mg x kg(-1), respectively) in different years from CSS-A and CSS-B all met the requirements of sludge quality standards for the above-mentioned disposal types of sewage sludge from municipal wastewater treatment plants. The contents of heavy metals in CSS-A and CSS-B except Hg and Ni were below the permitted limits of the A-class sludge quality standard for agricultural use (CJ/T 309-2009) , being the most stringent standards in China. It was suggested that composted sewage sludge from different municipal wastewater treatment plants in Beijing region use as a fertilizer in agriculture, land improvement, and garden or park, but the top concern about potential environmental pollution of Hg and Ni should be considered. PMID:25826937

  9. Effectiveness of irradiation in killing pathogens. [Treatment of sewage sludge for land application

    SciTech Connect

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges.

  10. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Song, Geum-Ju; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2014-02-01

    Studies on the occurrence of polybrominated diphenyl ethers (PBDEs) and other alternative brominated flame retardants in the environment are scarce. In this study, PBDEs and non-PBDE brominated flame retardants (NBFRs), including decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), were measured in sludge collected from three types of wastewater treatment plants (WWTPs) in Korea. Total concentrations of PBDEs (∑PBDE) in sludge ranged from 298 to 48,000 (mean: 3240) ng/g dry weight. Among 10 NBFRs analyzed, DBDPE and BTBPE were the only ones detected in sludge samples. Concentrations of DBDPE and BTBPE ranged from sludge were higher than those reported in other countries. The highest concentrations of ∑PBDE and DBDPE were found in sludge samples originated from industrial-WWTPs (I-WWTPs), suggesting that industrial activities are a major source of these contaminants. Non-parametric multidimensional scaling ordination showed that congener profiles of PBDEs in sludge are dependent on the types of WWTPs. Almost all sludge samples contained a low ratio (mean: 0.18) of DBDPE/BDE 209, indicating an on-going contamination by PBDEs in Korea. However, the high ratios (>1) of DBDPE/BDE 209 were found in sludge from I-WWTPs, reflecting a shift in the usage pattern of BFRs by the Korean industry. The nationwide annual emission fluxes of ∑PBDE, DBDPE and BTBPE via WWTPs to the environment were estimated to be 7400, 480, and 3.7 kg/year, respectively. This is the first study on the occurrence of alternative brominated flame retardants in sludge from Korea. PMID:23993837

  11. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report

    SciTech Connect

    Wittle, J.K.; Pamukcu, S.

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

  12. Determination of alkylphenols and alkylphenol ethoxylates in sewage sludge: effect of sample pre-treatment.

    PubMed

    Fernández-Sanjuan, María; Rigol, Anna; Sahuquillo, Angels; Rodríguez-Cruz, Sonia; Lacorte, Silvia

    2009-07-01

    A complete characterization of sewage sludge collected from five biological waste water treatment plants was done to determine physico-chemical parameters, heavy metals and alkylphenols, making special emphasis on sampling, homogenization, and sample pre-treatment. Ultrasonic extraction followed by gas chromatrography coupled with mass spectrometry was used to evaluate the effect of sample pre-treatment (untreated sample, freeze-drying, drying at 40 degrees C or drying at 100 degrees C) on the concentration of octylphenol (OP), nonylphenol (NP) and nonylphenol ethoxylates (NP1EO, NP2EO). Untreated samples and samples dried at 100 degrees C gave concentration levels up to 62% and 89% lower, respectively, than freeze-dried samples. In 50% of cases, freeze-dried samples led to significantly higher concentrations than those obtained by drying at 40 degrees C. Thus, freeze-drying is the recommended sample pre-treatment to prevent possible losses of OP, NP, and NP1EO. Using this methodology, concentrations detected were from 3.2 to 199 mg kg(-1) being NP followed by NP1EO found in highest concentration. The total concentration of NP and NP1EO exceeded the limit of 50 mg kg(-1) proposed by the draft European directive on sewage sludge in three out of five samples studied. Contrarily, heavy metals were below the legislated values. PMID:19305980

  13. A review of the technological solutions for the treatment of oily sludges from petroleum refineries.

    PubMed

    da Silva, Leonardo Jordão; Alves, Flávia Chaves; de França, Francisca Pessôa

    2012-10-01

    The activities of the oil industry have several impacts on the environment due to the large amounts of oily wastes that are generated. The oily sludges are a semi-solid material composed by a mixture of clay, silica and iron oxides contaminated with oil, produced water and the chemicals used in the production of oil. Nowadays both the treatment and management of these waste materials is essential to promote sustainable management of exploration and exploitation of natural resources. Biological, physical and chemical processes can be used to reduce environmental contamination by petroleum hydrocarbons to acceptable levels. The choice of treatment method depends on the physical and chemical properties of the waste as well as the availability of facilities to process these wastes. Literature provides some operations for treatment of oily sludges, such as landfilling, incineration, co-processing in clinkerization furnaces, microwave liquefaction, centrifugation, destructive distillation, thermal plasma, low-temperature conversion, incorporation in ceramic materials, development of impermeable materials, encapsulation and biodegradation in land farming, biopiles and bioreactors. The management of the technology to be applied for the treatment of oily wastes is essential to promote proper environmental management, and provide alternative methods to reduce, reuse and recycle the wastes. PMID:22751947

  14. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow. PMID:23073101

  15. Stepwise calibration of the activated sludge model no. 1 at a partially denitrifying large wastewater treatment plant.

    PubMed

    Fall, C; Espinosa-Rodriguez, M A; Flores-Alamo, N; van Loosdrecht, M C M; Hooijmans, C M

    2011-11-01

    Activated sludge modeling technology is maturing; however, currently, there exists a great need to increase its use in daily engineering practice worldwide. A good way for building the capacities of the practitioners is to promote good modeling practices and standardize the protocols. In this study, a systematic procedure was proposed to calibrate the Activated Sludge Model No. 1 (ASM1) at a large wastewater treatment plant, by which the model adequately predicted the quality of the effluent and the sludge quantities. A hydraulics model was set up and validated through a tracer test. The Vesilind settling constants were measured and combined with the default value of the flocculent zone settling parameter, to calibrate the clarifiers. A virtual anoxic tank was installed in the return activated sludge to mimic the denitrification occurring in the settlers. In ASM1, the calibrated parameters were only two influent chemical oxygen demand fractions and one kinetic constant (oxygen half-saturation coefficient). PMID:22195426

  16. Degradation of aromatic amines in textile-dyeing sludge by combining the ultrasound technique with potassium permanganate treatment.

    PubMed

    Liang, Jieying; Ning, Xun-An; An, Taicheng; Sun, Jian; Zhang, Yaping; Wang, Yujie

    2016-08-15

    This paper reports, for the first time, a combined technique of ultrasound (US) with KMnO4 degradation of aromatic amines in a textile-dyeing sludge. The reaction mechanisms and the degradation kinetics of aromatic amines at various operating parameters (KMnO4 dosage, US power density and pH) were systematically examined by the combined system of US-KMnO4. The results indicated that there was a synergistic effect between US and KMnO4, as US greatly enhanced KMnO4 in the degradation of aromatic amines and exhibited apparent sludge disintegration and separated pollutants from the sludge. In addition to accelerating the Mn(VII) reaction with pollutants in the filtrate, US also caused Mn(VII) to enter the porous sludge and sufficiently facilitated the reaction of the strongly absorbed aromatic amines. The combined treatment of US-KMnO4 was effective in the degradation of aromatic amines in textile-dyeing sludge. On average, 58.7% of monocyclic anilines, 88.3% of other forms of aromatic amines, and 24.0% of TOC were removed under the optimal operating conditions of a KMnO4 dosage of 12mM, an US power density of 1.80W/cm(3) and pH 5. The present study proposed US-KMnO4 treatment as a practical method for the disposal of aromatic amines in textile-dyeing sludge. PMID:27107230

  17. Occurrence and distribution of organophosphate triesters and diesters in sludge from sewage treatment plants of Beijing, China.

    PubMed

    Gao, Lihong; Shi, Yali; Li, Wenhui; Liu, Jiemin; Cai, Yaqi

    2016-02-15

    The occurrence and distribution of 14 organophosphate (OP) triesters and 5 diesters were investigated in sludge from eight sewage treatment plants (STPs) in Beijing, China, during 2008-2014. Tri(2-ethylhexyl) phosphate (TEHP) and tri-m-cresyl phosphate (TCrP) were the predominant triesters with the average concentration of 233-137 μg/kg, respectively. Also, the polar and hydrophilic trimethyl phosphate (TMP) and triethyl phosphate (TEP) were detected in 19% and 74% of sludge samples, respectively. Three of five diesters were detected in sludge samples, and di(2-ethylhexyl) phosphate (DEHP) revealed the highest average concentration of 96.0 μg/kg, followed by diphenyl phosphate (DPhP, 18.0 μg/kg). The levels of OP triesters in sludge varied with the compositions of the sewage and treatment capacity of STPs, as well as the adjacent sources. In comparison with that in the former years, relatively higher concentration of total OP triesters in sludge was observed in 2014, which is consistent with the rapid growth in consumption of these chemicals in China. Finally, environmental risk assessment indicated potential harmful effects of OP triesters on soil microorganisms after sludge landfill or fertilization. PMID:26657359

  18. Partial ozonation pre-treatment for sludge solubilization and simultaneous degradation of bisphenol A: quantification studies.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2012-12-01

    Ozonation pre-treatment was investigated for the enhancement of sludge solids and organic matter solubilization and simultaneous degradation of bisphenol A (BPA), an endocrine disruptor compound from wastewater sludge (WWS). The ultrafast method (15 s per sample) used for the analysis of BPA in WWS is based on Laser Diode Thermal Desorption/Atmospheric Pressure Chemical Ionization coupled to tandem Mass Spectrometry. The statistical methods used for optimization studies comprised the response surface method with fractional factorial designs and central composite designs. The ozonation pre-treatment process was carried out with four independent variables, namely WWS solids concentration (15-35 g l(-1)), pH (5-7), ozone dose (5-25 mg g(-1) SS) and ozonation time (10-30 min). It was observed that among all the variables studied, ozone dose had more significantly (probability (p) < 0.001) affected the efficiency of the ozonation pre-treatment by increasing sludge solids (suspended solids (SS) and volatile solids) solubilization and organic matter (soluble chemical oxygen demand and soluble organic carbon) increment and BPA degradation from WWS. During the optimization process, it was found that higher BPA degradation (100%) could be obtained with 24 g l(-1) SS, 6.23 pH with an ozone dose of 26.14 mg g(-1) SS for 16.47 min ozonation time. The higher ozone dose used in this study was observed to be cost effective on the basis of solids and organic matter solubilization and degradation of BPA. PMID:23437671

  19. Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation.

    PubMed

    Anastasi, Antonella; Spina, Federica; Romagnolo, Alice; Tigini, Valeria; Prigione, Valeria; Varese, Giovanna Cristina

    2012-11-01

    A combined biological process was investigated for effective textile wastewater treatment. The process consisted of a first step performed by selected fungal biomasses, mainly devoted to the effluent decolourisation, and of a subsequent stage by means of activated sludge, in order to reduce the remaining COD and toxicity. In particular, the treatment with Trametes pubescens MUT 2400, selected over nine strains, achieved very good results in respect to all parameters. The final scale-up phase in a moving bed bioreactor with the supported biomass of the fungus allowed to verify the effectiveness of the treatment with high volumes. Despite promising results, further steps must be taken in order to optimize the use of these biomasses for a full exploitation of their oxidative potential in textile wastewater treatment. PMID:22940306

  20. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.

    PubMed

    Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

    2014-07-01

    Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 μg/capita/day, followed by sucralose (117 μg/capita/day), acesulfame (90 μg/capita/day), and saccharin (66μg/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 μg/capita/day) and analgesics (acetaminophen: 59 μg/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge. PMID:24695211

  1. Polycyclic aromatic hydrocarbon removal from petroleum sludge cake using thermal treatment with additives.

    PubMed

    Pakpahan, Edward Nixon; Isa, Mohamed Hasnain; Kutty, Shamsul Rahman Mohamed; Chantara, Somporn; Wiriya, Wan

    2013-01-01

    Petroleum sludge is a hazardous waste that contains various organic compounds including polycyclic aromatic hydrocarbons (PAHs) which have carcinogenic-mutagenic and toxic characteristics. This study focuses on the thermal treatment (indirect heating) of petroleum sludge cake for PAH degradation at 250, 450, and 650 degrees C using Ca(OH)2 + NaHCO3 as an additive. The treatment was conducted in a rotary drum electric heater. All experiments were carried out in triplicate. Concentrations of the 16 priority PAHs in gas (absorbed on Amberlite XAD-4 adsorbent), particulate (on quartz filter) and residue phases were determined using gas chromatography-mass spectrometry (GC-MS). The samples were extracted with acetonitrile by ultra-sonication prior to GC-MS analysis. The use of additive was beneficial and a temperature of 450 degrees C was suitable for PAH degradation. Low levels of PAH emissions, particularly carcinogenic PAH and toxic equivalent concentration (sigma TEC), were observed in gas, particulate and residue phases after treatment. PMID:23530354

  2. Treatment of advanced Parkinson’s disease

    PubMed Central

    Giugni, Juan C.; Okun, Michael S.

    2014-01-01

    Purpose of the review Later stage Parkinson’s disease (PD), sometimes referred to as advanced disease, has been characterized by motor complication, as well as by the potential emergence non-levodopa responsive motor and non-motor symptoms. The management of advanced stage PD can be complex. This review summarizes the currently available treatment strategies for addressing advanced PD. Recent findings We will discuss the latest pharmacological strategies (e.g. inhibitors of dopamine-metabolizing enzymes, dopamine agonists and extended release dopamine formulations) for addressing motor dysfunction. We will summarize the risks and benefits of current invasive treatments. Finally, we will address the current evidence supporting the treatment of non-motor symptoms in the advanced PD patient. We will conclude by detailing the potential non-pharmacological and multidisciplinary approaches for advanced stage PD. Summary The optimization of levodopa is in most cases the most powerful therapeutic option available, however medication optimization requires an advanced understanding of PD. Failure of conventional pharmacotherapy, should precipitate a discussion of the potential risks and benefits of more invasive treatments. Currently, there are no comparative studies of invasive treatment. Among the invasive treatments, deep brain stimulation has the largest amount of existing evidence, but also has the highest individual per patient risk. Non-motor symptoms will affect quality of life more than the motor PD symptoms, and these non-motor symptoms should be aggressively treated. Many advanced PD patients will likely benefit from multi- and interdisciplinary PD teams with multiple professionals collaborating to develop a collective and tailored strategy for an individual patient. PMID:24978634

  3. Innovative sludge stabilization method

    SciTech Connect

    Riggenbach, J.D.

    1995-06-01

    Sludge is generated in many water and wastewater treatment processes, both biological and physical/chemical. Examples include biological sludges from sanitary and industrial wastewater treatment operations and chemical sludges such as those produced when metals are removed from metal plating wastewater. Even some potable water plants produce sludge, such as when alum is used as a flocculating agent to clarify turbid water. Because sludge is produced from such a variety of operations, different techniques have been developed to remove water from sludges and reduce the sludge volume and mass, thus making the sludge more suitable for recovery or disposal. These techniques include mechanical (e.g., filter presses), solar (sludge drying beds), and thermal. The least expensive of these methods, neglecting land costs, involves sludge drying beds and lagoons. The solar method was widely used in sewage treatment plants for many years, but has fallen in disfavor in the US; mechanical and thermal methods have been preferred. Since environmental remediation often requires managing sludges, this article presents a discussion of a variation of sludge lagoons known as evaporative sludge stabilization. Application of this process to the closure of two 2.5 acre (10117 m{sup 2}) hazardous waste surface impoundments will be discussed. 1 ref., 2 figs.

  4. K West Basin sludge volume estimates for integrated water treatment system

    SciTech Connect

    Pitner, A.L.

    1998-08-19

    This document provides estimates of the volume of sludge (1) expected from Integrated Process Strategy (IPS) processing of the fuel elements and (2) in the fuel storage canisters in K West Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of KE canister sludge density. Revision 1 revised the volume estimates of sludge based on additional data from evaluations of material from the KW Basin fuel subsurface examinations and KW canister sludge characterization data. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KW Basin.

  5. Advances and Challenges in Treatment of Locally Advanced Rectal Cancer

    PubMed Central

    Smith, J. Joshua; Garcia-Aguilar, Julio

    2015-01-01

    Dramatic improvements in the outcomes of patients with rectal cancer have occurred over the past 30 years. Advances in surgical pathology, refinements in surgical techniques and instrumentation, new imaging modalities, and the widespread use of neoadjuvant therapy have all contributed to these improvements. Several questions emerge as we learn of the benefits or lack thereof for components of the current multimodality treatment in subgroups of patients with nonmetastatic locally advanced rectal cancer (LARC). What is the optimal surgical technique for distal rectal cancers? Do all patients need postoperative chemotherapy? Do all patients need radiation? Do all patients need surgery, or is a nonoperative, organ-preserving approach warranted in selected patients? Answering these questions will lead to more precise treatment regimens, based on patient and tumor characteristics, that will improve outcomes while preserving quality of life. However, the idea of shifting the treatment paradigm (chemoradiotherapy, total mesorectal excision, and adjuvant therapy) currently applied to all patients with LARC to a more individually tailored approach is controversial. The paradigm shift toward organ preservation in highly selected patients whose tumors demonstrate clinical complete response to neoadjuvant treatment is also controversial. Herein, we highlight many of the advances and resultant controversies that are likely to dominate the research agenda for LARC in the modern era. PMID:25918296

  6. HANDLING AND DISPOSAL OF SLUDGES FROM COMBINED SEWER OVERFLOW TREATMENT: PHASE I CHARACTERIZATION (EPA/600/2-77/053A)

    EPA Science Inventory

    This report summarizes the results of a characterization and treatment test program undertaken to develop optimum means of handling and disposal of residual sludges from combined sewer overflow (CSO) treatment systems. Desk top engineering reviews were also conducted to gather, a...

  7. Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2013-09-01

    Wastewater treatment systems are increasingly designed for the recovery of valuable chemicals and energy in addition to waste stream disposal. Herein, the life-cycle energy production and emissions mitigation of a typical domestic wastewater treatment system were assessed, in which different combinations of biogas use and sludge processing lines for industrial or household applications were considered. The results suggested that the reuse of biogas and sludge was so important in the system's overall energy balance and environmental performance that it may offset the cost in the plant's installation and operation. Combined heat and power and household utilization were two prior options for net energy production, provided an ideal power conversion efficiency and biogas production. The joint application of household biogas use and sludge nutrient processing achieved both high net energy production and significant environmental remediation across all impact categories, representing the optimal tradeoff for domestic wastewater treatment. PMID:23880131

  8. Activated sludge as substrate for sulfate-reducing bacteria in acid mine drainage treatment

    SciTech Connect

    Al-Ani, W.A.G.; Henry, J.G.; Prasad, D.

    1996-11-01

    Acid mine drainage (AMD), characterized by high concentrations of sulfates and heavy metals and low pH, presents a potential hazard to the environment.Several treatment processes (chemical precipitation, ion exchange, reverse osmosis, electrodialysis and electrolytic recovery) are available, but these are often too expensive. Biological treatment of AMD, mediated by sulfate-reducing bacteria (SRB), seems promising. The objective of this study was to use activated sludge as a carbon source for the SRB and determine the most effective COD/sulfate ratio and hydraulic retention time (HRT) for reducing sulfate. Such information would be useful for the application of the proposed two-stage system to AMD treatment. Since the aim of this study was to obtain sulfate reduction and to avoid methane production, it was decided to operate the digesters initially at low COD/SO{sub 4}{sup 2{minus}} ratios of 1.0, 1.5, and 2.0.

  9. Efficient Phosphorus Cycling in Food Production: Predicting the Phosphorus Fertilization Effect of Sludge from Chemical Wastewater Treatment.

    PubMed

    Falk Øgaard, Anne; Brod, Eva

    2016-06-22

    This study examined the P fertilization effects of 11 sewage sludges obtained from sewage treated with Al and/or Fe salts to remove P by a pot experiment with ryegrass (Lolium multiflorum) and a nutrient-deficient sand-peat mixture. Also it investigated whether fertilization effects could be predicted by chemical sludge characteristics and/or by P extraction. The mineral fertilizer equivalent (MFE) value varied significantly but was low for all sludges. MFE was best predicted by a negative correlation with ox-Al and ox-Fe in sludge, or by a positive correlation with P extracted with 2% citric acid. Ox-Al had a greater negative impact on MFE than ox-Fe, indicating that Fe salts are preferable as a coagulant when aiming to increase the plant availability of P in sludge. The results also indicate that sludge liming after chemical wastewater treatment with Al and/or Fe salts increases the P fertilization effect. PMID:27245702

  10. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida.

    PubMed

    Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin

    2016-04-01

    Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida. PMID:26755173

  11. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.

    PubMed

    Stemann, Jan; Peplinski, Burkhard; Adam, Christian

    2015-11-01

    Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000°C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P>2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash - an explanation for which clear evidence is provided for the first time. PMID:26219587

  12. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    PubMed

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge. PMID:27054741

  13. Anaerobic treatment of activated sludge from Swedish pulp and paper mills--biogas production potential and limitations.

    PubMed

    Karlsson, Anna; Truong, Xu-Bin; Gustavsson, Jenny; Svensson, Bo H; Nilsson, Fredrik; Ejlertsson, Jörgen

    2011-10-01

    The methane potential of activated sludge from six Swedish pulp and paper mills was evaluated. The methane production potential of sludge samples ranged from 100-200 NmL CH4 g(-1) volatile solids (VS) and for four of the six sludge samples the potential exceeded 170 NmL CH4 g(-1) VS. The effects of sludge age and dewatering on the methane production potential were evaluated. The effects of enzymatic and ultrasonic pre-treatment on the digestibility of sludge were also investigated, but energy or enzyme inputs in viable ranges did not exert a detectable, positive effect. Long-term, semi-continuous trials with sludge from two of the mills were also conducted in attempts to develop stable biogas production at loading rates up to 4 g VS L(-1). Cobalt addition (0.5 mg L(-1)) was here found to positively affect the turnover of acetate. High viscosity was a problem in all the experimental reactors and this limited the organic loading rate. PMID:22329147

  14. Development of alum sludge-based constructed wetland: an innovative and cost effective system for wastewater treatment.

    PubMed

    Zhao, Y Q; Babatunde, A O; Zhao, X H; Li, W C

    2009-07-01

    This article describes a research attempt to integrate the dewatered alum sludge, a residual by-product of drinking water treatment process, into a constructed wetland (CW) system for the purpose of enhancing the wastewater treatment performance, thus developing a so called alum sludge-based constructed wetland system. A multi-dimensional research project including the batch tests of phosphorus (P) adsorption onto alum sludge followed by the model CWs trials of single and multi-stage CWs, has been conducted since 2004. It has been successfully demonstrated that the alum sludge-based CW is capable of enhanced and simultaneous removal of P and organic matter (in terms of BOD5 and COD), particularly from medium and high strength wastewater. The sludge cakes act as the carrier for developing biofilm for organics removal and also serve as adsorbent to enhance P immobilization. Batch P-adsorption tests revealed that the alum sludge tested possesses excellent P-adsorption ability of 14.3 mg-P/g x sludge (in dry solids) at pH 7.0 with the adsorption favored at lower pH. The results obtained in a 4-stage treatment wetland system suggest that high removal efficiencies of 90.4% for COD, 88.0% for BOD5, 90.6% for SS, 76.5% for TN and 91.9% for PO4(3-)-P under hydraulic loading of 0.36 m3/m2 x d can be achieved. The field demonstration study of this pioneering development is now underway. PMID:19731840

  15. Metagenomic analyses reveal phylogenetic diversity of carboxypeptidase gene sequences in activated sludge of a wastewater treatment plant in Shanghai, China.

    PubMed

    Jin, Hao; Li, Bailin; Peng, Xu; Chen, Lanming

    2014-01-01

    Activated sludge of wastewater treatment plants carries a diverse microflora. However, up to 80-90 % of microorganisms in activated sludge cannot be cultured by current laboratory techniques, leaving an enzyme reservoir largely unexplored. In this study, we investigated carboxypeptidase diversity in activated sludge of a wastewater treatment plant in Shanghai, China, by a culture-independent metagenomic approach. Three sets of consensus degenerate hybrid oligonucleotide primers (CODEHOPs) targeting conserved domains of public carboxypeptidases have been designed to amplify carboxypeptidase gene sequences in the metagenomic DNA of activated sludge by PCR. The desired amplicons were evaluated by carboxypeptidase sequence clone libraries and phylogenetic analyses. We uncovered a significant diversity of carboxypeptidases present in the activated sludge. Deduced carboxypeptidase amino acid sequences (127-208 amino acids) were classified into three distinct clusters, α, β, and γ. Sequences belonging to clusters α and β shared 58-97 % identity to known carboxypeptidase sequences from diverse species, whereas sequences in the cluster γ were remarkably less related to public carboxypeptidase homologous in the GenBank database, strongly suggesting that novel carboxypeptidase families or microbial niches exist in the activated sludge. We also observed numerous carboxypeptidase sequences that were much closer to those from representative strains present in industrial and sewage treatment and bioremediation. Thermostable and halotolerant carboxypeptidase sequences were also detected in clusters α and β. Coexistence of various carboxypeptidases is evidence of a diverse microflora in the activated sludge, a feature suggesting a valuable gene resource to be further explored for biotechnology application. PMID:24860282

  16. Life cycle assessment of advanced bioethanol production from pulp and paper sludge.

    PubMed

    Sebastião, Diogo; Gonçalves, Margarida S; Marques, Susana; Fonseca, César; Gírio, Francisco; Oliveira, Ana C; Matos, Cristina T

    2016-05-01

    This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements. PMID:26926202

  17. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. PMID:26439861

  18. Impact of ozone assisted ultrasonication pre-treatment on anaerobic digestibility of sewage sludge.

    PubMed

    Tian, Xinbo; Trzcinski, Antoine Prandota; Lin, Li Leonard; Ng, Wun Jern

    2015-07-01

    Impact of ultrasonication (ULS) and ultrasonication-ozonation (ULS-Ozone) pre-treatment on the anaerobic digestibility of sewage sludge was investigated with semi-continuous anaerobic reactors at solid retention time (SRT) of 10 and 20 days. The control, ULS and ULS-Ozone reactors produced 256, 309 and 348 mL biogas/g CODfed and the volatile solid (VS) removals were 35.6%, 38.3% and 42.1%, respectively at SRT of 10 days. At SRT of 20 days, the biogas yields reached 313, 337 and 393 mL biogas/g CODfed and the VS removal rates were 37.3%, 40.9% and 45.3% in the control, ULS and ULS-Ozone reactors, respectively. ULS-Ozone pre-treatment increased the residual organic amount in the digested sludge. These soluble residual organics were found to contain macromolecules with molecular weights (MW) larger than 500 kDa and smaller polymeric products with MW around 19.4 and 7.7 kDa. These compounds were further characterized to be humic acid-like substances with fluorescent spectroscopy analysis. PMID:26141875

  19. Treatment and disposal of a mixed F006 plating line sludge at the Savannah River Site

    SciTech Connect

    Pickett, J.B.; Musall, J.C.; Martin, H.L.

    1993-05-01

    The Westinghouse Savannah River Company (WSRC), as the operating contractor for the Department of Energy (DOE) at the Savannah River Site (SRS) is implementing a program to treat and stabilize approximately 750,000 gallons of an F006 mixed (radioactive/hazardous) plating line wastewater sludge. The uraniun contaminated sludge resulted from nickel plating of depleted uranium targets, which were subsequently irradiated to produce plutonium for the weapons program. With the end of the ``cold war,`` no virgin plutonium weapons production is forecast, and only the currant SRS inventory of stored mixed plating line waste must be treated and disposed. A Life Cycle Cost analysis was used by WSRC to determine that the most cost effective approach was to treat the waste by a hazardous waste management sub-contractor, in a one time campaign. The analysis indicated that {approximately}$40 million could be saved by this approach, vs. the original plan to construct a permanent SRS treatment facility. The sub-contractor will mobilize treatment equipment will be disposed to on-site SRS disposal vaults. This new approach also required a re-negotiation of a federal facility compliance agreement between the DOE and the Environmental Protection Agency.

  20. Treatment and disposal of a mixed F006 plating line sludge at the Savannah River Site

    SciTech Connect

    Pickett, J.B.; Musall, J.C.; Martin, H.L.

    1993-01-01

    The Westinghouse Savannah River Company (WSRC), as the operating contractor for the Department of Energy (DOE) at the Savannah River Site (SRS) is implementing a program to treat and stabilize approximately 750,000 gallons of an F006 mixed (radioactive/hazardous) plating line wastewater sludge. The uraniun contaminated sludge resulted from nickel plating of depleted uranium targets, which were subsequently irradiated to produce plutonium for the weapons program. With the end of the cold war,'' no virgin plutonium weapons production is forecast, and only the currant SRS inventory of stored mixed plating line waste must be treated and disposed. A Life Cycle Cost analysis was used by WSRC to determine that the most cost effective approach was to treat the waste by a hazardous waste management sub-contractor, in a one time campaign. The analysis indicated that [approximately]$40 million could be saved by this approach, vs. the original plan to construct a permanent SRS treatment facility. The sub-contractor will mobilize treatment equipment will be disposed to on-site SRS disposal vaults. This new approach also required a re-negotiation of a federal facility compliance agreement between the DOE and the Environmental Protection Agency.

  1. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants

    PubMed Central

    McIlroy, Simon Jon; Awata, Takanori; Nierychlo, Marta; Albertsen, Mads; Kindaichi, Tomonori; Nielsen, Per Halkjær

    2015-01-01

    An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH) for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized. PMID:26340564

  2. SLUDGE DEWATERING AND DRYING ON SAND BEDS

    EPA Science Inventory

    Dewatering of water and wastewater treatment sludges was examined through mathematical modeling and experimental work. The various components of the research include: (1) chemical analyses of water treatment sludges, (2) drainage and drying studies of sludges, (3) a mathematical ...

  3. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue.

    PubMed

    Zhu, Suiyi; Fang, Shuai; Huo, Mingxin; Yu, Yang; Chen, Yu; Yang, Xia; Geng, Zhi; Wang, Yi; Bian, Dejun; Huo, Hongliang

    2015-07-15

    Iron sludge, produced from filtration and backwash of groundwater treatment plant, has long been considered as a waste for landfill. In this study, iron sludge was reused to synthesize Fe3O4 magnetic particles (MPs) by using a novel solvothermal process. Iron sludge contained abundant amounts of silicon, iron, and aluminum and did not exhibit magnetic properties. After treatment for 4h, the amorphous Fe in iron sludge was transformed into magnetite Fe3O4, which could be easily separated from aqueous solution with a magnet. The prepared particles demonstrated the intrinsic properties of soft magnetic materials and could aggregate into a size of 1 μm. MPs treated for 10h exhibited excellent magnetic properties and a saturation magnetization value of 9 emu/g. The obtained particles presented the optimal adsorption of methylene blue under mild conditions, and the maximum adsorption capacity was 99.4 mg/g, which was higher than that of granular active carbon. The simple solvothermal method can be used to prepare Fe3O4 MPs from iron sludge, and the products could be applied to treatment of dyeing wastewater. PMID:25804792

  4. 6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants.

    PubMed

    Wang, Ning; Liu, Jinxia; Buck, Robert C; Korzeniowski, Stephen H; Wolstenholme, Barry W; Folsom, Patrick W; Sulecki, Lisa M

    2011-02-01

    The aerobic biotransformation of 6:2 FTS salt [F(CF2)6CH2CH2SO3- K+] was determined in closed bottles for 90d in diluted activated sludge from three waste water treatment plants (WWTPs) to compare its biotransformation potential with that of 6:2 FTOH [F(CF2)6CH2CH2OH]. The 6:2 FTS biotransformation was relatively slow, with 63.7% remaining at day 90 and all observed transformation products together accounting for 6.3% of the initial 6:2 FTS applied. The overall mass balance (6:2 FTS plus observed transformation products) at day 90 in live and sterile treatments averaged 70% and 94%, respectively. At day 90, the stable transformation products observed were 5:3 acid [F(CF2)5CH2CH2COOH, 0.12%], PFBA [F(CF2)3COOH, 0.14%], PFPeA [F(CF2)4COOH, 1.5%], and PFHxA [F(CF2)5COOH 1.1%]. In addition, 5:2 ketone [F(CF2)5C(O)CH3] and 5:2 sFTOH [F(CF2)5CH(OH)CH3] together accounted for 3.4% at day 90. The yield of all the stable transformation products noted above (2.9%) was 19 times lower than that of 6:2 FTOH in aerobic soil. Thus 6:2 FTS is not likely to be a major source of PFCAs and polyfluorinated acids in WWTPs. 6:2 FTOH, 6:2 FTA [F(CF2)6CH2COOH], and PFHpA [F(CF2)6COOH] were not observed during the 90-d incubation. 6:2 FTS primary biotransformation bypassed 6:2 FTOH to form 6:2 FTUA [F(CF2)5CF=CHCOOH], which was subsequently degraded via pathways similar to 6:2 FTOH biotransformation. A substantial fraction of initially dosed 6:2 FTS (24%) may be irreversibly bound to diluted activated sludge catalyzed by microbial enzymes. The relatively slow 6:2 FTS degradation in activated sludge may be due to microbial aerobic de-sulfonation of 6:2 FTS, required for 6:2 FTS further biotransformation, being a rate-limiting step in microorganisms of activated sludge in WWTPs. PMID:21112609

  5. LABORATORY ASSESSMENT OF POTENTIAL HYDROCARBON EMISSIONS FROM LAND TREATMENT OF REFINERY OILY SLUDGES

    EPA Science Inventory

    Volatile organics emissions were characterized when petroleum refinery oily sludges were incorporated in soils under controlled laboratory conditions. The sludges tested included three of the five listed hazardous wastes for the refining industry: dissolved air flotation float, s...

  6. Comparison of methods for the isolation of mycobacteria from water treatment plant sludge.

    PubMed

    Makovcova, Jitka; Babak, Vladimir; Slany, Michal; Slana, Iva

    2015-05-01

    Nontuberculous mycobacteria (NTM) are ubiquitous organisms in all natural ecosystems, including water environments. Several of these species are potential pathogens which affect human health. NTM most commonly cause pulmonary, skin or soft tissue infections. Primary sludge obtained from the water treatment plants of four drinking water reservoirs were subjected to analysis for mycobacteria. Five decontamination methods (5% oxalic acid, modified Petroff, HCl-NaOH, N-acetyl-L-cysteine-sodium hydroxide and 0.05% cetylpyridinium chloride), three growth media (Herrold's egg yolk medium with and without the antibiotic cocktail PANTA and Löwenstein-Jensen medium with sodium pyruvate) and three incubation temperatures (25, 30 and 37 °C) for isolation of mycobacteria were compared in the analysis of 18 sludge samples. To evaluate examined methods, the overall positive, negative, and contamination rate, and these rates in respect to localities are taken into account. Statistical analysis demonstrated that the best combination for the recovery of mycobacteria with the minimum number of contaminating microorganisms is 5% oxalic acid decontamination cultured on Herrold's egg yolk medium with the antibiotic cocktail PANTA at 25 °C. The least suitable is N-acetyl-L-cysteine-sodium hydroxide decontamination cultured on Löwenstein-Jensen medium with sodium pyruvate at 25 °C. From 18 sludge samples we isolated 27 mycobacterial species or groups; Mycobacterium algericum, M. arabiense, M. heraklionense, M. minnesotense, M. moriokaense, M. salmoniphilum and M. vulneris were isolated from the natural water environment for the first time. Because the natural water environment is the main source of potentially pathogenic mycobacteria for humans, it is important to direct particular focus to newly described mycobacterial species. PMID:25724128

  7. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system.

    PubMed

    Kheradmand, S; Karimi-Jashni, A; Sartaj, M

    2010-06-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25g COD/L/d and 93% at loading rate of 3.37g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD(rem) for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%. PMID:20194009

  8. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  9. [Advancement in the treatment against prostate cancer].

    PubMed

    Shinohara, Nobuo; Abe, Takashige; Maruyama, Satoru

    2016-01-01

    With the advancement of basic science and medical technology, the treatment against prostate cancer (PC) has dramatically changed. Although the introduction of robotic radical prostatectomy and particle therapies in patients with early stage PC is of much note, the issues on the over-treatment and treatment cost should be heeded. From these points, active surveillance has been an important strategy in these patients. In patients with metastatic hormone-sensitive PC, especially high volume metastases, androgen deprivation therapy (ADT) with docetaxel has been reported to prolong overall survival compared with ADT alone. Lastly, several novel therapeutic agents have been investigated and shown to be favorable outcomes in patients with castration resistant PC. This review focuses on the recent advancement in the treatment against PCs. PMID:26793875

  10. Industrial sludge remediation with photonic treatment using Ti-Ag nano-composite thin films: persistent organic pollutant removal from sludge matrix.

    PubMed

    Tunçal, Tolga; Uslu, Orhan

    2015-02-01

    Mechanically dewatered industrial sludge (MDIS) was treated using pure and silver-doped thin films (TFs) grown on quartz substrates. TFs were prepared using a sol-gel dip coating technique. The resulting films were annealed at 450 °C for 3 h and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Mixtures that were homogeneous in the UV A (380 nm) and UVvis (450 nm) regions of the electromagnetic spectrum were used as the irradiation source. The results revealed that illumination with different wavelengths helps to generate well-separated e(-)/h(+) pairs, resulting in a decrease in the recombination rate. An electron transfer chain model was also developed using the experimental results. The performance of the applied method was evaluated by observing variations in the sludge bound water content (SBWC), volatile solids removal rate (VSR), and the consumed and generated energy fluxes through endergonic and exergonic reactions. After treatment, SBWC was reduced from 65% ± 1% to 39% ± 1 and the highest VSR was measured to be 27 ± 0.1 mg VSS cm(-2) h(-1). The consumed and recovered energy fluxes were 960 ± 151 and 412 ± 26 J g(-1) VS(removed), respectively. Raw sludge and polychlorinated biphenyls (∑(15)PCB) and polyaromatic hydrocarbon (∑(16)PAH) concentrations were 4356.82 ± 22 μg kg(-1) and 446.25 ± 4.8 μg kg(-1), respectively. The ∑(15)PCB and ∑(16)PAH concentrations in the treated sludge samples were 129.86 ± 22 μg kg(-1) and 34.85 ± 1.3 μg kg(-1), respectively. PMID:25463569

  11. ZINC SLUDGE RECYCLING AFTER KASTONE TREATMENT OF CYANIDE-BEARING RINSE WATER

    EPA Science Inventory

    The purpose of this project was to demonstrate the feasibility of reclaiming sludge. The sludge was produced by the destruction of cyanide by Kastone in zinc-cyanide dragout rinse water. The clear supernatant was discharged to the municipal sewer and the sludge eventually recycle...

  12. Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge.

    PubMed

    Wang, Xiaoxia; Qiu, Zhaofu; Lu, Shuguang; Ying, Weichi

    2010-04-15

    Batch ultrasonic treatments (sonication) were performed on two waste activated sludge (WAS) samples, BNR-WAS from the biological nitrogen removal unit and BNPR-WAS from the biological nitrogen and phosphorus removal unit of two Shanghai municipal WWTPs, to determine the effects of sonication time and intensity on the amount and distribution of the organic, N and P species released from the samples. The concentration profiles of COD, TOC fractions in different molecular weight (MW) ranges (<2 kDa, 2-100 kDa, and >100 kDa), TN, organic-N, NH(3)-N, TP and PO(4)-P were monitored during the treatment at three sonication intensity levels (0.167, 0.330 and 0.500 W/mL). Species releases increased with sonication time and/or intensity; the release rates were accelerated when the sonication intensity was above a critical level between 0.330 and 0.500 W/mL. After 1 h of treatment, 37.9%, 37.5% and 50.8% of the organic content (measured as COD) of BNR-WAS were released, while the same for BNPR-WAS were 40.9%, 55.3% and 56.9%. It also resulted in the release of 40.9%, 38.7%, and 52.1% of total nitrogen from BNR-WAS, relative to 46.2%, 61.6%, and 70.4% of the same from BNPR-WAS; most released nitrogen were organic-N (65.0% and 84.9%), followed by NH(3)-N (34.7% and 14.9%) and trace amounts of nitrate and nitrite. More total phosphorus of a higher orthophosphate content was released from BNRP-WAS (>60% release after 1 h of sonication, 80% was PO(4)-P) than from BNR-WAS (<50% release, 40% was PO(4)-P). The differences in the releases as well as the molecular weight distribution pattern of the soluble TOC species were due to the different structure and composition of the sludge samples. Sonication is a viable sludge treatment process when it is combined with a phosphorus recovery process to remove most of the released PO(4)-P so that the supernatant may be returned for further biological treatment. PMID:20022695

  13. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge.

    PubMed

    Quiroga, G; Castrillón, L; Fernández-Nava, Y; Marañón, E; Negral, L; Rodríguez-Iglesias, J; Ormaechea, P

    2014-02-01

    This paper presents a study of the effect of applying ultrasound pre-treatment in the production of methane when co-digesting mixtures of cattle manure with food waste and sludge. A series of experiments were carried out under mesophilic and thermophilic conditions in continuously stirred-tank reactors containing 70% cattle manure, 20% food waste and 10% sewage sludge. Ultrasound pre-treatment allows operating at lower HRT, achieving higher volumetric methane yields: 0.85 L CH4/L day at 36°C and 0.82 CH4/L day at 55°C, when cattle manure and sewage sludge were sonicated. With respect to the non-sonicated waste, these values represent increases of up to 31% and 67% for mesophilic and thermophilic digestion, respectively. PMID:24384312

  14. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. PMID:26316402

  15. Influence of Continuous Flow Microwave Pre-Treatment on Anaerobic Digestion of Secondary Thickened Sludge for Sustainable Energy Recovery in Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Hephzibah, D.; Kumaran, P.; Saifuddin, N. M.

    2016-03-01

    This work elucidates the effects of pre-treatment of secondary thickened sludge (STS) for enhancement of biogas production that has great potential to generate energy for the utilization of the sewage treatment plant (STP) itself. Microwave pre-treatment has been adopted for this study. Experiment works have been designed and conducted to examine the effectiveness of continuous flow microwave pre-treatment on the solubility of STS, digestibility of STS and biogas production at a power level of 80 W for 5, 10 and 15 minutes. A few characteristics of the sewage sludge were monitored daily to identify the effect of pre-treatment on the sludge. The soluble chemical oxygen demand (SCOD)/total chemical oxygen demand (TCOD) ratio increased by 0.1, 1.0 and 1.8%, while the volatile fatty acids (VFA) concentration of the pre-treated sludge improved by 4.4, 5.1, 5.9% at the irradiation time of 5, 10 and 15 minutes, respectively at a microwave power level of 80 W. Besides that, the digestate also indicates that the pre-treated sludge undergoes efficient VS removal and TCOD removal after anaerobic digestion compared to the untreated sludge. Moreover, the biogas quantity increased by an average of 19.2, 24.1 and 32.2% in 5, 10 and 15 minutes irradiation time respectively compared to the untreated sludge. The additional quantity of biogas generated has shown a great potential for sustainable energy generation that can be utilized internally by the STP.

  16. Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water.

    PubMed

    Mackie, Allison L; Walsh, Margaret E

    2015-11-15

    The purpose of this study was to investigate the potential to replace lime with cement kiln dust (CKD) in high density sludge (HDS) treatment of acid mine drainage (AMD). The bench-scale study used two water samples: AMD sampled from a lead-zinc mine with high concentrations of iron (Fe), zinc (Zn), and arsenic (As) (Fe/Zn-AMD) and a synthetic AMD solution (Syn-AMD) spiked with ferric sulfate (Fe2(SO4)3). Arsenic was found to be significantly reduced with CKD-HDS treatment of Fe/Zn-AMD compared to lime-HDS treatment, to concentrations below the stringent mine effluent discharge regulation of 0.10 mg As/L (i.e., 0.04 ± 0.02 mg/L). Both CKD- and lime-HDS treatment of the two AMD samples resulted in settled water Fe concentrations above the stringent discharge guideline of 0.3 mg Fe/L. CKD addition in the HDS process also resulted in high settled water turbidity, above typical discharge guidelines of 15 mg TSS/L. CKD-HDS treatment was found to result in significantly improved settled solids (i.e., sludge) quality compared to that generated in the lime-HDS process. HDS treatment with CKD resulted in 25-88% lower sludge volume indices, 2 to 9 times higher % wet solids, and 10 to 20 times higher % dry solids compared to lime addition. XRD and XPS testing indicated that CKD-HDS sludge consisted of mainly CaCO3 and SiO2 with Fe(3+) precipitates attached at particle surfaces. XRD and XPS testing of the lime-HDS generated sludge showed that it consisted of non-crystalline Fe oxides typical of sludge formed from precipitates with a high water concentration. Increased sedimentation rates were also found for CKD (1.3 cm/s) compared to lime (0.3 cm/s). The increased solids loading with CKD addition compared to lime addition in the HDS process was suggested to both promote surface complexation of metal precipitates with insoluble CKD particles and increase compression effects during Type IV sedimentation. These mechanisms collectively contributed to the reduced water content of

  17. K East basin sludge volume estimates for integrated water treatment system

    SciTech Connect

    Pearce, K.L.

    1998-08-19

    This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin.

  18. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    PubMed

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC. PMID:26877044

  19. Influence of wastewater treatment plants' operational conditions on activated sludge microbiological and morphological characteristics.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Tzelios, Dimitrios; Michailidis, Avraam

    2016-01-01

    The effect of wastewater composition and operating conditions in activated sludge (AS) microbiological and morphological characteristics was studied in three AS wastewater treatment plants (WWTPs): (a) a high organic load slaughterhouse AS WWTP, operating at complete solids retention, monitored from its start-up and for 425 days; (b) a seasonally operational, low nitrogen load fruit canning industry AS WWTP, operating at complete solids retention, monitored from its start-up and until the end of the season (87 days); (c) a municipal AS WWTP, treating wastewater from a semi-combined sewer system, monitored during the transitions from dry to rainy and again to dry periods of operation. The sludge microbiological and morphological characteristics were correlated to nutrients' availability, solids retention time, hydraulic retention time, dissolved oxygen, mixed liquor suspended solids (MLVSS), organic load (F/M) and substrate utilization rate. The AS WWTPs' operation was distinguished in periods based on biomass growth phase, characterized by different biological and morphological characteristics and on operational conditions. An anoxic/aerobic selector minimizes the readily biodegradable compounds in influent, inhibiting filamentous growth. Plant performance controlling is presented in a logic flowchart in which operational parameters are linked to microbial manipulation, resulting in a useful tool for researchers and engineers. PMID:26145184

  20. In-vessel treatment of urban primary sludge by aerobic composting.

    PubMed

    Rihani, Mohammed; Malamis, Dimitri; Bihaoui, Bouchra; Etahiri, Samira; Loizidou, Maria; Assobhei, Omar

    2010-08-01

    The aim of this work is the study of recycling urban primary sludge by in-vessel aerobic composting way. Two series of composting trials were carried out in an automated accelerated bioreactor in mixture with agricultural wastes: sugar beet leaves (C1); straw, sheep manure and sugar beet leaves (C2). Treatments were monitored with regard to physicochemical characteristics, heavy metal amounts and microbiological parameters of the final compost product. The general pattern of the temperature curve was typical for composts of organic waste. The different physicochemical characteristics of the final composts after a retention time in the bioreactor of 30 and 23 days, respectively for C1 and C2 were: pH: 7.3-7.2; C/N: 10.2-12; organic matter: 49.7-58.3%; NH(4)(+)/NO(3)(-): 0.24-0.2. Final compost showed low amounts of heavy metals, relatively high contents of nutrients and significant reduction of pathogens, suggesting the agricultural purposes of urban primary sludge. PMID:20335022

  1. Advances in the Treatment of Neuropathic Pain.

    PubMed

    Xu, Li; Zhang, Yuguan; Huang, Yuguang

    2016-01-01

    Neuropathic pain is pain that arises as a direct consequence of a lesion or diseases affecting the somatosensory system. Treatments for neuropathic pain include pharmacological, nonpharmacological, and interventional therapies. Currently recommended first-line pharmacological treatments include antidepressants and anticonvulsants (gabapentin and pregabalin). However, in some cases, pharmacological therapy alone fails to give adequate control of the chronic pain. New techniques have been invented and have been proved effective on neuropathic pain, such as behavioral, cognitive, integrative, and physical therapies. In this review, we focused on the advances in the treatment of central neuropathic pain, diabetic peripheral neuropathy, postherpetic neuralgia, and cancer pain. PMID:26900067

  2. Enhancement of As(V) adsorption onto activated sludge by methylation treatment.

    PubMed

    Kang, So-Young; Kim, Dong-Wook; Kim, Kyoung-Woong

    2007-08-01

    Biosorption properties of arsenate [As(V)] onto activated sludge were investigated in batch systems. The adsorption of As(V) onto sludge increased from 23 to 266 microg/g dry weight through the methylation of the activated sludge. This increase resulted from neutralization of carboxylic groups via the methylation process. The pH effect of As(V) uptake was also investigated and As(V) adsorption by methylated sludge decreased significantly at high pH (pH > 11) due to competition between As(V) and OH(-) ions for binding sites distributed on sludge surfaces. In contrast, low pH favored As(V) adsorption by methylated sludge because of the elevated quantities of positively charged functional groups. The results suggest that methylated activated sludge may provide promising applications for the simultaneous removal and separation of As(V) from aqueous effluents. PMID:17505894

  3. Distributions of polycyclic musk fragrance in wastewater treatment plant (WWTP) effluents and sludges in the United States.

    PubMed

    Sun, Ping; Casteel, Kenneth; Dai, Hongjian; Wehmeyer, Kenneth R; Kiel, Brian; Federle, Thomas

    2014-09-15

    The polycyclic musks, AHTN and HHCB are fragrance ingredients widely used in consumer products. A monitoring campaign was conducted and collected grab effluent and sludge samples at 40 wastewater treatment plants (WWTP) across the United States to understand their occurrence and statistical distribution in these matrices. AHTN concentration in effluent ranged from <0.05 μg/L (LOQ) to 0.44 μg/L with a mean and standard deviation of 0.18 ± 0.11 μg/L. HHCB concentrations in effluent ranged from 0.45 to 4.79 μg/L with a mean of 1.86 ± 1.01 μg/L. AHTN concentrations in sludge ranged from 0.65 to 15.0mg/kg dw (dry weight) with a mean and standard deviation being 3.69 ± 2.57 mg/kg dw, while HHCB sludge concentrations were between 4.1 and 91 mg/kg with a mean of 34.0 ± 23.1mg/kg dw. Measured concentrations of AHTN and HHCB were significantly correlated with each other in both effluent and sludge. The concentrations of HHCB in both effluent and sludge were approximately an order of magnitude higher than those for AHTN, consistent with 2011 usage levels. The highest measured effluent concentrations for both AHTN and HHCB were below their respective freshwater PNECs (predicted no effect concentrations), indicating a negligible risk to biological communities below WWTPs, even in the absence of upstream dilution. Moreover, the large number of effluents and sludges sampled provides a statistical distribution of loadings that can be used to develop more extensive probabilistic exposure assessments for WWTP mixing zones and sludge amended soils. PMID:24792690

  4. A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Moon, Hyo-Bang; Song, Geum-Ju; Ra, Kongtae; Lee, Won-Chan; Kannan, Kurunthachalam

    2014-11-01

    Siloxanes are widely used in various industrial applications as well as in personal care products. Despite their widespread use and potential toxic effects, few studies have reported on the occurrence of siloxanes in the environment. In this study, we determined the concentrations of 5 cyclic and 15 linear siloxanes in sludge collected from 40 representative wastewater treatment plants (WWTPs) in Korea. Total concentrations of 20 siloxanes (Σsiloxane) in sludge ranged from 0.05 to 142 (mean: 45.7) μg/g dry weight, similar to the concentrations reported in European countries but higher than those reported in China. The concentrations of siloxanes in sludge from domestic WWTPs were significantly (p<0.01) higher than those from industrial WWTPs, indicating higher consumption of siloxanes in various personal care products (e.g. shampoos and conditioners). The major siloxane compounds found in sludge were decamethylcyclopentasilane (D5), docosamethyldecasiloxane (L10) and dodecamethylcyclohexasilane (D6), which collectively accounted for, on average, 62% of the Σsiloxane concentrations. Non-parametric multidimensional scaling ordination of the profiles of siloxanes indicated the existence of different usage patterns of siloxanes between industrial and household activities. Multiple linear regression analysis of siloxane concentrations and WWTP characteristics suggested that D5, D6 and linear siloxane concentrations in sludge were positively correlated with population served by a WWTP. Environmental emission fluxes of cyclic and linear siloxanes through sludge disposal in Korea were 14,800 and 18,500 kg/year, respectively. This is the first report describing occurrence and environmental emission of siloxanes through sludge in Korea. PMID:25127445

  5. Occurrence, distribution, and potential influencing factors of sewage sludge components derived from nine full-scale wastewater treatment plants of Beijing, China.

    PubMed

    Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui

    2016-07-01

    Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. PMID:27372138

  6. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems

    PubMed Central

    Oerther, Daniel B.; Pernthaler, Jakob; Schramm, Andreas; Amann, Rudolf; Raskin, Lutgarde

    2000-01-01

    Recently, Cangelosi and Brabant used oligonucleotide probes targeting the precursor 16S rRNA of Escherichia coli to demonstrate that the levels of precursor rRNA were more sensitive to changes in growth phase than the levels of total rRNA (G. A. Cangelosi and W. H. Brabant, J. Bacteriol. 179:4457–4463, 1997). In order to measure changes in the levels of precursor rRNA in activated sludge systems, we designed oligonucleotide probes targeting the 3′ region of the precursor 16S rRNA of Acinetobacter spp. We used these probes to monitor changes in the level of precursor 16S rRNA during batch growth of Acinetobacter spp. in Luria-Bertani (LB) medium, filtered wastewater, and in lab- and full-scale wastewater treatment systems. Consistent with the previous reports for E. coli, results obtained with membrane hybridizations and fluorescence in situ hybridizations with Acinetobacter calcoaceticus grown in LB medium showed a more substantial and faster increase in precursor 16S rRNA levels compared to the increase in total 16S rRNA levels during exponential growth. Diluting an overnight culture of A. calcoaceticus grown in LB medium with filtered wastewater resulted in a pattern of precursor 16S rRNA levels that appeared to follow diauxic growth. In addition, fluorescence in situ hybridizations with oligonucleotide probes targeting total 16S rRNA and precursor 16S rRNA showed that individual cells of A. calcoaceticus expressed highly variable levels of precursor 16S rRNA when adapting from LB medium to filtered sewage. Precursor 16S rRNA levels of Acinetobacter spp. transiently increased when activated sludge was mixed with influent wastewater in lab- and full-scale wastewater treatment systems. These results suggest that Acinetobacter spp. experience a change in growth activity within wastewater treatment systems. PMID:10788395

  7. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    PubMed

    Escolà Casas, Mònica; Bester, Kai

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m(3)m(2)h(-1) the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. PMID:25460965

  8. EFFECT OF AN ACTIVATED SLUDGE WASTEWATER TREATMENT PLANT ON AMBIENT AIR DENSITIES OF AEROSOLS CONTAINING BACTERIA AND VIRUSES

    EPA Science Inventory

    Bacteria and virus-containing aerosols were studied during late summer and fall in a U.S. midwestern suburb before and during the start up and operation of an unenclosed activated sludge wastewater treatment plant. The air in this suburban area contained low-level densities of in...

  9. REVISING/UPDATING EPA 625/1-79-011, PROCESS DESIGN MANUAL FOR SLUDGE TREATMENT AND DISPOSAL

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) wishes to revise/update its very large and comprehensive 1979 Process Design Manual for Sludge Treatment and Disposal, EPA 625/1-79-011. As you might imagine the task is not trivial, as already in 1979 the original manual cost more tha...

  10. Determination of azoles in sewage sludge from Spanish wastewater treatment plants by liquid chromatography-tandem mass spectrometry.

    PubMed

    García-Valcárcel, Ana I; Tadeo, José L

    2011-06-01

    A simple and rapid analytical method for the determination of 16 azoles in sewage sludge has been developed and validated. The method was based on ultrasound-assisted extraction followed by dispersive solid-phase extraction cleanup and liquid chromatography-electrospray tandem mass spectrometric detection. The azoles were selected by their intensive usage as biocides (tebuconazole, propiconazole, cyproconazole and thiabendazole), antimycotic pharmaceuticals (ketoconazole, econazole, fluconazole and clotrimazole) or fungicides in agriculture (difenoconazole, flusilazole, hexaconazole, prochloraz, bromuconazole, epoxiconazole and triticonazole). The recoveries of these compounds through the method were between 71.9 and 115.8%, with relative standard deviations lower than 20%. Detection limits were in the range of 0.5-5.0 ng/g. The developed method was applied to the analysis of azoles in sewage sludge samples collected from 19 Spanish wastewater treatment plants. Although azoles used as biocides or agriculture fungicides were present in a few sludge samples, the pharmaceuticals ketoconazole, econazole and clotrimazole were present in all of the analyzed sludge samples, being ketoconazole the one found at the highest level, representing the 68.6% of the total azole content found in the 19 sludge samples studied. PMID:21491590

  11. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    PubMed Central

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  12. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    PubMed

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  13. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

    PubMed Central

    2012-01-01

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation. PMID:22452812

  14. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  15. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    NASA Astrophysics Data System (ADS)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  16. Demonstration of vitrification of surrogate F006 waste-water treatment sludges

    SciTech Connect

    Bennert, D.M.; Overcamp, T.J.; Bickford, D.F.; Jantzen, C.M.; Cicero, C.A.

    1994-12-31

    A demonstration program with the focus on vitrification of surrogate formulations of Savannah River Site M-Area wastewater treatment sludges has been completed. The program utilized commercially available melting equipment, supplied by EnVitCo, Inc., and Stir Melter, Inc., located at the Clemson University Environmental Systems Engineering Laboratories. Over 2000 kg of glass was manufactured in a series of five separate tests with four formulations. Glasses were characterized by Toxicity Characteristic Leaching Procedure (TCLP) and the Product Consistency Test (PCT), with all glasses showing leach characteristics better than Land Disposal Requirements (LDR) for corresponding F006 waste (TCLP) and benchmark environmental assessment glasses (PCT). Offgas sampling by EPA Method 5 was conducted, including chemical analysis of filter residue and impinger solution. Data is presented on glass leaching, offgas sampling, phase separation, and melter performance.

  17. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    SciTech Connect

    van Hullenbusch, Eric; Farges, Francois; Lenz, Markus; Lens, Piet; Brown, Gordon E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2006-12-13

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinic red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  18. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    SciTech Connect

    Hullenbusch, Eric van; Farges, Francois; Lenz, Markus; Lens, Piet; Brown, Gordon E. Jr.

    2007-02-02

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinc red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  19. Application of Activated Sludge Model No. 1 to biological treatment of pure winery effluents: case studies.

    PubMed

    Stricker, A E; Racault, Y

    2005-01-01

    The practical applicability of computer simulation of aerobic biological treatment systems for winery effluents was investigated to enhance traditional on-site evaluation of new processes. As there is no existing modelling tool for pure winery effluent, a model widely used for municipal activated sludge (ASM1) was used. The calibration and validation steps were performed on extended on-site data. The global soluble COD, DO and OUR were properly reproduced. Possible causes for the remaining discrepancies between measured and simulated data were identified and suggestions for improvement directions were made to adapt ASM1 to winery effluents. The calibrated model was then used to simulate scenarios to evaluate the plant behaviour for different operation or design. In combination with on-site observations, it allowed us to establish useful and justified improvement suggestions for aeration tank and aeration device design as well as feed, draw and aeration operation. PMID:15771107

  20. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    van Hullenbusch, Eric; Farges, François; Lenz, Markus; Lens, Piet; Brown, Gordon E.

    2007-02-01

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinc red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  1. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect

    Ragsdale, R.G., Jr

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  2. Calculation of energy recovery and greenhouse gas emission reduction from palm oil mill effluent treatment by an anaerobic granular-sludge process.

    PubMed

    Show, K Y; Ng, C A; Faiza, A R; Wong, L P; Wong, L Y

    2011-01-01

    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined. PMID:22170839

  3. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    PubMed

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C. PMID:22097038

  4. Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash.

    PubMed

    Nowak, Benedikt; Perutka, Libor; Aschenbrenner, Philipp; Kraus, Petra; Rechberger, Helmut; Winter, Franz

    2011-06-01

    Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100°C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl(2). Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900°C, 10 and 30 min and 3.4 and 4.6 ms(-1). Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl(2) from CaCl(2); diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl(2) out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit. PMID:21333519

  5. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  6. Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash

    SciTech Connect

    Nowak, Benedikt

    2011-06-15

    Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.

  7. Development of effluent removal prediction model efficiency in septic sludge treatment plant through clonal selection algorithm.

    PubMed

    Ting, Sie Chun; Ismail, A R; Malek, M A

    2013-11-15

    This study aims at developing a novel effluent removal management tool for septic sludge treatment plants (SSTP) using a clonal selection algorithm (CSA). The proposed CSA articulates the idea of utilizing an artificial immune system (AIS) to identify the behaviour of the SSTP, that is, using a sequence batch reactor (SBR) technology for treatment processes. The novelty of this study is the development of a predictive SSTP model for effluent discharge adopting the human immune system. Septic sludge from the individual septic tanks and package plants will be desuldged and treated in SSTP before discharging the wastewater into a waterway. The Borneo Island of Sarawak is selected as the case study. Currently, there are only two SSTPs in Sarawak, namely the Matang SSTP and the Sibu SSTP, and they are both using SBR technology. Monthly effluent discharges from 2007 to 2011 in the Matang SSTP are used in this study. Cross-validation is performed using data from the Sibu SSTP from April 2011 to July 2012. Both chemical oxygen demand (COD) and total suspended solids (TSS) in the effluent were analysed in this study. The model was validated and tested before forecasting the future effluent performance. The CSA-based SSTP model was simulated using MATLAB 7.10. The root mean square error (RMSE), mean absolute percentage error (MAPE), and correction coefficient (R) were used as performance indexes. In this study, it was found that the proposed prediction model was successful up to 84 months for the COD and 109 months for the TSS. In conclusion, the proposed CSA-based SSTP prediction model is indeed beneficial as an engineering tool to forecast the long-run performance of the SSTP and in turn, prevents infringement of future environmental balance in other towns in Sarawak. PMID:23968912

  8. FRUIT CANNERY WASTE ACTIVATED SLUDGE AS A CATTLE FEED INGREDIENT

    EPA Science Inventory

    The feasibility of sludge disposal, from a fruit processing waste activated sludge treatment system, by dewatering and using the dewatered biological sludge solids as cattle feed was evaluated by Snokist Growers at Yakima, Washington. Dewatering of the biological sludge utilizing...

  9. The porphyrias: advances in diagnosis and treatment

    PubMed Central

    Balwani, Manisha

    2012-01-01

    The inborn errors of heme biosynthesis, the porphyrias, are 8 genetically distinct metabolic disorders that can be classified as “acute hepatic,” “hepatic cutaneous,” and “erythropoietic cutaneous” diseases. Recent advances in understanding their pathogenesis and molecular genetic heterogeneity have led to improved diagnosis and treatment. These advances include DNA-based diagnoses for all the porphyrias, new understanding of the pathogenesis of the acute hepatic porphyrias, identification of the iron overload-induced inhibitor of hepatic uroporphyrin decarboxylase activity that causes the most common porphyria, porphyria cutanea tarda, the identification of an X-linked form of erythropoietic protoporphyria due to gain-of-function mutations in erythroid-specific 5-aminolevulinate synthase (ALAS2), and new and experimental treatments for the erythropoietic prophyrias. Knowledge of these advances is relevant for hematologists because they administer the hematin infusions to treat the acute attacks in patients with the acute hepatic porphyrias, perform the chronic phlebotomies to reduce the iron overload and clear the dermatologic lesions in porphyria cutanea tarda, and diagnose and treat the erythropoietic porphyrias, including chronic erythrocyte transfusions, bone marrow or hematopoietic stem cell transplants, and experimental pharmacologic chaperone and stem cell gene therapies for congenital erythropoietic protoporphyria. These developments are reviewed to update hematologists on the latest advances in these diverse disorders. PMID:22791288

  10. [Primary treatment of advanced Hodgkin's disease].

    PubMed

    Illés, Arpád; Udvardy, Miklós; Molnár, Zsuzsa

    2005-01-30

    Primary treatment of advanced Hodgkin's disease. Hodgkin's disease is one of the few malignant diseases that can be cured even in an advanced stage in the majority of cases. By employing a polychemotherapy containing anthracyclines, a long remission and recovery can be achieved in 60-70% of the patients. At present the standard treatment is ABVD (adriamycin, bleomycin, vinblastine, dacarbazine) scheme for the following reasons: besides good treatment results early side effects are more favourable; sterility and secondary acute leukemia present themselves less often than by employing regimens containing alkylating agents. Unfortunately, some of the patients do not react properly to the treatment and about one third of the patients who are in remission following primary treatment will relapse at a later stage. The main goal is now to further improve treatment (recovery) results without an increase, or even a decrease of early or late side effects. Awareness of prognostic factors should lead to the employment of a less intensive but not toxic therapy in patients with good prognosis to prevent overtreatment, while in cases with bad prognosis a more effective regimen is needed (even for the price of expected complications). The latest meta-analysis on the subject has shown that--similarly to sequential high dose therapy--the addition of radiotherapy to an effective chemotherapy does not seem to prolong the survival of patients. Despite the excellent therapeutic results achieved by the many new "intensive" chemotherapies, there is unfortunately no optimal therapy or protocol available today. The multicentre analysis to confirm these results and to compare them with standard scheme is still under way. It is to be hoped that risk adapted management for advanced stage Hodgkin's disease will also be available soon. PMID:15773586

  11. Optimized matching modes of bioelectrochemical module and anaerobic sludge in the integrated system for azo dye treatment.

    PubMed

    Kong, Fanying; Wang, Aijie; Ren, Hong-Yu

    2015-09-01

    In this work, three matching modes (relative positions, catholyte flow sequences, and flow regimes) of bioelectrochemical module and anaerobic sludge were evaluated and optimized for azo dye treatment in the integrated system with embedding modular bioelectrochemical system into anaerobic sludge reactor. Results showed that it was favorable to operate this integrated system under the condition of 1/4 cathode soaking into sludge with spiral distributor in down-flow direction. Current, electrochemical impedance spectroscopy and pH clearly demonstrated the important role of 1/4 soaking in electron/proton transfer. The down-flow direction flowed through electrode zone and then sludge zone could benefit to the efficient use of cathode and improve AO7 treatment. Furthermore, the positive effect of spiral catholyte distributor might be due to its promoting role in mixing and creating a spiral flow channel around the cathode electrode-microbes-solution interface. These results exhibited great potential for matching modular bioelectrochemical system with anaerobic treatment process. PMID:26080106

  12. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    NASA Astrophysics Data System (ADS)

    Jafarinejad, Shahryar

    2016-07-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  13. Examination of sludge accumulation rates and sludge characteristics for a decentralized community wastewater treatment systems with individual primary clarifier tanks located in Wardsville (Ontario, Canada).

    PubMed

    Lossing, Heather; Champagne, Pascale; McLellan, P James

    2010-01-01

    In conventional septic systems, settling and partial treatment via anaerobic digestion occurs in the septic tank. One of the byproducts of solids separation in the septic tank is a semi-liquid material known as septage, which must be periodically pumped out. Septage includes the liquid portion within the tank, as well as the sludge that settles at the bottom of the tank and the scum that floats to the surface of the liquid layer. A number of factors can influence septage characteristics, as well as the sludge and scum accumulation rates within the tank. This paper presents the results of a 2007 field sampling study conducted in Wardsville (Ontario, Canada). The field study examined 29 individual residential two-chamber septic tanks in a community serviced by a decentralized wastewater treatment system in operation for approximately 7 years without septage removal. The field investigation provided a comprehensive data set that allowed for statistical analysis of the data to assess the more critical factors influencing solids accumulation rates within each of the clarifier chambers. With this data, a number of predictive models were developed using water usage data for each residence as an explanatory variable. PMID:21123926

  14. Treatment of advanced medullary thyroid cancer.

    PubMed

    Smit, Johannes

    2013-03-14

    Therapy decisions in advanced medullary thyroid carcinoma should be guided by a critical appraisal of the natural disease course (slowly progressive vs. aggressive) and benefits and side effects of therapy. Therapy goals should be distinguished between curative and palliative. Local treatments are mainly palliative and may add to quality of life. The advent of novel systemic therapies opens promising perspectives but its place in the therapeutic arsenal must be further determined. PMID:23514632

  15. Advanced thyroid cancers: new era of treatment.

    PubMed

    Mohammed, Amrallah A; El-Shentenawy, Ayman

    2014-07-01

    Since chemotherapy has been shown to be unsuccessful in case of advanced thyroid carcinomas, the research for new therapies is fundamental. Clinical trials of many tyrosine kinase inhibitors as well as anti-angiogenic inhibitors suggest that patients with thyroid cancer could have an advantage with new target therapy. Recently, Food and Drug Administration approved two targeted therapies, vandetanib and cabozantinib for the treatment of metastatic thyroid carcinomas with acceptable outcome. We summarized the results and the toxic effects associated with these treatments reported in clinical trials. Future trials should aim at combinations of targeted agents with or without other treatment modalities to obtain a more effective result in thyroid carcinoma treatment. PMID:24908065

  16. Advances in the Psychosocial Treatment of Addiction

    PubMed Central

    Dallery, Jesse

    2012-01-01

    Synopsis The authors present an overview of empirically supported psychosocial interventions for individuals with substance use disorders (SUDs), including recent advances in the field. They also identify barriers to the adoption of evidence-based psychosocial treatments in community-based systems of care, and the promise of leveraging technology (computers, web, mobile phone, and emerging technologies) to markedly enhance the reach of these treatments. Technology-based interventions may provide “on-demand,” ubiquitous access to therapeutic support in diverse settings. A brief discussion of important next steps in developing, refining, and disseminating technology-delivered psychosocial interventions concludes the review. PMID:22640767

  17. Alkali Treatment of Acidic Solution from Hanford K Basin Sludge Dissolution

    SciTech Connect

    AA Bessonov; AB Yusov; AM Fedoseev; AV Gelis; AY Garnov; CH Delegard; GM Plavnik; LN Astafurova; MS Grigoriev; NA Budantseva; NN Krot; SI Nikitenko; TP Puraeva; VP Perminov; VP Shilov

    1998-12-22

    Nitric acid solutions will be created from the dissolution of Hanford K Basin sludge. These acidic dissolver solutions must be made alkaline by treatment with NaOH solution before they are disposed to ~ the Tank Waste Remediation System on the Hanford Site. During the alkali treatments, sodium diuranate, hydroxides of iron and aluminum, and radioelements (uranium, plutonium, and americium) will precipitate from the dissolver solution. Laboratory tests, discussed here, were pefiormed to provide information on these precipitates and their precipitation behavior that is important in designing the engineering flowsheet for the treatment process. Specifically, experiments were conducted to determine the optimum precipitation conditions; the completeness of uranium, plutonium, and americium precipitation; the rate of sedimentation; and the physico-chemical characteristics of the solids formed by alkali treatment of simulated acidic dissolver solutions. These experiments also determined the redistribution of uranium, plutonium, and americium flom the sodium di~ate and iron and al&inurn hydroxide precipitates upon contact with carbonate- and EDTA-bearing simulated waste solutions. Note: EDTA is the tetrasodium salt of ethylenediaminetetraacetate.

  18. Spatial changes in carbon and nitrogen stable isotope ratios of sludge and associated organisms in a biological sewage treatment system.

    PubMed

    Onodera, Takashi; Kanaya, Gen; Syutsubo, Kazuaki; Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    Carbon and nitrogen stable isotope ratios (δ¹³C and δ¹⁵N) have been utilized as powerful tools for tracing energy or material flows within food webs in a range of environmental studies. However, the techniques have rarely been applied to the study of biological wastewater treatment technologies. We report on the spatial changes in δ¹³C and δ¹⁵N in sludge and its associated biotic community in a wastewater treatment system. This system consisted of an upflow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) which is a novel type of trickling filter. The results showed clear spatial changes in the δ¹³C and δ¹⁵N of suspended solids (SS), retained sludge, and macrofauna (oligochaetes and fly larvae) in the system. The δ¹³C and δ¹⁵N was used as a natural tracer to determine the SS dynamic throughout the system. The results imply that SS in the DHS effluent was mainly eluted from the retained sludge in the lower section of the DHS reactor. The δ¹⁵N of the retained sludge in the DHS reactor increased drastically from the inlet towards to the outlet, from -0.7‰ to 10.3‰. This phenomenon may be attributed to nitrogen conversion processes (i.e. nitrification and denitrification). The δ¹⁵N of oligochaetes also increased from the inlet to the outlet, which corresponded well to that of the retained sludge. Thus, the δ¹⁵N of the oligochaetes might simply mirror the δ¹⁵N of the retained sludge. On the other hand, the δ¹³C and δ¹⁵N of sympatric fly larvae differed from those of the oligochaetes sampled, indicating dietary differences between the taxa. Therefore δ¹³C and δ¹⁵N reflected both treatment and dietary characteristics. We concluded that δ¹³C and δ¹⁵N values are potentially useful as alternative indicators for investigating microbial ecosystems and treatment characteristics of biological wastewater treatment systems. PMID:25462745

  19. R and D needs -- Drying of sludges

    SciTech Connect

    Kasakura, T.; Hasatani, M.

    1996-10-01

    Sludge management is a very important environmental issue in many industrialized countries, because its generated volume is the largest in all generated wastes. In the sludge management field, the role of drying is becoming more important as sludge disposal becomes more difficult. In this paper, the present status of drying of construction sludge, food industry sludge and municipal sludge are mentioned as concrete examples. To respond to these needs, it is necessary to advance further R and D.

  20. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion.

    PubMed

    Appels, Lise; Degrève, Jan; Van der Bruggen, Bart; Van Impe, Jan; Dewil, Raf

    2010-08-01

    In this work, the influence of a low temperature (70-90 degrees C) thermal treatment on anaerobic digestion is studied. Not only the increase in biogas production is investigated, but attention is also paid to the solubilisation of the main organic (proteins, carbohydrates and volatile fatty acids) and inorganic (heavy metals, S and P) sludge constituents during thermal treatment and the breakdown of the organic components during the subsequent anaerobic digestion. Taking into account the effects of the treatment on the sludge composition is of prime importance to evaluate its influence on the subsequent anaerobic digestion and biogas production using predictive models. It was seen that organic and inorganic compounds are efficiently solubilised during thermal treatment. In general, a higher temperature and a longer treatment time are beneficial for the release. The efficiency of the subsequent anaerobic digestion slightly decreased for sludge pre-treated at 70 degrees C. At higher pre-treatment temperatures, the biogas production increased significantly, up to a factor 11 for the 60 min treatment at 90 degrees C. PMID:20335023

  1. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters

    SciTech Connect

    Kato, M.T.; Field, J.A.; Versteeg, P.; Lettinga, G. . Dept. of Environmental Technology)

    1994-08-05

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30 C. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to 12 g COD/L [center dot] d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGSB reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V[sub up]) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K[sub s] value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V[sub up] lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A more important restriction of the EGSB reactor was the sludge washout occurring at V[sub up] higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L [center dot] d due to buoyancy forces from the gas production.

  2. Molecular characterization of activated sludge from a seawater‐processing wastewater treatment plant

    PubMed Central

    Sánchez, Olga; Garrido, Laura; Forn, Irene; Massana, Ramon; Maldonado, Manuel Ignacio; Mas, Jordi

    2011-01-01

    Summary The prokaryotic community composition of activated sludge from a seawater‐processing wastewater treatment plant (Almeria, Spain) was investigated by using the rRNA approach, combining different molecular techniques such as denaturing gradient gel electrophoresis (DGGE), clone libraries and in situ hybridization (FISH and CARD‐FISH). Most of the sequences retrieved in the DGGE and the clone libraries were similar to uncultured members of different phyla. The most abundant sequence recovered from Bacteria in the clone library corresponded to a bacterium from the Deinococcus–Thermus cluster (almost 77% of the clones), and the library included members from other groups such as the Alpha, Gamma and Delta subclasses of Proteobacteria, the Bacteroidetes and Firmicutes. Concerning the archaeal clone library, we basically found sequences related to different orders of methanogenic Archaea, in correspondence with the recovered DGGE bands. Enumeration of DAPI (4′,6‐diamidino‐2‐phenylindole) stained cells from two different activated sludge samples after a mechanical flocculation disruption revealed a mean cell count of 1.6 × 109 ml−1. Around 94% of DAPI counts (mean value from both samples) hybridized with a Bacteria specific probe. Alphaproteobacteria were the dominant bacterial group (36% of DAPI counts), while Beta‐, Delta‐ and Gammaproteobacteria, Bacteroidetes, Actinobacteria and Firmicutes contributed to lower proportions (between 0.5–5.7% of DAPI counts). Archaea accounted only for 6% of DAPI counts. In addition, specific primers for amplification of the amoA (ammonia monooxygenase) gene were used to detect the presence of Beta, Gamma and archaeal nitrifiers, yielding positive amplifications only for Betaproteobacteria. This, together with negative in situ hybridizations with probes for well‐known nitrifiying bacteria, suggests that nitrification is performed by still undetected microorganisms. In summary, the combination of the

  3. Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge.

    PubMed

    Zhen, Guangyin; Yan, Xiaofei; Zhou, Haiyan; Chen, Hua; Zhao, Tiantao; Zhao, Youcai

    2011-01-01

    The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed, using calcined aluminum salts (AS) as solidifier, and CaCl2, Na2SO4 and CaSO4 as accelerators, to enhance the mechanical compressibility making the landfill operation possible. The properties of the resultant matrixes were determined in terms of moisture contents, unconfined compressive strength, products of hydration, and toxicity characteristics. The results showed that AS exhibited a moderate pozzolanic activity, and the mortar AS(0) obtained with 5% AS and 10% CaSO4 of AS by weight presented a moisture contents below 50%-60% and a compressive strength of (51.32 +/- 2.9) kPa after 5-7 days of curing time, meeting the minimum requirement for sanitary landfill. The use of CaSO4 obviously improved the S/S performance, causing higher strength level. X-ray diffraction, scanning electron microscopy and thermogravimetry-differential scanning calorimetry investigations revealed that a large amount of hydrates (viz., gismondine and CaCO3) were present in solidified sludge, leading to the depletion of evaporable water and the enhancement of the strength. In addition, the toxicity characteristic leaching procedure (TCLP) and horizontal vibration (HJ 557-2009) leaching test were conducted to evaluate their environmental compatibility. It was found that the solidified products conformed to the toxicity characteristic criteria in China and could be safely disposed of in a sanitary landfill. PMID:22125919

  4. New advances in targeted gastric cancer treatment.

    PubMed

    Lazăr, Daniela Cornelia; Tăban, Sorina; Cornianu, Marioara; Faur, Alexandra; Goldiş, Adrian

    2016-08-14

    Despite a decrease in incidence over past decades, gastric cancer remains a major global health problem. In the more recent period, survival has shown only minor improvement, despite significant advances in diagnostic techniques, surgical and chemotherapeutic approaches, the development of novel therapeutic agents and treatment by multidisciplinary teams. Because multiple genetic mutations, epigenetic alterations, and aberrant molecular signalling pathways are involved in the development of gastric cancers, recent research has attempted to determine the molecular heterogeneity responsible for the processes of carcinogenesis, spread and metastasis. Currently, some novel agents targeting a part of these dysfunctional molecular signalling pathways have already been integrated into the standard treatment of gastric cancer, whereas others remain in phases of investigation within clinical trials. It is essential to identify the unique molecular patterns of tumours and specific biomarkers to develop treatments targeted to the individual tumour behaviour. This review analyses the global impact of gastric cancer, as well as the role of Helicobacter pylori infection and the efficacy of bacterial eradication in preventing gastric cancer development. Furthermore, the paper discusses the currently available targeted treatments and future directions of research using promising novel classes of molecular agents for advanced tumours. PMID:27570417

  5. New advances in targeted gastric cancer treatment

    PubMed Central

    Lazăr, Daniela Cornelia; Tăban, Sorina; Cornianu, Marioara; Faur, Alexandra; Goldiş, Adrian

    2016-01-01

    Despite a decrease in incidence over past decades, gastric cancer remains a major global health problem. In the more recent period, survival has shown only minor improvement, despite significant advances in diagnostic techniques, surgical and chemotherapeutic approaches, the development of novel therapeutic agents and treatment by multidisciplinary teams. Because multiple genetic mutations, epigenetic alterations, and aberrant molecular signalling pathways are involved in the development of gastric cancers, recent research has attempted to determine the molecular heterogeneity responsible for the processes of carcinogenesis, spread and metastasis. Currently, some novel agents targeting a part of these dysfunctional molecular signalling pathways have already been integrated into the standard treatment of gastric cancer, whereas others remain in phases of investigation within clinical trials. It is essential to identify the unique molecular patterns of tumours and specific biomarkers to develop treatments targeted to the individual tumour behaviour. This review analyses the global impact of gastric cancer, as well as the role of Helicobacter pylori infection and the efficacy of bacterial eradication in preventing gastric cancer development. Furthermore, the paper discusses the currently available targeted treatments and future directions of research using promising novel classes of molecular agents for advanced tumours. PMID:27570417

  6. Radiation treatment for breast cancer. Recent advances.

    PubMed Central

    Chow, Edward

    2002-01-01

    OBJECTIVE: To review recent advances in radiation therapy in treatment of breast cancer. QUALITY OF EVIDENCE: MEDLINE and CANCERLIT were searched using the MeSH words breast cancer, ductal carcinoma in situ, sentinel lymph node biopsy, and postmastectomy radiation. Randomized studies have shown the efficacy of radiation treatment for ductal carcinoma in situ (DCIS) and for invasive breast cancer. MAIN MESSAGE: Lumpectomy followed by radiation is effective treatment for DCIS. In early breast cancer, shorter radiation schedules are as efficacious for local control and short-term cosmetic results as traditional fractionation regimens. Sentinel lymph node biopsy is done in specialized cancer centres; regional radiation is recommended for patients with four or more positive axillary lymph nodes. Postmastectomy radiation has been shown to have survival benefits for high-risk premenopausal patients. Systemic metastases from breast cancer usually respond satisfactorily to radiation. CONCLUSION: Radiation therapy continues to have an important role in treatment of breast cancer. There have been great advances in radiation therapy in the last decade, but they have raised controversy. Further studies are needed to address the controversies. PMID:12113193

  7. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    PubMed

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater. PMID:26846248

  8. Additional treatment of wastewater reduces endocrine disruption in wild fish--a comparative study of tertiary and advanced treatments.

    PubMed

    Baynes, Alice; Green, Christopher; Nicol, Elizabeth; Beresford, Nicola; Kanda, Rakesh; Henshaw, Alan; Churchley, John; Jobling, Susan

    2012-05-15

    Steroid estrogens are thought to be the major cause of feminization (intersex) in wild fish. Widely used wastewater treatment technologies are not effective at removing these contaminants to concentrations thought to be required to protect aquatic wildlife. A number of advanced treatment processes have been proposed to reduce the concentrations of estrogens entering the environment. Before investment is made in such processes, it is imperative that we compare their efficacy in terms of removal of steroid estrogens and their feminizing effects with other treatment options. This study assessed both steroid removal and intersex induction in adult and early life stage fish (roach, Rutilus rutilus). Roach were exposed directly to either secondary (activated sludge process (ASP)), tertiary (sand filtrated (SF)), or advanced (chlorine dioxide (ClO(2)), granular activated charcoal (GAC)) treated effluents for six months. Surprisingly, both the advanced GAC and tertiary SF treatments (but not the ClO(2) treatment) significantly removed the intersex induction associated with the ASP effluent; this was not predicted by the steroid estrogen measurements, which were higher in the tertiary SF than either the GAC or the ClO(2). Therefore our study highlights the importance of using both biological and chemical analysis when assessing new treatment technologies. PMID:22500691

  9. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  10. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants

    PubMed Central

    Zhang, Tong; Shao, Ming-Fei; Ye, Lin

    2012-01-01

    Activated sludge (AS) contains highly complex microbial communities. In this study, PCR-based 454 pyrosequencing was applied to investigate the bacterial communities of AS samples from 14 sewage treatment plants of Asia (mainland China, Hong Kong, and Singapore), and North America (Canada and the United States). A total of 259 K effective sequences of 16S rRNA gene V4 region were obtained from these AS samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in AS, that is, 1183–3567 OTUs in a sludge sample, at 3% cutoff level and sequencing depth of 16 489 sequences. Clear geographical differences among the AS samples from Asia and North America were revealed by (1) cluster analyses based on abundances of OTUs or the genus/family/order assigned by Ribosomal Database Project (RDP) and (2) the principal coordinate analyses based on OTUs abundances, RDP taxa abundances and UniFrac of OTUs and their distances. In addition to certain unique bacterial populations in each AS sample, some genera were dominant, and core populations shared by multiple samples, including two commonly reported genera of Zoogloea and Dechloromonas, three genera not frequently reported (i.e., Prosthecobacter, Caldilinea and Tricoccus) and three genera not well described so far (i.e., Gp4 and Gp6 in Acidobacteria and Subdivision3 genera incertae sedis of Verrucomicrobia). Pyrosequencing analyses of multiple AS samples in this study also revealed the minority populations that are hard to be explored by traditional molecular methods and showed that a large proportion of sequences could not be assigned to taxonomic affiliations even at the phylum/class levels. PMID:22170428

  11. Treatment of Volatile Organic Compounds with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

    PubMed

    Kang, Sv-Yuan; Tsai, Hsiao-Hsin; Nguyen, Nhat-Thien; Chang, Chang-Tang; Tseng, Chao-Heng

    2016-02-01

    Large amount of calcium fluoride sludge was generated by semiconductor industry every year. It also needs high requirement of fuel consumption using rotor concentrator and thermal oxidizer to treat VOCs. The mesoporous catalyst prepared by calcium fluoride sludge was used for VOCs treatment in this study. Acetone is a kind of solvent and used in a large number of laboratories and factories. The serious problems will be caused when it exposed to the environmental. Economic and practical technology is needed to eliminate this kind of hazardous air pollutant. In this research, the adsorption of acetone was tested with CF-MCM (mesoporous silica materials synthesized from calcium fluoride). The raw material was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants, firstly. The prepared mesoporous silica materials were characterized by nitrogen adsorption and desorption analysis, transmission electron microscope (TEM), scanning electron microscopy (SEM), X-ray powder diffractometer (XRPD) and Fourier transform infrared spectroscopy (FTIR). The results showed that the surface area, large pore volume and pore diameter could be up to 862 m2 g(-1), 0.57 cm3 g(-1) and 2.9 nm, respectively. The crystal patterns of CF-MCM were similar with MCM-41 from TEM image. The adsorption capacity of acetone with CF-MCM was 118, 190, 194 and 201 mg g(-1), respectively, under 500, 1000, 1500 and 2000 ppm. Furthermore, the adsorption capacity of MCM-41 and CF-MCM was almost the same. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study. PMID:27433709

  12. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    SciTech Connect

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G.

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  13. Temporal evolution of linear alkylbenzene sulfonates and heavy metals in sludge from wastewater treatment plant.

    PubMed

    Villar, M; Callejón, M; Villar, P; Fernández-Torres, R; Bello, M A; Guiraúm, A

    2011-05-01

    Five homologues of linear alkylbenzene sulfonates (LAS)-LAS C-10, LAS C-11, LAS C-12, and LAS C-13 and total LAS-were monitored during a one-year period in primary, secondary, and digested sludge to evaluate their presence and temporal evolution. Extraction of LAS was carried out using microwaves energy, and determination was performed using high-performance liquid chromatographic- fluorescence (HPLC-FL). The results showed that concentrations of total LAS were between 9 337 mg/kg(-1) dry matter for primary sludge and 33.3 mg/kg(-1)(DM) for secondary sludge. Concentrations of total LAS were greater than 2 113 mg/kg(-1) in primary and digested sludge and were less than 260 mg/kg(-) in secondary sludge. On the other hand, the highest concentrations of LAS in primary sludge were found in summer, probably because of lack of rain during those months. Concentrations tend to be constant throughout the year in digested sludge. In addition heavy metals also were analyzed. Heavy metals, including zinc, copper, nickel, lead, and chromium are persistent environmental contaminants that cannot be destroyed. Biomagnification through the food-chain and potential accumulation in human tissues can cause both human health and environmental concerns. Concern regarding total heavy metal content of sludge limits sludge recycling for use on agricultural lands. This paper presents a comparative study of wastewater sludge that are going to be used as fertilizer based on the requirements of legislation proposed in the European Union. This research found that concentrations of total LAS in digested sludge are higher than the limits established in the proposed new draft. PMID:21657192

  14. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    SciTech Connect

    Sandoval Lozano, Claudia Johanna Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-02-15

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

  15. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment.

    PubMed

    Lozano, Claudia Johanna Sandoval; Mendoza, Marisol Vergara; de Arango, Mariela Carreño; Monroy, Edgar Fernando Castillo

    2009-02-01

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH(4) and CO(2)) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Río Frío Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L(-1) and a concentration of CO(2) of 90%. In this reactor, the fermentative population was predominant (10(5)-10(6)MPN mL(-1)). The acetogenic population was (10(5)MPN mL(-1)) and the sulphate-reducing population was (10(4)-10(5)MPN mL(-1)). In the methanogenic reactor (R2), levels of CH(4) (70%) were higher than CO(2) (25%), whereas the VFA values were lower than 4000 mg L(-1). Substrate competition between sulphate-reducing (10(4)-10(5)MPN mL(-1)) and methanogenic bacteria (10(5)MPN mL(-1)) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH(4)g(-1)VSS(-1)day(-1)) and hydrogenophilic (0.94 g COD-CH(4)g(-1)VSS(-1)day(-1)) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified. PMID:18707861

  16. Recycling potential of air pollution control residue from sewage sludge thermal treatment as artificial lightweight aggregates.

    PubMed

    Bialowiec, Andrzej; Janczukowicz, Wojciech; Gusiatin, Zygmunt M; Thornton, Arthur; Rodziewicz, Joanna; Zielinska, Magdalena

    2014-03-01

    Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate. PMID:24616344

  17. Oxidative co-treatment using hydrogen peroxide with anaerobic digestion of excess municipal sludge.

    PubMed

    Cacho Rivero, Jesus A; Madhavan, Narain; Suidan, Makram T; Ginestet, Philippe; Audic, Jean-Marc

    2006-07-01

    The effect of an oxidative co-treatment on anaerobic digestion of a mixture of primary and waste activated sludge was investigated. The oxidant used in this study was hydrogen peroxide (H2O2). A maximum improvement in solid destruction of 15.2% was achieved in the overall process, with a dosage of 2.0 g H2O2/g influent volatile suspended solids (VSS(influent)). All configurations operated at this dosage also showed statistically significant increases in solids removal. A statistically significant enhancement in overall solids destruction was observed for the lower oxidant dosage (0.5 H2O2/g VSS(influent)). Surprisingly, for 1.0 g H2O2/g VSS(influent), only one of the three configurations involving oxidative co-treatment showed significant increases in solids destruction. Special attention was paid to the performance of this process relative to fecal coliforms destruction. Class A biosolids were obtained for all the different hydrogen peroxide dosages used when oxidative co-treatment is combined with a two-stage anaerobic digestion process. PMID:16929639

  18. Sewage sludge ash to phosphorus fertiliser: Variables influencing heavy metal removal during thermochemical treatment

    SciTech Connect

    Mattenberger, H.; Fraissler, G.; Brunner, T. Herk, P.; Hermann, L.

    2008-12-15

    The aim of this study was to improve the removal of heavy metals from sewage sludge ash by a thermochemical process. The resulting detoxified ash was intended for use as a raw material rich in phosphorus (P) for inorganic fertiliser production. The thermochemical treatment was performed in a rotary kiln where the evaporation of relevant heavy metals was enhanced by additives. The four variables investigated for process optimisation were treatment temperature, type of additive (KCl, MgCl{sub 2}) and its amount, as well as type of reactor (directly or indirectly heated rotary kiln). The removal rates of Cd, Cr, Cu, Ni, Pb, Zn and of Ca, P and Cl were investigated. The best overall removal efficiency for Cd, Cu, Pb and Zn could be found for the indirectly heated system. The type of additive was critical, since MgCl{sub 2} favours Zn- over Cu-removal, while KCl acts conversely. The use of MgCl{sub 2} caused less particle abrasion from the pellets in the kiln than KCl. In the case of the additive KCl, liquid KCl - temporarily formed in the pellets - acted as a barrier to heavy metal evaporation as long as treatment temperatures were not sufficiently high to enhance its reaction or evaporation.

  19. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta.

    PubMed

    Aydin, Sevcan

    2016-07-01

    While anaerobic treatment is capable of treating pharmaceutical wastewater and removing antibiotics in liquid phases, solid phases may still contain significant amounts of antibiotics following this treatment. The main goal of this study was to evaluate the use of white-rot fungi to remove erythromycin, sulfamethoxazole, and tetracycline combinations from biosolids. The degradation potential of Trametes versicolor and Bjerkandera adusta was evaluated via the sequential treatment of anaerobic sludge. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were used to identify competition between the autochthonous microbial communities and white-rot fungi. Solid-phase treatment using white-rot fungi substantially reduced antibiotic concentrations and toxicity in sludge. According to PCR-DGGE results, there is an association between species of fungus and antibiotic type as a result of the different transformation pathways of fungal strains. Fungal post-treatment of sludge represents a promising method of removing antibiotic combinations, therefore holding a significant promise as an environmentally friendly means of degrading the antibiotics present in sludge. PMID:27033714

  20. Probabilistic assessment of environmental exposure to the polycyclic musk, HHCB and associated risks in wastewater treatment plant mixing zones and sludge amended soils in the United States.

    PubMed

    Federle, Thomas; Sun, Ping; Dyer, Scott; Kiel, Brian

    2014-09-15

    The objective of this work was to conduct an environmental risk assessment for the consumer use of the polycyclic musk, HHCB (CAS No. 1222-05-5) in the U.S. focusing on mixing zones downstream from municipal wastewater treatment plants (WWTPs) and sludge amended soils. A probabilistic exposure approach was utilized combining statistical distributions of effluent and sludge concentrations for the U.S. WWTPs with distributions of mixing zone dilution factors and sludge loading rates to soil to estimate HHCB concentrations in surface waters and sediments below WWTPs and sludge amended soils. These concentrations were then compared to various toxicity values. Measured concentrations of HHCB in effluent and sludge from a monitoring program of 40 WWTPs across the U.S. formed the basis for estimating environmental loadings. Based upon a Monte Carlo analysis, the probability of HHCB concentrations being below the PNEC (predicted no effect concentration) for pelagic freshwater organisms was greater than or equal to 99.87% under both mean and low flow regimes. Similarly, the probability of HHCB concentrations being less than the PNEC for freshwater sediment organisms was greater than or equal to 99.98%. Concentrations of HHCB in sludge amended soils were estimated for single and repeated annual sludge applications with tilling of the sludge into the soil, surface application without tilling and a combination reflecting current practice. The probability of soil HHCB concentrations being below the PNEC for soil organisms after repeated sludge applications was 94.35% with current sludge practice. Probabilistic estimates of HHCB exposures in surface waters, sediments and sludge amended soils are consistent with the published values for the U.S. In addition, the results of these analyses indicate that HHCB entering the environment in WWTP effluent and sludge poses negligible risk to aquatic and terrestrial organisms in nearly all exposure scenarios. PMID:24802072

  1. Fenton peroxidation improves the drying performance of waste activated sludge.

    PubMed

    Dewil, Raf; Baeyens, Jan; Neyens, Elisabeth

    2005-01-31

    Advanced sludge treatment processes (AST) reduce the amount of sludge produced and improve the dewaterability, thus probably also affecting the heat transfer properties and the drying characteristics of the sludge. This paper studies the influence of the Fenton peroxidation on the thermal conductivity of the sludge. Results demonstrate that the Fenton's peroxidation positively influences the sludge cake consistency and hence enhances the mechanical dewaterability and the drying characteristics of the dewatered sludge. For the two sludges used in this study, i.e. obtained from the wastewater treatment plants (WWTP) of Tienen and Sint-Niklaas--the dry solids content of the mechanically dewatered sludge increased from 22.5% to 40.3% and from 18.7% to 35.2%, respectively. The effective thermal conductivity k(e) of the untreated and the peroxidized sludges is measured and used to determine the heat transfer coefficient h(s). An average improvement for k(e) of 16.7% (Tienen) and 5.8% (Sint-Niklaas) was observed. Consequently the value of h(s) increased with 15.6% (Tienen) and 5.0% (Sint-Niklaas). This increased heat transfer coefficient in combination with the increased dewaterability has direct implications on the design of sludge dryers. A plate-to-plate calculation of a multiple hearth dryer illustrates that the number of plates required to dry the peroxidized sludge to 90% DS is less than half the number of plates needed to dry untreated sludge. This results in reduced dryer dimensions or a higher capacity for an existing dryer of given dimensions. PMID:15629575

  2. Chronic hepatitis B: Advances in treatment

    PubMed Central

    Santantonio, Teresa Antonia; Fasano, Massimo

    2014-01-01

    Treatment of chronic hepatitis B (CHB) has markedly improved in the last 15 years due to the availability of direct antivirals which greatly increase therapeutic options. Currently, there are two classes of agents licensed for CHB treatment: standard or pegylated interferon alpha (IFN or Peg-IFN) and five nucleoside/nucleotide analogues (NAs). Long-term treatment with NAs is the treatment option most often used in the majority of CHB patients. Entecavir and tenofovir, the most potent NAs with high barrier to resistance, are recommended as first-line monotherapy by all major treatment guidelines and can lead to long-lasting virological suppression, resulting in histological improvement or reversal of advanced fibrosis and reduction in disease progression and liver-related complications. In this review, we focus on current treatment strategies of chronic hepatitis B and discuss the most recent efficacy and safety data from clinical trials and real life clinical practice. Recent findings of response-guided approaches are also discussed. PMID:24868322

  3. THE EFFECT OF POWERED ACTIVATED CARBON IN A PETROLEUM REFINERY ACTIVATED SLUDGE TREATMENT SYSTEM

    EPA Science Inventory

    The purpose of this research program was to determine the effect of the addition of powdered activated carbon (PAC) to refinery activated sludge systems. Bench-scale and full-scale tests were performed. A wide range of PAC concentrations and sludge ages were evaluated. Bench-scal...

  4. Sanitary Landfill. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Sharman, Ronald M.

    This lesson is an introduction to disposal of sludge by landfill. A brief explanation of the complete process is provided, including discussions of sludge suitability, site selection, method selection and operation, site closure, and ultimate reuse. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a…

  5. ENGINEERING ASSESSMENT OF HOT-ACID TREATMENT OF MUNICIPAL SLUDGE FOR HEAVY METALS REMOVAL

    EPA Science Inventory

    The hot-acid method for treating sludge was developed by the Walden Division of Abcor, Inc., to remove heavy metals from municipal wastewater sludge. Investigations by Walden have demonstrated the degrees to which heavy metals are solubilized. Sulfuric acid dosage at about 20 to ...

  6. K East Basin sludge volume estimates for integrated water treatment system

    SciTech Connect

    Pitner, A.L.

    1998-08-12

    Estimates were made of the volume of sludge expected from Integrated Process Strategy (IPS) processing fuel elements and in the fuel storage canisters in K East Basin, These were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. The estimates, made in early 1997, are reviewed and the basic assumptions used discussed.

  7. Modelling of full-scale wastewater treatment plants with different treatment processes using the Activated Sludge Model no. 3.

    PubMed

    Wichern, M; Obenaus, F; Wulf, P; Rosenwinkel, K H

    2001-01-01

    In 1999 the Activated Sludge Model no. 3 (ASM 3) by the IWA task Group on Mathematical Modeling for Design and Operation of Biological Wastewater Treatment was presented. The model is used for simulation of nitrogen removal. On the basis of a new calibration of the ASM 3 with the easy degradable COD measured by respiration simulation runs of this paper have been done. In 2000 a biological phosphorus removal module by the EAWAG was added to the calibrated version of ASM 3 and is now serving the current requirements for modelling the enhanced biological P-removal. Only little experiences with different load situations of large-scale wastewater treatment plants were made with both new models so far. This article reports the experiences with the simulation and calibration of the biological parameters using ASM 3 and the EAWAG BioP Module. Three different large-scale wastewater treatment plants in Germany with different treatment systems will be discussed (Koblenz: pre-denitrification; Hildesheim: simultaneous denitrification with EBPR; Duderstadt: intermediate denitrification with EBPR). Informations regarding the choice of kinetic and stoichiometric parameters will be given. PMID:11496677

  8. Myeloma today: Disease definitions and treatment advances.

    PubMed

    Rajkumar, S Vincent

    2016-01-01

    There have been major advances in the diagnosis, staging, risk-stratification, and management of multiple myeloma (MM). In addition to established CRAB (hypercalcemia, renal failure, anemia, and lytic bone lesions) features, new diagnostic criteria include three new biomarkers to diagnose the disease: bone marrow clonal plasmacytosis ≥60%, serum involved/uninvolved free light chain ratio ≥100, and >1 focal lesion on magnetic resonance imaging. MM can be classified into several subtypes based on baseline cytogenetics, and prognosis varies according to underlying cytogenetic abnormalities. A Revised International Staging System has been developed which combines markers of tumor burden (albumin, beta-2 microglobulin) with markers of aggressive disease biology (high-risk cytogenetics and elevated serum lactate dehydrogenase). Although the approach to therapy remains largely the same, the treatment options at every stage of the disease have changed. Carfilzomib, pomalidomide, panobinostat, daratumumab, elotuzumab, and ixazomib have been approved for the treatment of the disease. These drugs combined with older agents such as cyclophosphamide, dexamethasone, thalidomide, bortezomib, and lenalidomide dramatically increase the repertoire of regimens available for the treatment of MM. This review provides a concise overview of recent advances in MM, including updates to diagnostic criteria, staging, risk-stratification, and management. PMID:26565896

  9. An integrated approach for monitoring efficiency and investments of activated sludge-based wastewater treatment plants at large spatial scale.

    PubMed

    De Gisi, Sabino; Sabia, Gianpaolo; Casella, Patrizia; Farina, Roberto

    2015-08-01

    WISE, the Water Information System for Europe, is the web-portal of the European Commission (EU) that disseminates the quality state of the receiving water bodies and the efficiency of the municipal wastewater treatment plants (WWTPs) in order to monitor advances in the application of both the Water Framework Directive (WFD) as well as the Urban Wastewater Treatment Directive (UWWTD). With the intention to develop WISE applications, the aim of the work was to define and apply an integrated approach capable of monitoring the efficiency and investments of activated sludge-based WWTPs located in a large spatial area, providing the following outcomes useful to the decision-makers: (i) the identification of critical facilities and their critical processes by means of a Performance Assessment System (PAS), (ii) the choice of the most suitable upgrading actions, through a scenario analysis. (iii) the assessment of the investment costs to upgrade the critical WWTPs and (iv) the prioritization of the critical facilities by means of a multi-criteria approach which includes the stakeholders involvement, along with the integration of some technical, environmental, economic and health aspects. The implementation of the proposed approach to a high number of municipal WWTPs highlighted how the PAS developed was able to identify critical processes with a particular effectiveness in identifying the critical nutrient removal ones. In addition, a simplified approach that considers the cost related to a basic-configuration and those for the WWTP integration, allowed to link the critical processes identified and the investment costs. Finally, the questionnaire for the acquisition of data such as that provided by the Italian Institute of Statistics, the PAS defined and the database on the costs, if properly adapted, may allow for the extension of the integrated approach on an EU-scale by providing useful information to water utilities as well as institutions. PMID:25863511

  10. Effects of ammonia and phosphate limitation on the activated sludge treatment of calcium-containing chemical waste

    SciTech Connect

    Salanitro, J.P.; Sun, P.T.; Thornton, J.B.

    1983-02-01

    Laboratory-scale biotreaters were used to study the effects of NH/sub 3/-N and PO/sub 4/-P nutrients on the activated sludge treatment of a chemical waste containing soluble calcium (1300 mg/L). Units receiving high or low levels of NH/sub 3/-N and PO/sub 4/-P were similar in their ability to remove organic compounds from the waste. Adaptation of sludges to low PO/sub 4/-P levels (<0.1 mg/L effluent) resulted in a marked accumulation of CaCO/sub 3/ in the biosolids, whereas those receiving high PO/sub 4/-P (2-4 mg/L effluent) had little CaCO/sub 3/. Microscopic observations of CaCO/sub 3/ containing sludges showed substantial amounts of CaCO/sub 3/ crystals imbedded in the biomass. These floes also appeared to be enriched with nonfilamentous bacterial species in contrast to floes devoid of CaCO/sub 3/ which had a floe structure of filamentous and nonfilamentous organisms. Scanning electron micrographs of floes grown under low NH/sub 3/-N showed a microbial fibrillar network of exocellular material interconnecting cells in the floe matrix. The sludges adapted to low NH/sub 3/-N also produced higher amounts of extractable polysaccharide. CaCO/sub 3/ containing biosolids were more dense, larger, and settled better (low SVI, high ISV) than floes devoid of the precipitates. It is not known from these experiments whether PO/sub 4/-P or some inorganic or organic polymer produced by the floe bacteria are involved in inhibiting CaCO/sub 3/ precipitation in the activated sludge treatment of calcium-containing wastes.

  11. Performance evaluation of upflow anaerobic sludge blanket reactor process for dairy wastewater treatment.

    PubMed

    Elangovan, C; Sekar, A S S

    2015-11-01

    Investigation on dairy wastewater treatment was undertaken at ambient temperature in 11 l effective volume of laboratory--scale upflow anaerobic sludge blanket reactor receiving an average influent chemical oxygen demand of 2100 mg 1(-1) for 3 months of 24 hours, hydraulic retention time. The feeds of the synthetic dairy wastewater operated with HRT of 12 hrs, 16 hrs, 20 hrs and 24 hrs was equivalent to organic loading rates of 1.20 kg COD m(-3) d-7.20 kg COD m(-3) d, 0.9 kg COD m(-3) d-5.40 kg COD m(-3) d, 0.72 kg COD m(-3) d--4.32 kg COD m(-3) d and 0.60 kg COD m(-3) d-3.60 kg COD m(-3) d respectively. After steady state condition was reached, which took about 2 months, the effluent quality parameter were sampled and analysed to quantify treatment efficiencies. The following removal efficiency observed were 73-94.33% COD; 50.04- 56.66% total solids; 45.55-70.63% total dissolved solids; 66-86.67% total nitrogen and 72-94% total phosphorous. Maximum biogas production rate was 383 l kg(-1) COD removed with 260 l of methane gas. Estimation of biogas production was analysed using artificial neural network software model, and the results predicted coincided well with the experimental results. PMID:26688965

  12. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid.

    PubMed

    Vogel, Christian; Adam, Christian

    2011-09-01

    Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO(3) as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl(2) and water. PMID:21819089

  13. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    SciTech Connect

    Not Available

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  14. The survival of Escherichia coli, faecal coliforms and enterobacteriaceae in general in soil treated with sludge from wastewater treatment plants.

    PubMed

    Estrada, I B; Aller, A; Aller, F; Gómez, X; Morán, A

    2004-06-01

    We monitored the effect of the application of treated sludge on the behaviour of enterobacteriaceae (mainly faecal coliforms and especially Escherichia coli) in the soil, and studied their evolution over time after application. Three different sludges were used: two from a municipal sewage plant, one of them had been subjected to anaerobic digestion and heat drying, and the other to anaerobic digestion and mechanical dehydration, and one from a dairy waste treatment to aerobic digestion and gravity thickening. Two types of tests were carried out: type O, in the open air, with no possibility of controlling humidity or temperature; and type L, under laboratory conditions, with controlled temperature and humidity. Sludge tests were also run on unscreened soil previously treated with chemical fertilizer. After 80 days of experimentation the populations of faecal coliforms and E. coli had decreased considerably or were undetectable in assays carried out on the soil/sludge mixtures, under both open-air and laboratory conditions, but that, over the same period, in the mixtures containing chemical fertilizer (calcium ammonium nitrate) there had been a considerable increase in the micro-organism populations studied. PMID:15051081

  15. Performance analysis of a combined system of membrane bioreactor and worm reactor: wastewater treatment, sludge reduction and membrane fouling.

    PubMed

    Tian, Yu; Lu, Yaobin; Li, Zhipeng

    2012-10-01

    A new process that combined a membrane bioreactor (S-MBR) and a novel worm reactor was proposed in this study. The combined system indicated excellent sludge reduction efficiency, wastewater treatment performance and membrane permeability. The sludge reduction percentage of the combined system was about 1.9 times higher than that of the conventional MBR. The chemical oxygen demand (COD) discharge rate in the combined system was only one fourth of that in the conventional MBR, indicating that the COD was removed more thoroughly. Low extracellular polymeric substances level (60-75 μg/mg), low filamentous bacteria level, narrow floc size distribution (distribution spread index of 0.91) and high roundness (0.80 ± 0.10) were observed in the S-MBR sludge. Deposited by this modified sludge, a fouling layer with smaller thickness, larger porosity and less proteins and polysaccharides accumulation was formed in the S-MBR, demonstrating that the combined system was able to alleviate membrane fouling. PMID:22858483

  16. Limitation of sludge biotic index application for control of a wastewater treatment plant working with shock organic and ammonium loadings.

    PubMed

    Drzewicki, Adam; Kulikowska, Dorota

    2011-11-01

    This study aimed to determine the relationship between activated sludge microfauna, the sludge biotic index (SBI) and the effluent quality of a full-scale municipal wastewater treatment plant (WWTP) working with shock organic and ammonium loadings caused by periodic wastewater delivery from septic tanks. Irrespective of high/low effluent quality in terms of COD, BOD5, ammonium and suspended solids, high SBI values (8-10), which correspond to the first quality class of sludge, were observed. High SBI values were connected with abundant taxonomic composition and the domination of crawling ciliates with shelled amoebae and attached ciliates. High SBI values, even at a low effluent quality, limit the usefulness of the index for monitoring the status of an activated sludge system and the effluent quality in municipal WWTP-treated wastewater from septic tanks. It was shown that a more sensitive indicator of effluent quality was a change in the abundance of attached ciliates with a narrow peristome (Vorticella infusionum and Opercularia coarctata), small flagellates and crawling ciliates (Acineria uncinata) feeding on flagellates. PMID:21802913

  17. Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus.

    PubMed

    Ghanem, I; Orfi, M; Shamma, M

    2007-01-01

    A chlorpyrifos (CPY)-degrading bacterial strain was isolated from an activated sludge sample collected from the Damascus Wastewater Treatment Plant, Syria. The isolation of Klebsiella sp. was facilitated by the addition of CPY at a rate of 3.84 g/L of sludge weekly (selection pressure). Identification of Klebsiella sp. was done using major staining and biochemical differentiation tests (Gram stain, cytochrome oxidase and some relevant saccharide fermentation tests using biochemical assays). Klebsiella sp. was maintained by culturing in a poor medium consisting of mineral salts and CPY as the sole carbon source. When 3 activated sludge samples were incubated in the presence of CPY (13.9 g/L sludge), 46% of added CPY were degraded within 4 d. By comparison, within 4 d the isolated Klebsiella sp. was found to break down 92% of CPY when co-incubated in a poor mineral medium in which CPY was the sole carbon source (13.9 g/L poor medium). Isolated Klebsiella sp. was able to tolerate up to 17.3 g of CPY in the poor medium. PMID:18062192

  18. Scientific basis of dissolved organic carbon limitation for landfilling of municipal treatment sludge--is it attainable and justifiable?

    PubMed

    Sözen, S; Cokgor, E Ubay; Insel, G; Tas, D Okutman; Dulkadiroglu, H; Karaca, C; Filibeli, A; Meric, S; Orhon, D

    2014-09-01

    This study evaluated the scientific and technical basis of the dissolved organic carbon (DOC) limitation imposed on municipal sludge for landfilling, mainly for assessing the attainability of the implemented numerical level. For this purpose, related conceptual framework was analyzed, covering related sewage characteristics, soluble microbial products generation, and substrate solubilization and leakage due to hydrolysis. Soluble COD footprint was experimentally established for a selected treatment plant, including all the key steps in the sequence of wastewater treatment and sludge handling. Observed results were compared with reported DOCs in other treatment configurations. None of the leakage tests performed or considered in the study could even come close to the prescribed limitation. All observed results reflected 10-20 fold higher DOC levels than the numerical limit of 800 mg/kg (80 mg/L), providing conclusive evidence that the DOC limitation imposed on municipal treatment sludge for landfilling is not attainable, and therefore not justifiable on the basis of currently available technology. PMID:24973302

  19. Multimodal treatment strategies for advanced hilar cholangiocarcinoma.

    PubMed

    Weiss, Matthew J; Cosgrove, David; Herman, Joseph M; Rastegar, Neda; Kamel, Ihab; Pawlik, Timothy M

    2014-08-01

    Cholangiocarcinoma (CCA) is the second most common primary malignancy of the liver arising from malignant transformation and growth of biliary ductal epithelium. Approximately 50-70 % of CCAs arise at the hilar plate of the biliary tree, which are termed hilar cholangiocarcinoma (HC). Various staging systems are currently employed to classify HCs and determine resectability. Depending on the pre-operative staging, the mainstays of treatment include surgery, chemotherapy, radiation therapy, and photodynamic therapy. Surgical resection offers the only chance for cure of HC and achieving an R0 resection has demonstrated improved overall survival. However, obtaining longitudinal and radial surgical margins that are free of tumor can be difficult and frequently requires extensive resections, particularly for advanced HCs. Pre-operative interventions may be necessary to prepare patients for major hepatic resections, including endoscopic retrograde cholangiopancreatography, percutaneous transhepatic cholangiography, and portal vein embolization. Multimodal therapy that combines chemotherapy with external beam radiation, stereotactic body radiation therapy, bile duct brachytherapy, and/or photodynamic therapy are all possible strategies for advanced HC prior to resection. Orthotopic liver transplantation is another therapeutic option that can achieve complete extirpation of locally advanced HC in judiciously selected patients following standardized neoadjuvant protocols. PMID:24962146

  20. Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment.

    PubMed

    Zhou, Xiao-hong; Huang, Bao-cheng; Zhou, Tao; Liu, Yan-chen; Shi, Han-chang

    2015-01-01

    The ever-increasing daily use of engineered nanoparticles will lead to heightened levels of these materials in the environment. These nanomaterials will eventually go into the wastewater treatment plant (WWTP), therefore, resulting into a pressing need for information on their aggregation behavior and kinetics in the wastewater aqueous matrix. In this work, we dispersed two different metal oxide nanoparticles (ZnO and TiO2) into the influent of two different WWTPs. Through the time-resolved dynamic light scattering analysis and transmission electron microscopy, the metal oxide nanoparticles (NPs) were quite stably existed in the wastewater matrix with aggregates of diameter 300-400 nm after 4.5h or more suspension. We confirmed that the dissolved organic matters (DOMs) attributed to the stability of nanoparticles. No propensity of NPs to aggregate were observed in the presence of both monovalent and divalent electrolytes even at high concentrations up to 0.15 M in NaCl or 0.025 M in CaCl2, indicating that the destabilization of nanoparticles in the complicated wastewater matrix was not achieved by the compression of electrical double layer, therefore, their aggregation kinetics cannot be simply predicted by the classic Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability. However, obvious aggregation of nanoparticles in the Al2(SO4)3 solution system was observed with the likely mechanism of bridging of the metal oxide nanoparticles and aggregates due to the formation of hydrous alumina (Al(OH)3·H2O) in the Al2(SO4)3 solution. In the wastewater matrix, we used the noninvasive measurement technology to detect the O2 flux of activated sludge before and after treatment with 1, 10 and 100 mg L(-1) NPs. The results confirmed that both ZnO and TiO2 NPs showed an adverse impact on the O2 uptake of activated sludge when the exposure time extended to 4.5 h. PMID:25127355

  1. Degradation of malathion by Pseudomonas during activated sludge treatment system using principal component analysis (PCA).

    PubMed

    Imran, Hashmi; Altaf, Khan M; Jong-Guk, Kim

    2006-01-01

    Popular descriptive multivariate statistical method currently employed is the principal component analyses (PCA) method. PCA is used to develop linear combinations that successively maximize the total variance of a sample where there is no known group structure. This study aimed at demonstrating the performance evaluation of pilot activated sludge treatment system by inoculating a strain of Pseudomonas capable of degrading malathion which was isolated by enrichment technique. An intensive analytical program was followed for evaluating the efficiency of biosimulator by maintaining the dissolved oxygen (DO) concentration at 4.0 mg/L. Analyses by high performance liquid chromatographic technique revealed that 90% of malathion removal was achieved within 29 h of treatment whereas COD got reduced considerably during the treatment process and mean removal efficiency was found to be 78%. The mean pH values increased gradually during the treatment process ranging from 7.36-8.54. Similarly the mean ammonia-nitrogen (NH3-N) values were found to be fluctuating between 19.425-28.488 mg/L, mean nitrite-nitrogen (NO3-N) ranging between 1.301-2.940 mg/L and mean nitrate-nitrogen (NO3-N) ranging between 0.0071-0.0711 mg/L. The study revealed that inoculation of bacterial culture under laboratory conditions could be used in bioremediation of environmental pollution caused by xenobiotics. The PCA analyses showed that pH, COD, organic load and total malathion concentration were highly correlated and emerged as the variables controlling the first component, whereas dissolved oxygen, NO3-N and NH3-N governed the second component. The third component repeated the trend exhibited by the first two components. PMID:17078564

  2. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. PMID:26210584

  3. Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.

    PubMed

    Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz

    2007-08-01

    The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels. PMID:16934389

  4. Performance of an overland flow system for advanced treatment of wastewater plant effluent.

    PubMed

    Taebi, Amir; Droste, Ronald L

    2008-09-01

    Overland flow (OF) systems were evaluated and compared for advanced treatment of municipal and industrial effluents, including nutrients and nondegradable chemical oxygen demand (COD) removal. Three pilot plants were constructed at the Shahin Shahr Wastewater Treatment Plant (WWTP), Isfahan, Iran. Each pilot was assigned a specific wastewater and all were simultaneously operated for 8 months. Treatment of primary effluent, activated sludge secondary effluent, and lagoon effluent of textile wastewater was investigated at application rates (ARs) of 0.15, 0.25, and 0.35 m(3)m(-1)h(-1). During 5 months of stable operation after a 3-month acclimation period, mean removals of total 5-day biochemical oxygen demand (TBOD(5)), total COD (TCOD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and turbidity were 74.5%, 54.8%, 66.2%, 39.4%, 35.8%, and 67.7% for primary effluent; 52.9%, 52.9%, 66.5%, 44.4%, 39.8%, and 50.1% for activated sludge effluent; 65.7%, 58.7%, 70.3%, 41.7%, 41.3%, and 54.9% for textile wastewater lagoon effluent, respectively. The model of Smith and Schroeder, 1985. Field studies of the overland flow process for the treatment of raw and primary treated municipal wastewater. Journal of Water Pollution Control Federation 57, 785-794] was satisfactory for TBOD(5). For all treatment parameters a standard first-order removal model was inadequate to represent the data but a modified first-order model provided a satisfactory fit to the data. Based on the results of this study, it can be concluded that an OF system as advanced treatment had the ability to meet effluent discharge permit limits and was an economical replacement for stabilization ponds and mechanical treatment options. PMID:17499907

  5. Treatment of advanced-stage Hodgkin lymphoma.

    PubMed

    Vassilakopoulos, Theodoros P; Johnson, Peter W M

    2016-07-01

    There is now good evidence that the escalated BEACOPP regimen (bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine, prednisone) is more effective in controlling advanced-stage Hodgkin lymphoma (HL) than the widely used ABVD regimen (adriamycin, bleomycin, vinblastine, dacarbazine), but the extra efficacy comes at the expense of both short- and long-term toxicity, and there is debate as to whether overall survival is affected. Baseline prognostic factors have proven of limited utility for determining which patients require more intensive therapy and recent studies have sought to use interim fluoro-deoxyglucose positron emission tomography (FDG-PET) evaluation as a means to guide the modulation of treatment, both upwards and downwards in intensity. These suggest that if treatment starts with ABVD then patients remaining PET-positive after 2 months can be salvaged with escalated BEACOPP in around 65% of cases, but those becoming PET-negative may still experience recurrences in 15%-20%, an event that is more common in those with more advanced disease at presentation. There are early data to suggest that starting with escalated BEACOPP may reduce the rate of recurrence after a negative interim PET to less than 10%. This may be an attractive approach for those with very high-risk features at presentation, but risks overtreating many patients if applied nonselectively. New regimens incorporating antibody-drug conjugates may shift the balance of efficacy and toxicity once again, and further studies are underway to evaluate this. PMID:27496308

  6. GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments.

    PubMed

    Tohidi, Fatemeh; Cai, Zongwei

    2015-08-01

    A gas chromatography/mass spectrometry (GC/MS)-based method was developed for simultaneous determination of triclosan (TCS) and its degradation products including 2,4-dichlorophenol (2,4-DCP), 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD), and methyl triclosan (MTCS) in wastewater and sludge samples. The method provides satisfactory detection limit, accuracy, precision and recovery especially for samples with complicated matrix such as sewage sludge. Liquid-liquid extraction and accelerated solvent extraction (ASE) methods were applied for the extraction, and column chromatography was employed for the sample cleanup. Analysis was performed by GC/MS in the selected ion monitoring (SIM) mode. The method was successfully applied to wastewater and sludge samples from three different municipal wastewater treatment plants (WWTPs). Satisfactory mean recoveries were obtained as 91(±4)-106(±7)%, 82(±3)-87(±4)%, 86(±6)-87(±8)%, and 88(±4)-105(±3)% in wastewater and 88(±5)-96(±8)%, 84(±2)-87(±3)%, 84(±7)-89(±4)%, and 88(±3)-97(±5)% in sludge samples for TCS, 2,4-DCP, 2,8-DCDD, and MTCS, respectively. TCS degradation products were detected based on the type of the wastewater and sludge treatment. 2,8-DCDD was detected in the plant utilizing UV disinfection at the mean level of 20.3(±4.8) ng/L. 2,4-DCP was identified in chemically enhanced primary treatment (CEPT) applying chlorine disinfection at the mean level of 16.8(±4.5) ng/L). Besides, methyl triclosan (MTCS) was detected in the wastewater collected after biological treatment (10.7 ± 3.3 ng/L) as well as in sludge samples that have undergone aerobic digestion at the mean level of 129.3(±17.2) ng/g dry weight (dw). PMID:25810102

  7. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters.

    PubMed

    Kato, M T; Field, J A; Versteeg, P; Lettinga, G

    1994-08-01

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc. PMID:18618781

  8. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant.

    PubMed

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2015-12-30

    In the present study, parabens, p-hydroxybenzoic acid (PHBA) and chlorinated derivatives, were simultaneously determined in wastewater and sludge samples along the whole process in an advanced wastewater treatment plant (WWTP). Nine target compounds were detected in this WWTP, and methylparaben and PHBA were the dominant compounds in these samples. It is noteworthy that octylparaben with longer chain was firstly detected in this work. Mass balance results showed that 91.8% of the initial parabens mass loading was lost mainly due to degradation, while the contribution of sorption and output of primary and excess sludge was much less (7.5%), indicating that biodegradation played a significant role in the removal of parabens during the conventional treatment process. Specifically, parabens were mainly degraded in the anaerobic tank, and PHBA could be effectively removed at high rates after the advanced treatment. However, both biodegradation and adsorption accounted for minor contribution to the removal of chlorinated parabens during conventional treatment process, and they were only scantly removed by conventional treatment (33.9-40.7%) and partially removed by advanced treatment (59.2-82.8%). Risk assessment indicated that parabens and their chlorinated derivatives in second and tertiary effluent are not likely to produce biological effects on aquatic ecosystems. PMID:26151382

  9. Optimization of Fenton oxidation pre-treatment for B. thuringiensis - based production of value added products from wastewater sludge.

    PubMed

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-08-01

    Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H(2)O(2)/g SS, 150 [H(2)O(2)](0)/[Fe(2+)](0), 25 g/L TS, at 25 degrees C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 x 10(9)CFU ml(-1) and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 x 10(8)CFU ml(-1) with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment. PMID:20381232

  10. Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymer pellets

    SciTech Connect

    Vanotti, M.B.; Hunt, P.G.

    2000-04-01

    Nitrification of ammonia (NH{sub 4}{sup +}) is a critical component for improved systems of animal wastewater treatment. One of the most effective processes uses nitrifying microorganisms encapsulated in polymer resins. It is used in Japan in municipal wastewater treatment plants for higher nitrification rates, shorter hydraulic retention times (HRT), and lower aeration treatment cost. The authors evaluated whether this technology could be adapted for treatment of higher-strength lagoon swine wastewaters containing {approximately}230 mg NH{sub 4}-N/L and 195 mg BOD{sub 5}/L. A culture of acclimated lagoon nitrifying sludge (ALNS) was prepared from a nitrifying biofilm developed in an overland flow soil using fill-and-draw cultivation. The ALNS was successfully immobilized in 3- to 5-mm polyvinyl alcohol (PVA) polymer pellets by a PVA-freezing method. Swine wastewater was treated in aerated, suspended bioreactors with a 15% (w/v) pellet concentration using batch and continuous flow treatment. Alkalinity was supplemented with inorganic carbon to maintain the liquid pH within an optimum range (7.7--8.4). In batch treatment, only 14 h were needed for nitrification of NH{sub 4}{sup +}. Ammonia was nitrified readily, decreasing at a rate of 16.1 mg NH{sub 4}-N/L h. In contrast, it took 10 d for a control (no-pellets) aerated reactor to start nitrification; furthermore, 70% of the N was lost by air stripping. Without alkalinity supplements, the pH of the liquid fell to 6.0--6.2, and NH{sub 4}{sup +} oxidation stopped. In continuous flow treatment, nitrification efficiencies of 95% were obtained with NH{sub 4}{sup +} loading rates of 418 mg-N/L-reactor d (2.73 g-N/g-pellet d) and an HRT of 12 h. The rate of nitrification obtained with HRT of 4 h was 567 mg-N/L d. In all cases, the NH{sub 4}-N removed was entirely recovered in oxidized N forms. Nitrification rates obtained in this work were not greatly affected by high NH{sub 4}{sup +} or BOD concentration of swine

  11. Behavior of inorganic elements during sludge ozonation and their effects on sludge solubilization.

    PubMed

    Sui, Pengzhe; Nishimura, Fumitake; Nagare, Hideaki; Hidaka, Taira; Nakagawa, Yuko; Tsuno, Hiroshi

    2011-02-01

    The behavior of inorganic elements (including phosphorus, nitrogen, and metals) during sludge ozonation was investigated using batch tests and the effects of metals on sludge solubilization were elucidated. A decrease of ∼ 50% in the ratio of sludge solubilization was found to relate to a high iron content 80-120 mgFe/gSS than that of 4.7-7.4 mgFe/gSS. During sludge ozonation, the pH decreased from 7 to 5, which resulted in the dissolution of chemically precipitated metals and phosphorus. Based on experimental results and thermodynamic calculation, phosphate precipitated by iron and aluminum was more difficult to release while that by calcium released with decrease in pH. The release of barium, manganese, and chrome did not exceed 10% and was much lower than COD solubilization; however, that of nickel, copper, and zinc was similar to COD solubilization. The ratio of nitrogen solubilization was 1.2 times higher than that of COD solubilization (R(2)=0.85). Of the total nitrogen solubilized, 80% was organic nitrogen. Because of their high accumulation potential and negative effect on sludge solubilization, high levels of iron and aluminum in both sewage and sludge should be considered carefully for the application of the advanced sewage treatment process with sludge ozonation and phosphorus crystallization. PMID:21215984

  12. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    PubMed

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. PMID:27309772

  13. Comparative study of MBR and activated sludge in the treatment of paper mill wastewater.

    PubMed

    Lerner, M; Stahl, N; Galil, N I

    2007-01-01

    The study was based on a full scale activated sludge plant (AS) compared to a parallel operated pilot membrane bioreactor (MBR) with flat sheets membranes. Both systems received their influent from an anaerobic bioreactor treating paper mill wastewater. MBR produced an effluent of much better quality than AS in terms of suspended solids, containing 1 mg/L or less in 80% of the monitoring time, while the AS effluent contained 12 mg/L. This could save the necessity of further treatment by filtration in the case of MBR. Other effluent quality parameters, such as organic matter (COD and BOD), phosphorus and ammonia nitrogen, did not indicate substantial differences between AS and MBR. Calcium carbonate scaling and formation of a bacterial layer on the membrane caused severe flux reduction. The membrane blockage because of scaling and biofouling proved to be very serious, therefore, it required proper and more complicated maintenance than the AS system. This study leads to the conclusion that in the case of paper mill wastewater, after anaerobic biotreatment, if there is no need for excellent effluent quality in terms of suspended solids, the replacement of the AS by the MBR would not be strongly justified, mainly because of maintenance cost. PMID:17486831

  14. Heavy metal removal from sewage sludge ash by thermochemical treatment with polyvinylchloride.

    PubMed

    Vogel, Christian; Exner, Robert M; Adam, Christian

    2013-01-01

    Sewage sludge ash (SSA) is a prospective phosphorus source for the future production of recycling P-fertilizers. Due to its high heavy metals contents and the relatively low P plant-availability, SSA must be treated before agricultural utilisation. In this paper SSA was thermochemically treated with PVC in a bench-scale rotary furnace in order to remove heavy metals via the chloride pathway. PVC has a high Cl-content of 52-53% and a high heating value that can be beneficially used for the thermochemical process. Large amounts of waste PVC are already recovered in recycling processes, but there are still some fractions that would be available for the proposed thermochemical process, for example, the low quality near-infrared(NIR)-fraction from waste separation facilities. Heavy metals were effectively removed at temperatures in the range of 800-950 °C via the gas phase by utilisation of PVC as Cl-donor. The resulting P plant-availability was comparable to SSA thermochemically treated with MgCl(2) as Cl-donor if MgO was used as an additive (Mg-donor). A further increase of the plant availability of phosphorus was achieved by acid post-treatment of the thermochemically treated SSA. PMID:23189972

  15. Thermal oxidation kinetics and mechanism of sludge from a wastewater treatment plant.

    PubMed

    Tettamanti, M; Lasagni, M; Collina, E; Sancassani, M; Pitea, D; Fermo, P; Cariati, F

    2001-10-01

    The organic fraction of a sludge from a wastewater biological treatment plant is characterized by the total organic carbon, TOC, content, cyclohexane and toluene extractions, and thermal desorptions in nitrogen and air flow at different temperatures. The inorganic fraction is characterized by water extraction, FT-IR spectroscopy, thermogravimetric analysis, and scanning electron microscopy/energy dispersion X-ray analysis. The thermal degradation rate of organic carbon is studied in batch experiments in air, in the 250-500 degrees C temperature range. The sample TOC is used to measure the decrease of reagent concentration with time. The TOC vs time data are well fitted by a generalized kinetic model, previously proposed for the MSWIs fly ash thermal degradation. The rate constants of the immediate carbon gasification, k2, and of the dissociative oxygen chemisorption, k1, followed by C(O) intermediate gasification, k3, together with activation and thermodynamic parameters are calculated. The rate determining step is the C(O) oxidation. The influence of desorbed or extracted organic compounds on kinetics and the role of the C(O) formation in explaining the reaction mechanism as well as the comparison with fly ash kinetics are discussed. PMID:11642466

  16. A comparative study of clonal selection algorithm for effluent removal forecasting in septic sludge treatment plant.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2015-01-01

    The development of effluent removal prediction is crucial in providing a planning tool necessary for the future development and the construction of a septic sludge treatment plant (SSTP), especially in the developing countries. In order to investigate the expected functionality of the required standard, the prediction of the effluent quality, namely biological oxygen demand, chemical oxygen demand and total suspended solid of an SSTP was modelled using an artificial intelligence approach. In this paper, we adopt the clonal selection algorithm (CSA) to set up a prediction model, with a well-established method - namely the least-square support vector machine (LS-SVM) as a baseline model. The test results of the case study showed that the prediction of the CSA-based SSTP model worked well and provided model performance as satisfactory as the LS-SVM model. The CSA approach shows that fewer control and training parameters are required for model simulation as compared with the LS-SVM approach. The ability of a CSA approach in resolving limited data samples, non-linear sample function and multidimensional pattern recognition makes it a powerful tool in modelling the prediction of effluent removals in an SSTP. PMID:25746643

  17. Prediction analysis of effluent removal in a septic sludge treatment plant: a biomimetics engineering approach.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2014-09-20

    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique. PMID:25005632

  18. Patulibacter medicamentivorans sp. nov., isolated from activated sludge of a wastewater treatment plant.

    PubMed

    Almeida, Bárbara; Vaz-Moreira, Ivone; Schumann, Peter; Nunes, Olga C; Carvalho, Gilda; Barreto Crespo, Maria T

    2013-07-01

    A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11(T), was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11(T) were Patulibacter ginsengiterrae CECT 7603(T) (96.8 % similarity), Patulibacter minatonensis DSM 18081(T) (96.6 %) and Patulibacter americanus DSM 16676(T) (96.6 %). Phenotypic characterization supports the inclusion of strain I11(T) within the genus Patulibacter (phylum Actinobacteria). However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11(T) ( = DSM 25962(T) = CECT 8141(T)). PMID:23264500

  19. Dynamics of effluent treatment plant during commissioning of activated sludge process unit.

    PubMed

    Bafana, Amit; Kumar, Gulshan; Kashyap, Sanjay M; Kanade, Gajanan S; Shinde, Vilas M

    2015-03-01

    Industrial effluent treatment plants (ETPs) are very important in protecting the environment and different life forms from harmful industrial waste. Hence, the efficiency of ETPs must be regularly monitored, particularly after major repair or replacement work. Present study evaluated the performance of an ETP over a period of 4 months, during which aeration tank (T1) of the activated sludge unit was replaced with a new one (T2). System had to be maintained operational during this transition, which warranted close monitoring of the system performance due to the daily load of hazardous industrial wastewater. Analysis showed that the raw wastewater was highly variable in composition and contained many hazardous organic and inorganic pollutants, such as heavy metals, bisphenol A and cyanoacetylurea. It showed significant toxicity against HepG2 cells in vitro. However, the ETP was found to successfully treat and detoxify the wastewater. Denaturing gradient gel electrophoresis (DGGE) analysis showed large temporal fluctuations in the ETP microbial community, which is consistent with the variable composition of wastewater. It indicated that functional stability of the ETP was not associated with stability of the microbial community, probably due to high microbial biodiversity and consequently high functional redundancy. In conclusion, the CETP showed consistent level of detoxification and microbial community dynamics after switching to T2, indicating successful development, acclimatization and commissioning of T2. PMID:25249053

  20. Inorganic pigments made from the recycling of coal mine drainage treatment sludge.

    PubMed

    Marcello, R R; Galato, S; Peterson, M; Riella, H G; Bernardin, A M

    2008-09-01

    Continuous industrial development increases energy consumption and, consequently, the consumption of fossil fuels. Coal mineral has been used in Brazil as a solid fuel for thermoelectric generators for several years. However, coal exploitation affects the environment intensely, mainly because Brazilian coal contains excess ash and pyrite (iron disulfide). According to the local coal industry syndicate, the average annual coal run per mine is 6 million ton/year; 3.5 million ton/year are rejected and disposed of in landfills. Besides pyrite, Brazilian coal contains Mn, Fe, Cu, Pb, Zn, Ge, Se, and Co. Additionally, the water used for coal beneficiation causes pyrite oxidation, forming an acid mine drainage (AMD). This drainage solubilizes the metals, transporting them into the environment, making treatment a requirement. This work deals with the use of sedimented residue from treated coal mine drainage sludge to obtain inorganic pigments that could be used in the ceramic industry. The residue was dried, ground and calcined ( approximately 1250 degrees C). The calcined pigment was then micronized (D(50) approximately 2mum). Chemical (XRF), thermal (DTA/TG), particle size (laser), and mineralogical (XRD) analyses were carried out on the residue. After calcination and micronization, mineralogical analyses (XRD) were used to determine the pigment structure at 1250 degrees C. Finally, the pigments were mixed with transparent glaze and fired in a laboratory roller kiln (1130 degrees C, 5min). The results were promising, showing that brown colors can be obtained with pigments made by residues. PMID:17703872

  1. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    SciTech Connect

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE`s commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path.

  2. Advances in systemic treatment for nasopharyngeal carcinoma.

    PubMed

    Tan, Wan-Ling; Tan, Eng-Huat; Lim, Darren Wan-Teck; Ng, Quan-Sing; Tan, Daniel Shao-Weng; Jain, Amit; Ang, Mei-Kim

    2016-04-01

    Nasopharyngeal carcinoma (NPC) is a unique disease endemic in Asia. It is etiologically linked to the Epstein-Barr virus and is both radio- and chemo-sensitive. While radiotherapy (RT) remains the primary treatment modality with high cure rates for early stage disease, systemic treatment forms an important integral component in the treatment of NPC, both in the non-metastatic as well as palliative setting. Presently, standard therapy in locally advanced NPC comprises conventional cytotoxic chemotherapy administered concurrently during RT. The role of induction chemotherapy and adjuvant chemotherapy remain to be well-defined. Further research strategies in non-metastatic disease will require better identification of patients with high risk disease, and determining the optimal sequence and combination of chemotherapeutic regimens. In metastatic disease, whilst chemotherapy remains the mainstay of care, resistance inevitably develops. Development of molecularly targeted therapies has not yielded much success to date, and further research has been focused on development of EBV-targeted strategies such as vaccination or administration of cytotoxic T-cells directed towards EBV, as well as evaluation of immune checkpoint inhibition approaches. PMID:27121881

  3. Recent advances in the treatment of hyperammonemia.

    PubMed

    Matoori, Simon; Leroux, Jean-Christophe

    2015-08-01

    Ammonia is a neurotoxic agent that is primarily generated in the intestine and detoxified in the liver. Toxic increases in systemic ammonia levels predominantly result from an inherited or acquired impairment in hepatic detoxification and lead to potentially life-threatening neuropsychiatric symptoms. Inborn deficiencies in ammonia detoxification mainly affect the urea cycle, an endogenous metabolic removal system in the liver. Hepatic encephalopathy, on the other hand, is a hyperammonemia-related complication secondary to acquired liver function impairment. A range of therapeutic options is available to target either ammonia generation and absorption or ammonia removal. Therapies for hepatic encephalopathy decrease intestinal ammonia production and uptake. Treatments for urea cycle disorders eliminate ammoniagenic amino acids through metabolic transformation, preventing ammonia generation. Therapeutic approaches removing ammonia activate the urea cycle or the second essential endogenous ammonia detoxification system, glutamine synthesis. Recent advances in treating hyperammonemia include using synergistic combination treatments, broadening the indication of orphan drugs, and developing novel approaches to regenerate functional liver tissue. This manuscript reviews the various pharmacological treatments of hyperammonemia and focuses on biopharmaceutical and drug delivery issues. PMID:25895618

  4. Effects of dried wastewater-treatment sludge application on ground-water quality in South Dade County, Florida

    USGS Publications Warehouse

    Howie, Barbara

    1992-01-01

    Four test fields in the south Dade agricultural area were studied to determine the effects of sludge application on ground-water quality. Two fields had been cultivated for 10 years or more, and two had not been farmed for at least 10 years. The fields were representative of the area's two soil types (Rockdale and Perrine marl) and two major crop types (row crops and groves). Before the application of sludge, wells upgradient of, within, and downgradient of each field were sampled for possible sludge contaminants at the end of wet and dry seasons. Municipal wastewater treatment sludge from the Dade County Water and Sewe Authority Department was then applied to the fields at varying application rates. The wells at each field were sampled over a 2-year period under different hydrologic conditions for possible sludge-related constituents (specific conductance, pH, alkalinity, nitrogen, phosphorus, total organic carbon, copper, iron, magnesium, manganese, potassium, zinc, arsenic, cadmium, chloride, chromium, lead, mercury, nickel, and sodium). Comparisons were made between water quality in the vicinity of the test fields and Florida Department of Environmental Regulation primary and secondary drinking-water regulations, an between water quality upgradient of, beneath, and downgradient of the fields. Comparisons between presludge and postsludge water quality did not indicate any improvement because of retention of agrichemicals by the sludge nor did they indicate any deterioration because of leaching from the sludge. Comparisons of water quality upgradient of the fields to water quality beneath and downgradient of the fields also did not indicate any changes related to sludge. Florida Department of Environmental Regulation primary and secondary drinking-water regulations wer exceeded at the Rockdale maximum-application field by mercury (9.5 ug/L (micrograms per liter)), and the Perrine marl maximum-application field by manganese (60 ug/L) and lead (85 ug/L), and at the

  5. Decolouration of H2SO4 leachate from phosphorus-saturated alum sludge using H2O2 and advanced oxidation processes in phosphorus recovery strategy.

    PubMed

    Zhao, X H; Zhao, Y Q

    2009-12-01

    As a part of attempt for phosphorus (P) recovery from P-saturated alum sludge, which was used as a low-cost P-adsorbent in treatment reed bed for wastewater treatment, decolouration of H(2)SO(4) leachate obtained from previous experiment, possessing a great deal of P, aluminum and red-brown coloured materials (RBCMs), by using H(2)O(2) and advanced oxidation processes (AOPs) was investigated. The use of H(2)O(2) and AOPs in the forms of Fenton (H(2)O(2)/Fe(2 +)) and photo-Fenton (UV/H(2)O(2)/Fe(2 +)) were tested. The changes in colour and total organic carbon (TOC) were taken place as a result of mineralization of RBCMs. The results revealed that all of these three processes examined were efficient. It was found that about 98% colour and 47% TOC can be removed under photo-Fenton treatment after 8 hours of UV irradiation.Correspondingly, the reaction rates of H(2)O(2) and Fenton systems were slow, but 100% colour and 59% TOC removal of H(2)O(2) process and 100% colour and 67% TOC reductions of Fenton process can be achieved after 72 hours of reaction. The changes of structure and molecular weight/size of RBCMs were also evaluated by HPLC and UV-vis spectroscopic analysis. From the results, some chromophores of RBCMs such as aromatic groups were appeared to be easily degraded to the smaller refractory components. Hence, based on the experimental results and considering the investment and expediency of operation, H(2)O(2) and Fenton oxidation could be suitable technologies for the treatment of the RBCMs derived from P-extraction stage by using H(2)SO(4) leaching. PMID:20183514

  6. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part II--Management and operating issues.

    PubMed

    Sweeney, D G; O'Brien, M J; Cromar, N J; Fallowfield, H J

    2005-01-01

    Bolivar Wastewater Treatment Plant (WWTP) was originally commissioned with trickling filter secondary treatment, followed by waste stabilisation pond (WSP) treatment and marine discharge. In 1999, a dissolved air flotation/filtration (DAFF) plant was commissioned to treat a portion of the WSP effluent for horticultural reuse. In 2001, the trickling filters were replaced with activated sludge treatment. A shift in WSP ecology became evident soon after this time, characterised by a statistically significant reduction in algal counts in the pond effluent, and increased variability in algal counts and occasional population crashes in the ponds. While the photosynthetic capacity of the WSPs has been reduced, the concomitant reduction in organic loading has meant that the WSPs have not become overloaded. As a result of the improvement in water quality leaving the ponds, significant cost savings and improved product water quality have been realised in the subsequent DAFF treatment stage. A number of operating issues have arisen from the change, however, including the re-emergence of a midge fly nuisance at the site. Control of midge flies using chemical spraying has negated the cost savings realised in the DAFF treatment stage. While biomanipulation of the WSP may provide a less aggressive method of midge control, this case demonstrates the difficulty of predicting in advance all ramifications of a retrospective process change. PMID:16114659

  7. Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions.

    PubMed

    Shchegolkova, Nataliya M; Krasnov, George S; Belova, Anastasia A; Dmitriev, Alexey A; Kharitonov, Sergey L; Klimina, Kseniya M; Melnikova, Nataliya V; Kudryavtseva, Anna V

    2016-01-01

    Activated sludge (AS) plays a crucial role in the treatment of domestic and industrial wastewater. AS is a biocenosis of microorganisms capable of degrading various pollutants, including organic compounds, toxicants, and xenobiotics. We performed 16S rRNA gene sequencing of AS and incoming sewage in three wastewater treatment plants (WWTPs) responsible for processing sewage with different origins: municipal wastewater, slaughterhouse wastewater, and refinery sewage. In contrast to incoming wastewater, the taxonomic structure of AS biocenosis was found to become stable in time, and each WWTP demonstrated a unique taxonomic pattern. Most pathogenic microorganisms (Streptococcus, Trichococcus, etc.), which are abundantly represented in incoming sewage, were significantly decreased in AS of all WWTPs, except for the slaughterhouse wastewater. Additional load of bioreactors with influent rich in petroleum products and organic matter was associated with the increase of bacteria responsible for AS bulking and foaming. Here, we present a novel approach enabling the prediction of the metabolic potential of bacterial communities based on their taxonomic structures and MetaCyc database data. We developed a software application, XeDetect, to implement this approach. Using XeDetect, we found that the metabolic potential of the three bacterial communities clearly reflected the substrate composition. We revealed that the microorganisms responsible for AS bulking and foaming (most abundant in AS of slaughterhouse wastewater) played a leading role in the degradation of substrates such as fatty acids, amino acids, and other bioorganic compounds. Moreover, we discovered that the chemical, rather than the bacterial composition of the incoming wastewater was the main factor in AS structure formation. XeDetect (freely available: https://sourceforge.net/projects/xedetect) represents a novel powerful tool for the analysis of the metabolic capacity of bacterial communities. The tool will

  8. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.

    PubMed

    McAdam, Ewan J; Bagnall, John P; Soares, Ana; Koh, Yoong K K; Chiu, Tze Y; Scrimshaw, Mark D; Lester, John N; Cartmell, Elise

    2011-01-01

    The impact of loading and organic composition on the fate of alkylphenolic compounds in the activated sludge plant (ASP) has been studied. Three ASP designs comprising carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification treatment were examined to demonstrate the impact of increasing levels of process complexity and to incorporate a spectrum of loading conditions. Based on mass balance, overall biodegradation efficiencies for nonylphenol ethoxylates (NPEOs), short chain carboxylates (NP(1-3)EC) and nonylphenol (NP) were 37%, 59%, and 27% for the carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification ASP, respectively. The presence of a rich community of ammonia oxidizing bacteria does not necessarily facilitate effective alkylphenolic compound degradation. However, a clear correlation between alkylphenolic compound loading and long chain ethoxylate compound biodegradation was determined at the three ASPs, indicating that at higher initial alkylphenolic compound concentrations (or load), greater ethoxylate biotransformation can occur. In addition, the impact of settled sewage organic composition on alkylphenolic compound removal was evaluated. A correlation between the ratio of chemical oxygen demand (COD) to alkylphenolic compound concentration and biomass activity was determined, demonstrating the inhibiting effect of bulk organic matter on alkylphenol polyethoxylate transformation activity. At all three ASPs the biodegradation pathway proposed involves the preferential biodegradation of the amphiphilic ethoxylated compounds, after which the preferential attack of the lipophilic akylphenol moiety occurs. The extent of ethoxylate biodegradation is driven by the initial alkylphenolic compound concentration and the proportion of COD constituted by the alkylphenol polyethoxylates (APEOs) and their metabolites relative to the bulk organic concentration of the sewage composed of proteins, acids, fats

  9. Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions

    PubMed Central

    Shchegolkova, Nataliya M.; Krasnov, George S.; Belova, Anastasia A.; Dmitriev, Alexey A.; Kharitonov, Sergey L.; Klimina, Kseniya M.; Melnikova, Nataliya V.; Kudryavtseva, Anna V.

    2016-01-01

    Activated sludge (AS) plays a crucial role in the treatment of domestic and industrial wastewater. AS is a biocenosis of microorganisms capable of degrading various pollutants, including organic compounds, toxicants, and xenobiotics. We performed 16S rRNA gene sequencing of AS and incoming sewage in three wastewater treatment plants (WWTPs) responsible for processing sewage with different origins: municipal wastewater, slaughterhouse wastewater, and refinery sewage. In contrast to incoming wastewater, the taxonomic structure of AS biocenosis was found to become stable in time, and each WWTP demonstrated a unique taxonomic pattern. Most pathogenic microorganisms (Streptococcus, Trichococcus, etc.), which are abundantly represented in incoming sewage, were significantly decreased in AS of all WWTPs, except for the slaughterhouse wastewater. Additional load of bioreactors with influent rich in petroleum products and organic matter was associated with the increase of bacteria responsible for AS bulking and foaming. Here, we present a novel approach enabling the prediction of the metabolic potential of bacterial communities based on their taxonomic structures and MetaCyc database data. We developed a software application, XeDetect, to implement this approach. Using XeDetect, we found that the metabolic potential of the three bacterial communities clearly reflected the substrate composition. We revealed that the microorganisms responsible for AS bulking and foaming (most abundant in AS of slaughterhouse wastewater) played a leading role in the degradation of substrates such as fatty acids, amino acids, and other bioorganic compounds. Moreover, we discovered that the chemical, rather than the bacterial composition of the incoming wastewater was the main factor in AS structure formation. XeDetect (freely available: https://sourceforge.net/projects/xedetect) represents a novel powerful tool for the analysis of the metabolic capacity of bacterial communities. The tool will

  10. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation. PMID:26551651

  11. Effective anaerobic treatment of fresh leachate from MSW incineration plant and dynamic characteristics of microbial community in granular sludge.

    PubMed

    Dang, Yan; Ye, Jiexu; Mu, Yongjie; Qiu, Bin; Sun, Dezhi

    2013-12-01

    We investigated the treatment of fresh leachate from municipal solid waste incineration plants with high-strength organics using a lab-scale expanded granular sludge bed (EGSB) reactor. The reactor was operated at a mesophilic temperature (33 °C) for 118 days. The influent chemical oxygen demand (COD) of the leachate gradually increased to over 70,000 mg/L, and the organic loading rate increased to 18 kg COD/(m(3) day). An average COD removal efficiency of 86.7 % was achieved when the reactor was fed with raw leachate, which suggests the feasibility of the EGSB process for leachate treatment. The microbial communities in the sludge from the reactor during the trial operation were constructed by denaturing gradient gel electrophoresis, clone libraries, and real-time quantitative polymerase chain reaction. The dominant group for archaea was Methanosaeta, with 68.4 % proportion at the start of the operation, and then changed to Methanosarcina, with a proportion of 62.3 %, after 118 days of operation. The dominant group of eubacteria was confirmed to be Firmicutes throughout the operation process, with the proportion increasing from >50 to 81.2 %. Almost all the operational taxonomic units of Firmicutes belonged to the order Clostridiales, with characteristic spore formation. The microbial diversity of the population was low under raw leachate as feed in the reactor. The dynamics of the microbial community in the anaerobic granular sludge was discussed relating with the operating status of the EGSB reactor. PMID:23519733

  12. [Pilot study of thermal treatment/thermophilic anaerobic digestion process treating waste activated sludge of high solid content].

    PubMed

    Wu, Jing; Wang, Guang-qi; Cao, Zhi-ping; Li, Zhong-hua; Hu, Yu-ying; Wang, Kai-jun; Zu, Jian-e

    2014-09-01

    A pilot-scale experiment about the process of "thermal pretreatment at 70°C/thermophilic anaerobic digestion" of waste activated sludge of high solid content (8% -9% ) was conducted. The process employed thermal treatment of 3 days to accelerate the hydrolysis and thermophilic digestion to enhance anaerobic reaction. Thus it was good at organic removal and stabilization. When the solid retention time (SRT) was longer than 20 days, the VSS removal rate was greater than 42. 22% and it was linearly correlated to the SRT of the aerobic digestion with the R2 of 0. 915 3. It was suggested that SRT of anaerobic digestion was 25 days in practice. VSS removal rate and biogas production rate of the pilot experiment were similar to those of the run-well traditional full-scale sludge anaerobic digestion plants (solid content 3% -5% ) and the plant of high solid content using German technique. PMID:25518666

  13. Influence of stocking density on the vermicomposting of an effluent treatment plant sludge amended with cow dung.

    PubMed

    Yadav, Anoop; Garg, V K

    2016-07-01

    This paper reports the effect of earthworm population density on the vermicomposting of effluent treatment plant sludge of a bakery industry. Four waste mixtures containing 0, 10, 20, and 30 % sludge along with cow dung with five different worm population densities were established for 14 weeks under controlled moisture and temperature conditions. The results showed that average worm biomass, growth and cocoon production were lesser at higher population densities. Sexual maturity was attained in 3rd to 5th week in all waste mixtures. Worm growth was inversely related to worm population density in the waste mixture. Results also indicated that lower worm population is favorable to worm biomass production. On the other hand, mineralization and stabilization of the waste mixtures were more at higher worm populations. PMID:27023819

  14. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    PubMed

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. PMID:24907480

  15. Cutaneous melanoma: new advances in treatment*

    PubMed Central

    Foletto, Michele Ceolin; Haas, Sandra Elisa

    2014-01-01

    Cutaneous melanoma is a challenge to treat. Over the last 30 years, no drug or combination of drugs demonstrated significant impact to improve patient survival. From 1995 to 2000, the use of cytokines such as interferon and interleukin become treatment options. In 2011, new drugs were approved by the U.S. Food and Drug Administration, including peginterferon alfa-2b for patients with stage III disease, vemurafenib for patients with metastatic melanoma with the BRAF V600E mutation, and ipilimumab, a monoclonal antibody directed to the CTLA-4 T lymphocyte receptor, to combat metastatic melanoma in patients who do not have the BRAF V600E mutation. Both ipilimumab and vemurafenib showed results in terms of overall survival. Other trials with inhibitors of other genes, such as the KIT gene and MEK, are underway in the search for new discoveries. The discovery of new treatments for advanced or metastatic disease aims to relieve symptoms and improve patient quality of life. PMID:24770508

  16. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    SciTech Connect

    Husillos Rodriguez, N.; Martinez Ramirez, S.; Blanco Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J.

    2010-05-15

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

  17. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES.

    PubMed

    Huang, Rixiang; Tang, Yuanzhi

    2016-09-01

    (Hydro)thermal treatments of sewage sludge is a promising option that can simultaneously target safe waste disposal, energy recovery, and nutrient recovery/recycling. The speciation of phosphorus (P) in sludge is of great relevance to P reclamation/recycling and soil application of sludge-derived products, thus it is critical to understand the effects of different treatment techniques and conditions on P speciation. This study systematically characterized P speciation (i.e. complexation and mineral forms) in chars derived from pyrolysis and hydrothermal carbonization (HTC) of municipal sewage sludges. Combined sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy analysis revealed the dependence of P transformation on treatment conditions and metal composition in the feedstocks. Pyrolysis of sludges decreased the relative abundance of phytic acid while increased the abundance of Al-associated P. HTC thoroughly homogenized and exposed P for interaction with various metals/minerals, with the final P speciation closely related to the composition/speciation of metals and their affinities to P. Results from this study revealed the mechanisms of P transformation during (hydro)thermal treatments of sewage sludges, and might be applicable to other biosolids. It also provided fundamental knowledge basis for the design and selection of waste management strategies for better P (re)cycling and reclamation. PMID:27232988

  18. Effects of ultrasound pretreatment on the characteristic evolutions of drinking water treatment sludge and its impact on coagulation property of sludge recycling process.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing

    2015-11-01

    Large amounts of drinking water treatment sludge (DWTS) are produced during the flocculation or flotation process. The recycling of DWTS is important for reducing and reclaiming the waste residues from drinking water treatment. To improve the coagulation step of the DWTS recycling process, power ultrasound was used as a pretreatment to disintegrate the DWTS and degrade or inactivate the constituents that are difficult to remove by coagulation. The effects of ultrasound pretreatment on the characteristics of DWTS, including the extent of disintegration, variation in DWTS floc characteristics, and DWTS dewaterability, were investigated. The capacity of the recycling process to remove particulates and organic matter from low-turbidity surface water compared to a control treatment process without DWTS was subsequently evaluated. The coagulation mechanism was further investigated by analyzing the formation, breakage, and re-growth of re-coagulated flocs. Our results indicated that under the low energy density applied (0.03-0.033 W/mL) for less than 15 min at a frequency of 160 kHz, the level of organic solubilization was less elevated, which was evidenced by the lower release of proteins and polysaccharides and lower fluorescence intensities of humic- and protein-like substances. The applied ultrasound conditions had an adverse effect on the dewaterability of the DWTS. Ultrasound pretreatment had no significant impact on the pH or surface charge of the DWTS flocs, whereas particle size decreased slightly and the specific surface area was moderately increased. The pollution removal capacity decreased somewhat for the recycled sonicated DWTS treatment, which was primarily ascribed to organic solubilization rather than variability in the floc characteristics of sonicated DWTS. The main coagulation mechanism was floc sweeping and physical adsorption. The breakage process of the flocs formed by the recycling process displayed distinct irreversibility, and the flocs were

  19. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to

  20. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. PMID:26773951

  1. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. PMID:26684056

  2. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China.

    PubMed

    Pang, Long; Yuan, Yiting; He, Han; Liang, Kang; Zhang, Hongzhong; Zhao, Jihong

    2016-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants. In this study, the occurrence and distribution of six OPEs were investigated in sewage sludge from 24 wastewater treatment plants (WWTPs) in 18 cities of Henan province, Central China. The results indicated that all target OPEs were detected in the sludge samples with the detection rate of 95.8%, except tris(dichloropropyl)phosphate (TDCP). The total concentration of the six OPEs ranged from 38.6 to 508 μg kg(-1). Tris(2-chloroethyl)phosphate (TCEP), tris(2-butoxyethyl)phosphate (TBEP), and tris(2-chloroiso-propyl)phosphate (TCPP) were found to be predominant, with concentrations ranging from 2.50 to 203, 1.60 to 383, and 6.70-161 μg kg(-1), respectively. The potential factors affecting OPE levels in sewage sludge, such as wastewater source, sludge characteristics, operational conditions, treatment techniques, and total organic carbon (TOC) of sludge in WWTPs were investigated. The results indicated that the total concentration of OPEs in sewage sludge has no significant relationship with the individual parameters (p > 0.05). However, significant correlations were found between triphenyl phosphate (TPhP) level and treatment capacity (R = 0.484, p < 0.05), processing volume (R = 0.495, p < 0.05), and serving population (R = 0.591, p < 0.05). Furthermore, the relationship between treatment techniques and the total concentration of OPEs in sewage sludge was also investigated in this study, and the results illustrated that the levels of OPEs in sludge were independent of the solid retention time (SRT). PMID:26974479

  3. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    PubMed

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure. PMID:26457922

  4. Effect of magnetic nanoparticles on the performance of activated sludge treatment system.

    PubMed

    Ni, Shou-Qing; Ni, Jianyuan; Yang, Ning; Wang, Juan

    2013-09-01

    Both short-term and long-term exposure experiments were carried out to investigate the influence of magnetic nanoparticles (NPs) on activated sludge. The short-term presence of 50-200 mg/L of NPs decreased total nitrogen (TN) removal efficiencies, resulted from the acute toxicity of a shock load of NPs. However, long-term exposure of 50 mg/L magnetic NPs were observed to significantly improve TN removal efficiency, partially due to the self-repair function of activated sludge and magnetic-induced bio-effect. Sludge properties and extracellular polymer substrates secretion were affected. Additional investigations with enzyme and FISH assays indicated that short-term exposure of 50 mg/L magnetic NPs led to the abatement of nitrifying bacteria. However, the activities of the enzyme nitrite oxidoreductase and key denitrifying enzymes were increased after long-term exposure. PMID:23835260

  5. Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment.

    PubMed

    Kim, B; Gautier, M; Michel, P; Gourdon, R

    2013-01-01

    The use of vertical flow constructed wetlands (VFCWs) is well developed in France and other countries for the treatment of wastewaters from small communities. The patented Azoé® process has been developed by a French company, SCIRPE, in order to improve denitrification and phosphorus removal as compared to classical VFCWs. It includes a biological trickling filter pretreatment followed by two stages of partially flooded VFCW. The performances of partially flooded VFCW are well demonstrated for the removal of organic matter and nitrogen. The system is now being considered for phosphorus removal as well. In this article, sludge and granular materials sampled from the filters of a municipal plant where the Azoé® system has been operated for 8 years were analyzed in order to provide data that may contribute to a better understanding of the dynamics of phosphorus retention. Elemental analyses showed that phosphorus was predominantly captured in the sludge layer accumulated at the surface of the first stage. The progressive mineralization of the sludge over time was also clearly highlighted. The phosphate phases were mainly associated with iron and calcium. The transport of phosphorus via the migration of fine particles through the porous medium in the first stage was also observed. PMID:24292476

  6. Sorption and biodegradation of selected benzotriazoles and hydroxybenzothiazole in activated sludge and estimation of their fate during wastewater treatment.

    PubMed

    Mazioti, Aikaterini A; Stasinakis, Athanasios S; Gatidou, Georgia; Thomaidis, Nikolaos S; Andersen, Henrik R

    2015-07-01

    Biodegradation of benzotriazole (BTR), 5-chlorobenzotriazole (CBTR), xylytriazole (XTR), 4-methyl-1H-benzotriazole (4TTR), 5-methy-1H-lbenzotriazole (5TTR) and 2-hydroxybenzothiazole (OHBTH) was studied in activated sludge batch experiments under aerobic and anoxic conditions, presence of organic substrate and different sludge residence times (SRTs). Their sludge-water distribution coefficients were also calculated in sorption experiments and ranged between 87 and 220 L kg(-1). Significant biodegradation of BTR, CBTR, XTR and OHBTH was observed in all biotic experiments. Half-life values ranged between 23 and 45 h (BTR), 18 and 47 h (CBTR), 14 and 26 h (XTR), 6.5 and 24 h (OHBTH). The addition of substrate did not suppress biodegradation kinetics; whereas in some cases accelerated biodegradation of microcontaminants. Except for CBTR, no effect of SRT on biodegradation constants was observed. Prediction of micropollutants removal in Sewage Treatment Plants (STPs) indicated that they will be partially removed, mainly due to aerobic biodegradation. Higher removal is expected at STPs operating at higher SRT and higher suspended solids concentrations. PMID:25828067

  7. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    PubMed Central

    Nourmohammadi, Davood; Esmaeeli, Mir-Bager; Akbarian, Hossein; Ghasemian, Mohammad

    2013-01-01

    During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF) was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple. PMID:23710197

  8. Nitrogen removal in a full-scale domestic wastewater treatment plant with activated sludge and trickling filter.

    PubMed

    Nourmohammadi, Davood; Esmaeeli, Mir-Bager; Akbarian, Hossein; Ghasemian, Mohammad

    2013-01-01

    During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF) was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple. PMID:23710197

  9. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal.

    PubMed

    Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E

    2012-11-15

    The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). PMID:22608399

  10. Response to shock load of engineered nanoparticles in an activated sludge treatment system: Insight into microbial community succession.

    PubMed

    Zhang, Jing; Dong, Qian; Liu, Yanchen; Zhou, Xiaohong; Shi, Hanchang

    2016-02-01

    The environmental impacts of the use of engineered nanoparticles (NPs) remain unclear and have attracted increasing concern worldwide. Considering that NPs eventually end up in wastewater treatment systems, the potential impact of ZnO and TiO2 NPs on the activated sludge was investigated using laboratory-scale sequencing batch reactors (SBRs). Short-term (24 h) exposure to 1, 10 and 100 mg/L shock loads of NPs reduced the oxygen uptake rate of the activated sludge by 3.55%-12.51% compared with the controls. In our experiment, the toxicities of TiO2 NPs were higher than those of ZnO NPs as reflected in the inhibition of oxygen utilization in the activated sludge. However, both the short-term (24 h) and long-term (21 days) exposure to ZnO and TiO2 NPs did not adversely affect the pollutant removal of the SBRs. Furthermore, the polymerase chain reaction-denaturing gel gradient electrophoresis revealed that the microbial community did not significantly vary after the short-term exposure (24 h) to 1, 10 and 100 mg/L shock loads of NPs; however, the cluster analysis in our experiment revealed that the slight difference caused by the NPs largely depended on exposure time rather than on NP type and NP concentration. The long-term exposure (13 days) to 10 mg/L shock load of ZnO or TiO2 NPs caused no substantial microbial community shifts in the activated sludge. The microbial diversity also showed no significant change when exposed to NPs as revealed by the Shannon-Wiener index. PMID:26539708

  11. Apparatus for stabilizing sludge

    SciTech Connect

    Krofta, M.

    1991-05-07

    This patent describes a stabilizer for sludge having a solid content in the range of approximately 3% to 8% dry solid content. It comprises: at least one hollow reactor tank having an inlet and an outlet for the sludge, means for controlling the flow of sludge through the tank so that the tank is substantially filled with the sludge at a hyperbaric pressure, means for introducing microscopic bubble of oxygen and/or ozone gas directly into the sludge within the tank, a mixer mounted within the tank to work the gas bubbles into contact with the sludge, means for driving the mixer. This patent also describes a system for stabilizing sludge such as that produced by a municipal waste water treatment plant. It comprises: a first mixer, a reducer, a second mixer, at least one reactor tank, a metering pump, means for introducing microscopic bubbles of {sub 2} and/or O, means for mechanically mixing the sludge and bubbles, means for controlling the flow of sludge and thickening means.

  12. Treatment of advanced thymoma and thymic carcinoma.

    PubMed

    Rajan, Arun; Giaccone, Giuseppe

    2008-12-01

    Although thymic epithelial tumors are rare, they are relatively common among neoplasms of the anterior superior mediastinum. They usually exhibit indolent behavior, but do have the capacity to invade surrounding structures and metastasize to distant sites. Thymic carcinomas are rare, but are highly aggressive tumors that are associated with a poor prognosis. The mainstay of therapy is complete surgical resection. Locally advanced thymoma and thymic carcinoma require a multimodality treatment approach with a combination of surgery, chemotherapy, and radiation therapy to decrease the chances of recurrence and improve survival. The risk of disease recurrence lasts for a number of years after completion of primary therapy. A majority of cases of recurrent disease present as pleural recurrences. Once again, surgical resection of recurrent disease represents the cornerstone of successful therapy and is critical to long-term survival. In recent years, a better understanding of the biologic basis of thymic epithelial tumors has led to the emergence of targeted therapy directed against this malignancy. PMID:19381821

  13. Project summary: Spreading lagooned sewage sludge on farm land: A case history

    SciTech Connect

    Robson, C.M.; Sommers, L.E.

    1995-06-01

    The City of Indianapolis, Indiana, was required to construct advanced wastewater treatment facilities at the existing Belmont Wastewater Treatment Plant. The most cost effective site for these new treatment facilities was the 10 sludge lagoons containing 420,000 cubic meters (111 million gallons) of digested sewage sludge stored for up to 50 years. The project consisted of the following major tasks: (1) obtaining approval from regulatory agencies; (2) obtaining cooperation of landowners and farmers; (3) removing, transporting, and applying the lagooned sludge to soil; and (4) monitoring the impact on crops.

  14. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    PubMed

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  15. The re-use of Waste-Activated Sludge as part of a "zero-sludge" strategy for wastewater treatments in the pulp and paper industry.

    PubMed

    Kaluža, Leon; Suštaršič, Matej; Rutar, Vera; Zupančič, Gregor D

    2014-01-01

    The possibility of introducing the thermo-alkali hydrolysis of Waste-Activated Sludge (WAS) was investigated, in order to enable the use of its solid residue as a raw material in cardboard production and the use of its liquid portion for anaerobic digestion in an UASB reactor. The evaluation of the hydrolysis at pH>12 and T=70°C showed that the microbe cells were disrupted with more than 90% efficiency in less than 2h. The solid portion was hygienised, therefore making it possible to integrate it into the cardboard production as a raw material for less demanding cardboards. Up to 6% addition of the liquid portion of hydrolysed WAS to wastewater decreased the specific biogas production in a pilot-scale UASB from 0.236 to 0.212 m(3)/kg(COD), while the efficiency of the COD removal decreased from 80.4% to 76.5%. These values still guarantee an adequate treatment of the wastewater and an increased biogas production by 16%. PMID:24215770

  16. Some Advanced Kidney Cancer Patients May Postpone Treatment

    MedlinePlus

    ... advanced kidney cancer that has spread require immediate, aggressive treatment, a small new study suggests. "A subset ... them the inconvenience and debilitating side effects of aggressive treatments for about a year, and in some ...

  17. Landfill leachate sludge use as soil additive prior and after electrocoagulation treatment: A cytological assessment using CHO-k1 cells.

    PubMed

    Morozesk, M; Bonomo, M M; Rocha, L D; Duarte, I D; Zanezi, E R L; Jesus, H C; Fernandes, M N; Matsumoto, S T

    2016-09-01

    Electrocoagulation has recently attracted attention as a potential technique for treating toxic effluents due to its versatility and environmental compatibility, generating a residue chemically suitable to be used as a soil additive. In the present study, landfill leachate sludge hazardous effects were investigated prior and after electrocoagulation process using in vitro assays with the mammalian cells CHO-k1. An integrated strategy for risk assessment was used to correctly estimate the possible adverse landfill leachate sludge effects on human health and ecosystem. Electrocoagulation process proved to be an effective treatment due to possibility to improve effluent adverse characteristics and produce sludge with potential to be used as soil additive. Despite low cytoxicity, the residue presented genotoxic and mutagenic effects, indicating a capacity to induce genetic damages, probably due to induction of polyploidization process in cells. The observed effects demand an improvement of waste management methods for reduce negative risks of landfill leachate sludge application. PMID:27243586

  18. Planning Considerations. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] S