Science.gov

Sample records for advanced small modular

  1. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation

  2. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  3. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  4. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  5. On Enhancing Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. However, the economics of AdvSMRs suffer from the loss of economy-of-scale for both construction and operation. The controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance (O&M) costs. These expenses could potentially be managed through optimized scheduling of O&M activities for components, reactor modules, power blocks, and the full plant. Accurate, real-time risk assessment with integrated health monitoring of key active components can support scheduling of both online and offline inspection and maintenance activities.

  6. Prognostics Health Management for Advanced Small Modular Reactor Passive Components

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-10-18

    In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

  7. Development of a system model for advanced small modular reactors.

    SciTech Connect

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  8. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

    2012-09-15

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  9. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration

    SciTech Connect

    Curtis Smith; Steven Prescott; Tony Koonce

    2014-04-01

    A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

  10. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D; Holcomb, David Eugene; Wood, Richard Thomas

    2012-10-01

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  11. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  12. Requirements for Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. aSMRs are conceived for applications in remote locations and for diverse missions that include providing process or district heating, water desalination, and hydrogen production. Several challenges exist with respect to cost-effective operations and maintenance (O&M) of aSMRs, including the impacts of aggressive operating environments and modularity, and limiting these costs and staffing needs will be essential to ensuring the economic feasibility of aSMR deployment. In this regard, prognostic health management (PHM) systems have the potential to play a vital role in supporting the deployment of aSMR systems. This paper identifies requirements and technical gaps associated with implementation of PHM systems for passive aSMR components.

  13. Progress Towards Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Pardini, Allan F.; Suter, Jonathan D.; Prowant, Matthew S.

    2014-08-01

    Sustainable nuclear power to promote energy security and to reduce greenhouse gas emissions are two key national energy priorities. The development of deployable small modular reactors (SMRs) is expected to support these objectives by developing technologies that improve the reliability, sustain safety, and improve affordability of new reactors. Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Prognostic health management (PHM) systems can benefit both the safety and economics of deploying AdvSMRs and can play an essential role in managing the inspection and maintenance of passive components in AdvSMR systems. This paper describes progress on development of a prototypic PHM system for AdvSMR passive components, with thermal creep chosen as the target degradation mechanism.

  14. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  15. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    SciTech Connect

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

  16. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    SciTech Connect

    Curtis Smith

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  17. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  18. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    SciTech Connect

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  19. SMAHTR - A Concept for a Small, Modular Advanced High Temperaure Reactor

    SciTech Connect

    Gehin, Jess C; Greene, Sherrell R; Holcomb, David Eugene; Carbajo, Juan J; Cisneros, Anselmo T; Corwin, William R; Ilas, Dan; Wilson, Dane F; Varma, Venugopal Koikal; Bradley, Eric Craig; Yoder, III, Graydon L

    2010-01-01

    Several new high temperature reactor concepts, referred to as Fluoride Salt Cooled High Temperature Reactors (FHRs), have been developed over the past decade. These FHRs use a liquid salt coolant combined with high temperature gas-cooled reactor fuels (TRISO) and graphite structural materials to provide a reactor that operates at very high temperatures and is scalable to large sizes perhaps exceeding 2400 MWt. This paper presents a new small FHR the Small Modular Advanced High Temperature Reactor or SmAHTR . SmAHTR is targeted at applications that require compact, high temperature heat sources either for high efficiency electricity production or process heat applications. A preliminary SmAHTR concept has been developed that delivers 125 MWt of energy in an integral primary system design that places all primary and decay heat removal heat exchangers inside the reactor vessel. The current reactor baseline concept utilizes a prismatic fuel block core, but multiple removable fuel assembly concepts are under evaluation as well. The reactor vessel size is such that it can be transported on a standard tractor-trailer to support simplified deployment. This paper will provide a summary of the current SmAHTR system concept and on-going technology and system architecture trades studies.

  20. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit

  1. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  2. INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS

    SciTech Connect

    Katya L Le Blanc; Johanna h Oxstrand

    2014-04-01

    It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each

  3. A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors

    SciTech Connect

    Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

    2012-09-01

    During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

  4. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  5. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    SciTech Connect

    Greene, Sherrell R; Gehin, Jess C; Holcomb, David Eugene; Carbajo, Juan J; Ilas, Dan; Cisneros, Anselmo T; Varma, Venugopal Koikal; Corwin, William R; Wilson, Dane F; Yoder Jr, Graydon L; Qualls, A L; Peretz, Fred J; Flanagan, George F; Clayton, Dwight A; Bradley, Eric Craig; Bell, Gary L; Hunn, John D; Pappano, Peter J; Cetiner, Sacit M

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  6. Small Modular Reactors: Institutional Assessment

    SciTech Connect

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  7. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong; Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  8. Study for requirement of advanced long life small modular fast reactor

    NASA Astrophysics Data System (ADS)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung; Kim, T. K.

    2016-01-01

    To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length.

  9. Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-05-17

    This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and

  10. Generic small modular reactor plant design.

    SciTech Connect

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  11. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  12. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  13. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current

  14. A Modular PMAD System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1998-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  15. Modular Curriculum for Hydrologic Advancement (MOCHA)

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; Wagener, T.; Gooseff, M.; McGlynn, B.; Marshall, L.; Meixner, T.; McGuire, K.; Sharma, P.; Zuppe, S.; Pfeiffer, C.

    2008-12-01

    In-class hydrology education is typically strongly biased towards the instructor's background and overcoming this limitation is burdensome within the time-constraints academia. This problem is particularly true for academics in tenure-track positions when most of the material development must occur. To overcome this challenge and advance a broader perspective of hydrology education, we are in the process of establishing the Modular Curriculum for Hydrologic Advancement (MOCHA). The objective is to create an evolving core curriculum for hydrology education freely available to, developed, and reviewed by the worldwide hydrologic community. We seek to establish an online faculty learning community for hydrology education and a modular core curriculum based on modern pedagogical standards. The goal of this effort is to support hydrology faculty in educating hydrologists that can solve today's and tomorrow's interdisciplinary problems that go far beyond the traditional disciplinary biased hydrology education most of us have experienced.

  16. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  17. The Modular Curriculum for Hydrologic Advancement (MOCHA)

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Kelleher, C.; Gooseff, M.; McGlynn, B.; Marshall, L.; Meixner, T.; McGuire, K.; Sharma, P.; Zappe, S.

    2009-04-01

    In-class hydrology education is typically strongly biased towards the instructor's background and overcoming this limitation is overly burdensome within the time-constraints of the academic life. This is particularly true for academics in tenure-track positions when most of the material development has to occur. To overcome this issue, we are in the process of establishing the Modular Curriculum for Hydrologic Advancement (MOCHA). Our overall objective is to create an evolving core curriculum for hydrology education freely available to and developed and reviewed by the worldwide hydrologic community. We seek to establish an online faculty learning community for hydrology education and a modular core curriculum based on modern pedagogical standards. The goal of this effort is to support hydrology faculty in educating hydrologists that can solve today's and tomorrow's interdisciplinary problems that go far beyond the traditional disciplinary biased hydrology education most of us have experienced.

  18. Advanced modular power supplies for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Detwiler, R. C.

    1990-01-01

    Viewgraphs and discussion on advanced modular power supplies for Space Station Freedom are presented. Topics covered include concept and characteristics; user power supply applications; and bulk converter application.

  19. Small modular reactor (SMR) development plan in Korea

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Hoon; Park, Sangrok; Kim, Byong Sup; Choi, Swongho; Hwang, Il Soon

    2015-04-01

    Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R&D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent status of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40˜70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.

  20. Small modular reactor (SMR) development plan in Korea

    SciTech Connect

    Shin, Yong-Hoon Park, Sangrok; Kim, Byong Sup; Choi, Swongho; Hwang, Il Soon

    2015-04-29

    Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent status of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.

  1. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  2. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  3. Human Reliability Considerations for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

    2012-01-27

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

  4. Proliferation resistance of small modular reactors fuels

    SciTech Connect

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  5. Small-scale modular wind turbine

    NASA Astrophysics Data System (ADS)

    Bressers, Scott; Vernier, Chris; Regan, Jess; Chappell, Stephen; Hotze, Mark; Luhman, Stephen; Avirovik, Dragan; Priya, Shashank

    2010-04-01

    This study reports the design, fabrication, and implementation of a horizontal-axis, small-scale modular wind turbine termed as "small-scale wind energy portable turbine (SWEPT)". Portability, efficient operation at low wind speeds, and cost-effectiveness were the primary goals of SWEPT. The fabrication and component design for SWEPT are provided along with the modifications that can provide improvement in performance. A comparative analysis is presented with the prototype reported in literature. The results show that current version of SWEPT leads to 150% increase in output power. It was found that SWEPT can generate 160 mW power at rated wind speed of 7 mph and 500mW power at wind speeds above 10 mph with a cut-in wind speed of 3.8 mph. Furthermore, the prototype was subjected to field testing in which the average output was measured to be 40 mW despite the average wind distribution being centered around 3 mph.

  6. Cascading failures of interdependent modular small-world networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guowei; Wang, Xianpei; Tian, Meng; Dai, Dangdang; Long, Jiachuan; Zhang, Qilin

    2016-07-01

    Much empirical evidence shows that many real-world networks fall into the broad class of small-world networks and have a modular structure. The modularity has been revealed to have an important effect on cascading failure in isolated networks. However, the corresponding results for interdependent modular small-world networks remain missing. In this paper, we investigate the relationship between cascading failures and the intra-modular rewiring probabilities and inter-modular connections under different coupling preferences, i.e. random coupling with modules (RCWM), assortative coupling in modules (ACIM) and assortative coupling with modules (ACWM). The size of the largest connected component is used to evaluate the robustness from global and local perspectives. Numerical results indicate that increasing intra-modular rewiring probabilities and inter-modular connections can improve the robustness of interdependent modular small-world networks under intra-attacks and inter-attacks. Meanwhile, experiments on three coupling strategies demonstrate that ACIM has a better effect on preventing the cascading failures compared with RCWM and ACWM. These results can be helpful to allocate and optimize the topological structure of interdependent modular small-world networks to improve the robustness of such networks.

  7. Modular Countermine Payload for Small Robots

    SciTech Connect

    Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  8. Modular countermine payload for small robots

    NASA Astrophysics Data System (ADS)

    Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  9. Passive Safety Features for Small Modular Reactors

    SciTech Connect

    Ingersoll, Daniel T

    2010-01-01

    The rapid growth in the size and complexity of commercial nuclear power plants in the 1970s spawned an interest in smaller, simpler designs that are inherently or intrinsically safe through the use of passive design features. Several designs were developed, but none were ever built, although some of their passive safety features were incorporated into large commercial plant designs that are being planned or built today. In recent years, several reactor vendors are actively redeveloping small modular reactor (SMR) designs with even greater use of passive features. Several designs incorporate the ultimate in passive safety they completely eliminate specific accident initiators from the design. Other design features help to reduce the likelihood of an accident or help to mitigate the accident s consequences, should one occur. While some passive safety features are common to most SMR designs, irrespective of the coolant technology, other features are specific to water, gas, or liquid-metal cooled SMR designs. The extensive use of passive safety features in SMRs promise to make these plants highly robust, protecting both the general public and the owner/investor. Once demonstrated, these plants should allow nuclear power to be used confidently for a broader range of customers and applications than will be possible with large plants alone.

  10. Modular effects on epidemic dynamics in small-world networks

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Gao, Z. Y.

    2007-08-01

    Many real-world networks are characterized by modular structure. In this letter, modular effects on epidemic spreading of susceptible-infected-refractory-susceptible (SIRS) model in small-world networks are investigated. Simulation results show that, together with the disorder of the inter-module connections and mean degree of the system the modular structure may affect the synchronization behavior in propagation. More importantly, it is found that the interplay between mean degree and modular structure may lead to a nonmonotone variation of the synchronization behavior in the system.

  11. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    SciTech Connect

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  12. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  13. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  14. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license

  15. Advanced Small Rechargeable Batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1989-01-01

    Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

  16. Constructing a Small Modular Stellarator in Latin America

    NASA Astrophysics Data System (ADS)

    Vargas, Ivan; Mora, Jaime; Otarola, Carlos; Asenjo, Jose; Zamora, Esteban; Gonzalez, Jeferson; Piedra, Carlos

    2014-10-01

    The small modular stellerator SCR-1 (Stellerator of Costa Rica 1) is a 2-field period device with a circular cross-section vessel under construction in Costa Rica (Ro = 0.238 m, < a > = 0.059 m, Ro/a > 4.0, expected plasma volume ~ 0.016 m3, 10 mm thickness 6061-T6 aluminum vacuum vessel). The magnetic field strength at the centre is around 44 mT which will be produced by 12 copper modular coils with 4.35 kA-turn each. This field is EC resonant at Ro with 2.45 GHz as 6nd harmonic, from 2/3 kW magnetrons. SCR-1 was redesigned from stellerator UST_1. As a first step, the objectives focus on training human resources and identifying problems related to the design and construction of small modular stellarators. We present the engineering problems encountered and the proposed solutions related to: thickness, material and construction method for the vacuum vessel, layout and design of ports, method of construction for coils, coils fixing, welding procedure, microwave input, control and data acquisition systems, design and test of diagnostics. Temperature, resistance, voltage and power calculations as a function of time were performed for the electrical circuit under different wire configurations per modular coil to select the power supply taking into account the available budget.

  17. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  18. Constructing a small modular stellarator in Latin America

    NASA Astrophysics Data System (ADS)

    Vargas, V. I.; Mora, J.; Asenjo, J.; Zamora, E.; Otárola, C.; Barillas, L.; Carvajal-Godínez, J.; González-Gómez, J.; Soto-Soto, C.; Piedras, C.

    2015-03-01

    This paper aims at briefly describing the design and construction issues of the stellarator of Costa Rica 1 (SCR-1). The SCR-1 is a small modular stellarator for magnetic confinement of plasma developed by the Plasma Laboratory for Fusion Energy and Applications of the Instituto Tecnológico de Costa Rica (ITCR). SCR-1 will be a 2-field period small modular stellarator with an aspect ratio > 4.4; low shear configuration with core and edge rotational transform equal to 0.32 and 0.28; it will hold plasma in a 6061-T6 aluminum torus shaped vacuum vessel with an minor plasma radius 54.11 mm, a volume of 13.76 liters (0.01 m3), and major radius R = 238 mm. Plasma will be confined in the volume by on axis magnetic field 43.8 mT generated by 12 modular coils with 6 turns each, carrying a current of 767.8 A per turn providing a total toroidal field (TF) current of 4.6 kA-turn per coil. The coils will be supplied by a bank of cell batteries of 120 V. Typical length of the plasma pulse will be between 4 s to 10 s. The SCR-1 plasmas will be heated by ECH second harmonic at 2.45 GHz with a plasma density cut-off value of 7.45 × 1016 m-3. Two magnetrons with a maximum output power of 2 kW and 3 kW will be used.

  19. A modular electric power system test bed for small spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Baez, Anastacio N.

    1994-01-01

    In the new climate of smaller, faster, and cheaper space science satellites, a new power system topology has been developed at the NASA Lewis Research Center. This new topology is based on a series connected boost converter (SCBC) and can greatly affect the size, weight, fault tolerance, and cost of any small spacecraft using photovoltaic solar arrays. The paper presents electric power system design factors and requirements as background information. The series connected boost converter topology is discussed and several advantages over existing technologies are illustrated. Besides being small, lightweight, and efficient, this topology has the added benefit of inherent fault tolerance. A positive ground power system test bed has been developed for the TROPIX spacecraft program. Performance of the SCBC in the test bed is described in detail. SCBC efficiencies of 95 percent to 98 percent have been measured. Finally, a modular, photovoltaic regulator 'kit' concept is presented. Two SCBC's are used to regulate solar array charging of batteries and to provide 'utilitytype' power to the user loads. The kit's modularity will allow a spacecraft electric power system to be built from off-the-shelf hardware; resulting in smaller, faster, and cheaper spacecraft.

  20. Exploring the Deployment Potential of Small Modular Reactors

    NASA Astrophysics Data System (ADS)

    Abdulla, Ahmed Y.

    This thesis reports the results of several investigations into the viability of an emergent technology. Due to the lack of data in such cases, and the sensitivity surrounding nuclear power, exploring the potential of small modular reactors (SMRs) proved challenging. Moreover, these reactors come in a wide range of sizes and can employ a number of technologies, which made investigating the category as a whole difficult. We started by looking at a subset of SMRs that were the most promising candidates for near to mid-term deployment: integral light water SMRs. We conducted a technically detailed elicitation of expert assessments of their capital costs and construction duration, focusing on five reactor deployment scenarios that involved a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants varied by more than a factor of 2.5. Expert judgments about likely SMR costs displayed an even wider range. There was consensus that an SMR plant's construction duration would be shorter than a large reactor's. Experts identified more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable, though these reactors do not constitute a paradigm shift when it comes to nuclear power's safety and security. Using these expert assessments of cost and construction duration, we calculated levelized cost of electricity values for four of the five scenarios. For the large plant, median levelized cost estimates ranged from 56 to 120 per MWh. Median estimates of levelized cost ranged from 77 to 240 per MWh for a 45MWe SMR, and from 65 to 120 per MWh for a 225MWe unit. We concluded that controlling construction duration is important, though not as important a factor in the analysis as capital cost, and, given the price of electricity in some parts of the U.S., it is possible to construct an

  1. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    NASA Astrophysics Data System (ADS)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  2. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  3. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Elsperman, M. S.; Rogers, F.

    2013-10-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  4. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Elsperman, M. S.; Klaus, K.; Rogers, F.

    2013-12-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  5. Overview of the Westinghouse Small Modular Reactor building layout

    SciTech Connect

    Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed

  6. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  7. Modular synthetic inverters from zinc finger proteins and small RNAs

    DOE PAGESBeta

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; Arcak, Murat; Keasling, Jay D.; Rao, Christopher V.

    2016-02-17

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. In conclusion, our chosenmore » parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.« less

  8. Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs

    PubMed Central

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; Arcak, Murat; Keasling, Jay D.

    2016-01-01

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. Our chosen parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here. PMID:26886888

  9. The use of concrete-filled steel structures for modular construction of advanced reactors

    SciTech Connect

    Braverman, J.; Morante, R.; Hofmayer, C.; Graves, H.

    1997-04-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. This paper presents the results of a research program which evaluated the use of modular construction for safety-related structures in advanced nuclear power plant designs. The research program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules.

  10. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  11. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  12. An Economic Analysis of Generation IV Small Modular Reactors

    SciTech Connect

    Stewart, J S; Lamont, A D; Rothwell, G S; Smith, C F; Greenspan, E; Brown, N; Barak, A

    2002-03-01

    This report examines some conditions necessary for Generation IV Small Modular Reactors (SMRs) to be competitive in the world energy market. The key areas that make nuclear reactors an attractive choice for investors are reviewed, and a cost model based on the ideal conditions is developed. Recommendations are then made based on the output of the cost model and on conditions and tactics that have proven successful in other industries. The Encapsulated Nuclear Heat Source (ENHS), a specific SMR design concept, is used to develop the cost model and complete the analysis because information about the ENHS design is readily available from the University of California at Berkeley Nuclear Engineering Department. However, the cost model can be used to analyze any of the current SMR designs being considered. On the basis of our analysis, we determined that the nuclear power industry can benefit from and SMRs can become competitive in the world energy market if a combination of standardization and simplification of orders, configuration, and production are implemented. This would require wholesale changes in the way SMRs are produced, manufactured and regulated, but nothing that other industries have not implemented and proven successful.

  13. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect

    Ingersoll, Daniel T

    2011-01-01

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  14. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    SciTech Connect

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Qualls, A L.; Borum, Robert C.; Chaleff, Ethan S.; Rogerson, Doug W.; Batteh, John J.; Tiller, Michael M.

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  15. 77 FR 30518 - Support of Deployment of Prototype Small Modular Reactors at the Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...DOE-Savannah River Operations Office (SR), in conjunction with the Savannah River National Laboratory (SRNL), announces the availability of support for deployment of Small Modular Reactors (SMR) on the Savannah River Site...

  16. Westinghouse Small Modular Reactor nuclear steam supply system design

    SciTech Connect

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  17. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable

  18. Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik

    2007-01-01

    Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly

  19. MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael

    1998-01-01

    MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.

  20. Advanced Control and Protection system Design Methods for Modular HTGRs

    SciTech Connect

    Ball, Sydney J; Wilson Jr, Thomas L; Wood, Richard Thomas

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for

  1. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    SciTech Connect

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules.

  2. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  3. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  4. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  5. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  6. Human-System Interfaces (HSIs) in Small Modular Reactors (SMRs)

    SciTech Connect

    Jacques V Hugo

    2014-10-01

    This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclear industry.

  7. 77 FR 28861 - Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ...This notice announces an open meeting of the Secretary of Energy Advisory Board (SEAB), Small Modular Reactor Subcommittee (SMR). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires public notice of this meeting be announced in the Federal...

  8. Development of the Medium Small BWR 'DMS' (Double MS: Modular Simplified and Medium Small Reactor)

    SciTech Connect

    Tetsushi, Hino; Masao, Chaki; Kenji, Tominaga; Masayoshi, Matsuura

    2006-07-01

    A new concept of the small and medium sized light water reactor, named the DMS has been developed by Hitachi, supported by the Japan Atomic Power Company. The DMS features significantly simplified plant systems realized by adoption of a natural circulation system of coolant and a free surface separation system (FSS). The DMS employs short length fuel assemblies and this enables natural circulation with a compact RPV. By adopting the natural circulation system, recirculation pumps and their driving power sources can be eliminated. The FSS uses the concept of steam and liquid separation by gravity, which is possible because of the low steam velocity due to the natural circulation and low power density of the DMS. By adopting the FSS, steam separation equipment needed in current BWRs can be eliminated. In addition, system components are rationalized and their layouts are modularized and standardized to attain a compact PCV; these result in a construction cost per unit power output almost comparable to that of current BWRs. In this study, the core design was improved taking plant cost and fuel efficiency into consideration. It was found that the number of fuel assemblies can be reduced about 11 % while maintaining the same thermal output as before, by extending the active fuel length. This makes it possible to reduce the number of control rod drive systems by about 12 % and to cut construction cost. (authors)

  9. Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report

    SciTech Connect

    John Reardon; Art Lilley

    2004-06-15

    On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describes our progress in the development of an on-farm litter to energy system.

  10. Modular, Reconfigurable, and Rapid Response Space Systems: The Remote Sensing Advanced Technology Microsatellite

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Andary, Jim; Oberright, John; So, Maria; Wegner, Peter; Hauser, Joe

    2004-01-01

    Modular, Reconfigurable, and Rapid-response (MR(sup 2)) space systems represent a paradigm shift in the way space assets of all sizes are designed, manufactured, integrated, tested, and flown. This paper will describe the MR(sup 2) paradigm in detail, and will include guidelines for its implementation. The Remote Sensing Advanced Technology microsatellite (RSAT) is a proposed flight system test-bed used for developing and implementing principles and best practices for MR(sup 2) spacecraft, and their supporting infrastructure. The initial goal of this test-bed application is to produce a lightweight (approx. 100 kg), production-minded, cost-effective, and scalable remote sensing micro-satellite capable of high performance and broad applicability. Such applications range from future distributed space systems, to sensor-webs, and rapid-response satellite systems. Architectures will be explored that strike a balance between modularity and integration while preserving the MR(sup 2) paradigm. Modularity versus integration has always been a point of contention when approaching a design: whereas one-of-a-kind missions may require close integration resulting in performance optimization, multiple and flexible application spacecraft benefit &om modularity, resulting in maximum flexibility. The process of building spacecraft rapidly (< 7 days), requires a concerted and methodical look at system integration and test processes and pitfalls. Although the concept of modularity is not new and was first developed in the 1970s by NASA's Goddard Space Flight Center (Multi-Mission Modular Spacecraft), it was never modernized and was eventually abandoned. Such concepts as the Rapid Spacecraft Development Office (RSDO) became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years technology has advanced considerably, and the time is ripe to reconsider modularity in its own right, as enabler of R(sup 2), and as a key element of transformational systems. The

  11. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    SciTech Connect

    Sun, Xiaodong; Zhang, Xiaoqin; Kim, Inhun; O'Brien, James; Sabharwall, Piyush

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  12. Plug-and-play design approach to smart harness for modular small satellites

    NASA Astrophysics Data System (ADS)

    Mughal, M. Rizwan; Ali, Anwar; Reyneri, Leonardo M.

    2014-02-01

    A typical satellite involves many different components that vary in bandwidth demand. Sensors that require a very low data rate may reside on a simple two- or three-wire interface such as I2C, SPI, etc. Complex sensors that require high data rate and bandwidth may reside on an optical interface. The AraMiS architecture is an enhanced capability architecture with different satellite configurations. Although keeping the low-cost and COTS approach of CubeSats, it extends the modularity concept as it also targets different satellite shapes and sizes. But modularity moves beyond the mechanical structure: the tiles also have thermo-mechanical, harness and signal-processing functionalities. Further modularizing the system, every tile can also host a variable number of small sensors, actuators or payloads, connected using a plug-and-play approach. Every subsystem is housed in a small daughter board and is supplied, by the main tile, with power and data distribution functions, power and data harness, mechanical support and is attached and interconnected with space-grade spring-loaded connectors. The tile software is also modular and allows a quick adaptation to specific subsystems. The basic software for the CPU is properly hardened to guarantee high level of radiation tolerance at very low cost.

  13. Five levels of PACS modularity: integrating 3D and other advanced visualization tools.

    PubMed

    Wang, Kenneth C; Filice, Ross W; Philbin, James F; Siegel, Eliot L; Nagy, Paul G

    2011-12-01

    The current array of PACS products and 3D visualization tools presents a wide range of options for applying advanced visualization methods in clinical radiology. The emergence of server-based rendering techniques creates new opportunities for raising the level of clinical image review. However, best-of-breed implementations of core PACS technology, volumetric image navigation, and application-specific 3D packages will, in general, be supplied by different vendors. Integration issues should be carefully considered before deploying such systems. This work presents a classification scheme describing five tiers of PACS modularity and integration with advanced visualization tools, with the goals of characterizing current options for such integration, providing an approach for evaluating such systems, and discussing possible future architectures. These five levels of increasing PACS modularity begin with what was until recently the dominant model for integrating advanced visualization into the clinical radiologist's workflow, consisting of a dedicated stand-alone post-processing workstation in the reading room. Introduction of context-sharing, thin clients using server-based rendering, archive integration, and user-level application hosting at successive levels of the hierarchy lead to a modularized imaging architecture, which promotes user interface integration, resource efficiency, system performance, supportability, and flexibility. These technical factors and system metrics are discussed in the context of the proposed five-level classification scheme. PMID:21301923

  14. Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor

    SciTech Connect

    Belles, R. J.; Omitaomu, O. A.

    2014-08-01

    The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

  15. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of

  16. Effect of Thermal Degradation on High Temperature Ultrasonic Transducer Performance in Small Modular Reactors

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    Prototype ultrasonic NDT transducers for use in immersion in coolants for small modular reactors have shown low signal to noise ratio. The reasons for the limitations in performance at high temperature are under investigation, and include changes in component properties. This current work seeks to quantify the issue of thermal expansion and degradation of the piezoelectric material in a transducer using a finite element method. The computational model represents an experimental set up for an ultrasonic transducer in a pulse-echo mode immersed in a liquid sodium coolant. Effect on transmitted and received ultrasonic signal due to elevated temperature (∼200oC) has been analysed.

  17. Feasibility study on nuclear core design for soluble boron free small modular reactor

    SciTech Connect

    Rabir, Mohamad Hairie Hah, Chang Joo; Ju, Cho Sung

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  18. Feasibility study on nuclear core design for soluble boron free small modular reactor

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie; Hah, Chang Joo; Ju, Cho Sung

    2015-04-01

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  19. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  20. It takes a community to raise a hydrologist: the Modular Curriculum for Hydrologic Advancement (MOCHA)

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Kelleher, C.; Weiler, M.; McGlynn, B.; Gooseff, M.; Marshall, L.; Meixner, T.; McGuire, K.; Gregg, S.; Sharma, P.; Zappe, S.

    2012-02-01

    Protection from hydrological extremes and the sustainable supply of hydrological services in the presence of climate change and increasing population pressure are the defining societal challenges for hydrology in the 21st century. A review of the existing literature shows that these challenges and their educational consequences for hydrology were foreseeable and were predicted by some. Surveys of the current educational basis, however, also clearly demonstrate that hydrology education is not yet prepared to deal with this challenge. We present our own vision of the necessary future evolution of hydrology education, which we implemented in the Modular Curriculum for Hydrologic Advancement (MOCHA). The MOCHA project is directly aimed at developing a community-driven basis for hydrology education. In this paper we combine literature review, surveys, discussion and assessment to provide a holistic baseline for future hydrology education.

  1. Demonstration of a Small Modular BioPower System Using Poultry Litter

    SciTech Connect

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.

  2. SCR-1: Design and Construction of a Small Modular Stellarator for Magnetic Confinement of Plasma

    NASA Astrophysics Data System (ADS)

    Barillas, L.; Vargas, V. I.; Alpizar, A.; Asenjo, J.; Carranza, J. M.; Cerdas, F.; Gutiérrez, R.; Monge, J. I.; Mora, J.; Morera, J.; Peraza, H.; Queral, V.; Rojas, C.; Rozen, D.; Saenz, F.; Sánchez, G.; Sandoval, M.; Trimiño, H.; Umaña, J.; Villegas, L. F.

    2014-05-01

    This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST_1, created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m3), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5kW, in the first harmonic at 2.45GHz. The expected electron temperature and density are 15 eV and 1017 m-3 respectively with an estimated confinement time of 7.30 x 10-4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.

  3. Safeguards and Security by Design (SSBD) for Small Modular Reactors (SMRs) through a Common Global Approach

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad; Pshakin, Gennady

    2015-02-23

    Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fully integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may

  4. NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, J.C.

    2012-01-13

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).

  5. Advances in Small-Telescope Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Rowe, David J.

    2016-06-01

    The current revolution in CMOS camera technology has enabled a new generation of small telescope systems targeted at the measurement of close binary systems using the techniques of speckle interferometry and bispectrum analysis. These inexpensive, ultra-sensitive, high resolution cameras are now outperforming CCD technology, and come at a truly affordable price. In addition, dedicated, user-friendly speckle interferometry reduction software has been developed for the amateur, making it easy to perform the otherwise complicated data processing tasks. This talk will address these recent advances in hardware and software, and describe some of the results of the informal amateur-professional collaboration that has formed around them.

  6. Development of Advanced Small Hydrogen Engines

    SciTech Connect

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  7. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    NASA Astrophysics Data System (ADS)

    Kang, Jung Kil; Hah, Chang Joo; Cho, Sung Ju; Seong, Ki Bong

    2016-01-01

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4˜5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO2 fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  8. The Role of Instrumentation and Controls Technology in Enabling Deployment of Small Modular Reactors

    SciTech Connect

    Clayton, Dwight A; Wood, Richard Thomas

    2010-01-01

    The development of deployable small modular reactors (SMRs) will provide the United States with another economically viable energy option, diversify the available nuclear power alternatives for the country, and enhance U.S. economic competitiveness by ensuring a domestic capability to supply demonstrated reactor technology to a growing global market for clean and affordable energy sources. Smaller nuclear power plants match the needs of much of the world that lacks highly stable, densely interconnected electrical grids. SMRs can present lower capital and operating costs than large reactors, allow incremental additions to power generation capacity that closely match load growth and support multiple energy applications (i.e., electricity and process heat). Taking advantage of their smaller size and modern design methodology, safety, security, and proliferation resistance may also be increased. Achieving the benefits of SMR deployment requires a new paradigm for plant design and management to address multi-unit, multi-product-stream generating stations. Realizing the goals of SMR deployment also depends on the resolution of technical challenges related to the unique characteristics of these reactor concepts. This paper discusses the primary issues related to SMR deployment that can be addressed through crosscutting research, development, and demonstration involving instrumentation and controls (I&C) technologies.

  9. The Role of Instrumentation and Control Technology in Enabling Deployment of Small Modular Reactors

    SciTech Connect

    Clayton, Dwight A; Wood, Richard Thomas

    2011-01-01

    The development of deployable small modular reactors (SMRs) will provide the United States with another economically viable energy option, diversify the available nuclear power alternatives for the country, and enhance U.S. economic competitiveness by ensuring a domestic capability to supply demonstrated reactor technology to a growing global market for clean and affordable energy sources. Smaller nuclear power plants match the needs of much of the world that lacks highly stable, densely interconnected electrical grids. SMRs can present lower capital and operating costs than large reactors, allow incremental additions to power generation capacity that closely match load growth and support multiple energy applications (i.e., electricity and process heat). Taking advantage of their smaller size and modern design methodology, safety, security, and proliferation resistance may also be increased. Achieving the benefits of SMR deployment requires a new paradigm for plant design and management to address multi-unit, multi-product-stream generating stations. Realizing the goals of SMR deployment also depends on the resolution of technical challenges related to the unique characteristics of these reactor concepts. This paper discusses the primary issues related to SMR deployment that can be addressed through crosscutting research, development, and demonstration involving instrumentation and controls (I&C) technologies.

  10. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model

    PubMed Central

    Zhou, Kejin; Nguyen, Liem H.; Miller, Jason B.; Yan, Yunfeng; Kos, Petra; Xiong, Hu; Li, Lin; Hao, Jing; Minnig, Jonathan T.; Siegwart, Daniel J.

    2016-01-01

    RNA-based cancer therapies are hindered by the lack of delivery vehicles that avoid cancer-induced organ dysfunction, which exacerbates carrier toxicity. We address this issue by reporting modular degradable dendrimers that achieve the required combination of high potency to tumors and low hepatotoxicity to provide a pronounced survival benefit in an aggressive genetic cancer model. More than 1,500 dendrimers were synthesized using sequential, orthogonal reactions where ester degradability was systematically integrated with chemically diversified cores, peripheries, and generations. A lead dendrimer, 5A2-SC8, provided a broad therapeutic window: identified as potent [EC50 < 0.02 mg/kg siRNA against FVII (siFVII)] in dose–response experiments, and well tolerated in separate toxicity studies in chronically ill mice bearing MYC-driven tumors (>75 mg/kg dendrimer repeated dosing). Delivery of let-7g microRNA (miRNA) mimic inhibited tumor growth and dramatically extended survival. Efficacy stemmed from a combination of a small RNA with the dendrimer’s own negligible toxicity, therefore illuminating an underappreciated complication in treating cancer with RNA-based drugs. PMID:26729861

  11. Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing, or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)

  12. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model.

    PubMed

    Zhou, Kejin; Nguyen, Liem H; Miller, Jason B; Yan, Yunfeng; Kos, Petra; Xiong, Hu; Li, Lin; Hao, Jing; Minnig, Jonathan T; Zhu, Hao; Siegwart, Daniel J

    2016-01-19

    RNA-based cancer therapies are hindered by the lack of delivery vehicles that avoid cancer-induced organ dysfunction, which exacerbates carrier toxicity. We address this issue by reporting modular degradable dendrimers that achieve the required combination of high potency to tumors and low hepatotoxicity to provide a pronounced survival benefit in an aggressive genetic cancer model. More than 1,500 dendrimers were synthesized using sequential, orthogonal reactions where ester degradability was systematically integrated with chemically diversified cores, peripheries, and generations. A lead dendrimer, 5A2-SC8, provided a broad therapeutic window: identified as potent [EC50 < 0.02 mg/kg siRNA against FVII (siFVII)] in dose-response experiments, and well tolerated in separate toxicity studies in chronically ill mice bearing MYC-driven tumors (>75 mg/kg dendrimer repeated dosing). Delivery of let-7 g microRNA (miRNA) mimic inhibited tumor growth and dramatically extended survival. Efficacy stemmed from a combination of a small RNA with the dendrimer's own negligible toxicity, therefore illuminating an underappreciated complication in treating cancer with RNA-based drugs. PMID:26729861

  13. Toward an Online Community of Educators: The Modular Curriculum for Hydrologic Advancement (MOCHA)

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; Wagener, T.; Gooseff, M. N.; Gregg, S.; McGlynn, B. L.; Sharma, P.; Meixner, T.; Marshall, L. A.; McGuire, K. J.; Weiler, M.

    2009-12-01

    The field of hydrology encompasses a wide range of departments and disciplines, ranging from civil engineering to geography to geosciences. As a consequence, in-class hydrology education is often strongly biased towards the background of a single instructor, limiting the educational experience of the students and not allowing for a holistic approach to hydrology education. Recently established, the Modular Curriculum for Hydrologic Advancement (MOCHA) creates an online community of hydrologists from a range of backgrounds and disciplines to define the boundaries of an unbiased hydrology education and to jointly develop resources to overcome previous instructional limitations (http://www.mocha.psu.edu/). Our first objective is to create an evolving core curriculum for hydrology education freely available to, developed, evolved and reviewed by the worldwide hydrologic community. On a larger scale, we hope to raise the standard of hydrology education and to foster international collaboration and exchange. Our work began with an initial survey including over 100 hydrology educators to assess the state of current hydrology education. Based on the survey results, the MOCHA project was designed and implemented, and initial teaching material and pedagogical guidelines for good practice in teaching were prepared. This past fall and spring, we piloted the website and teaching material across several universities. The web-based MOCHA project has recently been opened to solicit contributions from the global hydrology community. Our presentation will focus on the overall vision behind MOCHA, lessons learned from our initial piloting, and current steps to achieve our vision.

  14. It takes a community to raise a hydrologist: the Modular Curriculum for Hydrologic Advancement (MOCHA)

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Kelleher, C.; Weiler, M.; McGlynn, B.; Gooseff, M.; Marshall, L.; Meixner, T.; McGuire, K.; Gregg, S.; Sharma, P.; Zappe, S.

    2012-09-01

    Protection from hydrological extremes and the sustainable supply of hydrological services in the presence of changing climate and lifestyles as well as rocketing population pressure in many parts of the world are the defining societal challenges for hydrology in the 21st century. A review of the existing literature shows that these challenges and their educational consequences for hydrology were foreseeable and were even predicted by some. However, surveys of the current educational basis for hydrology also clearly demonstrate that hydrology education is not yet ready to prepare students to deal with these challenges. We present our own vision of the necessary evolution of hydrology education, which we implemented in the Modular Curriculum for Hydrologic Advancement (MOCHA). The MOCHA project is directly aimed at developing a community-driven basis for hydrology education. In this paper we combine literature review, community survey, discussion and assessment to provide a holistic baseline for the future of hydrology education. The ultimate objective of our educational initiative is to enable educators to train a new generation of "renaissance hydrologists," who can master the holistic nature of our field and of the problems we encounter.

  15. Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics

    SciTech Connect

    Harrison, T. J.

    2014-02-01

    The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a

  16. Advances in small bowel neuroendocrine neoplasia Banck and Small intestine

    PubMed Central

    Banck, Michaela S.; Beutler, Andreas S.

    2015-01-01

    Purpose of review this review aims at summarizing progress in clinical trials and basic science redefining the diagnosis and treatment of well differentiated small intestine neuroendocrine tumors (SI-NET). Recent findings Two clinical trials demonstrated antitumor activity of the long-acting somatostatin analogues octreotide LAR and lanreotide for advanced SI-NET. The mTOR inhibitor everolimus is another treatment option for patients with SI-NET, but awaits definitive proof of benefit in the ongoing RADIANT-4 study. Two whole exome/genome-sequencing studies reported in the past year provided the first genome-wide analysis of large sets of SI-NET at nucleotide resolution. Candidate therapeutically relevant alterations were found to affect SRC, SMAD genes, AURKA, EGFR, HSP90, and PDGFR as well as mutually exclusive amplification of AKT1 or AKT2 and other alterations of PI3K/Akt/mTOR signaling genes. The gene CDKN1B is inactivated by small insertions/deletions in 8% of patients with SI-NET suggesting cell cycle inhibitors as new candidate drugs for SI-NET. Circulating tumor cells and tumor-derived RNA in the blood are promising clinical tests for SI-NET. Summary Clinical and genomic research may merge in the near future to re-shape clinical trials and to define the ‘personalized’ treatment options for patients with SI-NET. PMID:24441281

  17. Small low mass advanced PBR's for propulsion

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  18. Small, modular, low-cost coal-fired power plants for the international market

    SciTech Connect

    Zauderer, B.; Frain, B.; Borck, B.; Baldwin, A.L.

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  19. Implications of Results from the Advanced Gas Reactor Fuel Development and Qualification Program on Licensing of Modular HTGRs

    SciTech Connect

    David Petti

    2001-10-01

    The high level of safety of modular high temperature gas-cooled reactor (HTGR) designs is achieved by passively maintaining core temperatures below fission product release thresholds under all envisioned accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude relative to other reactor types but is predicated on exceptionally high coated-particle fuel fabrication quality and excellent fuel performance under normal operation and accident conditions. The Advanced Gas Reactor Fuel Development and Qualification (AGR) Program decided to qualify for uranium oxide/uranium carbide (UCO) TRISO coated-particle fuel in an operating envelope that would bound both pebble bed and prismatic modular HTGR options. By using a mixture of uranium oxide and uranium carbide, the kernel composition is engineered to minimize CO formation and fuel kernel migration, which is key to maintain to fuel integrity at the higher burnups, temperatures, and temperature gradients anticipated in prismatic HTGRs. Fuel fabrication conducted at both laboratory and engineering scale has demonstrated the ability to fabricate high quality UCO TRISO fuel with very low defects. The first irradiation (AGR 1) exposed about 300,000 TRISO fuel particles to a peak burnup of 19.6% FIMA, a peak fast-neutron fluence of about 4.3 × 1025 n/m2, and a maximum time-averaged fuel temperature of about 1,200°C without a single particle failure. The very low release of key metallic fission products (except silver) measured in post-irradiation examination (PIE) confirms the excellent performance measured under irradiation. Very low releases have been measured in accident simulation heatup testing (''safety testing'') after hundreds of hours at 1600 and 1700°C and no particle failures (no noble gas release measured) have been observed. Even after hundreds of hours at 1800°C, the releases are still very low

  20. Expert assessments of the cost of light water small modular reactors.

    PubMed

    Abdulla, Ahmed; Azevedo, Inês Lima; Morgan, M Granger

    2013-06-11

    Analysts and decision makers frequently want estimates of the cost of technologies that have yet to be developed or deployed. Small modular reactors (SMRs), which could become part of a portfolio of carbon-free energy sources, are one such technology. Existing estimates of likely SMR costs rely on problematic top-down approaches or bottom-up assessments that are proprietary. When done properly, expert elicitations can complement these approaches. We developed detailed technical descriptions of two SMR designs and then conduced elicitation interviews in which we obtained probabilistic judgments from 16 experts who are involved in, or have access to, engineering-economic assessments of SMR projects. Here, we report estimates of the overnight cost and construction duration for five reactor-deployment scenarios that involve a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants vary by more than a factor of 2.5. Expert judgments about likely SMR costs display an even wider range. Median estimates for a 45 megawatts-electric (MWe) SMR range from $4,000 to $16,300/kWe and from $3,200 to $7,100/kWe for a 225-MWe SMR. Sources of disagreement are highlighted, exposing the thought processes of experts involved with SMR design. There was consensus that SMRs could be built and brought online about 2 y faster than large reactors. Experts identify more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable. PMID:23716682

  1. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    SciTech Connect

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  2. Expert assessments of the cost of light water small modular reactors

    PubMed Central

    Abdulla, Ahmed; Azevedo, Inês Lima; Morgan, M. Granger

    2013-01-01

    Analysts and decision makers frequently want estimates of the cost of technologies that have yet to be developed or deployed. Small modular reactors (SMRs), which could become part of a portfolio of carbon-free energy sources, are one such technology. Existing estimates of likely SMR costs rely on problematic top-down approaches or bottom-up assessments that are proprietary. When done properly, expert elicitations can complement these approaches. We developed detailed technical descriptions of two SMR designs and then conduced elicitation interviews in which we obtained probabilistic judgments from 16 experts who are involved in, or have access to, engineering-economic assessments of SMR projects. Here, we report estimates of the overnight cost and construction duration for five reactor-deployment scenarios that involve a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants vary by more than a factor of 2.5. Expert judgments about likely SMR costs display an even wider range. Median estimates for a 45 megawatts-electric (MWe) SMR range from $4,000 to $16,300/kWe and from $3,200 to $7,100/kWe for a 225-MWe SMR. Sources of disagreement are highlighted, exposing the thought processes of experts involved with SMR design. There was consensus that SMRs could be built and brought online about 2 y faster than large reactors. Experts identify more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable. PMID:23716682

  3. Challenges and Opportunities for Hydrology Education in a Changing World - The Modular Curriculum for Hydrologic Advancement

    NASA Astrophysics Data System (ADS)

    McGlynn, Brian; Wagener, Thorsten; Marshall, Lucy; McGuire, Kevin; Meixner, Thomas; Weiler, Markus; Gooseff, Michael; Kelleher, Christa; Gregg, Susan

    2010-05-01

    ‘It takes a village to raise a child', but who does it take to educate a hydrologist who can solve today's and tomorrow's problems? Hydrology is inherently an interdisciplinary science, and therefore requires interdisciplinary training. We believe that the demands on current and future hydrologists will continue to increase, while training at undergraduate and graduate levels has not kept pace. How do we, as university faculty, educate hydrologists capable of solving complex problems in an interdisciplinary environment considering that current educators have often been taught in narrow traditional disciplines? We suggest a unified community effort to change the way that hydrologists are educated. The complexity of the task is ever increasing. Analysis techniques and tools required for solving emerging problems have to evolve away from focusing mainly on the analysis of past behavior because baselines are shifting as the world changes. The difficulties of providing an appropriate education are also increasing, especially given the growing demands on faculty time. To support hydrology educators and improve hydrology education, we have started a faculty community of educators (REACH) and implemented the Modular Curriculum for Hydrologic Advancement (MOCHA, http://www.mocha.psu.edu/). The goal of this effort is to support hydrology faculty as they educate hydrologists that can solve interdisciplinary problems that go far beyond the traditional disciplinary biased hydrology education most of us have experienced as students. Our current objective is to create an evolving core curriculum for university hydrology education, based on modern pedagogical standards, freely available to and developed and reviewed by the worldwide hydrologic community. We seek to establish an online faculty learning community for hydrology education and capacity building. In this presentation we discuss the results of a recent survey on current hydrology education (to compare with the state of

  4. Integrating Safety, Operations, Security, and Safeguards (ISOSS) into the design of small modular reactors : a handbook.

    SciTech Connect

    Middleton, Bobby D.; Mendez, Carmen Margarita

    2013-10-01

    The existing regulatory environment for nuclear reactors impacts both the facility design and the cost of operations once the facility is built. Delaying the consideration of regulatory requirements until late in the facility design - or worse, until after construction has begun - can result in costly retrofitting as well as increased operational costs to fulfill safety, security, safeguards, and emergency readiness requirements. Considering the scale and scope, as well as the latest design trends in the next generation of nuclear facilities, there is an opportunity to evaluate the regulatory requirements and optimize the design process for Small Modular Reactors (SMRs), as compared to current Light Water Reactors (LWRs). To this end, Sandia has embarked on an initiative to evaluate the interactions of regulations and operations as an approach to optimizing the design of SMR facilities, supporting operational efficiencies, as well as regulatory requirements. The early stages of this initiative consider two focus areas. The first focus area, reported by LaChance, et al. (2007), identifies the regulatory requirements established for the current fleet of LWR facilities regarding Safety, Security, Operations, Safeguards, and Emergency Planning, and evaluates the technical bases for these requirements. The second focus area, developed in this report, documents the foundations for an innovative approach that supports a design framework for SMR facilities that incorporates the regulatory environment, as well as the continued operation of the facility, into the early design stages, eliminating the need for costly retrofitting and additional operating personnel to fulfill regulatory requirements. The work considers a technique known as Integrated Safety, Operations, Security and Safeguards (ISOSS) (Darby, et al., 2007). In coordination with the best practices of industrial operations, the goal of this effort is to develop a design framework that outlines how ISOSS

  5. Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis

    SciTech Connect

    Lauren M. Boldon; Piyush Sabharwall

    2014-08-01

    Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular project’s feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity

  6. Modular space station, phase B extension. Information management advanced development. Volume 5: Software assembly

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The development of uniform computer program standards and conventions for the modular space station is discussed. The accomplishments analyzed are: (1) development of computer program specification hierarchy, (2) definition of computer program development plan, and (3) recommendations for utilization of all operating on-board space station related data processing facilities.

  7. Modular space station, phase B extension. Information management advanced development. Volume 4: Data processing assembly

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The computation and logical functions which are performed by the data processing assembly of the modular space station are defined. The subjects discussed are: (1) requirements analysis, (2) baseline data processing assembly configuration, (3) information flow study, (4) throughput simulation, (5) redundancy study, (6) memory studies, and (7) design requirements specification.

  8. Modular space station, phase B extension. Information management advanced development. Volume 2: Communications terminal breadboard

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.

  9. Westinghouse Small Modular Reactor passive safety system response to postulated events

    SciTech Connect

    Smith, M. C.; Wright, R. F.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. The integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to

  10. The Design of a Power System for the PETSAT Modular Small Spacecraft Bus

    NASA Astrophysics Data System (ADS)

    Clark, C. S.; Lopez Mazarias, A.; Kobayashi, C.; Nakasuka, S.

    2008-08-01

    There is considerable interest in the benefits of having a modular spacecraft where it is possible to construct a satellite using a number of modules with identical mechanical and electrical interfaces, but with each performing a specific function to achieve the required platform specification. In recent years, steps have been made towards modular spacecraft becoming a reality and the concept is due to be demonstrated in-orbit later this year with the first flight of the PETSAT spacecraft concept on the mission, SOHLA-2. This paper describes the approach to the design of the SOHLA-2 power system. The approach is significant; PETSAT is an excellent example of a modular approach to spacecraft design. The PETSAT concept consists of a number of 'Panel Modules', roughly the same size as a pizza box. The panels stack together in stowed configuration for launch, and unfold once in orbit. Apart from being a very novel approach to spacecraft design and construction, this concept offers advantages in power generation as, once unfolded, there is significant surface area on which to mount solar cells for power generation. The power system for PETSAT has been designed such that each Panel Module contains a power system that can either operate in isolation for the purpose of unit testing, or as part of a larger spacecraft power system once connected to other Panel Modules. When connected together, the power systems on each module share the energy from the solar arrays and the batteries. The approach to the design of the system has provided a simple solution to difficult problem.

  11. Dynamics and inherent safety features of small modular high temperature gas-cooled reactors

    SciTech Connect

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1986-01-01

    Investigations were made at Oak Ridge National Laboratory to characterize the dynamics and inherent safety features of various modular high temperature gas-cooled reactor (HTGR) designs. This work was sponsored by the US Nuclear Regulatory Commission's HTGR Safety Research program. The US Department of Energy (DOE) and the Gas Cooled Reactor Associates (GCRA) have sponsored studies of several modular HTGR concepts, each having it own unique advantageous economic and inherent safety features. The DOE design team has recently choses a 350-MW(t) annular core with prismatic, graphite matrix fuel for its reference plant. The various safety features of this plant and of the pebble-bed core designs similar to those currently being developed and operated in the Federal Republic of Germany (FRG) are described. A varity of postulated accident sequences involving combinations of loss of forced circulation of the helium primary coolant, loss of primary coolant pressurization, and loss of normal and backup heat sinks were studied and are discussed. Results demonstrate that each concept can withstand an uncontrolled heatup accident without reaching excessive peak fuel temperatures. Comparisons of calculated and measured response for a loss of forced circulation test on the FRG reactor, AVR, are also presented. 10 refs.

  12. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  13. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-01

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination. PMID:27269411

  14. Recent advances in developing small molecules targeting RNA.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void. PMID:22185671

  15. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  16. Advances in Small Animal Imaging Systems

    SciTech Connect

    Loudos, George K.

    2007-11-26

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  17. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2007-03-01

    DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research. PMID:17355868

  18. The Evolution of Modular Construction.

    ERIC Educational Resources Information Center

    American School & University, 1993

    1993-01-01

    Explores how the myths of modular construction for schools began; also discusses the advances made in steel and modular construction. The major advantages of using permanent modular construction for schools are highlighted, including its rapid construction, use of standard building materials, financial flexibility, and durability. (GR)

  19. Modular Stirling Radioisotope Power System (SRPS) using an advanced heat source

    NASA Astrophysics Data System (ADS)

    Moul, David S.

    2001-02-01

    The advanced Stirling engine/alternator developed by Stirling Technology Company has potential for a wide range of space applications, at an efficiency comparable to solar cells and triple that of thermoelectric elements. However, the unique design of the Stirling engine requires a concentrated heat input in an annular band which would be optimized with an advanced heat source design. The concentrated heat rejection area of the Stirling engine would also be optimized with the use of a Capillary Pumped Loop to transport the waste heat from the engine. This advanced concept will explore using a Capillary Pumped Loop to transport the waste heat to the mission spacecraft for operational heating. Use of these advanced techniques will allow a specific power approaching 8 We/kg, compared to 5 We for a conventional RTG. .

  20. Recent advances in small bowel diseases: Part II

    PubMed Central

    Thomson, Alan BR; Chopra, Angeli; Clandinin, Michael Tom; Freeman, Hugh

    2012-01-01

    As is the case in all areas of gastroenterology and hepatology, in 2009 and 2010 there were many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed, and the important advances in basic science as well as clinical applications were considered. In Part II we review six topics: absorption, short bowel syndrome, smooth muscle function and intestinal motility, tumors, diagnostic imaging, and cystic fibrosis. PMID:22807605

  1. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    SciTech Connect

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Batteh, John J; Tiller, Michael M.

    2015-01-01

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.

  2. Systems analysis for the development of small resource recovery systems: description of solid waste modular simulator. Final report

    SciTech Connect

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: mechanical separation, thermal and thermochemical energy recovery, and bioconversion processes. This report describes the Solid Waste Modular Simulator (SWIMS), a computer program for simulating the performance of solid waste processing/resource recovery systems. The current program data enables the simulation of systems with design throughput rates of 100 and 200 TPD of solid waste. Systems with larger throughput capacities can also be simulated by supplying the program with their performance data. The main line of this program is basicaly an accounting routine which totals the costs, revenues, and mass balances for all components in a simulated waste processing line. In addition, the main line controls the input of all information required to execute the program and the output of the resultant system performance data. (MCW)

  3. Advances in Small Joint Arthroplasty of the Hand

    PubMed Central

    Adkinson, Joshua M.; Chung, Kevin C.

    2016-01-01

    Substantial effort has been directed at the development of small joint prostheses for the hand. Despite advances in prosthetic joint design, outcomes have been relatively unchanged over the past 60 years. Pain relief and range of motion achieved after surgery have yet to mirror the success of large joint arthroplasty. Innovations in biotechnology and stem cell applications for damaged joint surfaces may someday make prostheses obsolete. The purpose of this review is to describe the current status, ongoing advances, and future of small joint arthroplasty of the hand. PMID:25415093

  4. Integrated Modular Propulsion and Regenerative Electro-energy Storage System (IMPRESS) for small satellites

    SciTech Connect

    Mitlitsky, F.; de Groot, W.; Butler, L.; McElroy, J.

    1996-09-01

    The IMPRESS is a significant advancement in space system technology as it is able to operate alternately as a fuel cell to produce electrical power from stored hydrogen and oxygen and as a water electrolyzer using electrical power to produce hydrogen and oxygen from stored water. The electrolysis of a controllable fraction of stored water can provide high Isp rocket propellants on demand. The heart of the IMPRESS is the Unitized Regenerative Fuel Cell (URFC), which produces power and electrolytically regenerates its reactants using a single stack of reversible cells. This integrated approach has several significant advantages over separate (battery) power and propulsion systems.

  5. Assessment of Materials Issues for Light-Water Small Modular Reactors

    SciTech Connect

    Sandusky, David; Lunceford, Wayne; Bruemmer, Stephen M.; Catalan, Michael A.

    2013-02-01

    The primary objective of this report is to evaluate materials degradation issue unique to the operational environments of LWSMR. Concerns for specific primary system components and materials are identified based on the review of design information shared by mPower and NuScale. Direct comparisons are made to materials issues recognized for advanced large PWRs and research activities are recommended as needed. The issues identified are intended to improve the capability of industry to evaluate the significance of any degradation that might occur during long-term LWSMR operation and by extension affect the importance of future supporting R&D.

  6. A New Look at Managing the Small College Advancement Program.

    ERIC Educational Resources Information Center

    Willmer, Wesley K.

    Information about advancement programs at 190 small colleges is provided, with attention to recruitment/admissions, executive management, institutional relations, alumni, and fund raising. The 190 colleges, which responsed to a survey of members of the Council of Independent Colleges, are described according to enrollment size, geographic…

  7. Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors

    SciTech Connect

    Belles, Randy; Copinger, Donald A; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  8. A Modular and Configurable Instrument Electronics Architecture for "MiniSAR"- An Advanced Smallsat SAR Instrument

    NASA Astrophysics Data System (ADS)

    Gomez, Jaime; Pastena, Max; Bierens, Laurens

    2013-08-01

    MiniSAR is a Dutch program focused on the development of a commercial smallsat featuring a SAR instrument, led by SSBV as prime contractor. In this paper an Instrument Electronics (IEL) system concept to meet the MiniSAR demands is presented. This system has several specificities wrt similar initiatives in the European space industry, driven by our main requirement: keep it small.

  9. A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices

    SciTech Connect

    Welch, Gregory C.; Perez, Louis A.; Hoven, Corey V.; Zhang, Yuan; Dang, Xuan-Dung; Sharenko, Alexander; Toney, Michael F.; Kramer, Edward J.; Nguyen, Thuc-Quyen; Bazan, Guillermo C.

    2011-07-22

    We report on the design, synthesis and characterization of light harvesting small molecules for use in solution-processed small molecule bulk heterojunction (SM-BHJ) solar cell devices. These molecular materials are based upon an acceptor/donor/acceptor (A/D/A) core with donor endcapping units. Utilization of a dithieno(3,2-b;2',3'-d)silole (DTS) donor and pyridal[2,1,3]thiadiazole (PT) acceptor leads to strong charge transfer characteristics, resulting in broad optical absorption spectra extending well beyond 700 nm. SM-BHJ solar cell devices fabricated with the specific example 5,5'-bis{7-(4-(5-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (6) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor component showed short circuit currents above -10 mA cm-2 and power conversion efficiencies (PCEs) over 3%. Thermal processing is a critical factor in obtaining favorable active layer morphologies and high PCE values. A combination of UV-visible spectroscopy, conductive and photo-conductive atomic force microscopies, dynamic secondary mass ion spectrometry (DSIMS), and grazing incident wide angle X-ray scattering (GIWAXS) experiments were carried out to characterize how thermal treatment influences the active layer structure and organization.

  10. Targeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides

    PubMed Central

    2015-01-01

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227

  11. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides.

    PubMed

    Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D

    2014-04-18

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227

  12. Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors

    SciTech Connect

    Belles, Randy; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-12-01

    This analysis identifies candidate locations, in a broad sense, where there are high concentrations of federal government agency use of electricity, which are also suitable areas for near-term SMRs. Near-term SMRs are based on light-water reactor (LWR) technology with compact design features that are expected to offer a host of safety, siting, construction, and economic benefits. These smaller plants are ideally suited for small electric grids and for locations that cannot support large reactors, thus providing utilities or governement entities with the flexibility to scale power production as demand changes by adding additional power by deploying more modules or reactors in phases. This research project is aimed at providing methodologies, information, and insights to assist the federal government in meeting federal clean energy goals.

  13. Recent advances in small bowel diseases: Part I

    PubMed Central

    Thomson, Alan BR; Chopra, Angeli; Clandinin, Michael Tom; Freeman, Hugh

    2012-01-01

    As is the case in all parts of gastroenterology and hepatology, there have been many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed for 2008 and 2009, and the important advances in basic science as well as clinical applications were considered. In Part I of this Editorial Review, seven topics are considered: intestinal development; proliferation and repair; intestinal permeability; microbiotica, infectious diarrhea and probiotics; diarrhea; salt and water absorption; necrotizing enterocolitis; and immunology/allergy. These topics were chosen because of their importance to the practicing physician. PMID:22807604

  14. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  15. Modular Design of Processing and Storage Facilities for Small Volumes of Low and Intermediate Level Radioactive Waste including Disused Sealed Sources - 12372

    SciTech Connect

    Keene, David R.; Kumar Samanta, Susanta; Drace, Zoran

    2012-07-01

    There are a number of IAEA Member States generating relatively small quantities of radioactive waste and/or disused sealed sources in application of nuclear techniques in medicine, industry and research and in nuclear research centres having small research reactors. At present many of these Member States do not have facilities for processing and storing their radioactive wastes; notably in those countries with small quantities of generated radioactive wastes. In other Member States the existing waste processing and storage facilities (WPSF) are in need of varying degrees of upgrading in order to address new waste streams, incorporate new waste processing technologies, or expand interim storage capacities. The IAEA has developed a modular design approach for a WPSF that is based on a variety of modules for different waste stream treatment and conditioning processes. The modular WPSF design is elaborated in a substantial Design Engineering Package that will be published by IAEA as a technical report. The Design Engineering Package enables users to select the optimum waste processing and storage modules to meet their needs, and to specify the requirements for procurement of individual modules and their integration into a waste processing and storage facility. The Design Engineering Package is planned for publication by the IAEA in 2012 and is presented as: - A Design Engineering Package Summary document. - A supporting CD that contains: - Process module general specifications. - Process module interface specifications. - Design Engineering Package for process modules. - Sample technical specifications for design and construction of modular processing facility. - Design Engineering Package for storage modules. (authors)

  16. Advanced microelectronics technologies for future small satellite systems

    NASA Astrophysics Data System (ADS)

    Alkalai, Leon

    2000-03-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjoint markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  17. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  18. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    SciTech Connect

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  19. Small modular biopower systems

    SciTech Connect

    Shepherd, P.

    2000-06-02

    Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

  20. The use of small advanced turbine units in distribution systems

    SciTech Connect

    Wong, E.R.

    1995-12-31

    There is a tremendous future for the application of small- and medium-sized advanced gas turbine systems in the world markets. Modern, industrialized countries; developing countries like China and the former republics of the Soviet Union; as well as island-based economies, such as those in Southeast Asia -- Philippines, Singapore, Malaysia, and Indonesia--will be able to realize the economic advantages and environmental benefits of what is now becoming known as {open_quotes}distributed resources{close_quotes}. I am more convinced of this opinion after delivering s similar speech and conversing with conferees at POWER-GEN Asia 1995 held in Singapore in late September of this year; and discussing the subject with a high level delegation from China that visited the Energy Commission in early October. The interest, at least amongst this small group of people was nothing short of a market researcher`s dream. While my focus today is on small turbines, we should realize that when these advanced, clean units become commercially available, perhaps as early as four or five years from now, other distributed generation resources such as solar photovoltaic, and fuel cells, will become competitors at the distribution level of electrical service.

  1. [Maintenance therapy for advanced non-small-cell lung cancer].

    PubMed

    Saruwatari, Koichi; Yoh, Kiyotaka

    2014-08-01

    Maintenance therapy is a new treatment strategy for advanced non-small-cell lung cancer(NSCLC), and it consists of switch maintenance and continuation maintenance.Switch maintenance is the introduction of a different drug, not included as part of the induction therapy, immediately after completion of 4 cycles of first-line platinum-based chemotherapy.Continuation maintenance is a continuation of at least one of the drugs used in the induction therapy in the absence of disease progression.Several phase III trials have reported survival benefits with continuation maintenance of pemetrexed and switch maintenance of pemetrexed or erlotinib.Therefore, maintenance therapy has become a part of the standard first-line treatment for advanced NSCLC.However, further research is needed to elucidate the selection criteria of patients who may benefit the most from maintenance therapy. PMID:25132023

  2. Small Explorer for Advanced Missions - cubesat for scientific mission

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Ivchenko, Nickolay

    2015-04-01

    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  3. Chemotherapy advances in small-cell lung cancer.

    PubMed

    Chan, Bryan A; Coward, Jermaine I G

    2013-10-01

    Although chemotherapeutic advances have recently been heralded in lung adenocarcinomas, such success with small-cell lung cancer (SCLC) has been ominously absent. Indeed, the dismal outlook of this disease is exemplified by the failure of any significant advances in first line therapy since the introduction of the current standard platinum-etoposide doublet over 30 years ago. Moreover, such sluggish progress is compounded by the dearth of FDA-approved agents for patients with relapsed disease. However, over the past decade, novel formulations of drug classes commonly used in SCLC (e.g. topoisomerase inhibitors, anthracyclines, alkylating and platinum agents) are emerging as potential alternatives that could effectively add to the armamentarium of agents currently at our disposal. This review is introduced with an overview on the historical development of chemotherapeutic regimens used in this disease and followed by the recent encouraging advances witnessed in clinical trials with drugs such as amrubicin and belotecan which are forging new horizons for future treatment algorithms. PMID:24163749

  4. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  5. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  6. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  7. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  8. Saga, A Small Advanced Geochemistry Assembly With Micro-rover For The Exploration Of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Brueckner, J.; Saga Team

    During future lander missions on Mars, Moon, or Mercury, it is highly advisable to extend the reach of instruments and to bring them to the actual sites of interest to measure in-situ selected surface samples (rocks, soils, or regolith). Particularly, geo- chemical measurements (determination of chemistry, mineralogy, and surface texture) are of utmost importance, because they provide key data on the nature of the sur- face samples. The obtained data will contribute to the classification of these samples. On Mars, weathering processes can also be studied provided some grinding tools are available. Also, the existence of ancient water activities, if any, can be searched for (e.g. sediments, hydroxides, hydrated minerals, or evaporates). The combined geo- chemical data sets of several samples and one/or several landing sites provide an im- portant base for the understanding of planetary surface processes and, hence, plan- etary evolution. A light-weight integrated instrument package and a micro-rover is proposed for future geochemical investigations. SAGA (Small Advanced Geochem- istry Assembly) will consist of several small geochemistry instruments and a tool that are packaged in a compact payload cab: the chemical Alpha Particle X-Ray Spec- trometer (APXS), the mineralogical Mössbauer Spectrometer (MIMOS), the textural close-up camera (MIROCAM), and a blower/grinder tool. These instruments have or will get flight heritage on upcoming ESA and NASA missions. The modularity of the concept permits to attach SAGA to any deployment device, specially, to the pro- posed small, lightweight micro-rover (dubbed SAGA?XT). Micro-rover technology has been developed for many years in Europe. One of the most advanced concepts is the tracked micro-rover SNanokhodT, developed recently in the frame of ESASs & cedil; Technology Research Programme (TRP). It has a total mass of about 3.5 kg (includ- ing payload and parts on the lander). This micro-rover is designed to drive to

  9. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  10. Small low mass advanced PBR`s for propulsion

    SciTech Connect

    Powell, J.R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  11. Advances in Diagnosis of Respiratory Diseases of Small Ruminants

    PubMed Central

    Chakraborty, Sandip; Kumar, Amit; Tiwari, Ruchi; Rahal, Anu; Malik, Yash; Dhama, Kuldeep; Pal, Amar; Prasad, Minakshi

    2014-01-01

    Irrespective of aetiology, infectious respiratory diseases of sheep and goats contribute to 5.6 percent of the total diseases of small ruminants. These infectious respiratory disorders are divided into two groups: the diseases of upper respiratory tract, namely, nasal myiasis and enzootic nasal tumors, and diseases of lower respiratory tract, namely, peste des petits ruminants (PPR), parainfluenza, Pasteurellosis, Ovine progressive pneumonia, mycoplasmosis, caprine arthritis encephalitis virus, caseous lymphadenitis, verminous pneumonia, and many others. Depending upon aetiology, many of them are acute and fatal in nature. Early, rapid, and specific diagnosis of such diseases holds great importance to reduce the losses. The advanced enzyme-linked immunosorbent assays (ELISAs) for the detection of antigen as well as antibodies directly from the samples and molecular diagnostic assays along with microsatellites comprehensively assist in diagnosis as well as treatment and epidemiological studies. The present review discusses the advancements made in the diagnosis of common infectious respiratory diseases of sheep and goats. It would update the knowledge and help in adapting and implementing appropriate, timely, and confirmatory diagnostic procedures. Moreover, it would assist in designing appropriate prevention protocols and devising suitable control strategies to overcome respiratory diseases and alleviate the economic losses. PMID:25028620

  12. Radiotherapy of advanced laryngeal cancer using three small fractions daily

    SciTech Connect

    Bradley, P.J.; Morgan, D.A. )

    1991-06-01

    Since 1983, the authors have treated advanced (UICC stages 3 and 4) squamous carcinomas of the larynx by primary radiotherapy, using three small fractions a day, 3-4 h interfraction interval, 5 days per week. The early patients received doses per fraction of 1.5 Gy, and a total dose of approximately 70 Gy, given as a split-course over 6 to 7 weeks. While overall tumor control and laryngeal preservation was good, a number of severe late radiation reactions were seen. The schedule was then modified, with a reduction in the fraction size to 1.1 Gy, the total dose to 60 Gy, and the overall time to 4 weeks, with omission of the mid-treatment split. Since 1986, we have treated 26 patients in this way. Acute reactions are brisk, but rapidly healing. Loco-regional control was achieved in 22 patients, only one of whom has relapsed to date, in a solitary node, salvaged by radical neck dissection. Four have died of uncontrolled loco-regional malignancy, and three of intercurrent disease while in clinical remission. No serious late morbidity has been observed in surviving patients, and vocal quality is good in the majority. These results suggest that this hyperfractionated and accelerated radiotherapy schedule may offer an acceptable nonsurgical, voice-preserving treatment for advanced laryngeal carcinoma; it can be used in a normally working radiotherapy department.

  13. Advances in immunotherapy for non-small cell lung cancer.

    PubMed

    Reckamp, Karen L

    2015-12-01

    In most patients, lung cancer presents as advanced disease with metastases to lymph nodes and/or distant organs, and survival is poor. Lung cancer is also a highly immune-suppressing malignancy with numerous methods to evade antitumor immune responses, including deficiencies in antigen processing and presentation, release of immunomodulatory cytokines, and inhibition of T-cell activation. Advances in understanding the complex interactions of the immune system and cancer have led to novel therapies that promote T-cell activation at the tumor site, resulting in prolonged clinical benefit. Immune checkpoint inhibitors, specifically programmed death receptor 1 pathway antibodies, have demonstrated impressively durable responses and improved survival in patients with non-small cell lung cancer. This article will review the recent progress made in immunotherapy for lung cancer with data from trials evaluating programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 monoclonal antibodies in addition to cancer vaccines. The review will focus on studies that have been published and the latest randomized trials exploring immune therapy in lung cancer. These results form the framework for a new direction in the treatment of lung cancer toward immunotherapy. PMID:27058851

  14. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  15. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  16. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  17. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

  18. Small electromagnetically clean satellite platform and advanced space instruments

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Makarov, Oleksander; Belyayev, Serhiy; Lukenyuk, Adolf; Marusenkov, Andriy

    The Ukrainian space program in the branch of space scientific research is based on recent achievements in the development of small microsatellite platforms and advanced onboard instrumentation. The present state of both these activities is outlined in the report. First, the design and composition peculiarities of a new microsatellite platform dedicated to carry the high sensitive electromagnetic sensors and mass-spectrometers are presented. An open nonhermetic construction gives possibilities to divide efficiently service and scientific payload. This feature as well as special measures foreseen by the solar panels and cable harness layout allows electromagnetic interference decreasing and easy introducing of shielding and compensating facilities. Up to 4 booms deployment is foreseen by the platform construction to move away far enough the electromagnetic sensors from the satellite body allow realizing the ultimate sensors sensitivity up to highest international standards. An onboard data collection and processing unit is organized in such a way that it controls efficiently both service and scientific systems. Second, some recent advances are reported in the branch of onboard electromagnetic instrumentation creation. New combined sensor - wave probe - is developed and experimentally tested in laboratory plasma chamber and in spatial experiment. This is a unique device which permits measuring simultaneously in one point three physical values - spatial current density, magnetic field fluctuations and electric potential. Other recent versions of super-light flux-gate and induction coil sensors are described. The performances of both microsatellite platform and mentioned electromagnetic sensors are discussed and the results of experimental verification of their parameters are presented. This works were supported by NSAU contract No 1-02/03 and STCU grant 3165.

  19. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    SciTech Connect

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  20. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  1. A one- and two-dimensional cross-section sensitivity and uncertainty path of the AARE (Advanced Analysis for Reactor Engineering) modular code system

    SciTech Connect

    Davidson, J.W.; Dudziak, D.J.; Higgs, C.E.; Stepanek, J.

    1988-01-01

    AARE, a code package to perform Advanced Analysis for Reactor Engineering, is a linked modular system for fission reactor core and shielding, as well as fusion blanket, analysis. Its cross-section sensitivity and uncertainty path presently includes the cross-section processing and reformatting code TRAMIX, cross-section homogenization and library reformatting code MIXIT, the 1-dimensional transport code ONEDANT, the 2-dimensional transport code TRISM, and the 1- and 2- dimensional cross-section sensitivity and uncertainty code SENSIBL. IN the present work, a short description of the whole AARE system is given, followed by a detailed description of the cross-section sensitivity and uncertainty path. 23 refs., 2 figs.

  2. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  3. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  4. Small Engine Technology. Task 4: Advanced Small Turboshaft Compressor (ASTC) Performance and Range Investigation

    NASA Technical Reports Server (NTRS)

    Hansen, Jeff L.; Delaney, Robert A.

    1997-01-01

    This contact had two main objectives involving both numerical and experimental investigations of a small highly loaded two-stage axial compressor designated Advanced Small Turboshaft Compressor (ASTC) winch had a design pressure ratio goal of 5:1 at a flowrate of 10.53 lbm/s. The first objective was to conduct 3-D Navier Stokes multistage analyses of the ASTC using several different flow modelling schemes. The second main objective was to complete a numerical/experimental investigation into stall range enhancement of the ASTC. This compressor was designed wider a cooperative Space Act Agreement and all testing was completed at NASA Lewis Research Center. For the multistage analyses, four different flow model schemes were used, namely: (1) steady-state ADPAC analysis, (2) unsteady ADPAC analysis, (3) steady-state APNASA analysis, and (4) steady state OCOM3D analysis. The results of all the predictions were compared to the experimental data. The steady-state ADPAC and APNASA codes predicted similar overall performance and produced good agreement with data, however the blade row performance and flowfield details were quite different. In general, it can be concluded that the APNASA average-passage code does a better job of predicting the performance and flowfield details of the highly loaded ASTC compressor.

  5. Development and Deployment Strategy for a Small Advanced Light Water Reactor

    SciTech Connect

    Modro, S. Michael; Reith, Raymond; Babka, Pierre

    2002-07-01

    This paper discusses development and deployment strategies for the modular Multi-Application Small Light Water Reactor (MASLWR). Modularity, small size, capability to transport whole modules including containment on road or by rail, simplicity and safety of this reactor allows innovative deployment strategies for a variety of applications. A larger plant may be constructed of many independent power generation units. The multi-module plant is intended to be operated as a base-load plant. Each reactor is to be operated at full load. However, in response to changes in power demand individual units can brought on line or shut down. A larger plant can be built in small increments to match the power demand balancing capital commitments with revenues from sales of electricity. Also, an unplanned shutdown of a reactor only affects a relatively small portion of the total plant capacity. Simplification of MASLWR design and extensive use of modularization coupled with factory fabrication will result in improved productivity of fieldwork and improved quality achieved in a factory environment. The initial MASLWR design concept development has been completed under the U.S. DOE (Department of Energy) Nuclear Energy Research Initiative (NERI) project. This paper discusses a strategy for developing and deploying a MASLWR plant by 2015. This schedule is realistic because the plant design relies on existing industrial experience and manufacturing capabilities. The development strategy consists of the following elements: concept confirmation through testing (under the NERI program a scaled integral test facility has been constructed and initial testing performed), design concept optimization, and design certification based on prototype testing. (authors)

  6. New Modular Camera No Ordinary Joe

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Although dubbed 'Little Joe' for its small-format characteristics, a new wavefront sensor camera has proved that it is far from coming up short when paired with high-speed, low-noise applications. SciMeasure Analytical Systems, Inc., a provider of cameras and imaging accessories for use in biomedical research and industrial inspection and quality control, is the eye behind Little Joe's shutter, manufacturing and selling the modular, multi-purpose camera worldwide to advance fields such as astronomy, neurobiology, and cardiology.

  7. 78 FR 71601 - KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit... the applicant to KC Small Hydro LLC. (KCS Hydro). On November 5, 2013, Advanced Hydropower,...

  8. Crizotinib for Advanced Non-Small Cell Lung Cancer

    Cancer.gov

    A summary of results from an international phase III clinical trial that compared crizotinib versus chemotherapy in previously treated patients with advanced lung cancer whose tumors have an EML4-ALK fusion gene.

  9. The Advancement of Educational Research in Small States

    ERIC Educational Resources Information Center

    Crossley, Michael

    2008-01-01

    This paper critically examines the impact of global development agendas upon the nature and direction of educational development in small states. This generates a critique of the international transfer of western policy trajectories and related research modalities, identifies the strategic importance of small states, and explores possible ways…

  10. Advancing Biological Understanding and Therapeutics Discovery with Small Molecule Probes

    PubMed Central

    Schreiber, Stuart L.; Kotz, Joanne D.; Li, Min; Aubé, Jeffrey; Austin, Christopher P.; Reed, John C.; Rosen, Hugh; White, E. Lucile; Sklar, Larry A.; Lindsley, Craig W.; Alexander, Benjamin R.; Bittker, Joshua A.; Clemons, Paul A.; de Souza, Andrea; Foley, Michael A.; Palmer, Michelle; Shamji, Alykhan F.; Wawer, Mathias J.; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E.; Schoenen, Frank J.; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R.; Pinkerton, Anthony B.; Chung, Thomas D.Y.; Griffin, Patrick R.; Cravatt, Benjamin F.; Hodder, Peter S.; Roush, William R.; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B.; Noah, James W.; Severson, William E.; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I.; Conn, P. Jeffrey; Hopkins, Corey R.; Wood, Michael R.; Stauffer, Shaun R.; Emmitte, Kyle A.

    2015-01-01

    Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436

  11. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  12. Designing for Small Volume Assembly of Advanced Electronics Packages

    NASA Technical Reports Server (NTRS)

    Galbraith, L.; Bonner, J. K.

    1995-01-01

    We describe a general methodology to Design for Producibility and Reliability (DFPAR) for very small volume production runs. In cases where the entire volume for fabrication is less than five products, traditional Statistical Process Control (SPC) is inadequate due to reliance on statistics of much larger volumes and the Central Limit Theorem. Data acquisition for process parameter estimation from such a small sample size is difficult; however, it is critical to producing high reliability product.

  13. Systems Analysis for Modular Versus Multi-Beam HIF Drivers

    SciTech Connect

    Meier, W R; Logan, B G

    2005-01-26

    Previous modeling for HIF drivers concentrated on designs in which 100 or more beams are grouped in an array and accelerated through a common set of induction cores. The total beam energy required by the target is achieved by the combination of final ion energy, current per beam and number of beams. Economic scaling favors a large number of small ({approx}1 cm dia.) beams. An alternative architecture has now been investigated, which we refer to as a modular driver. In this case, the driver is subdivided into many (>10) independent accelerators with one or many beams each. A key objective of the modular driver approach is to be able to demonstrate all aspects of the driver (source-to-target) by building a single, lower cost module compared to a full-scale, multi-beam driver. We consider and compare several design options for the modular driver including single-beam designs with solenoid instead of quadrupole magnets in order to transport the required current per module in a single beam, solenoid/quad combinations, and multi-beam, all-quad designs. The drivers are designed to meet the requirements of the hybrid target, which can accommodate a larger spot size than the distributed radiator target that was used for the Robust Point Design. We compare the multi-beam and modular driver configuration for a variety and assumptions and identify key technology advances needed for the modular design.

  14. Recent advances in small molecule OLED-on-silicon microdisplays

    NASA Astrophysics Data System (ADS)

    Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor

    2009-08-01

    High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.

  15. Recent Advances in Imaging of Small and Large Bowel.

    PubMed

    Das, Chandan J; Manchanda, Smita; Panda, Ananya; Sharma, Anshul; Gupta, Arun K

    2016-01-01

    The diagnosis of bowel pathology is challenging in view of the nonspecific clinical presentation. Currently, there are various imaging modalities available to reach an accurate diagnosis. These modalities include conventional techniques (radiographs, small bowel follow-through, conventional enteroclysis), ultrasonography, and cross-sectional examinations (computed tomography [CT] and MR imaging) as well as functional imaging modalities, such as PET-CT or PET-MR imaging. Each modality has its own advantages and disadvantages and can be used in isolation or combination. This review discusses the role of CT, MR imaging, and PET-CT in the evaluation of small and large bowel diseases. PMID:26590441

  16. Recent Advances in Developing Small Molecules Targeting Nucleic Acid

    PubMed Central

    Wang, Maolin; Yu, Yuanyuan; Liang, Chao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Nucleic acids participate in a large number of biological processes. However, current approaches for small molecules targeting protein are incompatible with nucleic acids. On the other hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design. Because of the improvements in crystallization in recent years, a great many structures of nucleic acids have been reported, providing basic information for nucleic acid drug discovery. This review focuses on the discovery and development of small molecules targeting nucleic acids. PMID:27248995

  17. A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect

    Erighin, M. A.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

  18. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  19. Modular Certification

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2002-01-01

    Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

  20. An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect

    Scarangella, M. J.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

  1. Something Ventured, Something Gained. An Advanced Curriculum for Small Business Management. Volume II.

    ERIC Educational Resources Information Center

    Shuchat, Jo; And Others

    Nine units on small business management are provided in this curriculum guide designed for use in an advanced course for secondary and postsecondary students who are interested in beginning a small business venture, have some prior business knowledge, and have a specific business in mind. Unit topics include marketing, location, systems and…

  2. Personalizing Therapy in Advanced Non–Small Cell Lung Cancer

    PubMed Central

    Villaruz, Liza C.; Burns, Timothy F.; Ramfidis, Vasilis S.; Socinski, Mark A.

    2016-01-01

    The recognition that non–small cell lung cancer (NSCLC) is not a single disease entity, but rather a collection of distinct molecularly driven neoplasms, has permanently shifted the therapeutic landscape of NSCLC to a personalized approach. This personalization of NSCLC therapy is typified by the dramatic response rates seen in EGFR mutant NSCLC when treated with targeted tyrosine kinase inhibitor therapy and in ALK translocation–driven NSCLC when treated with ALK inhibitors. Targeted therapeutic approaches in NSCLC necessitate consideration of more invasive biopsy techniques aimed at providing sufficient tissue for both histological determination and molecular profiling in all patients with stage IV disease both at the time of diagnosis and at the time of disease progression. Comprehensive genotyping efforts have identified oncogenic drivers in 62% lung adenocarcinomas and an increasing proportion of squamous cell carcinomas of the lung. The identification of these oncogenic drivers and the triage of patients to clinical trials evaluating novel targeted therapeutic approaches will increasingly mold a landscape of personalized lung cancer therapy where each genotype has an associated targeted therapy. This review outlines the state of personalized lung cancer therapy as it pertains to individual NSCLC genotypes. PMID:24258572

  3. Modular biometric system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  4. Coevolution, modularity and human disease.

    PubMed

    Fraser, Hunter B

    2006-12-01

    The concepts of coevolution and modularity have been studied separately for decades. Recent advances in genomics have led to the first systematic studies in each of these fields at the molecular level, resulting in several important discoveries. Both coevolution and modularity appear to be pervasive features of genomic data from all species studied to date, and their presence can be detected in many types of datasets, including genome sequences, gene expression data, and protein-protein interaction data. Moreover, the combination of these two ideas might have implications for our understanding of many aspects of biology, ranging from the general architecture of living systems to the causes of various human diseases. PMID:17005391

  5. Why Go Modular? A Review of Modular A-Level Mathematics.

    ERIC Educational Resources Information Center

    Taverner, Sally; Wright, Martin

    1997-01-01

    Attitudes, academic intentions, and attainment of students gaining a grade in A-level (Advanced level) mathematics were compared for those who followed a modular course and those assessed at the end of two years of study. Overall, the final grades of those assessed modularly were half a grade higher. (JOW)

  6. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  7. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  8. Recent advances in the treatment of non-small cell and small cell lung cancer.

    PubMed

    Stinchcombe, Thomas E

    2014-01-01

    Recent presentations at the American Society of Clinical Oncology (ASCO) meeting from 30 May to 3 June, 2014, will impact routine clinical care and the development of clinical trials in non-small cell lung cancer (NSCLC) and extensive stage small cell lung cancer (ES-SCLC). Patients with activating epidermal growth factor receptor (EGFR) mutations, defined as exon 19 and exon 21 L858R point mutations, experience a high objective response rate and prolonged progression-free survival with EGFR tyrosine kinase inhibitors. However, inevitably, patients experience disease progression and the most common mechanism of acquired resistance is an EGFR exon 20 T790M mutation. Several agents (AZD9291, CO-1686 and HM61713) have demonstrated impressive activity in patients with T790M resistance mutations. Additional data on the efficacy of first-line therapy with afatinib and the combination of erlotinib and bevacizumab for patients with EGFR mutant NSCLC were presented. The results of a phase III trial of crizotinib compared to platinum-pemetrexed in the first-line setting, and a phase I trial and expansion cohort of ceritinib, provided additional efficacy and toxicity data for patients with anaplastic lymphoma kinase rearranged NSCLC. A phase III trial of cisplatin and gemcitabine, with and without necitumumab, revealed an improvement in overall survival with the addition of necitumumab in patients with squamous NSCLC. In the second-line setting, a phase III trial of docetaxel with ramucirumab or placebo revealed an improvement in overall survival with the addition of ramucirumab. In extensive stage small cell lung cancer phase III trials of consolidative thoracic radiation therapy and prophylactic cranial radiation failed to reveal an improvement in overall survival. PMID:25580271

  9. Risk Factors of Advanced Adenoma in Small and Diminutive Colorectal Polyp.

    PubMed

    Jeong, Yo Han; Kim, Kyeong Ok; Park, Chan Seo; Kim, Sung Bum; Lee, Si Hyung; Jang, Byung Ik

    2016-09-01

    The aims of this study were to review the clinicopathological characteristics of diminutive (≤ 5 mm) and small polyps (> 5 mm but < 10 mm) and to evaluate the risk factors of advanced adenoma for polyps of diameter < 10 mm in the colon. The medical records of 4,711 patients who underwent first colonoscopy at outpatient clinics or health promotion center were reviewed retrospectively. We analyzed the presence and risk factors of advanced adenoma, which was defined as a villous or tubulovillous polyp, high-grade dysplasia or intramucosal carcinoma histologically. Total 5,058 polyps were detected in the 4,711 patients, and 93.0% (4,704/5,058) polyps were < 10 mm in size. Among them, advanced adenoma was noted in 0.6% (28/4,704) with a villous component in 19, high-grade dysplasia in 3, and adenocarcinoma in 6. Advanced and non-advanced adenomas differed significantly in age group, gender, and polyp size. Multivariate analysis showed that an advanced age (> 65 years), a male gender, and a polyp size of > 5 mm were risk factors of advanced adenoma. The incidence of advanced adenoma in polyps of < 10 mm was 0.6%. Polyp size, male gender, and age of > 65 years are independent risk factors of advanced adenoma. PMID:27510386

  10. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  11. Advanced rocket propulsion

    NASA Astrophysics Data System (ADS)

    Obrien, Charles J.

    1993-02-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  12. Toward Modular Analysis of Supramolecular Protein Assemblies.

    PubMed

    Kim, Jaehoon; Kim, Jin-Gyun; Yun, Giseok; Lee, Phill-Seung; Kim, Do-Nyun

    2015-09-01

    Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome. PMID:26575921

  13. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  14. Modular arctic structures system

    SciTech Connect

    Reusswig, G. H.

    1984-12-04

    A modular and floatable offshore exploration and production platform system for use in shallow arctic waters is disclosed. A concrete base member is floated to the exploration or production site, and ballated into a predredged cavity. The cavity and base are sized to provide a stable horizontal base 30 feet below the mean water/ice plane. An exploration or production platform having a massive steel base is floated to the site and ballasted into position on the base. Together, the platform, base and ballast provide a massive gravity structure that is capable of resisting large ice and wave forces that impinge on the structure. The steel platform has a sloping hourglass profile to deflect horizontal ice loads vertically, and convert the horizontal load to a vertical tensile stress, which assists in breaking the ice as it advances toward the structure.

  15. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  16. Terpene Biosynthesis: Modularity Rules

    PubMed Central

    Oldfield, Eric; Lin, Fu-Yang

    2013-01-01

    Terpenes are the largest class of small molecule natural products on Earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are 6 main building blocks or modules (α,β,γ,δ,ε and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C5 precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri-and tetra-terpene precursors of sterols, hopanoids and carotenoids; the βγ di- and tri-terpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis, and finally the α, αβ and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C5 diphosphates in many bacteria, where again, highly modular structures are found. PMID:22105807

  17. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  18. Modern Schools? Think Modular!

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1998-01-01

    Examines how modular educational facilities can provide a viable alternative in building construction when speed and safety are key construction issues. Explains the durability of modular structures, their adherence to building codes, and the flexibility that they provide in design and appearance. The advantages to permanent modular construction…

  19. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  20. Recent advances in inorganic materials for LDI-MS analysis of small molecules.

    PubMed

    Shi, C Y; Deng, C H

    2016-05-10

    In this review, various inorganic materials were summarized for the analysis of small molecules by laser desorption/ionization mass spectrometry (LDI-MS). Due to its tremendous advantages, such as simplicity, high speed, high throughput, small analyte volumes and tolerance towards salts, LDI-MS has been widely used in various analytes. During the ionization process, a suitable agent is required to assist the ionization, such as an appropriate matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, it is normally difficult to analyze small molecules with the MALDI technique because conventional organic matrices may produce matrix-related peaks in the low molecular-weight region, which limits the detection of small molecules (m/z < 700 Da). Therefore, more and more inorganic materials, including carbon-based materials, silicon-based materials and metal-based materials, have been developed to assist the ionization of small molecules. These inorganic materials can transfer energy and improve the ionization efficiency of analytes. In addition, functionalized inorganic materials can act as both an adsorbent and an agent in the enrichment and ionization of small molecules. In this review, we mainly focus on present advances in inorganic materials for the LDI-MS analysis of small molecules in the last five years, which contains the synthetic protocols of novel inorganic materials and the detailed results achieved by inorganic materials. On the other hand, this review also summarizes the application of inorganic materials as adsorbents in the selective enrichment of small molecules, which provides a new field for the application of inorganic materials. PMID:27050451

  1. Controlling the Specificity of Modularly Assembled Small Molecules for RNA via Ligand Module Spacing: Targeting the RNAs that Cause Myotonic Muscular Dystrophy

    PubMed Central

    Lee, Melissa M.; Childs-Disney, Jessica L.; Pushechnikov, Alexei; French, Jonathan M.; Sobczak, Krzysztof; Thornton, Charles A.; Disney, Matthew D.

    2009-01-01

    Myotonic muscular dystrophy types 1 and 2 (DM1 and DM2, respectively) are caused by expansions of repeating nucleotides in non-coding regions of RNA. In DM1, the expansion is an rCUG triplet repeat whereas the DM2 expansion is an rCCUG quadruplet repeat, both of which fold into hairpin structures with periodically repeating internal loops separated by two 5′GC/3′CG base pairs. The sizes of the loops, however, are different: the DM1 repeat forms 1 × 1 nucleotide UU loops while the DM2 repeat forms 2 × 2 nucleotide 5′CU/3′UC loops. DM is caused when the expanded repeats bind the RNA splicing regulator Muscleblind-like 1 protein (MBNL1), thus compromising its function. Therefore, one potential therapeutic strategy for these diseases is to prevent MBNL1 from binding the toxic RNA repeats. Previously, we designed nanomolar inhibitors of the DM2-MBNL1 interaction by modularly assembling 6′-N-5-hexyonate kanamycin A (K) onto a peptoid backbone. The K ligand binds the 2 × 2 pyrimidine-rich internal loops found in the DM2 RNA with high affinity. The best compound identified from that study contains three K modules separated by four propylamine spacing modules and is 20-fold selective over the DM1 RNA. Because the modularly assembled K-containing compounds also bound the DM1 RNA, albeit with lower affinity, and because the loop size is different, we hypothesized that the optimal DM1 RNA binder may display K modules separated by shorter distance between ligand modules. Indeed, the ideal DM1 RNA binder has only two propylamine spacing modules separating the K ligands. Peptoids displaying three and four K modules on a peptoid scaffold bind the DM1 RNA with Kd's of 20 (3-fold selective for DM1 over DM2) and 4 nM (6-fold selective for DM1 over DM2) and inhibit the RNA-protein interaction with IC50's of 40 and 7 nM, respectively. Importantly, by coupling the two studies together, we have determined that appropriate spacing can affect binding selectivity by 60-fold (20

  2. Structural and functional characterization of a small chitin-active lytic polysaccharide monooxygenase domain of a multi-modular chitinase from Jonesia denitrificans.

    PubMed

    Mekasha, Sophanit; Forsberg, Zarah; Dalhus, Bjørn; Bacik, John-Paul; Choudhary, Swati; Schmidt-Dannert, Claudia; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) boost enzymatic depolymerization of recalcitrant polysaccharides, such as chitin and cellulose. We have studied a chitin-active LPMO domain (JdLPMO10A) that is considerably smaller (15.5 kDa) than all structurally characterized LPMOs so far and that is part of a modular protein containing a GH18 chitinase. The 1.55 Å resolution structure revealed deletions of interacting loops that protrude from the core β-sandwich scaffold in larger LPMO10s. Despite these deletions, the enzyme is active on alpha- and beta-chitin, and the chitin-binding surface previously described for larger LPMOs is fully conserved. JdLPMO10A may represent a minimal scaffold needed to catalyse the powerful LPMO reaction. PMID:26763108

  3. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    SciTech Connect

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  4. Modularity of Prosthetic Implants.

    PubMed

    Barrack

    1994-01-01

    The vast majority of total-joint-replacement components currently utilized are modular to some degree. Modularity reduces inventory and increases the surgeon's options in both primary and revision total-joint arthroplasty. Use of a modular interface, however, increases the risk of fretting, wear debris, and dissociation and mismatching of components. The use of modular heads in total hip replacement is firmly established. The occurrence of corrosion and fretting has been recognized, and most manufacturers have improved the quality of the interface to minimize these problems. Modular polyethylene liners also offer advantages, particularly in revision procedures, where the option of additional screw fixation remains important. Many uncemented acetabular components are inserted without screws, which may generate renewed interest in one-piece factory-preassembled components. The conformity, locking mechanism, and nonarticular interface of modular acetabular components have all been studied and improved. Modular tibial components offer additional flexibility in the performance of total knee replacement but introduce the risk of dissociation and increased polyethylene wear; in revision procedures, modularity provides a valuable option for dealing with bone loss and an additional method of fixation by means of press-fit stems. Modular humeral components offer a significant advantage with limited apparent risk; however, longer clinical experience is required to assess potential problems. PMID:10708990

  5. New molecular targeted therapies for advanced non-small-cell lung cancer

    PubMed Central

    Méndez, Míriam; Custodio, Ana; Provencio, Mariano

    2011-01-01

    Non-small-cell lung cancer (NSCLC) is a uniformly fatal disease and most patients will present with advanced stage. Treatment outcomes remain unsatisfactory, with low long-term survival rates. Standard treatment, such as palliative chemotherapy and radiotherapy, offers a median survival not exceeding 1 year. Hence, considerable efforts have started to be made in order to identify new biological agents which may safely and effectively be administered to advanced NSCLC patients. Two cancer cell pathways in particular have been exploited, the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR) pathways. However, novel targeted therapies that interfere with other dysregulated pathways in lung cancer are already in the clinic. This review outlines the most promising research approaches to the treatment of NSCLC, discussed according to the specific molecular pathway targeted. PMID:22263060

  6. Advances in the diagnosis and treatment of non-small cell lung cancer.

    PubMed

    Pillai, Rathi N; Ramalingam, Suresh S

    2014-03-01

    The diagnostic and therapeutic landscape of non-small cell lung cancer (NSCLC) has changed dramatically in the past 50 years since the Surgeon General's report on smoking and lung cancer. Early detection is now a reality for lung cancer. The use of low-dose computed tomography scans for early detection decreases mortality and is beginning to be used in routine clinical practice. Technological advances such as positron emission tomography and endobronchial ultrasound have improved the accuracy of NSCLC staging. The cure rate for early-stage NSCLC has improved as a result of multimodality treatment approaches. The role of systemic therapy has also expanded to earlier stages of the disease. In recent years, the initial steps toward personalized medicine by utilization of targeted treatments based on tumor genotype have been undertaken. Emerging technological advances and greater insights into tumor biology are poised to greatly reduce the burden of lung cancer in the years to come. PMID:24516099

  7. New and emerging targeted treatments in advanced non-small-cell lung cancer.

    PubMed

    Hirsch, Fred R; Suda, Kenichi; Wiens, Jacinta; Bunn, Paul A

    2016-09-01

    Targeted therapies are substantially changing the management of lung cancers. These treatments include drugs that target driver mutations, those that target presumed important molecules in cancer cell proliferation and survival, and those that inhibit immune checkpoint molecules. This area of research progresses day by day, with novel target discoveries, novel drug development, and use of novel combination treatments. Researchers and clinicians have also extensively investigated the predictive biomarkers and the molecular mechanisms underlying inherent or acquired resistance to these targeted therapies. We review recent progress in the development of targeted treatments for patients with advanced non-small-cell lung cancer, especially focusing on data from published clinical trials. PMID:27598681

  8. Application of Advanced Technologies to Small, Short-haul Air Transports

    NASA Technical Reports Server (NTRS)

    Adcock, C.; Coverston, C.; Knapton, B.

    1980-01-01

    A study was conducted of the application of advanced technologies to small, short-haul transport aircraft. A three abreast, 30 passenger design for flights of approximately 100 nautical miles was evaluated. Higher wing loading, active flight control, and a gust alleviation system results in improved ride quality. Substantial savings in fuel and direct operating cost are forecast. An aircraft of this configuration also has significant benefits in forms of reliability and operability which should enable it to sell a total of 450 units through 1990, of which 80% are for airline use.

  9. Advances in Ka-Band Communication System for CubeSats and SmallSats

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  10. Role of immunotherapy in the treatment of advanced non-small-cell lung cancer.

    PubMed

    Rijavec, Erika; Genova, Carlo; Alama, Angela; Barletta, Giulia; Sini, Claudio; Pronzato, Paolo; Coco, Simona; Dal Bello, Maria Giovanna; Savarino, Graziana; Truini, Anna; Boccardo, Francesco; Grossi, Francesco

    2014-01-01

    After several decades of modest results with nonspecific immune stimulants, immunotherapy has become an exciting approach in the treatment of cancer. Although non-small-cell lung cancer has not been considered an immunogenic disease for very long, a better understanding of tumor immunology and the identification of new targets have led to the development of many clinical trials of immune-based therapies for this neoplasm. Promising results from many clinical trials suggest that immunotherapy could be an effective strategy in the management of advanced non-small-cell lung cancer. Further studies are required to help clinicians in the selection of patients who are more likely to benefit from immunotherapy strategies by the identification of biomarkers and to understand when the combination of immunotherapy with other agents should be recommended. PMID:24328411

  11. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs).

    PubMed

    Sharma, Namisha; Sahu, Pranav Pankaj; Puranik, Swati; Prasad, Manoj

    2013-09-01

    Regulation of several biological functions in plants has now been known to involve diverse RNA silencing pathways. These vital pathways involve various components such as dsRNA, Dicer, RNA-dependent RNA polymerase and Argonaute proteins, which lead to the production of several small RNAs (sRNAs) varying in their sizes. These sRNAs have significant role in the regulation of gene expression at transcriptional and translational levels. Among them, small interfering RNAs (siRNAs; majorly 21, 22 and 24 nt) have been shown to play an important role in plants' resistance against many viruses by inhibiting the viral gene expression. Furthermore, it has also been highlighted that siRNA-mediated methylation of viral DNA confers resistance to various plant DNA viruses. In this review, we have outlined the recent advances made using the siRNA-mediated antiviral strategy, along with methylation-based epigenetic defensive mechanisms as a protective measure against diverse plant viruses. PMID:23086491

  12. Advanced Small Perturbation Potential Flow Theory for Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2005-01-01

    An advanced small perturbation (ASP) potential flow theory has been developed to improve upon the classical transonic small perturbation (TSP) theories that have been used in various computer codes. These computer codes are typically used for unsteady aerodynamic and aeroelastic analyses in the nonlinear transonic flight regime. The codes exploit the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP theory was developed methodically by first determining the essential elements required to produce full-potential-like solutions with a small perturbation approach on the requisite Cartesian grid. This level of accuracy required a higher-order streamwise mass flux and a mass conserving surface boundary condition. The ASP theory was further developed by determining the essential elements required to produce results that agreed well with Euler solutions. This level of accuracy required mass conserving entropy and vorticity effects, and second-order terms in the trailing wake boundary condition. Finally, an integral boundary layer procedure, applicable to both attached and shock-induced separated flows, was incorporated for viscous effects. The resulting ASP potential flow theory, including entropy, vorticity, and viscous effects, is shown to be mathematically more appropriate and computationally more accurate than the classical TSP theories. The formulaic details of the ASP theory are described fully and the improvements are demonstrated through careful comparisons with accepted alternative results and experimental data. The new theory has been used as the basis for a new computer code called ASP3D (Advanced Small Perturbation - 3D), which also is briefly described with representative results.

  13. Modular Buildings Buying Guide.

    ERIC Educational Resources Information Center

    Morris, Susan

    1991-01-01

    Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

  14. An efficient liner cooling scheme for advanced small gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.

    1993-01-01

    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.

  15. Chemotherapy in elderly patients with advanced non-small cell lung cancer.

    PubMed

    Quoix, Elisabeth; Westeel, Virginie; Zalcman, Gérard; Milleron, Bernard

    2011-12-01

    Because of increasing life expectancy and of higher risk of cancer with ageing, lung cancer in elderly is a frequent disease. For a long time nihilism influenced treatment decisions in elderly patients with advanced non-small cell lung cancer. Since the beginning of the last decade single agent chemotherapy has been accepted as standard of care, vinorelbine and gemcitabine being the most frequently used drugs in Europe and US, docetaxel in Japan. Platinum-based doublets have been shown to be superior to monotherapy in young and fit patients with advanced non-small cell lung cancer. Although there were some indications from subgroup analyses of clinical trials not specifically dedicated to elderly patients that a platinum-based doublet might also benefit to older patients, there was no definitive proof of concept until ASCO meeting 2010. At this meeting results of a phase 3 trial showed that PS 0-2 patients, aged 70-89 years drove a significant benefit from a treatment with carboplatin associated to weekly paclitaxel compared to a monotherapy. Thus, the paradigm of treatment in elderly patients should perhaps be modified from a single agent to doublet chemotherapy. Whether other platinum-based doublets would provide the same benefit as the specific one studied remains to be evaluated. PMID:21893363

  16. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  17. Modular avionic architectures

    NASA Astrophysics Data System (ADS)

    Trujillo, Edward

    The author presents an analysis revealing some of the salient features of modular avionics. A decomposition of the modular avionics concept is performed, highlighting some of the key features of such architectures. Several layers of architecture can be found in such concepts, including those relating to software structure, communication, and supportability. Particular emphasis is placed on the layer relating to partitioning, which gives rise to those features of integration, modularity, and commonality. Where integration is the sharing of common tasks or items to gain efficiency and flexibility, modularity is the partitioning of a system into reconfigurable and maintainable items, and commonality is partitioning to maximize the use of identical items across the range of applications. Two architectures, MASA (Modular Avionics System Architecture) and Pave Pillar, are considered in particular.

  18. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    SciTech Connect

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with

  19. Optimal pharmacotherapeutic strategies for elderly patients with advanced non-small cell lung cancer.

    PubMed

    Quoix, Elisabeth

    2011-11-01

    Increases in both life expectancy and cancer incidence with age result in a significant rise in lung cancer rates among elderly patients, with a median age at diagnosis of between 63 and 70 years. However, elderly patients are under-represented in clinical trials and generally receive suboptimal treatment, mainly because of fears about increased toxicity of chemotherapy. Indeed, physiological modification of renal and haematopoietic functions with age together with co-morbidity and associated polypharmacy may alter the metabolism of chemotherapy drugs, resulting in greater toxicity. Moreover, performance status (PS), the main prognostic factor in younger patients, does not correlate well with geriatric indexes such as activities of daily living, cognition and physical performance, and comprehensive geriatric assessment is important in elderly patients. Until 2010, based on the small number of clinical trials designed for elderly patients, monotherapy was the recommended treatment for those with advanced non-small cell lung cancer (NSCLC), whereas for fit younger patients, a platinum-based doublet was and continues to be the recommended first-line therapy. However, at the plenary session of the 2010 Annual Meeting of the American Society of Clinical Oncology, results were presented from a randomized controlled trial conducted by the French Intergroup of Thoracic Oncology that demonstrated that in PS 0-2 patients aged≥70 years with advanced NSCLC, monthly carboplatin with weekly paclitaxel resulted in significantly longer survival than single-agent therapy (vinorelbine or gemcitabine). It should be noted that even in a priori unfavourable prognostic subgroups (patients with a PS score of 2, those aged>80 years or those with an activities of daily living scale score of <6), doublet therapy was associated with a survival advantage over monotherapy. Thus, the new paradigm of treatment of elderly patients with advanced NSCLC and a PS score of 0-2 should now be monthly

  20. [Treatment of advanced non-small-cell lung cancer with driver mutations].

    PubMed

    Tessmer, Antje; Kollmeier, Jens

    2015-03-01

    Advanced non-small-cell lung cancer is no longer one disease but the collective name for different diseases defined by clinical, histological, immunohistochemical and, to an increasing extent, molecular biomarkers. This article deals with the treatment options we gained by identifying so called driver mutations in a growing subset of these cancers. For patients whose tumors are characterized by a targetable molecular alteration such as an activating EGFR-Mutation, an ALK-translocation or a ROS1-rearrangement, we see prolonged survival and oral treatments with tyrosine kinase inhibitors demonstrate superiority to chemotherapy in terms of response (remission rate), progression free survival and quality of life. We provide a review of the literature and discuss the status quo of the diagnostic need and the therapeutic options in Germany and Europe. PMID:25734673

  1. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  2. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  3. Thirty meters small angle neutron scattering instrument at China advanced research reactor

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Cheng, He; Yuan, Guangcui; Han, Charles C.; Zhang, Li; Li, Tianfu; Wang, Hongli; Liu, Yun Tao; Chen, Dongfeng

    2014-01-01

    A high resolution 30 m small angle neutron scattering (SANS) instrument has been constructed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and installed at China Advanced Research Reactor (CARR). It is equipped with a mechanical velocity selector, pinhole (including multi-pinhole) collimation system, sample chamber, and high resolution two dimensional 3He position sensitive neutron detector. The flexible variations of incident neutron wavelength, source to sample distance, sample to detector distance and the presence of neutron focusing lenses enable a wide Q range from 0.001 Å-1 to 0.5 Å-1 in reciprocal space and to optimize the resolution required. The instrument is the first SANS instrument in China, and can be widely used for the structure characterization of various materials, as well as kinetic and dynamic observation during external stimulation. The design and characteristics of the instrument are presented in the manuscript.

  4. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    SciTech Connect

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C.

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  5. Molecularly targeted therapies for advanced or metastatic non-small-cell lung carcinoma

    PubMed Central

    Bayraktar, Soley; Rocha-Lima, Caio M

    2013-01-01

    Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related death in both men and women in the United States. Platinum-based doublet chemotherapy has been a standard for patients with advanced stage disease. Improvements in overall survival and quality of life have been modest. Improved knowledge of the aberrant molecular signaling pathways found in NSCLC has led to the development of biomarkers with associated targeted therapeutics, thus changing the treatment paradigm for many NSCLC patients. In this review, we present a summary of many of the currently investigated biologic targets in NSCLC, discuss their current clinical trial status, and also discuss the potential for development of other targeted agents. PMID:23696960

  6. Non-small cell lung cancer: current treatment and future advances

    PubMed Central

    Zappa, Cecilia

    2016-01-01

    Lung cancer has a poor prognosis; over half of people diagnosed with lung cancer die within one year of diagnosis and the 5-year survival is less than 18%. Non-small cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Risk factors for developing NSCLC have been identified, with cigarette smoking being a major factor along with other environmental and genetic risk factors. Depending on the staging of lung cancer, patients are eligible for certain treatments ranging from surgery to radiation to chemotherapy as well as targeted therapy. With the advancement of genetics and biomarkers testing, specific mutations have been identified to better target treatment for individual patients. This review discusses current treatments including surgery, chemotherapy, radiotherapy, and immunotherapy as well as how biomarker testing has helped improve survival in patients with NSCLC. PMID:27413711

  7. Diversity and Unity of Modularity

    ERIC Educational Resources Information Center

    Seok, Bongrae

    2006-01-01

    Since the publication of Fodor's (1983) The Modularity of Mind, there have been quite a few discussions of cognitive modularity among cognitive scientists. Generally, in those discussions, modularity means a property of specialized cognitive processes or a domain-specific body of information. In actuality, scholars understand modularity in many…

  8. Comparison of bevacizumab plus chemotherapy with chemotherapy alone in advanced non-small-lung cancer patients.

    PubMed

    Tang, Ning; Wang, Zhehai

    2016-01-01

    Bevacizumab plus chemotherapy was approved by the US Food and Drug Administration (FDA) as a first-line treatment for advanced nonsquamous, non-small-cell lung cancer (NSCLC) in 2006. This study retrospectively compared the efficacy of bevacizumab plus chemotherapy with chemotherapy alone as the first-line and second-line treatment as well as the maintenance treatment for advanced NSCLC patients. A total of 1,352 patients were included and we analyzed the efficacy evaluation according to the criteria of the Response Evaluation Criteria In Solid Tumors (RECIST), survival, and adverse reactions. The data showed that for bevacizumab plus chemotherapy as the first-line treatment, the median progression-free survival (mPFS) and median overall survival (mOS) were 11.5 and 17.0 months, respectively, compared to 7.0 and 14 months, respectively, in patients who received chemotherapy alone (P<0.01). With bevacizumab plus chemotherapy as maintenance treatment, the mPFS and mOS were 6.0 and 17.4 months, respectively, compared to 3.0 and 15.0 months, respectively, with chemotherapy alone (P<0.01). With bevacizumab plus chemotherapy as the second-line treatment, the mPFS was 3.0 months compared to only 2.0 months with chemotherapy alone (P<0.01). The overall responses to the different regimens showed that the remission rate with bevacizumab plus chemotherapy was higher than that with chemotherapy alone (31.8% vs 25.5%, P<0.05), although there was no statistical difference in the disease control rate with either first- or second-line treatment. In conclusion, chemotherapy plus bevacizumab as the first-line and maintenance treatment, led to better curative rates and tolerable adverse reactions compared with chemotherapy alone in advanced NSCLC patients. Bevacizumab combined with cytotoxic drugs was suitable as the second-line treatment for such patients. PMID:27536131

  9. Comparison of bevacizumab plus chemotherapy with chemotherapy alone in advanced non-small-lung cancer patients

    PubMed Central

    Tang, Ning; Wang, Zhehai

    2016-01-01

    Bevacizumab plus chemotherapy was approved by the US Food and Drug Administration (FDA) as a first-line treatment for advanced nonsquamous, non-small-cell lung cancer (NSCLC) in 2006. This study retrospectively compared the efficacy of bevacizumab plus chemotherapy with chemotherapy alone as the first-line and second-line treatment as well as the maintenance treatment for advanced NSCLC patients. A total of 1,352 patients were included and we analyzed the efficacy evaluation according to the criteria of the Response Evaluation Criteria In Solid Tumors (RECIST), survival, and adverse reactions. The data showed that for bevacizumab plus chemotherapy as the first-line treatment, the median progression-free survival (mPFS) and median overall survival (mOS) were 11.5 and 17.0 months, respectively, compared to 7.0 and 14 months, respectively, in patients who received chemotherapy alone (P<0.01). With bevacizumab plus chemotherapy as maintenance treatment, the mPFS and mOS were 6.0 and 17.4 months, respectively, compared to 3.0 and 15.0 months, respectively, with chemotherapy alone (P<0.01). With bevacizumab plus chemotherapy as the second-line treatment, the mPFS was 3.0 months compared to only 2.0 months with chemotherapy alone (P<0.01). The overall responses to the different regimens showed that the remission rate with bevacizumab plus chemotherapy was higher than that with chemotherapy alone (31.8% vs 25.5%, P<0.05), although there was no statistical difference in the disease control rate with either first- or second-line treatment. In conclusion, chemotherapy plus bevacizumab as the first-line and maintenance treatment, led to better curative rates and tolerable adverse reactions compared with chemotherapy alone in advanced NSCLC patients. Bevacizumab combined with cytotoxic drugs was suitable as the second-line treatment for such patients. PMID:27536131

  10. Neoadjuvant Radiotherapy/Chemoradiotherapy in Locally Advanced Non-Small Cell Lung Cancer

    PubMed Central

    Yalman, Deniz

    2015-01-01

    Locally advanced non-small cell lung cancer (NSCLC) consists of a heterogeneous group of patients, and the optimal treatment is still controversial. The current standard of care is concurrent chemoradiotherapy. The prognosis is still poor, with high rates of local and distant failure despite multimodality treatment. One of the efforts to improve outcomes in these patients is to use neoadjuvant treatment to improve resectability, and downstaging the nodal disease, which has a clear impact on prognosis. Radiotherapy as the sole neoadjuvant modality has been used historically without any survival benefit, but with increased toxicity. After the demonstrating a survival benefit by combining radiotherapy and chemotherapy, phase II studies were started to determine the neoadjuvant administration of these two modalities together. Although the results of these studies revealed a heterogeneous postinduction pathologic complete response, tumor and nodal down-staging can be achieved at the cost of a slightly higher morbidity and mortality. Subsequent phase III trials also failed to show a survival benefit to surgery, but indicated that there may be a subset of patients with locally advanced disease who can benefit from resection unless pneumonectomy is not provided. In order to increase the efficacy of radiotherapy, hyperfractionated-accelerated schedules have been used with promising complete pathologic response rates, which might improve prognosis. Recently, studies applying high radiotherapy doses in the neoadjuvant setting demonstrated the safety of resection after radiotherapy, with high nodal clearance rates and encouraging long-term survival results. In conclusion, neoadjuvant treatment of locally advanced NSCLC is one of the most challenging issues in the treatment of this disease, but it can be offered to appropriately selected patients, and should be done by a multidisciplinary team. Individual risk profiles, definite role of radiotherapy with optimal timing, and

  11. Targeted therapy of advanced non-small cell lung cancer: the role of bevacizumab

    PubMed Central

    Stinchcombe, Thomas E

    2007-01-01

    Lung cancer is the leading cause of cancer death in the United States. The majority of patients present with advanced stage disease, and treatment with standard cytotoxic chemotherapy agents have been shown to provide a modest improvement in survival, reduce disease-related symptoms, and improve quality of life. However, with standard chemotherapy treatments the prognosis is poor with the majority of patients dying in less than a year from diagnosis. Treatment with standard chemotherapy agents has reached a therapeutic plateau, and recent investigations have focused on therapies that target a specific pathway within the malignant cell or related to angiogenesis. The most promising of the targeted therapies are agents that target the process of angiogenesis. Bevacizuamab is a monoclonal antibody that binds to circulating vascular endothelial growth factor (VEGF)-A, and prevents binding of VEGF to vascular endothelial growth factor receptors, thus inhibiting activation of the VEGF pathway and angiogenesis. A recent phase III trial of first-line treatment of advanced non-small cell lung cancer revealed a statistically significant improvement in response, progression-free survival, and overall survival with the combination of bevacizumab and standard chemotherapy in comparison to standard chemotherapy alone. Bevacizumab is the only targeted therapy that has been shown to improve survival when combined with standard chemotherapy in the first-line setting. PMID:19707329

  12. Canadian consensus: inhibition of ALK-positive tumours in advanced non-small-cell lung cancer

    PubMed Central

    Melosky, B.; Agulnik, J.; Albadine, R.; Banerji, S.; Bebb, D.G.; Bethune, D.; Blais, N.; Butts, C.; Cheema, P.; Cheung, P.; Cohen, V.; Deschenes, J.; Ionescu, D.N.; Juergens, R.; Kamel-Reid, S.; Laurie, S.A.; Liu, G.; Morzycki, W.; Tsao, M.S.; Xu, Z.; Hirsh, V.

    2016-01-01

    Anaplastic lymphoma kinase (alk) is an oncogenic driver in non-small-cell lung cancer (nsclc). Chromosomal rearrangements involving the ALK gene occur in up to 4% of nonsquamous nsclc patients and lead to constitutive activation of the alk signalling pathway. ALK-positive nsclc is found in relatively young patients, with a median age of 50 years. Patients frequently have brain metastasis. Targeted inhibition of the alk pathway prolongs progression-free survival in patients with ALK-positive advanced nsclc. The results of several recent clinical trials confirm the efficacy and safety benefit of crizotinib and ceritinib in this population. Canadian oncologists support the following consensus statement: All patients with advanced nonsquamous nsclc (excluding pure neuroendocrine carcinoma) should be tested for the presence of an ALK rearrangement. If an ALK rearrangement is present, treatment with a targeted alk inhibitor in the first-line setting is recommended. As patients become resistant to first-generation alk inhibitors, other treatments, including second-generation alk inhibitors can be considered. PMID:27330348

  13. Canadian consensus: inhibition of ALK-positive tumours in advanced non-small-cell lung cancer.

    PubMed

    Melosky, B; Agulnik, J; Albadine, R; Banerji, S; Bebb, D G; Bethune, D; Blais, N; Butts, C; Cheema, P; Cheung, P; Cohen, V; Deschenes, J; Ionescu, D N; Juergens, R; Kamel-Reid, S; Laurie, S A; Liu, G; Morzycki, W; Tsao, M S; Xu, Z; Hirsh, V

    2016-06-01

    Anaplastic lymphoma kinase (alk) is an oncogenic driver in non-small-cell lung cancer (nsclc). Chromosomal rearrangements involving the ALK gene occur in up to 4% of nonsquamous nsclc patients and lead to constitutive activation of the alk signalling pathway. ALK-positive nsclc is found in relatively young patients, with a median age of 50 years. Patients frequently have brain metastasis. Targeted inhibition of the alk pathway prolongs progression-free survival in patients with ALK-positive advanced nsclc. The results of several recent clinical trials confirm the efficacy and safety benefit of crizotinib and ceritinib in this population. Canadian oncologists support the following consensus statement: All patients with advanced nonsquamous nsclc (excluding pure neuroendocrine carcinoma) should be tested for the presence of an ALK rearrangement. If an ALK rearrangement is present, treatment with a targeted alk inhibitor in the first-line setting is recommended. As patients become resistant to first-generation alk inhibitors, other treatments, including second-generation alk inhibitors can be considered. PMID:27330348

  14. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  15. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  16. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    NASA Astrophysics Data System (ADS)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  17. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  18. Modularity in signaling systems

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Domitilla

    2012-08-01

    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications.

  19. Computing an upper bound of modularity

    NASA Astrophysics Data System (ADS)

    Miyauchi, Atsushi; Miyamoto, Yuichiro

    2013-07-01

    Modularity proposed by Newman and Girvan is a quality function for community detection. Numerous heuristics for modularity maximization have been proposed because the problem is NP-hard. However, the accuracy of these heuristics has yet to be properly evaluated because computational experiments typically use large networks whose optimal modularity is unknown. In this study, we propose two powerful methods for computing a nontrivial upper bound of modularity. More precisely, our methods can obtain the optimal value of a linear programming relaxation of the standard integer linear programming for modularity maximization. The first method modifies the traditional row generation approach proposed by Grötschel and Wakabayashi to shorten the computation time. The second method is based on a row and column generation. In this method, we first solve a significantly small subproblem of the linear programming and iteratively add rows and columns. Owing to the speed and memory efficiency of these proposed methods, they are suitable for large networks. In particular, the second method consumes exceedingly small memory capacity, enabling us to compute the optimal value of the linear programming for the Power Grid network (consisting of 4941 vertices and 6594 edges) on a standard desktop computer.

  20. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    PubMed Central

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M.; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed. PMID:26617515

  1. Modular avionics packaging standardization

    NASA Astrophysics Data System (ADS)

    Austin, M.; McNichols, J. K.

    The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.

  2. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  3. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  4. Modularity and mental architecture.

    PubMed

    Robbins, Philip

    2013-11-01

    Debates about the modularity of cognitive architecture have been ongoing for at least the past three decades, since the publication of Fodor's landmark book The Modularity of Mind. According to Fodor, modularity is essentially tied to informational encapsulation, and as such is only found in the relatively low-level cognitive systems responsible for perception and language. According to Fodor's critics in the evolutionary psychology camp, modularity simply reflects the fine-grained functional specialization dictated by natural selection, and it characterizes virtually all aspects of cognitive architecture, including high-level systems for judgment, decision making, and reasoning. Though both of these perspectives on modularity have garnered support, the current state of evidence and argument suggests that a broader skepticism about modularity may be warranted. WIREs Cogn Sci 2013, 4:641-649. doi: 10.1002/wcs.1255 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304269

  5. Updating advances on recombinant human endostatin combined with radiotherapy for non-small cell lung cancer with brain metastasis

    PubMed Central

    Qiao, Yun

    2012-01-01

    Brain metastases (BM) heavily affects the prognosis of advanced non-small cell lung cancer (NSCLC). Although whole-brain radiotherapy remains the mainstream therapy for BM caused by NSCLC, the effectiveness is unsatisfactory. Endostar, a recombinant human endostatin (RHES), has shown certain therapeutic effect on advanced NSCLC. This article reviews the feasibility of Endostar combined with radiotherapy in the treatment of BM caused by NSCLC. PMID:25806159

  6. Advanced radiochromic film methodologies for quantitative dosimetry of small and nonstandard fields

    NASA Astrophysics Data System (ADS)

    Rosen, Benjamin S.

    Radiotherapy treatments with small and nonstandard fields are increasing in use as collimation and targeting become more advanced, which spare normal tissues while increasing tumor dose. However, dosimetry of small and nonstandard fields is more difficult than that of conventional fields due to loss of lateral charged-particle equilibrium, tight measurement setup requirements, source occlusion, and the volume-averaging effect of conventional dosimeters. This work aims to create new small and nonstandard field dosimetry protocols using radiochromic film (RCF) in conjunction with novel readout and analysis methodologies. It also is the intent of this work to develop an improved understanding of RCF structure and mechanics for its quantitative use in general applications. Conventional digitization techniques employ white-light, flatbed document scanners or scanning-laser densitometers which are not optimized for RCF dosimetry. A point-by-point precision laser densitometry system (LDS) was developed for this work to overcome the film-scanning artifacts associated with the use of conventional digitizers, such as positional scan dependence, off-axis light scatter, glass bed interference, and low signal-to-noise ratios. The LDS was shown to be optically traceable to national standards and to provide highly reproducible density measurements. Use of the LDS resulted in increased agreement between RCF dose measurements and the single-hit detector model of film response, facilitating traceable RCF calibrations based on calibrated physical quantities. GafchromicRTM EBT3 energy response to a variety of reference x-ray and gamma-ray beam qualities was also investigated. Conventional Monte Carlo methods are not capable of predicting film intrinsic energy response to arbitrary particle spectra. Therefore, a microdosimetric model was developed to simulate the underlying physics of the radiochromic mechanism and was shown to correctly predict the intrinsic response relative to a

  7. Cachexia Index in Advanced Non-Small-Cell Lung Cancer Patients

    PubMed Central

    Jafri, Syed Hasan Raza; Previgliano, Carlos; Khandelwal, Keerti; Shi, Runhua

    2015-01-01

    INTRODUCTION Cancer cachexia affects many advanced non-small-cell lung cancer (NSCLC) patients. Cachexia index (CXI) was developed to assess the degree of cachexia in these patients. METHODS Patients with metastatic NSCLC diagnosed between January 1, 2000, and June 30, 2011, at our institution were retrospectively studied. Abdominal computed tomography scans done within 1 month of diagnosis were reviewed to estimate skeletal muscle area (SMA) and skeletal muscle index (SMI) at the L3 level. CXI was developed as follows: CXI=SMI×AlbNLR where SMI is the skeletal muscle index, Alb is the serum albumin, and NLR is the neutrophil-to-lymphocyte ratio. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan–Meier method. Survival among various factors was calculated using the log-rank test. Multivariate Cox regression was used to perform survival analysis in order to estimate the effects of various factors. RESULTS Patients were divided into two groups around the median into stage I cachexia (CXI ≥35, n = 56) and stage II cachexia (CXI <35, n = 56). Groups did not differ in age, gender, ethnicity, or histology of cancer. Patients with stage II cachexia had significantly worse PFS (2.45 vs 5.43 months, P < 0.0001) and OS (3.45 vs 8.8 months, P = 0.0001) than those with stage I cachexia. On multivariate analysis adjusting for gender, race, and histology, patients with stage II cachexia were found to have worse PFS (hazard ratio [HR] 1.94, 95% confidence interval [CI] 1.27–2.95) and OS (HR 1.53, 95% CI 1.0009–2.34). CONCLUSION The CXI is a novel index for estimating cachexia that also correlates with prognosis in both men and women with advanced NSCLC. PMID:26604850

  8. Dose escalation with stereotactic body radiation therapy boost for locally advanced non small cell lung cancer

    PubMed Central

    2013-01-01

    Introduction Low survival outcomes have been reported for the treatment of locally advanced non small cell lung cancer (LA-NSCLC) with the standard of care treatment of concurrent chemoradiation (cCRT). We present our experience of dose escalation using stereotactic body radiosurgery (SBRT) following conventional cCRT for patients with LA-NSCLC. Methods Sixteen patients with a median age of 67.5 treated with fractionated SBRT from 2010 to 2012 were retrospectively analyzed. Nine (56%) of the patients had stage IIIB, 6 (38%) has stage IIIA, and 1 (6%) had recurrent disease. Majority of the patients (63%) presented with N2 disease. All patients had a PET CT for treatment planning. Patients received conventional cCRT to a median dose of 50.40 Gy (range 45–60) followed by an SBRT boost with an average dose of 25 Gy (range 20–30) given over 5 fractions. Results With a median follow-up of 14 months (range, 1–14 months), 1-year overall survival (OS), progression free survival (PFS), local control (LC), regional control (RC), and distant control (DC) rates were, 78%, 42%, 76%, 79%, and 71%, respectively. Median times to disease progression and regional failure were 10 months and 18 months, respectively. On univariate analysis, advanced age and nodal status were worse prognostic factors of PFS (p < 0.05). Four patients developed radiation pneumonitis and one developed hemoptysis. Treatment was interrupted in one patient who required hospitalization due to arrhythmias and pneumonia. Conclusion Risk adaptive dose escalation with SBRT following external beam radiotherapy is possible and generally tolerated treatment option for patients with LA-NSCLC. PMID:23842112

  9. Dose escalation for unresectable locally advanced non-small cell lung cancer: end of the line?

    PubMed

    Hong, Julian C; Salama, Joseph K

    2016-02-01

    Radiation Therapy Oncology Group (RTOG) 0617 was a randomized trial that investigated both the impact of radiation dose-escalation and the addition of cetuximab on the treatment of non-small cell lung cancer (NSCLC). The results of RTOG 0617 were surprising, with the dose escalation randomization being closed prematurely due to futility stopping rules, and cetuximab ultimately showing no overall survival benefit. Locally advanced unresectable NSCLC has conventionally been treated with concurrent chemoradiation. Though advances in treatment technology have improved the ability to deliver adequate treatment dose, the foundation for radiotherapy (RT) has remained the same since the 1980s. Since then, progressive studies have sought to establish the safety and efficacy of escalating radiation dose to loco-regional disease. Though RTOG 0617 did not produce the anticipated result, much interest remains in dose escalation and establishing an explanation for the findings of this study. Cetuximab was also not found to provide a survival benefit when applied to an unselected population. However, planned retrospective analysis suggests that those patients with high epidermal growth factor receptor (EGFR) expression may benefit, suggesting that cetuximab should be applied in a targeted fashion. We discuss the results of RTOG 0617 and additional findings from post-hoc analysis that suggest that dose escalation may be limited by normal tissue toxicity. We also present ongoing studies that aim to address potential causes for mortality in the dose escalation arm through adaptive or proton therapy, and are also leveraging additional concurrent systemic agents such as tyrosine kinase inhibitors (TKIs) for EGFR-activating mutations or EML4-ALK rearrangements, and poly (ADP-ribose) polymerase (PARP) inhibitors. PMID:26958507

  10. Cost-effectiveness of paclitaxel plus cisplatin in advanced non-small-cell lung cancer

    PubMed Central

    Earle, C C; Evans, W K

    1999-01-01

    The aim of this study was to assess the cost-effectiveness of combination chemotherapy with paclitaxel/cisplatin, compared with standard etoposide/cisplatin in patients with advanced non-small cell lung cancer (NSCLC). We obtained the primary survival and resource utilization data from a large three-arm randomized trial comparing: paclitaxel 135 mg m−2 by 24-h intravenous (i.v.) infusion + cisplatin; paclitaxel 250 mg m−2 by 24-h i.v. infusion + cisplatin + granulocyte colony-stimulating factor (G-CSF); and standard etoposide/cisplatin in patients with stage IIIb or IV NSCLC. We also modelled the regimens with paclitaxel 135 mg m−2 + cisplatin administered as an outpatient by 3-h infusion, as clinical data suggest that this is equivalent to 24-h infusion. We collected costing data from the Ottawa Regional Cancer Centre and applied it to the resources consumed in the randomized trial. We integrated these data into the Statistics Canada POpulation HEalth Model (POHEM), which generated hypothetical cohorts of patients treated with each regimen. The POHEM model assigned diagnostic work-up, treatment, disease progression and survival characteristics to each individual in these cohorts and tabulated the costs associated with each. We did sensitivity analyses around the costs of chemotherapy and its administration, and the survival differences between the two regimens. All costs are in 1997 Canadian dollars ($1.00 Canadian ˜ £0.39 sterling). The perspective is that of the Canadian health care system. In the trial, the two paclitaxel-containing arms had almost identical survival curves with a median survival of 9.7 months compared with 7.4 months for etoposide/cisplatin. As administered in the trial, paclitaxel/cisplatin cost $76 370 per life-year gained (LYG) and paclitaxel/cisplatin/G-CSF $138 578 per LYG relative to etoposide/cisplatin. However, when modelled as an outpatient 3-h infusion, paclitaxel/cisplatin was moderately cost-effective at $30 619 per LYG

  11. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  12. Modular Biospheres” New testbed platforms for public environmental education and research

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure

  13. Cost/benefit analysis of advanced material technologies for small aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Comey, D. H.

    1977-01-01

    Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.

  14. The role of pembrolizumab in the treatment of advanced non-small cell lung cancer

    PubMed Central

    Santabarbara, Giuseppe; Maione, Paolo; Rossi, Antonio; Palazzolo, Giovanni

    2016-01-01

    Lung cancer is the leading cause of death cancer related worldwide. The standard therapies have unmet medical needs both due to the limited activity and relevant toxicity of platinum-based chemotherapy and to the low frequency of specific alterations required to use targeted therapies. Immune checkpoint inhibition due to restoring the immune system’s capacity to eradicate tumors is undergoing in extensive investigation in non-small cell lung cancer (NSCLC) as a new treatment approach. Programmed cell death protein-1 (PD-1) and its ligand, programmed cell death-ligand 1 (PD-L1) have recently led to significantly and durable improvements in the clinical outcome of several kind of tumors including lung cancer. Pembrolizumab, approved by the U.S. FDA for the treatment of advanced NSCLC progressed after other therapies and with expression of PD-L1, has demonstrated durable response and prolonged overall survival (OS) especially in patients with high PD-L1 expression. Further investigation are needed to improve treatment outcomes through combination of immunotherapy or combined with other targeted therapies. PMID:27386489

  15. Gemcitabine and carboplatin for patients with advanced non-small cell lung cancer.

    PubMed

    Dómine, M; Casado, V; Estévez, L G; León, A; Martin, J I; Castillo, M; Rubio, G; Lobo, F

    2001-06-01

    The survival of patients with advanced non-small cell lung cancer remains poor. Cisplatin-based chemotherapy produces a modest benefit in survival compared with that observed with best supportive care. Gemcitabine (Gemzar; Eli Lilly and Company, Indianapolis, IN), a novel nucleoside antimetabolite, is active and well tolerated. The combination of gemcitabine/cisplatin has shown a significant improvement in response rate and survival over cisplatin alone. Phase III trials comparing gemcitabine/cisplatin with older combinations such as cisplatin/etoposide or mitomycin/ifosfamide/cisplatin have shown a higher activity for gemcitabine/cisplatin; however, the best way to combine these drugs remains unclear. In addition, the 3-week schedule has obtained a higher dose intensity with less toxicity and similar efficacy as the 4-week schedule. The role of carboplatin in combination with new drugs is still under evaluation. Gemcitabine/carboplatin seems to be a good alternative, with the advantage of ambulatory administration and lower nonhematologic toxicity. The 4-week schedule has produced frequent grade 3/4 neutropenia and thrombocytopenia in some studies. The 3-week schedule, using gemcitabine on days 1 and 8 and carboplatin on day 1, is a convenient and well-tolerated regimen. The toxicity profile is acceptable without serious symptoms. This schedule could be considered a good option as a standard regimen. Semin Oncol 28 (suppl 10):4-9. PMID:11510027

  16. Immunotherapy in locally-advanced non-small cell lung cancer: releasing the brakes on consolidation?

    PubMed Central

    2016-01-01

    Locally-advanced non-small cell lung cancer (LA-NSCLC) is optimally treated with definitive chemoradiation or surgery in combination with chemotherapy or chemoradiation. Prognosis, however, remains poor, and attempts to improve outcomes using consolidation or maintenance chemotherapy have not improved overall survival. Given the limited success of traditional cytotoxic chemotherapies as maintenance therapy for LA-NSCLC, recent studies have investigated the role of novel agents such as maintenance or consolidation, including antiangiogenic agents and molecular targeted therapy. With multiple newly reported trials demonstrating improved outcomes with immunotherapy over cytotoxic chemotherapy for stage IV NSCLC, integrating immunotherapy with definitive chemoradiation regimens or as consolidative therapy for LA-NSCLC is an attractive option. The recently published START trial is the first to test immunotherapy in LA-NSCLC in a randomized, phase III setting. In that trial, the administration of maintenance tecemotide (L-BLP25), which induces a T-cell response to the mucin 1 (MUC1) glycoprotein, was found to be well tolerated and improve overall survival compared with placebo among patients receiving concurrent, but not sequential, chemoradiation. Despite the promising findings of this trial, numerous questions regarding immunotherapy for LA-NSCLC remain, and several additional immunotherapy trials are underway or planned in this patient population. PMID:26958509

  17. Recent advances in immunotherapy for non-small-cell lung cancer.

    PubMed

    Suzuki, Hiroyuki; Owada, Yuki; Watanabe, Yuzuru; Inoue, Takuya; Fukuharav, Mitsuro; Yamaura, Takumi; Mutoh, Satoshi; Okabe, Naoyuki; Yaginuma, Hiroshi; Hasegawa, Takeo; Yonechi, Atsushi; Ohsugi, Jun; Hoshino, Mika; Higuchi, Mitsunori; Shio, Yutaka; Gotoh, Mitsukazu

    2014-01-01

    Despite of recent development in the field of molecular targeted therapies, lung cancer is a leading cause of cancer death in the world. Remarkable progress has been made recently in immunotherapy for patients with non-small-cell lung cancer (NSCLC), with several modalities, concepts, and treatment settings being investigated. In vaccine development, large-scale clinical trials such as those with L-BLP25, belagenpumatucel-L, TG4010, and talactoferrin are already ongoing and some results have been reported. A trial of a vaccine as adjuvant therapy for patients with completely resected NSCLC is also ongoing with one of the major cancer-testis antigens, melanoma-associated antigen (MAGE)-A3. More recently, the effectiveness of multiple peptide vaccines has also been shown. Recently developed unique treatment modalities are the immune checkpoint inhibitors, such as antibodies against PD-1 and PD-L1, which also show promise. However, although therapeutic cancer vaccines are generally thought to be safe, severe adverse events should be monitored carefully when using immune checkpoint inhibitors. Here, we discuss recent advances and future perspectives of immunotherapy for patients with NSCLC. PMID:24196313

  18. AZD9291 in EGFR-mutant advanced non-small-cell lung cancer patients.

    PubMed

    Remon, Jordi; Planchard, David

    2015-11-01

    Non-small-cell lung cancer (NSCLC) patients whose tumors have an EGFR-activating mutation develop acquired resistance after a median of 9-11 months from the beginning of treatment with erlotinib, gefitinib and afatinib. T790M mutation is the cause of this resistance in approximately 60% of cases. AZD9291 is an oral, irreversible, mutant-selective EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) developed to have potency against EGFR mutations, including T790M mutation, while sparing wild-type EGFR. A Phase I trial of AZD9291 in EGFR-mutant NSCLC patients, demonstrated high activity, essentially among T790M-mutant tumors, with a manageable tolerability profile. Ongoing Phase III trials are evaluating AZD9291 in EGFR-mutant patients as first-line treatment compared with erlotinib and gefitinib; and as second-line treatment compared with chemotherapy after progression on EGFR TKI in T790M-mutant tumors. Better identification of T790M-mutant tumors post EGFR TKI relapse and mechanisms of resistance to AZD9291 are the future challenges. This article reviews the emerging data regarding AZD9291 in the treatment of patients with advanced NSCLC. PMID:26450446

  19. Advanced Communication Technology Satellite (ACTS) Very Small Aperture Terminal (VSAT) Network Control Performance

    NASA Technical Reports Server (NTRS)

    Coney, T. A.

    1996-01-01

    This paper discusses the performance of the network control function for the Advanced Communications Technology Satellite (ACTS) very small aperture terminal (VSAT) full mesh network. This includes control of all operational activities such as acquisition, synchronization, timing and rain fade compensation as well as control of all communications activities such as on-demand integrated services (voice, video, and date) connects and disconnects Operations control is provided by an in-band orderwire carried in the baseboard processor (BBP) control burst, the orderwire burst, the reference burst, and the uplink traffic burst. Communication services are provided by demand assigned multiple access (DAMA) protocols. The ACTS implementation of DAMA protocols ensures both on-demand and integrated voice, video and data services. Communications services control is also provided by the in-band orderwire but uses only the reference burst and the uplink traffic burst. The performance of the ACTS network control functions have been successfully tested during on-orbit checkout and in various VSAT networks in day to day operations. This paper discusses the network operations and services control performance.

  20. New drugs in the palliative chemotherapy of advanced non-small-cell lung cancer.

    PubMed

    Malayeri, R; Pirker, R; Huber, H

    2001-10-01

    In inoperable advanced non-small-cell lung cancer (NSCLC), palliative chemotherapy is established and aims at palliation of symptoms, improvement of quality of life and prolongation of survival. In the last years, several new drugs with enhanced activity towards NSCLC and improved toxicity profile have been characterised, for example vinorelbine, gemcitabine, paclitaxel and docetaxel. Data from randomised trials suggest that regimens containing new drugs are more active than older combinations. Platin-based combinations of either vinorelbine, gemcitabine or paclitaxel have resulted in better outcome than cisplatin alone and new drugs in combination with platins are more active than the corresponding single agent. Non-platin-based combinations must be considered investigational until their non-inferiority to platin-based protocols has been proven in randomised trials on large patient populations. Patients with good performance status and adequate organ function should receive platin-based chemotherapy that includes the new drugs (vinorelbine, gemcitabine, paclitaxel or docetaxel). New drugs without platins are suitable for elderly patients and patients with poor performance status. Second-line chemotherapy prolongs survival in selected patients and should be particularly offered to patients with good performance status. PMID:11694767

  1. Self Evolving Modular Network

    NASA Astrophysics Data System (ADS)

    Tokunaga, Kazuhiro; Kawabata, Nobuyuki; Furukawa, Tetsuo

    We propose a novel modular network called the Self-Evolving Modular Network (SEEM). The SEEM has a modular network architecture with a graph structure and these following advantages: (1) new modules are added incrementally to allow the network to adapt in a self-organizing manner, and (2) graph's paths are formed based on the relationships between the models represented by modules. The SEEM is expected to be applicable to evolving functions of an autonomous robot in a self-organizing manner through interaction with the robot's environment and categorizing large-scale information. This paper presents the architecture and an algorithm for the SEEM. Moreover, performance characteristic and effectiveness of the network are shown by simulations using cubic functions and a set of 3D-objects.

  2. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  3. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  4. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  5. Criteria for software modularization

    NASA Technical Reports Server (NTRS)

    Card, David N.; Page, Gerald T.; Mcgarry, Frank E.

    1985-01-01

    A central issue in programming practice involves determining the appropriate size and information content of a software module. This study attempted to determine the effectiveness of two widely used criteria for software modularization, strength and size, in reducing fault rate and development cost. Data from 453 FORTRAN modules developed by professional programmers were analyzed. The results indicated that module strength is a good criterion with respect to fault rate, whereas arbitrary module size limitations inhibit programmer productivity. This analysis is a first step toward defining empirically based standards for software modularization.

  6. Suggested performance specifications of standard modular controls for the automation of small hydro electric facilities. [Plant capacities from 50 kW to 15 MW

    SciTech Connect

    Beckwith, R.W.

    1980-06-01

    These specifications are made available by the Department of Energy for the voluntary use by any person, corporation or governmental body in the writing of purchase specifications for the automatic control of small hydro generating stations, i.e., hydro plants ranging in size from 50 kW to 15 MW. It is believed that the use of these specifications will permit competition among capable vendors and, at the same time, assure proper and reliable operation of both the automation hardware and software purchased. The specifications are detailed to a degree which should assure the interchangeability of hardware and software from various suppliers. This also increases the likelihood that spare parts and service will be available for many years. The specifications are written in modules, each of which can be included or excluded for ease of editing to match a particular application. Brief but detailed instructions are included for such editing. An extensive appendix gives the alternatives which were considered and reasons for the various choices specified.

  7. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  8. Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling.

  9. Completely modular thermionic reactor ion propulsion system /trips/.

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    Description of a nuclear reactor powered ion propulsion system which is an advanced completely modularized system lending itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system, including the thermionic fuel elements, the heat rejection subsystem (head pipes), the power conditioning modules, and the ion thrusters. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling which allows complete prototype testing. The ion engines are typically matched with one or more p/c modules and are the same size for any power level propulsion system of interest.

  10. Pemetrexed for the maintenance treatment of locally advanced or metastatic non-small cell lung cancer.

    PubMed

    Greenhalgh, J; McLeod, C; Bagust, A; Boland, A; Fleeman, N; Dundar, Y; Oyee, J; Dickson, R; Davis, H; Green, J; McKenna, E; Pearson, M

    2010-10-01

    This paper presents a summary of the evidence review group (ERG) report into the clinical effectiveness and cost-effectiveness of pemetrexed for the maintenance treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC), in accordance with the licensed indication, based upon the evidence submission from the manufacturer (Eli Lilly) to the National Institute for Health and Clinical Excellence (NICE) as part of the single technology appraisal (STA) process. The primary clinical outcome measure was progression free survival (PFS). Secondary outcomes included overall survival (OS), time to worsening of symptoms, objective tumour response rate, adverse events and changes in lung cancer symptom scale. Data for two populations were presented: patients with non-squamous NSCLC histology and patients with adenocarcinoma histology. The clinical evidence was derived from a double-blind, placebo-controlled randomised controlled trial (RCT), the JMEN trial. The trial compared the use of pemetrexed + best supportive care (BSC ) as maintenance therapy, with placebo + BSC in patients with NSCLC (n = 663) who had received four cycles of platinum-based chemotherapy (CTX) and whose disease had not progressed. In the licensed population (patients with non-squamous histology), the trial demonstrated greater median PFS for patients treated with pemetrexed than for patients in the placebo arm [4.5 vs 2.6 months; hazard ratio (HR) 0.44; 95% confidence interval (CI) 0.36 to 0.55, p < 0.00001]. Median OS was also greater for the pemetrexed- treated patients (15.5 vs 10.3 months; HR 0.70; 95% CI 0.56 to 0.88, p = 0.002). In addition, tumour response and disease control rates were statistically significantly greater for patients who received pemetrexed. Patient survival rates at 1 year and 2 years were higher in the pemetrexed arm. The incremental cost-effectiveness ratios (ICERs) estimated by the manufacturer's model were 33,732 pounds per quality adjusted life-year (QALY

  11. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    PubMed

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis. PMID:25913215

  12. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    NASA Astrophysics Data System (ADS)

    Settens, Charles M.

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H 2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CD-SEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  13. State Librarianship: Modular Curriculum.

    ERIC Educational Resources Information Center

    Robbins, Jane; Powell, Anne

    This modular curriculum on state librarianship is designed to be used as a basis for a full-length library science course, instructional segments of several courses, continuing education courses, or workshops. The 20 curriculum modules cover the many facets of state libraries and their activities--history, functions, social and political…

  14. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  15. Modular Perspectives on Bilingualism.

    ERIC Educational Resources Information Center

    Francis, Norbert

    2002-01-01

    This research review traces the current discussion on models of bilingualism to the contributions of Vygotsky and Luria. Proposes that a modular approach to studying the different aspects of bilingual development promises to chart a course toward finding a broader common ground around research findings and interpretations that appear to be…

  16. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2016-01-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  17. V-Y Advancement Flaps Based on Yotsuyanagi Aesthetic Subunit Principles for Small Nasal Defects in Asian Patients.

    PubMed

    Gu, Zi-Chun; Li, Hua; Hamann, Dathan; Xu, Fawei

    2016-06-01

    Cosmesis is paramount in the reconstruction of small nasal defects. Yotsuyanagi et al have previously described nasal aesthetic subunits in patients of Asian descent and their implications for reconstruction of large nasal defects, including forehead flap and Z-plasty. The impact of Asian skin types and aesthetic subunits on reconstruction planning of small nasal defects has not been rigorously explored. The aim of this article is to present a novel method for repairing small nose defects in patients of Asian descent using V-Y advancement flap designed using Yotsuyanagi nasal subunit aesthetic principles. A total of 21 defects ranging from 7 to 22 mm in size in 21 patients of Asian descent were repaired with either 1 or 2 V-Y advancement flaps designed along Yotsuyanagi nasal subunit borders. All reconstructions were completed successfully in one stage. Scars were inconspicuous and nasal subunits were neither displaced nor twisted. All patients were pleased with the cosmetic outcomes. The use of V-Y advancement flaps based on Asian aesthetic nasal subunit principles for the reconstruction of small nasal defects is a novel, cosmetically sensitive alternative. PMID:27248031

  18. Application of advanced technologies to small, short-haul transport aircraft (STAT)

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

    1982-01-01

    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

  19. Effect of advanced rotorcraft airfoil sections on the hover performance of a small-scale rotor model

    NASA Technical Reports Server (NTRS)

    Althoff, Susan L.

    1988-01-01

    A hover test was conducted on a small scale rotor model for two sets of tapered rotor blades. The baseline rotor blade set used a NACA 0012 airfoil section, whereas the second rotor blade set had advanced rotorcraft airfoils distributed along the radius. The experiment was conducted for a range of thrust coefficients and tip speeds, and the data were compared to the predictions of three analytical methods. The data show the advantage of the advanced airfoils at the higher rotor thrust levels; two of the analyses predicted the correct data trends.

  20. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  1. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  2. Overall survival should be the primary endpoint in clinical trials for advanced non-small-cell lung cancer

    PubMed Central

    Cheema, P.K.; Burkes, R.L.

    2013-01-01

    An article in a recent edition of Current Oncology explored the validation of progression-free survival (pfs) as an endpoint in clinical trials of antineoplastic agents for metastatic colorectal cancer, metastatic renal cell carcinoma, and ovarian cancer. The support for pfs as a surrogate endpoint for overall survival (os) was elucidated. As with the aforementioned tumour types, advanced non-small-cell lung cancer (nsclc) has seen a rise in active agents since the year 2000. Those agents range from improved cytotoxics such as pemetrexed, to targeted therapies such as tyrosine kinase inhibitors of the epidermal growth factor receptor and agents that target the EML4–ALK gene mutation. More recently, it has also become apparent that histology plays an important role in the response to and outcomes of treatment. With the therapeutic options for patients with advanced nsclc increasing, concerns are being raised that the efficacy of drugs measured by os may be diluted in clinical trials, thereby underestimating their true clinical benefit. That possibility, together with the need to have efficacious drugs available to patients earlier, has resulted in the search for a surrogate to the os endpoint in advanced nsclc. The present article follows up the recent article on pfs as a surrogate. Although advances in identifying pfs as a valid surrogate endpoint for os have been made in other tumour types, in advanced nsclc, such surrogacy has not been formally validated. Until it has, os should remain the primary endpoint of clinical trials in advanced nsclc. PMID:23559882

  3. Modular Strategies for PET Imaging Agents

    PubMed Central

    Hooker, Jacob M

    2009-01-01

    Summary of Recent Advances In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. PMID:19880343

  4. Application of advanced technologies to derivatives of current small transport aircraft

    NASA Technical Reports Server (NTRS)

    Renze, P. P.; Terry, J. E.

    1981-01-01

    Mission requirements of the derivative design were the same as the baseline to readily identify the advanced technology benefits achieved. Advanced technologies investigated were in the areas of propulsion, structures and aerodynamics and a direct operating cost benefit analysis conducted to identify the most promising. Engine improvements appear most promising and combined with propeller, airfoil, surface coating and composite advanced technologies give a 21-25 percent DOC savings. A 17 percent higher acquisition cost is offset by a 34 percent savings in fuel used.

  5. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  6. Advanced Small Free-Piston Stirling Convertors for Space Power Applications

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Lane, Neill

    2004-02-01

    This paper reports on the current status of an advanced 35 We free-piston Stirling convertor currently being developed under NASA SBIR Phase II funding. Also described is a further advanced and higher performance ~80 watt free-piston convertor being developed by Sunpower and Boeing/Rocketdyne for NASA under NRA funding. Exceptional overall convertor (engine plus linear alternator) thermodynamic performance (greater than 50% of Carnot) with specific powers around 100 We /kg appear reasonable at these low power levels.

  7. MPP: A modular library of models of nuclear reactor components

    SciTech Connect

    Abdalla, M.A.; Guimaraes, L.; Ugolini, D. ); March-Leuba, C.; Nypaver, D.J. ); Ford, C.E. )

    1992-01-01

    This paper presents the Modular Power Plant (MPP) library and its application to simulate the Advanced Liquid Metal Reactor. The MPP library is being developed as part of the Advanced Controls Program of the Oak Ridge National Laboratory. The general purpose of the library is to provide a set of modular models of components needed to simulate nuclear power plants. To give the MPP models modularity characteristics, each model is developed as a stand-alone system. The MPP contains 28 models coded in either the Advanced Continuous Simulation Language (ACSL), or the Generalized Object-Oriented Simulation Environment (GOOSE). The MPP development is parallel to the GOOSE development, and we are currently translating the MPP components from ACSL to GOOSE.

  8. MPP: A modular library of models of nuclear reactor components

    SciTech Connect

    Abdalla, M.A.; Guimaraes, L.; Ugolini, D.; March-Leuba, C.; Nypaver, D.J.; Ford, C.E.

    1992-05-01

    This paper presents the Modular Power Plant (MPP) library and its application to simulate the Advanced Liquid Metal Reactor. The MPP library is being developed as part of the Advanced Controls Program of the Oak Ridge National Laboratory. The general purpose of the library is to provide a set of modular models of components needed to simulate nuclear power plants. To give the MPP models modularity characteristics, each model is developed as a stand-alone system. The MPP contains 28 models coded in either the Advanced Continuous Simulation Language (ACSL), or the Generalized Object-Oriented Simulation Environment (GOOSE). The MPP development is parallel to the GOOSE development, and we are currently translating the MPP components from ACSL to GOOSE.

  9. Modular integrated video system

    SciTech Connect

    Gaertner, K.J.; Heaysman, B.; Holt, R.; Sonnier, C.

    1986-01-01

    The Modular Integrated Video System (MIVS) is intended to provide a simple, highly reliable closed circuit television (CCTV) system capable of replacing the IAEA Twin Minolta Film Camera Systems in those safeguards facilities where mains power is readily available, and situations where it is desired to have the CCTV camera separated from the CCTV recording console. This paper describes the MIVS and the Program Plan which is presently being followed for the development, testing, and implementation of the system.

  10. FORTRAN Extensions for Modular Parallel Processing

    1996-01-12

    FORTRAN M is a small set of extensions to FORTRAN that supports a modular approach to the construction of sequential and parallel programs. FORTRAN M programs use channels to plug together processes which may be written in FORTRAN M or FORTRAN 77. Processes communicate by sending and receiving messages on channels. Channels and processes can be created dynamically, but programs remain deterministic unless specialized nondeterministic constructs are used.

  11. Prognostic factors for long term survival in patients with advanced non-small cell lung cancer

    PubMed Central

    Moumtzi, Despoina; Lampaki, Sofia; Porpodis, Konstantinos; Lagoudi, Kalliopi; Hohenforst-Schmidt, Wolfgang; Pataka, Athanasia; Tsiouda, Theodora; Zissimopoulos, Athanasios; Lazaridis, George; Karavasilis, Vasilis; Timotheadou, Helen; Barbetakis, Nikolaos; Pavlidis, Pavlos; Kontakiotis, Theodoros; Zarogoulidis, Konstantinos

    2016-01-01

    Background Non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. It is estimated that 60% of patients with NSCLC at time of diagnosis have advanced disease. The aim of this study was to investigate clinical and demographic prognostic factors of long term survival in patients with unresectable NSCLC. Methods We retrospectively reviewed data of 1,156 patients with NSCLC stage IIIB or IV who survived more than 60 days from the time of diagnosis and treated from August 1987 until March 2013 in the Oncology Department of Pulmonary Clinic of the General Hospital Papanikolaou. Initially univariate analysis using the log-rank test was conducted and then multivariate analysis using the proportional hazards model of Cox. Also Kaplan Meier curves were used to describe the distribution of survival times of patients. The level of significance was set at 0.05. Results The mean age at diagnosis was 62 years. About 11.9% of patients were women and 88.1% were male. The majority of cases were adenocarcinomas (42.2%), followed squamous (33%) and finally the large cell (6%). Unlike men, most common histological type among women was adenocarcinoma rather than squamous (63% vs. 10.9%). In univariate analysis statistically significant factors in the progression free survival (PFS) and overall survival (OS) were: weight loss ≥5%, histological type, line 1 drugs, line 1 combination, line 1 cycles and radio lung. Specifically radio lung gives clear survival benefit in the PFS and OS in stage IIIB (P=0.002) and IV (P<0.001). On the other hand, the number of distant metastases in stage IV patients did not affect OS, neither PFS. In addition patients who received platinum and taxane had better PFS (P=0.001) and OS (P<0.001) than those who received platinum without taxane. Also the third drug administration proved futile, since survival (682.06±34.9) (P=0.023) and PFS (434.93±26.93) (P=0.012) of patients who received less than three drugs was significantly larger. Finally

  12. CosmoSIS: Modular cosmological parameter estimation

    SciTech Connect

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis

  13. CosmoSIS: Modular cosmological parameter estimation

    DOE PAGESBeta

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less

  14. Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes.

    PubMed

    Schreiber, Stuart L; Kotz, Joanne D; Li, Min; Aubé, Jeffrey; Austin, Christopher P; Reed, John C; Rosen, Hugh; White, E Lucile; Sklar, Larry A; Lindsley, Craig W; Alexander, Benjamin R; Bittker, Joshua A; Clemons, Paul A; de Souza, Andrea; Foley, Michael A; Palmer, Michelle; Shamji, Alykhan F; Wawer, Mathias J; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E; Schoenen, Frank J; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R; Pinkerton, Anthony B; Chung, Thomas D Y; Griffin, Patrick R; Cravatt, Benjamin F; Hodder, Peter S; Roush, William R; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B; Noah, James W; Severson, William E; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I; Conn, P Jeffrey; Hopkins, Corey R; Wood, Michael R; Stauffer, Shaun R; Emmitte, Kyle A

    2015-06-01

    Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436

  15. New realities of modular construction

    SciTech Connect

    Duty, J.M. Jr. ); Fisher, D. ); Lewis, W.W. )

    1993-12-01

    Modular construction has both advantages and disadvantages. Advantages are safety, reduction of construction time and faster plant startup time, reduced labor cost, weather friendliness, increased quality and efficiency, simultaneous production capability, testing ease and fewer interruptions to an operating plant. Disadvantages are transportation costs, module size limitations, transportation-accessibility needs, increased engineering effort, and offloading and setting needs. These pros and cons were identified by a Construction Industry Institute (C2) task force established in 1989 to assess modular construction strengths and weaknesses. Objective: develop a decision-support tool to evaluate a project's suitability for modularization. The task force first had to learn what drivers influence modularization and then develop a set of characteristics of the ideal project for modularization. To help in this research, academics from the University of Houston and Purdue University developed MODEX, an expert system which became the decision-support tool. The paper first discusses the myths of modularization and then describes MODEX.

  16. Robotic hand with modular extensions

    DOEpatents

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  17. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  18. Design of a modular digital computer system, DRL 4. [for meeting future requirements of spaceborne computers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission.

  19. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  20. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  1. [Advances in Surgical Treatment of Early Stage Non-small Cell Lung Cancer].

    PubMed

    Hu, Jian; Bao, Feichao

    2016-06-20

    Lung cancer is the leading cause of cancer-related deaths worldwide, computed tomography screening has made the disease spectrum of lung cancer shift from the previously predominating central local advanced squamous cell carcinoma to early stage lung adenocarcinoma represented by solitary pulmonary nodule, ground-glass opacity (GGO) and sub-centimeter nodule. This paper reviewed the recent proceeding in the surgical management of early stage lung cancer. PMID:27335305

  2. A modular approach to adaptive structures.

    PubMed

    Pagitz, Markus; Pagitz, Manuel; Hühne, Christian

    2014-01-01

    A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach. PMID:25289521

  3. Study of modular inversion in RNS

    NASA Astrophysics Data System (ADS)

    Bajard, Jean Claude; Meloni, Nicolas; Plantard, Thomas

    2005-08-01

    Residue Numbers System have some features which are fine for some implementations of cryptographic protocols. The main property of RNS is the distribution of the evaluation on large values on its small residues, allowing parallelization. This last property implies that we can randomize the distribution of the bases elements. Hence, the obtained arithmetic is leak resistant, it is robust against side channel attacks. But one drawback of RNS is that modular inversion is not obvious. Thus, RNS is well suited for RSA but not really for ECC. We analyze in this paper the features of the modular inversion in RNS over GF(P). We propose a RNS Extended Euclidean Algorithm which uses a quotient approximation module.

  4. Pemetrexed for advanced stage nonsquamous non-small cell lung cancer: latest evidence about its extended use and outcomes

    PubMed Central

    Tomasini, Pascale; Barlesi, Fabrice; Mascaux, Celine; Greillier, Laurent

    2016-01-01

    Non-small cell lung cancer (NSCLC) is still the leading cause of cancer-related death, and the treatment of advanced NSCLC relies on systemic treatments. During the last decade, pemetrexed, an antifolate agent, gradually became a key component of the treatment for patients with advanced nonsquamous NSCLC. It has indeed been shown to be efficient for first-line, maintenance and second- or third-line treatment in this subgroup of NSCLC. Moreover, it is usually well tolerated, with few grade 3 and 4 toxicities. Several studies have tried to identify predictive biomarkers of pemetrexed efficacy. Due to pemetrexed’s mechanism of action, thymidilate synthase expression predictive value was investigated but could not be demonstrated. Currently, more than 400 trials of pemetrexed for the treatment of nonsquamous NSCLC are ongoing. PMID:27239238

  5. Small

    SciTech Connect

    Montoya, Joseph

    2013-07-18

    Representing the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CNEEC is to understand how nanostructuring can enhance efficiency for energy conversion and solve fundamental cross-cutting problems in advanced energy conversion and storage systems.

  6. The role of prophylactic cranial irradiation in regionally advanced non-small cell lung cancer. A Southwest Oncology Group Study

    SciTech Connect

    Rusch, V.W.; Griffin, B.R.; Livingston, R.B. )

    1989-10-01

    Lung cancer is the most common malignant disease in the United States. Only the few tumors detected very early are curable, but there has been some progress in the management of more advanced non-small cell lung cancer, particularly in regionally inoperable disease. Prevention of central nervous system relapse is an important issue in this group of patients because brain metastases ultimately develop in 20% to 25% of them. Seventy-three patients with regionally advanced non-small cell lung cancer were entered into a Phase II trial of neutron chest radiotherapy sandwiched between four cycles of chemotherapy including cisplatin, vinblastine, and mitomycin C. Prophylactic cranial irradiation was administered concurrently with chest radiotherapy (3000 cGy in 10 fractions in 15 patients; 3600 cGy in 18 fractions in the remaining 50 patients). Patients underwent computed tomographic scan of the brain before treatment and every 3 months after treatment. The initial overall response rate was 79%, but 65 of the 73 patients have subsequently died of recurrent disease. Median follow-up is 9 months for all 73 patients and 26 months for eight long-term survivors. No patient who completed the prophylactic cranial irradiation program had clinical or radiologic brain metastases. Toxic reactions to prophylactic cranial irradiation included reversible alopecia in all patients, progressive dementia in one patient, and possible optic neuritis in one patient. Both of these patients received 300 cGy per fraction of irradiation. The use of prophylactic cranial irradiation has been controversial, but its safety and efficacy in this trial supports its application in a group of patients at high risk for central nervous system relapse. Further evaluation of prophylactic cranial irradiation in clinical trials for regionally advanced non-small cell lung cancer is warranted.

  7. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  8. Modular robotic architecture

    NASA Astrophysics Data System (ADS)

    Smurlo, Richard P.; Laird, Robin T.

    1991-03-01

    The development of control architectures for mobile systems is typically a task undertaken with each new application. These architectures address different operational needs and tend to be difficult to adapt to more than the problem at hand. The development of a flexible and extendible control system with evolutionary growth potential for use on mobile robots will help alleviate these problems and if made widely available will promote standardization and cornpatibility among systems throughout the industry. The Modular Robotic Architecture (MRA) is a generic control systern that meets the above needs by providing developers with a standard set of software hardware tools that can be used to design modular robots (MODBOTs) with nearly unlimited growth potential. The MODBOT itself is a generic creature that must be customized by the developer for a particular application. The MRA facilitates customization of the MODBOT by providing sensor actuator and processing modules that can be configured in almost any manner as demanded by the application. The Mobile Security Robot (MOSER) is an instance of a MODBOT that is being developed using the MRA. Navigational Sonar Module RF Link Control Station Module hR Link Detection Module Near hR Proximi Sensor Module Fluxgate Compass and Rate Gyro Collision Avoidance Sonar Module Figure 1. Remote platform module configuration of the Mobile Security Robot (MOSER). Acoustical Detection Array Stereoscopic Pan and Tilt Module High Level Processing Module Mobile Base 566

  9. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  10. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  11. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  12. Recent advances in in vitro embryo production in small ruminants.

    PubMed

    Paramio, Maria-Teresa; Izquierdo, Dolors

    2016-07-01

    To increase productivity in the small ruminant industry, the genetic material of these species should be improved. In vitro embryo production could be an important technology to reach this goal by combining selected male and female gametes. In the world, marketing of in vitro-produced embryos is an economical activity which is progressing rapidly in cattle but is practically nonexistent in small ruminants. Since the birth of the first lamb and kid using IVF in the 80s, several studies have been carried out; however, results still are inconsistent and unpredictable. Moreover, significantly fewer research groups are working on embryo production in small ruminants than in cattle and pigs. Although conventional methodologies of oocyte IVM, IVF, and IVC in small ruminants give rise to blastocysts, significant variation exists between experiments. One important reason for these differences is the heterogeneity of the pool of oocytes recovered from ovaries from slaughtered females. Oocyte quality, also referred to as competence, is the key factor in the success of in vitro embryo production programs. Different criteria are used to select the best oocytes for fertilization, such as follicle size, oocyte diameter and morphological appearance, and Brilliant Cresyl Blue staining. New research lines aimed at improving oocyte competence are: (1) arresting nuclear maturation in vitro allowing optimal capacitation of cytoplasm, (2) growing oocytes inside the follicle, and (3) identification of biomarkers of oocyte competence in granulosa and cumulus cells and metabolites in the follicular fluid. PMID:27157391

  13. Leveraging Small Aquarium Fishes to Advance Understanding of Environmentally Influenced Human Disorders and Diseases

    EPA Science Inventory

    Small aquarium fishes provide a model organism that recapitulates the development, physiology and specific disease processes present in humans without the many limitations of rodent-based models currently in use. Fish models offer advantages in cost, rapid life-cycles, and extern...

  14. Advances in participatory occupational health aimed at good practices in small enterprises and the informal sector.

    PubMed

    Kogi, Kazutaka

    2006-01-01

    Participatory programmes for occupational risk reduction are gaining importance particularly in small workplaces in both industrially developing and developed countries. To discuss the types of effective support, participatory steps commonly seen in our "work improvement-Asia" network are reviewed. The review covered training programmes for small enterprises, farmers, home workers and trade union members. Participatory steps commonly focusing on low-cost good practices locally achieved have led to concrete improvements in multiple technical areas including materials handling, workstation ergonomics, physical environment and work organization. These steps take advantage of positive features of small workplaces in two distinct ways. First, local key persons are ready to accept local good practices conveyed through personal, informal approaches. Second, workers and farmers are capable of understanding technical problems affecting routine work and taking flexible actions leading to solving them. This process is facilitated by the use of locally adjusted training tools such as local good examples, action checklists and group work methods. It is suggested that participatory occupational health programmes can work in small workplaces when they utilize low-cost good practices in a flexible manner. Networking of these positive experiences is essential. PMID:16610530

  15. Advanced System Design Requirements for Large and Small Fixed-wing Aerial Application Systems for Agriculture

    NASA Technical Reports Server (NTRS)

    Hinely, J. T., Jr.; Boyles, R. Q., Jr.

    1979-01-01

    Several candidate aircraft configurations were defined over the range of 1000 to 10,000 pounds payload and evaluated over a broad spectrum of agricultural missions. From these studies, baseline design points were selected at 3200 pounds payload for the small aircraft and 7500 pounds for the large aircraft. The small baseline aircraft utilizes a single turboprop powerplant while the large aircraft utilizes two turboprop powerplants. These configurations were optimized for wing loading, aspect ratio, and power loading to provide the best mission economics in representative missions. Wing loading of 20 lb/sq ft was selected for the small aircraft and 25 lb/sq ft for the large aircraft. Aspect ratio of 8 was selected for both aircraft. It was found that a 10% reduction in engine power from the original configurations provided improved mission economics for both aircraft by reducing the cost of the turboprop. Refined configurations incorporate a 675 HP engine in the small aircraft and two 688 HP engines in the large aircraft.

  16. Recent Advances in the Development of Small-Molecular Inhibitors Target HIV Integrase-LEDGF/p75 Interaction.

    PubMed

    Zhao, Yu; Luo, Zaigang

    2015-01-01

    Lens epithelium-derived growth factor (LEDGF/p75) plays an essential role in the HIV-1 replication. It acts by tethering integrase (IN) into the host cellular chromatin. Due to its significance of the IN-LEDGF/p75 interaction affords a novel therapeutic approach for the design of new classes of antiretroviral agents. To date, many small molecules have been found to be the inhibitors of INLEDGF/ p75 interaction. This review summarizes recent advances in the development of potential structure-based IN-LEDGF/p75 interaction inhibitors. The work will be helpful to shed light on the antiretroviral drug development pipeline in the next future. PMID:26156421

  17. MACOP modular architecture with control primitives.

    PubMed

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

  18. Advanced dynamical models for very well observed asteroids : perturbations from small bodies, relativity, non - gravitational effects.

    NASA Astrophysics Data System (ADS)

    Bernardi, Fabrizio; Farnocchia, Davide; Milani, Andrea

    2012-08-01

    The availability of radar data and high precision optical observations has increased the number of objects with a very well constrained orbit, especially for those objects with a long observed arc. In these cases, the uncertainty of orbital predictions is often dominated by the inaccuracy of the dynamical model. However, the motion of small solar system bodies poses a serious challenge in modeling their dynamics. In particular, for those objects with a chaotic motion small differences in the model are amplified with propagation. Thus, we need to take into account small perturbations too, especially for long - term prediction. An improved dynamical model is relevant in several applications such as assessing the risk of an impact between an asteroid and the Earth. The N - body model describing the motion of a small solar system body includes the Newtonian attraction of the planets. The contribution o f other perturbing bodies has to be taken into account. We propose to include the Moon, two dwarf planets (Ceres and Pluto) and fifteen asteroids (Pallas, Vesta, Juno, Metis, Hygiea, Eunomia, Psyche, Amphitrite, Euphrosyne, Europa, Cybele, Sylvia, Davida, Herculina, Interamnia). The next step is the introduction of the relativity terms due to both the Sun and the planets . Despite their small magnitude, planetary relativistic terms turn out to be relevant for objects experiencing close approaches with a planet. Finally, we discuss non - gravitational effects such as solar radiation pressure and the Yarkovsky effect. In particular, the latter acts as a tiny but secular semimajor axis drift that may decisively drive long - term predictions. These non - gravitational effects are difficult to model as they depend on object ’ s physical properties that are typically unknown. However, a very well observed object can have an orbit precise enough to allow the determination of the parameters defining a non - gravitational perturbation and thus the modeling of the corresponding

  19. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Warehouse and Self-Storage Buildings

    SciTech Connect

    Liu, Bing; Jarnagin, Ronald E.; Jiang, Wei; Gowri, Krishnan

    2007-12-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Small Warehouse and Self-storage Buildings (AEDG-WH or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in small warehouses over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-WH is the fourth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  20. Dual modality micro-SPECT and micro-CT for small animal imaging: technical advances and challenges

    NASA Astrophysics Data System (ADS)

    Izaguirre, Enrique W.; Sun, Mingshan; Carver, James; Thompson, Steve; Hasegawa, Bruce H.

    2005-09-01

    Small animal dual modality microSPECT-micro CT has seen many technological advances during recent years. The design of small animal dual modality scanners is a multidisciplinary field, where several interrelated technological problems must be integrated in a complex instrument. This article describes the general concepts that must be taken into consideration during the design process of dual modality microSPECT- microCT scanners. A description of the contemporary scanner technology is presented using the recently designed dual modality micro SPECT -microCT at the Physics Research Laboratory at UCSF. The technology is described with a simple approach to introduce the reader to the complex process of the dual modality scanner design. This article includes a discussion of current technological challenges that have potential to improve or expand the microSPECT-microCT performance and its applications.

  1. Angiogenesis inhibitors rechallenge in patients with advanced non-small-cell lung cancer: a pooled analysis of randomized controlled trials

    PubMed Central

    Zhao, Lingdi; Li, Wei; Zhang, Huiying; Hou, Nan; Guo, Lanwei; Gao, Quanli

    2015-01-01

    Purpose Data on the role of angiogenesis inhibitors (AIs) rechallenge in the treatment of advanced non-small-cell lung cancer (NSCLC) patients who previously received bevacizumab remain limited. We aim to investigate the efficacy of AIs in the treatment of advanced NSCLC in this setting. Methods Studies from PubMed, Web of Science, and abstracts presented at American Society of Clinical Oncology meeting up to December 1, 2014 were searched to identify relevant studies. Eligible studies included prospective randomized controlled trials evaluating AIs in advanced NSCLC, with survival data on patients who previously received bevacizumab. The end points were overall survival and progression-free survival. Statistical analyses were conducted by using either random effects or fixed effect models according to the heterogeneity of included studies. Results A total of 452 patients with advanced NSCLC who previously received bevacizumab were identified for analysis. The meta-analysis results demonstrated that AI rechallenge significantly improved progression-free survival (hazard ratio: 0.72, 95% confidence interval: 0.58–0.89, P=0.002) when compared to non-AI containing regimens. Additionally, a nonsignificant improvement in overall survival was also observed in advanced NSCLC in this setting (hazard ratio: 0.82, 95% confidence interval: 0.65–1.03, P=0.087). Similar results were also observed in subgroup analysis according to treatment regimens. Conclusion The findings of this study suggest that NSCLC patients who relapsed after a first-line bevacizumab-containing chemotherapy obtain improved clinical benefits from AI rechallenge. Prospective clinical trials investigating the role of AI rechallenge in this setting are recommended. PMID:26491352

  2. Modular Wideband Active Vibration Absorber

    NASA Technical Reports Server (NTRS)

    Smith, David R.; Zewari, Wahid; Lee, Kenneth Y.

    1999-01-01

    A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

  3. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  4. Standardized Modular Power Interfaces for Future Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard

    2015-01-01

    Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but

  5. Modular strategies for PET imaging agents

    SciTech Connect

    Hooker, , J.M.

    2010-03-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  6. Recent advances in small-scale mechanical property measurement by nanoindentation

    SciTech Connect

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scale force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.

  7. Recent advances in small-scale mechanical property measurement by nanoindentation

    DOE PAGESBeta

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scalemore » force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.« less

  8. Rapid Response of Advanced Squamous Non-Small Cell Lung Cancer with Thrombocytopenia after First-Line Treatment with Pembrolizumab Plus Autologous Cytokine-Induced Killer Cells

    PubMed Central

    Hui, Zhenzhen; Zhang, Xinwei; Ren, Baozhu; Li, Runmei; Ren, Xiubao

    2015-01-01

    We present the first clinical evidence of advanced squamous non-small cell lung cancer with severe thrombocytopenia showing dramatic improvement after first-line treatment with pembrolizumab plus autologous cytokine-induced killer cells. PMID:26734004

  9. Modular Flooring System

    NASA Technical Reports Server (NTRS)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  10. Are VEGFR-TKIs effective or safe for patients with advanced non-small cell lung cancer?

    PubMed Central

    Wang, Shuai; Yang, Zhe; Wang, Zhou

    2015-01-01

    Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) might be new therapeutic strategies for advanced non-small cell lung cancer (NSCLC). Here a total of 12,520 patients from 23 randomized controlled trials (RCTs) were enrolled to evaluate the efficacy and safety of VEGFR-TKIs quantitatively in advanced NSCLC. Compared with non-VEGFR-TKIs, VEGFR-TKIs regimen significantly improved progression-free survival (PFS) [hazard ratio (HR): 0.839, 95% confidence interval (CI): 0.805-0.874, P < 0.001], objective response rates (ORR) [relative risk (RR): 1.374, 95% CI: 1.193-1.583, P < 0.001] and disease control rates (DCR) (RR: 1.113, 95% CI: 1.027-1.206, P = 0.009), but not overall survival (OS) (HR: 0.960, 95% CI: 0.921-1.002, P = 0.060) for NSCLC patients. The RR of all-grade neutropenia, thrombocytopenia, hypertension, hemorrhage, fatigue, anorexia, stomatitis, diarrhea, rash, hand-foot skin reaction (HFSR) were increased in patients received VEGFR-TKIs. As for high-grade (≥ 3) adverse events (AEs), VEGFR-TKIs were associated with higher RR of neutropenia, thrombocytopenia, hypertension, fatigue, stomatitis, diarrhea, rash and HFSR. This study demonstrates VEGFR-TKIs improve PFS, ORR and DCR, but not OS in advanced NSCLC patients. VEGFR-TKIs induce more frequent and serious AEs compared with control therapies. PMID:26156021

  11. Efficacy and safety of chemotherapy for newly diagnosed advanced non-small cell lung cancer with venous thromboembolism

    PubMed Central

    Zhang, Xueli; Li, Huiqiao; Chen, Wenhui; Yang, Yuanhua; Wang, Chen; Zhang, Yuhui

    2015-01-01

    Background Venous thromboembolism (VTE) is a serious complication in patients with lung cancer. The benefit of chemotherapy for lung cancer patients with VTE remains unknown. This study was conducted to elucidate the efficacy and safety of chemotherapy for advanced non-small cell lung cancer (NSCLC) in patients with VTE. Methods Newly diagnosed patients with advanced (i.e. stage IIIB and IV) NSCLC with VTE who received systemic chemotherapy were studied. Response rates, progression-free survival (PFS), overall survival (OS), and toxicity were retrospectively analyzed. Results In this study, 21 patients who received chemotherapy plus anticoagulation therapy between December 2009 and February 2011 were included. The objective response and disease control rates within the first regimen were 14.29% (3/21) and 76.19 %(16/21), respectively. The median PFS, one-year survival rate, and median OS were 5.50 months, 33.30%, and 8.70 months, respectively. The main grade 3/4 toxicities observed included neutropenia (28.57%), nausea 4 (19.05%), and anemia 2 (9.52%). Major bleeding was not observed. Conclusion Chemotherapy for newly diagnosed patients with advanced NSCLC and VTE was feasible and had acceptable toxicity; however, the survival of these patients remained inferior to that of patients without VTE. PMID:26557917

  12. Targeted therapies for treatment of non-small cell lung cancer-Recent advances and future perspectives.

    PubMed

    Minguet, Joan; Smith, Katherine H; Bramlage, Peter

    2016-06-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly cancers worldwide, with poor prognosis once the disease has progressed past the point at which surgery is a viable option. Whilst chemotherapy has improved survival over recent decades, there is still great need for improvements in treatments for patients with advanced disease. Over the last decade, a variety of such drugs have received market approval for treating NSCLC, with a variety of others in the pipeline. Here, we review the development of targeted therapies for the treatment of advanced or metastatic NSCLC, including those already in clinical practice and those in early trials. The epidermal growth factor receptor (EGFR) inhibitors, gefitinib, erlotinib and afatinib; the anaplastic lymphoma kinase (ALK) inhibitor, crizotinib; and the anti-vascular endothelial growth factor receptor monoclonal antibody, bevacizumab, are already providing improved survival for patients with NSCLC. Moreover, the discovery of EGFR mutations and ALK rearrangements has enabled the identification of patients who are more likely to benefit from a specific drug. The recent approval of the immune checkpoint inhibitor nivolumab, along with the designation of alectinib and MPDL3280A as breakthrough therapies by the FDA, demonstrates how rapidly this area of research is expanding. Over the last decade there has been significant progress made in the treatment of advanced NSCLC, and the large and varied selection of drugs currently undergoing trials provide great promise for improving the prognosis of this highly prevalent and deadly form of cancer. PMID:26537995

  13. Gefitinib: a review of its use in the management of advanced non-small-cell lung cancer.

    PubMed

    Frampton, James E; Easthope, Stephanie E

    2004-01-01

    Gefitinib (Iressa), the first commercially available epidermal growth factor receptor-tyrosine kinase (EGFR-TK) inhibitor, is indicated in the management of patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC). However, approved uses differ between countries; in most markets, gefitinib is approved for third-line use only (e.g. the US, Canada and Switzerland), although in some it is approved for both second- and third-line use (e.g. Japan and Australia) and, additionally, in patients considered unsuitable for chemotherapy (e.g. Indonesia and the Philippines). Few third-line treatment options exist for patients with inoperable advanced NSCLC who have failed both platinum-based and docetaxel chemotherapies. Gefitinib represents a significant advance in the treatment of this population; a once-daily, oral dosage of 250 mg/day was well tolerated, produced objective tumour responses and disease stabilisation, and improved disease-related symptoms and quality of life. It also produced overall survival outcomes that compared favourably with historical outcomes in a similar group of patients treated with three or four different chemotherapy regimens. These findings have been supported by observations from a global compassionate-use programme. Ongoing or planned clinical trials are designed to confirm and/or further define the role of the drug in the above and other clinical settings. PMID:15482004

  14. Efficacy and safety of albumin-bound paclitaxel in treating recurrent advanced non-small-cell lung cancer

    PubMed Central

    Xing, Pu-Yuan; Wang, Yan; Hao, Xue-Zhi; Wang, Bin; Yang, Lin; Shi, Yuan-Kai; Zhang, Xiang-Ru

    2013-01-01

    Objective To observe the efficacy and safety of albumin-bound paclitaxel (ABP) monotherapy in treating recurrent advanced non-small-cell lung cancer (NSCLC). Methods We retrospectively analyzed the short-term efficacy and toxicities of ABP monotherapy in treating 21 patients who had previously undergone multiple cycles of therapy for their advanced NSCLC in our hospital since 2010. The treatment-related survival was also analyzed. Results Of these 21 patients, the best overall response was partial response (PR) in 6 patients (28.6%), stable disease (SD) in 10 patients (47.6%), and progressive disease (PD) in 5 patients (23.8%). The overall response rate (ORR) was 28.6% and the disease control rate (DCR) (PR + SD) was 76.2%. The median progression-free survival (PFS) was 4.0 months (95% CI, 5.0-7.0 months). The main grade 3/4 toxicities included neutropenia (11.1%), peripheral nerve toxicity (5.6%), muscle and joint aches (5.6%), and fatigue (5.6%). Conclusions The ABP monotherapy can achieve good objective response in advanced NSCLC patients who have previously received multiple cycles of treatment and be well tolerated. PMID:23592901

  15. Nivolumab for advanced non-small cell lung cancer: an evaluation of a phase III study.

    PubMed

    Ulmeanu, Ruxandra; Antohe, Ileana; Anisie, Ecaterina; Antoniu, Sabina

    2016-01-01

    Lung cancer still remains associated with a high mortality rate and more efficacious therapies are needed in order to improve the disease outcome. Nivolumab is a monoclonal antibody which blocks the programmed death-1 receptor which is currently evaluated in phase III clinical trials in advanced lung cancer. Here, we evaluate the results of a phase III study in which nivolumab efficacy and safety were compared to those of docetaxel. Nivolumab was able to improve survival and progression-free survival and exhibited a very good safety profile. Further clinical data are needed in order to better position this therapy among the existing methods. The promising results support the use of this therapy as a stand-alone approach. PMID:26634873

  16. The modular power subsystem for the multimission modular spacecraft

    NASA Technical Reports Server (NTRS)

    Harris, D. W.

    1978-01-01

    The block diagram, subsystems, and components of the modular power subsystem for the multimission modular spacecraft (MMS) are described. The basic design studies were guided by considerations of cost, efficiency, simplicity, and flexibility to serve a variety of missions. Components discussed are the power regulator unit, the power control unit, the signal conditioning assembly, bus protection assembly, and the 20 Ah and 50 Ah batteries. The plan for the modular power subsystem protoflight module tests is shown. The testing has four phases: (1) component level tests, (2) subsystem integration and initial performance test, (3) subsystem protoflight environmental tests, and (4) subsystem final performance tests, qualification/acceptance review and delivery.

  17. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  18. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  19. Modular Optical PDV System

    SciTech Connect

    Araceli Rutkowski, David Esquibel

    2008-12-11

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  20. [Advances in Bevacizumab Therapy for Non-small Cell Lung Cancer 
with Brain Metastases].

    PubMed

    Qu, Liyan; Geng, Rui; Song, Xia

    2016-08-20

    Brain metastases are frequently encountered in patients with non-small cell lung cancer (NSCLC) and are a significant cause of morbidity and mortality. Antiangiogenesis therapy plays a major role in the management of brain metastases in lung cancer. Bevacizumab have become the novel method for the treatment of lung cancer with brain metastases beyond the whole brain radiation therapy, stereotactic radiosurgery and chemotherapy. Recently, more and more studies and trials laid emphasis on the bevacizumab for NSCLC with brain metastases treatment. The key point is the efficacy and safety. In this review, bevacizumab therapy of NSCLC with brain metastases were summarized. PMID:27561800

  1. Advances in adjuvant systemic therapy for non-small-cell lung cancer.

    PubMed

    Leong, David; Rai, Rajat; Nguyen, Brandon; Lee, Andrew; Yip, Desmond

    2014-10-10

    Non-small-cell lung cancer remains a leading cause of death around the world. For most cases, the only chance of cure comes from resection for localised disease, however relapse rates remain high following surgery. Data has emerged over recent years regarding the utility of adjuvant chemotherapy for improving disease-free and overall survival of patients following curative resection. This paper reviews the clinical trials that have been conducted in this area along with the studies integrating radiation therapy in the adjuvant setting. The role of prognostic gene signatures are reviewed as well as ongoing clinical trials including those incorporating biological or targeted therapies. PMID:25302167

  2. [Advance of femtosecond small incision lenticule extraction (SMILE) in clinic application].

    PubMed

    Liang, Gang; Zhang, Fengju

    2016-01-01

    Femtosecond small incision lenticule extraction (SMILE) had been performed in clinic more than 5 years in China. With the gradual development of the technology, SMILE has caused more and more attention because of the remarkable clinical effect, micro incision, minimally invasive and refractive stability. The reuse of the refractive lenticule (RL) from SMILE has recently become extensive focus, which brings potential method to corneal refractive surgery from subtraction to addition. This review has clarified the technology of SMILE on the aspects of corneal refractive correct, the clinical effect of reuse the materials (RL), the basis of related research and the possible improvement in the future. PMID:26899224

  3. Modular weapon control unit

    SciTech Connect

    Boccabella, M.F.; McGovney, G.N.

    1997-01-01

    The goal of the Modular Weapon Control Unit (MWCU) program was to design and develop a reconfigurable weapon controller (programmer/sequencer) that can be adapted to different weapon systems based on the particular requirements for that system. Programmers from previous systems are conceptually the same and perform similar tasks. Because of this commonality and the amount of re-engineering necessary with the advent of every new design, the idea of a modular, adaptable system has emerged. Also, the controller can be used in more than one application for a specific weapon system. Functionality has been divided into a Processor Module (PM) and an Input/Output Module (IOM). The PM will handle all operations that require calculations, memory, and timing. The IOM will handle interfaces to the rest of the system, input level shifting, output drive capability, and detection of interrupt conditions. Configuration flexibility is achieved in two ways. First, the operation of the PM is determined by a surface mount Read-Only Memory (ROM). Other surface-mount components can be added or neglected as necessary for functionality. Second, IOMs consist of configurable input buffers, configurable output drivers, and configurable interrupt generation. Further, these modules can be added singly or in groups to a Processor Module to achieve the required I/O configuration. The culmination of this LDRD was the building of both Processor Module and Input/Output Module. The MWCU was chosen as a test system to evaluate Low-Temperature Co-fired Ceramic (LTCC) technology, desirable for high component density and good thermal characteristics.

  4. Modular Holography For Use In Industry

    NASA Astrophysics Data System (ADS)

    Ettemeyer, A.; Schorner, J.; Rottenkolber, H.; Obermeier, E.

    1989-01-01

    A new system of holography is presented. This modular testing equipment fulfils the performance requirements for industrial measuring equipment. A holographic camera-head module with the approximate dimensions of a television camera is installed close to or actually on the object to be tested. For holography using a continous wave laser it is necessary only to secure the object to a base-plate mounted on vibration insulators. This is not necessary if pulse holography is used. Because of its small size, the measuring head can also be attached directly to the test object. This largely eliminates the effects of movements of the whole body of the objects. The technical realization of modular holography was made possible by the use of glass fibres. A rigid connection between the laser and the measuring apparatus is no longer necessary. The necessary light for the recording of the hologram is provided by the laser-base module and fed to the measuring head via a glass fibre cable. The hologram recorded by the measuring head is transmitted directly by means of a television camera to the computer-analyzer module, where it is evaluated and presented in user-friendly form. An example from industry is taken to demonstrate the use of the modular holography system.

  5. Modular Holography For Use In Industry

    NASA Astrophysics Data System (ADS)

    Ettemeyer, A.; Schomer, J.; Rottenkolber, H.; Obermeier, E.

    1988-06-01

    A new system of holography is presented. This modular testing equipment fulfils the performance requirements for industrial measuring equipment. A holographic camera-head module with the approximate dimensions of a television camera is installed close to or actually on the object to be tested. For holography using a continuous wave laser it is necessary only to secure the object to a base-plate mounted on vibration insulators. This is not necessary if pulse holography is used. Because of its small size, the measuring head can also be attached directly to the test object. This largely eliminates the effects of movements of the whole body of the objects. The technical realization of modular holography was made possible by the use of glass fibres. A rigid connection between the laser and the measuring apparatus is no longer necessary. The necessary light for the recording of the hologram is provided by the laser-base module and fed to the measuring head via a glass fibre cable. The hologram recorded by the measuring head is transmitted directly by means of a television camera to the computer-analyzer module, where it is evaluated and presented in user-friendly form. An example from industry is taken to demonstrate the use of the modular holography system.

  6. Small cell lung cancer (SCLC): no treatment advances in recent years

    PubMed Central

    Kotsakis, Athanasios; Georgoulias, Vasileios

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive malignancy with a distinct natural history and dismal prognosis. Given its predisposition for early dissemination, patients are commonly diagnosed with metastatic disease and chemotherapy is regarded as the cornerstone of approved treatment strategies. However, over the last 30 years there has been a distinct paucity of significant breakthroughs in SCLC therapy. Thus, SCLC is characterized as a recalcitrant neoplasm with limited therapeutic options. By employing well-established research approaches, proven to be efficacious in non-small cell lung cancer (NSCLC), a growing amount of data has shed light on the molecular biology of SCLC and enhanced our knowledge of the “drivers” of tumor cell survival and proliferation. New therapeutic targets have emerged, but no significant improvement in patients’ survival has been demonstrated thus far. In a sense, the more we know, the more we fail. Nowadays this is starting to change and methodical research efforts are underway. It is anticipated that the next decade will see a revolution in the treatment of SCLC patients with the application of effective precision medicine and immunotherapy strategies. PMID:26958492

  7. Efficacy and safety of icotinib as first-line therapy in patients with advanced non-small-cell lung cancer

    PubMed Central

    Shen, Yan-Wei; Zhang, Xiao-Man; Li, Shu-Ting; Lv, Meng; Yang, Jiao; Wang, Fan; Chen, Zhe-Ling; Wang, Bi-Yuan; Li, Pan; Chen, Ling; Yang, Jin

    2016-01-01

    Background and objective Several clinical trials have proven that icotinib hydrochloride, a novel epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor, exhibits encouraging efficacy and tolerability in patients with advanced non-small-cell lung cancer (NSCLC) who failed previous chemotherapy. This study was performed to assess the efficacy and toxicity of icotinib as first-line therapy for patients with advanced pulmonary adenocarcinoma with EGFR-sensitive mutation. Patients and methods Thirty-five patients with advanced NSCLC with EGFR-sensitive mutation who were sequentially admitted to the First Affiliated Hospital of Xi’an Jiaotong University from March 2012 to March 2014 were enrolled into our retrospective research. All patients were administered icotinib as first-line treatment. The tumor responses were evaluated using Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1). Results Among the 35 patients, the tumor objective response rate (ORR) and disease control rate were 62.9% (22/35) and 88.6% (31/35), respectively. The median progression-free survival was 11.0 months (95% confidence interval [CI]: 10.2–11.8 months), and median overall survival was 21.0 months (95% CI: 20.1–21.9 months). The most common drug-related toxicities were rashes (eleven patients) and diarrhea (nine patients), but these were generally manageable and reversible. Conclusion Icotinib monotherapy is effective and tolerable as first-line treatment for patients with advanced lung adenocarcinoma with EGFR-sensitive mutation. PMID:26966381

  8. ERCC1 protein as a guide for individualized therapy of late-stage advanced non-small cell lung cancer

    PubMed Central

    GAO, ZHIQIANG; HAN, BAOHUI; SHEN, JIE; GU, AIQIN; QI, DAJIANG; HUANG, JINSU; SHI, CHUNLEI; XIONG, LIWEN; ZHAO, YIZHUO; JIANG, LIYAN; WANG, HUIMIN; CHEN, YURONG

    2011-01-01

    Excision repair cross-complementation group 1 (ERCC1) protein has been associated with cisplatin resistance. The objective of this study was to investigate the correlation between ERCC1 protein levels and the therapeutic effect of individualized therapy in advanced non-small cell lung cancer (NSCLC). A total of 190 advanced NSCLC patients were included in this study. Patients were randomized into either the individualized therapy group or the standard therapy group at a ratio of 2:1. Patients in the standard therapy group were treated with either gemcitabine plus cisplatin or vinorelbine plus cisplatin. The expression of ERCC1 protein in lung cancer tissues of patients from the individualized therapy group was detected with immunohistochemistry. Patients with low ERCC1 levels received either gemcitabine plus cisplatin or vinorelbine plus cisplatin, and patients with high levels received gemcitabine plus vinorelbine. The main outcome assessments were response rate (RR), overall survival (OS) and time to progression (TTP). Follow-up data were recorded until September 30, 2010. RR, 1-year survival rate and TTP were not statistically significant. The median survival time was 10.10 months in the standard therapy group (95% CI 8.48–11.92) and 13.59 months in the individualized therapy group (95% CI 11.86–14.74). The difference in median survival time was significantly different between these groups (P=0.036). The median survival time was longer in the individualized group compared to the standard therapy group. ERCC1 protein expression in advanced NSCLC patients, however, was not significantly correlated with RR, OS and TTP in the individualized therapy group. Therefore, this study suggests that ERCC1 protein levels should be assessed in combination with additional biomarkers to determine an optimal index for individualized therapy in advanced NSCLC patients. PMID:22977580

  9. Predictive and prognostic significance of circulating endothelial cells in advanced non-small cell lung cancer patients.

    PubMed

    Yuan, Dong-mei; Zhang, Qin; Lv, Yan-ling; Ma, Xing-qun; Zhang, Yan; Liu, Hong-bing; Song, Yong

    2015-11-01

    The aim of this study was to evaluate the predictive and prognostic values of circulating endothelial cells (CECs) in patients with advanced non-small cell lung cancer (NSCLC). A total of 102 newly diagnosed advanced NSCLC patients were enrolled in this study. The amount of CECs was enumerated by flow cytometry (CD45- CD31+ CD146+) at baseline. CEC counts of 56 patients were detected before and after two cycles of chemotherapy. We correlated the baseline and reduction of CECs after therapy with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). The CEC level was significantly higher in advanced NSCLC patients, ranging from 57 to 1300 cells/10(5) cells (mean ± SD = 299 ± 221 cells/10(5) cells), than in patients with benign lesions (205 ± 97 cells/10(5) cells) and healthy volunteers (117 ± 33 cells/10(5) cells). When the cutoff value of CEC counts was 210 cells/10(5) cells, there was no significant association between CEC counts and OR/PFS/OS of the enrolled patients. However, patients with CEC response after chemotherapy have more chances to achieve OR (P < 0.001), and such patients showed longer PFS (P = 0.048) and OS (P = 0.018) than those without CEC response. In the multivariate analysis, the independent prognostic roles of brain metastasis (HR 6.165, P = 0.001), and CEC response (HR 0.442, P = 0.044) were found. The CEC counts could be considered as diagnostic biomarker for advanced NSCLC patients. And the reduction of CECs after treatment might be more ideal than the baseline CEC counts as a predictive or prognostic factor in patients treated with chemotherapy or anti-angiogenic therapy. PMID:26084612

  10. Cytotoxic Chemotherapy as First-Line Therapy for Advanced Non-Small-Cell Lung Cancer in Taiwan: Daily Practice

    PubMed Central

    Liang, Yi-Hsin; Shao, Yu-Yun; Liao, Bin-Chi; Lee, Ho-Sheng; Yang, James Chih-Hsin; Chen, Ho-Min; Chiang, Chun-Ju; Cheng, Ann-Lii; Lai, Mei-Shu

    2016-01-01

    Aim: Cytotoxic chemotherapy is the standard first-line therapy for patients with advanced non-small cell lung cancer (NSCLC) without specific gene alterations. This study examined the prescription pattern and the survival outcome of cytotoxic chemotherapy regimens in daily practice in Taiwan. Methods:We established a population-based cohort of patients diagnosed with advanced NSCLC between 2005 and 2009 using the databases of Taiwan Cancer Registry and National Health Insurance in Taiwan. We then analyzed chemotherapy prescriptions and the survival outcomes of patients. Results:A total of 25,008 patients with advanced NSCLC were identified, 17,443 (70.0%) of which received first-line chemotherapy and were therefore included in this study. Among them, 11,551 (66.2%) patients had adenocarcinoma and 3,292 (18.9%) patients had squamous cell carcinoma (SCC). Approximately 70% of the patients were diagnosed with NSCLC in medical centers. Platinum-based doublet chemotherapy was administered to 66.9% of the patients. Among all chemotherapy regimens, platinum with gemcitabine (33.8%) was the most common, irrespective of geographic region. The second and third most common regimens were vinorelbine alone (13.0%) and platinum with docetaxel (11.6%). The prevalence of platinum-based doublet chemotherapy regimens decreased from 71.4% in 2005 to 64.1% in 2009. Among patients with adenocarcinoma histology, those who received platinum with pemetrexed had longer OS than did patients who received other platinum-based regimens (p < 0.001). Conclusion: Our findings reaffirm that in real-world practice, treatment plans of advanced NSCLC should be drawn up according to histology type. PMID:27471567

  11. Accelerated Modular Multiplication Algorithm of Large Word Length Numbers with a Fixed Module

    NASA Astrophysics Data System (ADS)

    Bardis, Nikolaos; Drigas, Athanasios; Markovskyy, Alexander; Vrettaros, John

    A new algorithm is proposed for the software implementation of modular multiplication, which uses pre-computations with a constant module. The developed modular multiplication algorithm provides high performance in comparison with the already known algorithms, and is oriented at the variable value of the module, especially with the software implementation on micro controllers and smart cards with a small number of bits.

  12. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  13. Advances in small-pixel, large-format α-Si bolometer arrays

    NASA Astrophysics Data System (ADS)

    Schimert, T.; Hanson, C.; Brady, J.; Fagan, T.; Taylor, M.; McCardel, W.; Gooch, R.; Gohlke, M.; Syllaios, A. J.

    2009-05-01

    Continued reduction of α-Si bolometer pixel size has led to increases in array size as well as improvements in temporal response for a given level of sensitivity. Programs funded by DARPA and NVESD are developing advanced 320×240, 640×480 and 1024×768 α-Si bolometer arrays with 17μm pixels, on-chip A/D conversion, significant improvements in dynamic range, significant reductions in thermal time constant and other specialized functions. The push to 17μm is motivated not only by system size and weight, but also by improvements in performance resulting from increased resolution. Smaller pixels permit fabrication of larger arrays without subverting the field-size constraints of ordinary photolithographic processes. Reducing pixel size also reduces the effects of stress mismatches. This permits reduction of device thickness, thereby reducing thermal time constant. Improvements in bolometer material properties have served to improve responsivity while lowering 1/f noise. Because these arrays substantially reduce sensor size, they are becoming the preferred format for most applications, particularly for weapon sights and for head-mounted and UAV applications. The larger array sizes are of interest for pilotage and surveillance.

  14. Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases.

    PubMed

    Herrera-Arozamena, Clara; Martí-Marí, Olaia; Estrada, Martín; de la Fuente Revenga, Mario; Rodríguez-Franco, María Isabel

    2016-01-01

    The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer's disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2). PMID:27598108

  15. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening

    PubMed Central

    Galanzha, Ekaterina I; Tuchin, Valery V; Zharov, Vladimir P

    2007-01-01

    Using animal mesentery with intravital optical microscopy is a well-established experimental model for studying blood and lymph microcirculation in vivo. Recent advances in cell biology and optical techniques provide the basis for extending this model for new applications, which should generate significantly improved experimental data. This review summarizes the achievements in this specific area, including in vivo label-free blood and lymph photothermal flow cytometry, super-sensitive fluorescence image cytometry, light scattering and speckle flow cytometry, microvessel dynamic microscopy, infrared (IR) angiography, and high-speed imaging of individual cells in fast flow. The capabilities of these techniques, using the rat mesentery model, were demonstrated in various studies; e.g., real-time quantitative detection of circulating and migrating individual blood and cancer cells, studies on vascular dynamics with a focus on lymphatics under normal conditions and under different interventions (e.g. lasers, drugs, nicotine), assessment of lymphatic disturbances from experimental lymphedema, monitoring cell traffic between blood and lymph systems, and high-speed imaging of cell transient deformability in flow. In particular, the obtained results demonstrated that individual cell transportation in living organisms depends on cell type (e.g., normal blood or leukemic cells), the cell’s functional state (e.g., live, apoptotic, or necrotic), and the functional status of the organism. Possible future applications, including in vivo early diagnosis and prevention of disease, monitoring immune response and apoptosis, chemo- and radio-sensitivity tests, and drug screening, are also discussed. PMID:17226898

  16. Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)

    2003-01-01

    Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.

  17. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease.

    PubMed

    Hiley, Crispin T; Le Quesne, John; Santis, George; Sharpe, Rowena; de Castro, David Gonzalez; Middleton, Gary; Swanton, Charles

    2016-09-01

    Lung cancer diagnostics have progressed greatly in the previous decade. Development of molecular testing to identify an increasing number of potentially clinically actionable genetic variants, using smaller samples obtained via minimally invasive techniques, is a huge challenge. Tumour heterogeneity and cancer evolution in response to therapy means that repeat biopsies or circulating biomarkers are likely to be increasingly useful to adapt treatment as resistance develops. We highlight some of the current challenges faced in clinical practice for molecular testing of EGFR, ALK, and new biomarkers such as PDL1. Implementation of next generation sequencing platforms for molecular diagnostics in non-small-cell lung cancer is increasingly common, allowing testing of multiple genetic variants from a single sample. The use of next generation sequencing to recruit for molecularly stratified clinical trials is discussed in the context of the UK Stratified Medicine Programme and The UK National Lung Matrix Trial. PMID:27598680

  18. Recent advances in squamous non-small cell lung cancer: evidence beyond predictive biomarkers.

    PubMed

    Genova, Carlo; Rijavec, Erika; Grossi, Francesco

    2016-01-01

    Squamous non-small cell lung cancer (NSCLC) has always been characterized by a limited number of therapeutic options and by the lack of actionable biomarkers compared to its non-squamous counterpart. Recent clinical trials have led to the approval of new anti-neoplastic drugs available to both non-squamous and squamous NSCLC, consisting in a vascular-disrupting agent and two immune check-point inhibitors; additionally, a monoclonal antibody targeting the epidermal growth factor receptor (EGFR) is currently under evaluation by the Food and Drug Administration (FDA). While predictive molecular biomarkers have not been identified with consistency and are still highly demanded, these agents proved themselves noteworthy and can be considered a powerful addition to the available treatments for squamous NSCLC. PMID:26567561

  19. New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib

    PubMed Central

    Rothschild, Sacha I

    2016-01-01

    Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%–8% of non-small-cell lung cancer (NSCLC) patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective. PMID:27217763

  20. Advances in the study of transmissible respiratory tumours in small ruminants.

    PubMed

    Monot, M; Archer, F; Gomes, M; Mornex, J-F; Leroux, C

    2015-12-14

    Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Tumour Virus are able to promote cell transformation, leading to cancer through their envelope glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma. The implication of a retrovirus related to Jaagsiekte Sheep RetroVirus is still controversial and under investigation, but the identification of an infectious agent associated with the development of lepidic pulmonary adenocarcinomas might help us to understand cancer development. This review explores the mechanisms of induction of respiratory cancers in small ruminants and the possible link between retrovirus and lepidic pulmonary adenocarcinomas in humans. PMID:26340900

  1. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  2. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, Guy F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  3. Supporting Online Learning for Advanced Placement Students in Small Rural Schools: Conceptual Foundations and Intervention Components of the Facilitator Preparation Program

    ERIC Educational Resources Information Center

    Irvin, Matthew J.; Hannum, Wallace H.; Farmer, Thomas W.; de la Varre, Claire; Keane, Julie

    2009-01-01

    This paper examines the need for interventions to support students who are taking advanced placement courses in small rural districts and describes the Facilitator Preparation Program (FPP) as a strategy to address this need. Issues in the delivery of Online Distance Education (ODE) in small rural schools are summarized and the conceptual…

  4. Some new modular equations and their applications

    NASA Astrophysics Data System (ADS)

    Yi, Jinhee; Sim, Hyo Seob

    2006-07-01

    Ramanujan derived 23 beautiful eta-function identities, which are certain types of modular equations. We found more than 70 of certain types of modular equations by using Garvan's Maple q-series package. In this paper, we prove some new modular equations which we found by employing the theory of modular form and we give some applications for them.

  5. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    PubMed Central

    2010-01-01

    Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68) of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years) postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years) and the average weight 102.3 kg (75 to 130 kg). The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck connection. A continuous

  6. Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine

    SciTech Connect

    Johansson, L.; Ziph, B.; McKeough, W.; Houtman, W.

    1996-12-31

    Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

  7. Using Small Unmanned Aerial Systems to Advance Hydrological Models in Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Moorhead, R.; Hathcock, L.; Coffey, J. J.; Hood, R. E.; van Cooten, S.; Choate, K.; Rawson, H.; Kosturock, A.

    2014-12-01

    Small unmanned aerial systems (sUASs) have the potential to provide highly useful information for models of earth systems that vary over time intervals of days and for which sub-meter resolution is crucial. In particular, the state of coastal watershed plains are highly dependent on vegetation type and cover, soil type, weather, river flooding, and coastal inundation. The vegetation type and cover affect the drying potential, as well as the watershed's resistance to flood water movement. The soil type, soil moisture, and pond depths affect the ability of the watershed to absorb river flood waters and inundation from the sea. In this presentation we will describe a data collection campaign and model modification effort for hydrological models in a coastal watershed. The data collection campaign is obtaining data bimonthly using multiple UASs to capture the state of the watershed quicker. In particular, the vegetation cover and the extent of the water surface expression are captured at approximately a 1 inch spatial resolution over a few days with sUASs that can image 1-2 square miles per hour. The vegetation data provides a time-varying input to improve the estimation of the roughness coefficient and the dry potential from the traditionally static datasets. By correlating the high spatio-temporal resolution surface water expression with data from approximately ten river gauges, models can be improved and validated under more conditions. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  8. PD-L1 expression is associated with advanced non-small cell lung cancer

    PubMed Central

    Chen, Zhiquan; Mei, Jiandong; Liu, Lunxu; Wang, Guochen; Li, Zuosheng; Hou, Jingpu; Zhang, Qiuyang; You, Zongbing; Zhang, Liu

    2016-01-01

    Lung cancer is the most common cause of cancer-associated mortalities worldwide. Novel immunotherapies have been developed to improve the clinical outcomes of non-small cell lung cancer (NSCLC). Antibodies against programmed cell death protein 1 (PD-1) and programmed cell death protein 1 ligand 1 (PD-L1) have been tested in clinical trials, and anti-PD-1 antibody has been approved for the treatment of NSCLC. The aim of the present study was to assess expression of PD-1, PD-L1 and programmed cell death protein 1 ligand 2 (PD-L2) in 48 patients with NSCLC, using immunohistochemical staining. The results found that 35.4% (17/48) of patients were positive for PD-1 expression, 64.6% (31/48) were positive for PD-L1 expression and 45.8% (22/48) were positive for PD-L2 expression. Neither PD-1 nor PD-L2 expression was associated with gender, histology, differentiation status, tumor stage or lymph node metastasis. PD-L1 expression was not associated with gender, histology, differentiation status or lymph node metastasis; however, PD-L1 expression was significantly increased in stage III NSCLC (85.7% PD-L1+) compared with stage I/II NSCLC (55.9% PD-L1+) (P=0.049). PMID:27446371

  9. An Extremely Rare Case of Advanced Metastatic Small Cell Neuroendocrine Carcinoma of Sinonasal Tract

    PubMed Central

    Guevara, Elizabeth

    2016-01-01

    Small cell neuroendocrine carcinoma (SNEC) is a rare form of malignancy. It mainly presents as bronchogenic neoplasm, and the extrapulmonary form accounts for only 0.1% to 0.4% of all cancers. These extrapulmonary tumors have been described most frequently in the urinary bladder, prostate, esophagus, stomach, colon and rectum, gall bladder, head and neck, cervix, and skin. Primary SNEC of the sinonasal tract is extremely rare with only less than 100 cases reported in the literature. Because of extreme rarity and aggressiveness of the tumor, the management for this entity varies considerably mandating multimodality approach. In this paper, we report a patient presented with left-sided facial swelling, and the histopathologic examination confirmed primary SNEC of left sinonasal tract. The tumor involved multiple paranasal sinuses with invasion into the left orbit and left infratemporal fossa and metastasized to cervical lymph nodes and bone. The patient encountered devastating outcome in spite of optimal medical management and treatment with palliative chemotherapy highlighting the necessity for further research of primary SNEC of head and neck. PMID:27529044

  10. Advanced Small Rocket Chambers. Basic Program and Option 2: Fundamental Processes and Material Evaluation

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.

    1993-01-01

    Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.

  11. Advanced Small Rocket Chambers. Option 3: 110 1Bf Ir-Re Rocket, Volume 1

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.; Schoenman, Leonard

    1995-01-01

    This report describes the AJ10-221, a high performance Iridium-coated Rhenium (Ir-Re) 110 lbf (490N) welded rocket chamber with 286:1 area ratio nozzle. This engine was designed, built, and hot fired for over 6 hours on this program. It demonstrated an I(s) of 321.8 sec, which is 10 sec higher than conventional 110 lbf silicide coated Cb chambers now in use. The approach used in this portion of the program was to demonstrate the performance improvement that can be made by the elimination of fuel film cooling and the use of a high temperature (4000F) (2200C) iridium-coated rhenium (Ir-Re) rocket chamber. Detailed thermal, performance, mechanical, and dynamic design analyses of the full engine were conducted by Aerojet. Two Ir-Re chambers were built to the Aerojet design by Ultramet, using the chemical vapor deposition (CVD) process. Incorporation of a secondary mixing device or Boundary Layer Trip (BLT) within the combustion chamber (Aerojet Patents 4882904 and 4936091) results in improvement in flow uniformity, and a significant life and performance increase. The 110 lbf engine design was verified in bolt-up hardware tests at sea level and altitude. The effects of injector design on performance were studied. Two duplicate injectors were fabricated matching the preferred design and were demonstrated to be interchangeable in operation. One of these units was fabricated matching the preferred design and was demonstrated to be interchangeable in operation. One of these units was welded into a flight type thruster which was tested for an accumulated duration of 22,590 sec in 93 firings, one of which was a continuous burn of two hours. A design deficiency in the C-103 nozzle near the Re-Cb transition joint was discovered, studied and corrected design has been prepared. Workhardening studies have been conducted to investigate methods for increasing the low yield strength of the Re in the annealed conditions. An advanced 490N high performance engine has been demonstrated

  12. Advanced small rocket chambers. Option 3: 110 1bf Ir-Re rocket, volume 2

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.; Schoenman, Leonard

    1995-01-01

    This is the second part of a two-part report that describes the AJ10-221, a high performance iridium-coated rhenium (Ir-Re) 110 lbf (490N) welded rocket chamber with 286:1 area ratio nozzle. This engine was designed, built, and hot fired for over 6 hours on this program. It demonstrated an I(s) of 321.8 sec, which is 10 sec higher than conventional 110 lbf silicide coated Cb chambers now in use. The approach used in this portion of the program was to demonstrate the performance improvement that can be made by the elimination of fuel film cooling and the use of a high temperature (4000 F) (2200 C) iridium-coated rhenium (Ir-Re) rocket chamber. Detailed thermal, performance, mechanical, and dynamic design analyses of the full engine were conducted by Aerojet. Two Ir-Re chambers were built to the Aerojet design by Ultramet, using the chemical vapor deposition (CVD) process. Incorporation of a secondary mixing device or Boundary Layer Trip (BLT) within the combustion chamber (Aerojet Patents 4882904 and 4936091) results in improvement in flow uniformity, and a significant life and performance increase. The 110 lbf engine design was verified in bolt-up hardware tests at sea level and altitude. The effects of injector design on performance were studied. Two duplicate injectors were fabricated matching the preferred design and were demonstrated to be interchangeable in operation. One of these units were welded into a flight type thruster which was tested for an accumulated duration of 22,590 sec in 93 firings, one of which was a continuous burn of two hours. A design deficiency in the C-103 nozzle near the Re-Cb transition joint was discovered, studied and corrected design has been prepared. Workhardening studies have been conducted to investigate methods for increasing the low yield strength of the Re in the annealed conditions. An advanced 490N high performance engine has been demonstrated which, when proven to be capable of withstanding launch vibration, is ready for

  13. Advanced small rocket chambers. Option 3: 110 1bf Ir-Re rocket, volume 2

    NASA Astrophysics Data System (ADS)

    Jassowski, Donald M.; Schoenman, Leonard

    1995-02-01

    This is the second part of a two-part report that describes the AJ10-221, a high performance iridium-coated rhenium (Ir-Re) 110 lbf (490N) welded rocket chamber with 286:1 area ratio nozzle. This engine was designed, built, and hot fired for over 6 hours on this program. It demonstrated an I(s) of 321.8 sec, which is 10 sec higher than conventional 110 lbf silicide coated Cb chambers now in use. The approach used in this portion of the program was to demonstrate the performance improvement that can be made by the elimination of fuel film cooling and the use of a high temperature (4000 F) (2200 C) iridium-coated rhenium (Ir-Re) rocket chamber. Detailed thermal, performance, mechanical, and dynamic design analyses of the full engine were conducted by Aerojet. Two Ir-Re chambers were built to the Aerojet design by Ultramet, using the chemical vapor deposition (CVD) process. Incorporation of a secondary mixing device or Boundary Layer Trip (BLT) within the combustion chamber (Aerojet Patents 4882904 and 4936091) results in improvement in flow uniformity, and a significant life and performance increase. The 110 lbf engine design was verified in bolt-up hardware tests at sea level and altitude. The effects of injector design on performance were studied. Two duplicate injectors were fabricated matching the preferred design and were demonstrated to be interchangeable in operation. One of these units were welded into a flight type thruster which was tested for an accumulated duration of 22,590 sec in 93 firings, one of which was a continuous burn of two hours. A design deficiency in the C-103 nozzle near the Re-Cb transition joint was discovered, studied and corrected design has been prepared. Workhardening studies have been conducted to investigate methods for increasing the low yield strength of the Re in the annealed conditions. An advanced 490N high performance engine has been demonstrated which, when proven to be capable of withstanding launch vibration, is ready for

  14. Advanced small rocket chambers. Option 3: 110 1bf Ir-Re rocket, volume 1

    NASA Astrophysics Data System (ADS)

    Jassowski, Donald M.; Schoenman, Leonard

    1995-02-01

    This report describes the AJ10-221, a high performance Iridium-coated Rhenium (Ir-Re) 110 lbf (490N) welded rocket chamber with 286:1 area ratio nozzle. This engine was designed, built, and hot fired for over 6 hours on this program. It demonstrated an I(s) of 321.8 sec, which is 10 sec higher than conventional 110 lbf silicide coated Cb chambers now in use. The approach used in this portion of the program was to demonstrate the performance improvement that can be made by the elimination of fuel film cooling and the use of a high temperature (4000F) (2200C) iridium-coated rhenium (Ir-Re) rocket chamber. Detailed thermal, performance, mechanical, and dynamic design analyses of the full engine were conducted by Aerojet. Two Ir-Re chambers were built to the Aerojet design by Ultramet, using the chemical vapor deposition (CVD) process. Incorporation of a secondary mixing device or Boundary Layer Trip (BLT) within the combustion chamber (Aerojet Patents 4882904 and 4936091) results in improvement in flow uniformity, and a significant life and performance increase. The 110 lbf engine design was verified in bolt-up hardware tests at sea level and altitude. The effects of injector design on performance were studied. Two duplicate injectors were fabricated matching the preferred design and were demonstrated to be interchangeable in operation. One of these units was fabricated matching the preferred design and was demonstrated to be interchangeable in operation. One of these units was welded into a flight type thruster which was tested for an accumulated duration of 22,590 sec in 93 firings, one of which was a continuous burn of two hours. A design deficiency in the C-103 nozzle near the Re-Cb transition joint was discovered, studied and corrected design has been prepared. Workhardening studies have been conducted to investigate methods for increasing the low yield strength of the Re in the annealed conditions. An advanced 490N high performance engine has been demonstrated

  15. The evolutionary origins of modularity.

    PubMed

    Clune, Jeff; Mouret, Jean-Baptiste; Lipson, Hod

    2013-03-22

    A central biological question is how natural organisms are so evolvable (capable of quickly adapting to new environments). A key driver of evolvability is the widespread modularity of biological networks--their organization as functional, sparsely connected subunits--but there is no consensus regarding why modularity itself evolved. Although most hypotheses assume indirect selection for evolvability, here we demonstrate that the ubiquitous, direct selection pressure to reduce the cost of connections between network nodes causes the emergence of modular networks. Computational evolution experiments with selection pressures to maximize network performance and minimize connection costs yield networks that are significantly more modular and more evolvable than control experiments that only select for performance. These results will catalyse research in numerous disciplines, such as neuroscience and genetics, and enhance our ability to harness evolution for engineering purposes. PMID:23363632

  16. The evolutionary origins of modularity

    PubMed Central

    Clune, Jeff; Mouret, Jean-Baptiste; Lipson, Hod

    2013-01-01

    A central biological question is how natural organisms are so evolvable (capable of quickly adapting to new environments). A key driver of evolvability is the widespread modularity of biological networks—their organization as functional, sparsely connected subunits—but there is no consensus regarding why modularity itself evolved. Although most hypotheses assume indirect selection for evolvability, here we demonstrate that the ubiquitous, direct selection pressure to reduce the cost of connections between network nodes causes the emergence of modular networks. Computational evolution experiments with selection pressures to maximize network performance and minimize connection costs yield networks that are significantly more modular and more evolvable than control experiments that only select for performance. These results will catalyse research in numerous disciplines, such as neuroscience and genetics, and enhance our ability to harness evolution for engineering purposes. PMID:23363632

  17. Modular Arithmetic in the Marketplace.

    ERIC Educational Resources Information Center

    Gallian, Joseph A.; Winters, Steven

    1988-01-01

    Several schemes use modular arithmetic to append a check digit to product identification numbers for error detection. Some schemes are discussed, including ones for money orders and library books. Then a foolproof method is presented. (MNS)

  18. Modularity in the evolution of yeast protein interaction network

    PubMed Central

    Ogishima, Soichi; Tanaka, Hiroshi; Nakaya, Jun

    2015-01-01

    Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction networks became to exhibit modularity in their evolution? Here, we propose a hypothesis of modularity in the evolution of yeast protein interaction network based on molecular evolutionary evidence. We assigned yeast proteins into six evolutionary ages by constructing a phylogenetic profile. We found that all the almost half of hub proteins are evolutionarily new. Examining the evolutionary processes of protein complexes, functional modules and topological modules, we also found that member proteins of these modules tend to appear in one or two evolutionary ages. Moreover, proteins in protein complexes and topological modules show significantly low evolutionary rates than those not in these modules. Our results suggest a hypothesis of modularity in the evolution of yeast protein interaction network as systems evolution. PMID:25914446

  19. [A CASE OF ADVANCED BLADDER NEUROENDOCRINE CARCINOMA (SMALL CELL CARCINOMA) SIGNIFICANTLY IMPROVED BY LOW DOSE OF ORAL TEGAFUR-URACIL].

    PubMed

    Nomi, Hayahito; Takahara, Kiyoshi; Minami, Koichiro; Maenosono, Ryoichi; Matsunaga, Tomohisa; Yoshikawa, Yuki; Tsujino, Takuya; Hirano, Hajime; Inamoto, Teruo; Yamamoto, Ikuhisa; Tsuji, Motomu; Kiyama, Satoshi; Azuma, Haruhito

    2015-10-01

    A 81-old-woman underwent a transurethral resection of bladder tumor (TURBT) at a nearby hospital in April 2011. The diagnosis was invasive urothelial carcinoma, G3 with a component of bladder small cell carcinoma, T1 or more. She was recommended to visit our hospital for combined modality therapy of bladder cancer, but she refused the treatment for over one year. In May 2012, she came to our hospital with the chief complaint of pain at urination. Cystoscopy revealed non-papillary sessile tumor in the top of the bladder, and CT scan demonstrated the presence of the right obturator lymph nodes swollen up to 1.2 cm in size. The second TURBT was performed and the diagnosis was bladder small cell carcinoma (pT3N2M0) according to urothelial cancer guidelines of the Japanese Urological Association (JUA). Because she strongly refused hospitalization anymore, we started daily oral intake of low dose Tegafur-Uracil (100 mg) for the treatment. After one month, the serum Neuron-Specific Enolase (NSE; tumor maker of small cell cancer) level was elevated to 27.6 ng/ml and the right obturator lymph node was enlarged up to 1.9 cm. Therefore, the Trgafur-Uracil dose was increased to 200 mg daily. After then, the serum NSE level was decreased to 15.5 ng/ml following reduction in size of the obturator lymph nodes with partial response in December 2013. After two years of follow-up period, her regular urine test showed normal findings, and no apparent recurrence was detected on urinary bladder with MRI and Cystoscopy. This is a case of advanced bladder small cell carcinoma significantly improved by oral administration of Tegafur-Uracil 200 mg/day for over 2 years. PMID:26717786

  20. Pemetrexed for advanced non-small cell lung cancer patients with interstitial lung disease

    PubMed Central

    2014-01-01

    Background Non-small cell lung cancer (NSCLC) patients with interstitial lung disease (ILD) need to be approached carefully given the high incidence of pulmonary toxicity. Pemetrexed (PEM) is the key drug for the treatment of NSCLC. However, its safety, especially with respect to the exacerbation of ILD, and efficacy in NSCLC patients with ILD have yet to be established. Method We investigated the safety and efficacy of PEM monotherapy in NSCLC patients with or without idiopathic interstitial pneumonia (IIPs). The medical charts of these patients were retrospectively reviewed. Results Twenty-five patients diagnosed as having IIPs (IIPs group) and 88 patients without ILD (non-ILD group) were treated with PEM monotherapy at Juntendo University Hospital between 2009 and 2013. In the IIPs group, 12 patients were found to have usual interstitial pneumonitis (UIP) on chest computed tomography (CT) (UIP group) and the other 13 patients showed a non-UIP pattern on chest CT (non-UIP IIPs group). Three patients in the IIPs group (2 in the UIP group and 1 in the non-UIP IIPs group) and 1 in the non-ILD group developed pulmonary toxicity during treatment (3.5% overall, 12.0% in the IIPs group versus 1.1% in the non-ILD group). Moreover, all 3 patients in the IIPs group died of pulmonary toxicity. Overall survival tended to be longer in the non-ILD group than in the IIPs group (p = 0.08). Multivariate analyses demonstrated that IIPs was the only significant independent risk factor for PEM-related pulmonary toxicity. Conclusion We found that the incidence of PEM-related pulmonary toxicity was significantly higher amongst NSCLC patients with IIPs than among those without IIPs. Particular care must be taken when administering PEM to treat NSCLC patients with IIPs. PMID:25012241

  1. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, W.; Park, H. K.; Lee, D. J.; Nam, Y. U.; Leem, J.; Kim, T. K.

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm-1. The upper limit corresponds to the normalized wavenumber kθρe of ˜0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  2. Managing treatment-related adverse events associated with egfr tyrosine kinase inhibitors in advanced non-small-cell lung cancer

    PubMed Central

    Hirsh, V.

    2011-01-01

    Non-small-cell lung cancer (nsclc) has the highest prevalence of all types of lung cancer, which is the second most common cancer and the leading cause of cancer-related mortality in Canada. The need for more effective and less toxic treatment options for nsclc has led to the development of agents targeting the epidermal growth factor receptor (egfr)–mediated signalling pathway, such as egfr tyrosine kinase inhibitors (egfr-tkis). Although egfr-tkis are less toxic than traditional anti-neoplastic agents, they are commonly associated with acneiform-like rash and diarrhea. This review summarizes the clinical presentation and causes of egfr-tki–induced rash and diarrhea, and presents strategies for effective assessment, monitoring, and treatment of these adverse effects. Strategies to improve the management of egfr-tki–related adverse events should improve clinical outcomes, compliance, and quality of life in patients with advanced nsclc. PMID:21655159

  3. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities.

    PubMed

    Zhang, Heng; Kang, Dongwei; Huang, Boshi; Liu, Na; Zhao, Fabao; Zhan, Peng; Liu, Xinyong

    2016-05-23

    CXCR4 plays vital roles in HIV-1 life cycle for it's essential in mediating the interaction of host and virus and completing the entry process in the lifecycle of HIV-1 infection. Compared with some traditional targets, CXCR4 provides a novel and less mutated drug target in the battle against AIDS. Its antagonists have no cross resistance with other antagonists. Great achievements have been made recent years and a number of small molecular CXCR4 antagonists with diversity scaffolds have been discovered. In this review, recent advances in the discovery of CXCR4 antagonists with special attentions on their evolution and structure-activity relationships of representative CXCR4 antagonists are described. Moreover, some classical medicinal chemistry strategies and novel methodologies are also introduced. PMID:26974376

  4. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer.

    PubMed

    Wang, Shuhang; Cang, Shundong; Liu, Delong

    2016-01-01

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are widely used in patients with non-small cell lung cancer (NSCLC). However, EGFR T790M mutation leads to resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation have been in active clinical development. These agents include osimertinib, rociletinib, HM61713, ASP8273, EGF816, and PF-06747775. Osimertinib and rociletinib have shown clinical efficacy in phase I/II trials in patients who had acquired resistance to first- or second-generation TKIs. Osimertinib (AZD9291, TAGRISSO) was recently approved by FDA for metastatic EGFR T790M mutation-positive NSCLC. HM61713, ASP8237, EGF816, and PF-06747775 are still in early clinical development. This article reviews the emerging data regarding third-generation agents against EGFR T790M mutation in the treatment of patients with advanced NSCLC. PMID:27071706

  5. Progress of EGFR-TKI and ALK/ROS1 inhibitors in advanced non-small cell lung cancer

    PubMed Central

    Ge, Liangqing; Shi, Ruizheng

    2015-01-01

    To discuss the mechanism and clinical application of EGFR-TKI and ALK/ROS1 inhibitors in non-small cell lung cancer (NSCLC), we reviewed recent available data mainly from PubMed. We found that chemotherapy, progression-free survival (PFS), objective response rate (ORR), and quality of life of patients with advanced NSCLC can be greatly improved in these drugs medication compared with conventional chemotherapy. Though many questions like resistance to EGFR-TKI and ALK/ROS1 inhibitors exist, molecular targeted therapy is an important therapeutic method for the management of NSCLC. The role of molecule targeted therapy in the initiation and development of NSCLC deserves further study. PMID:26379824

  6. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed. PMID:27131668

  7. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer

    PubMed Central

    Del Re, Marzia; Danesi, Romano; Tiseo, Marcello

    2015-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are current treatments for advanced non-small cell lung cancer (NSCLC) harboring activating EGFR gene mutations. Histological or cytological samples are the standard tumor materials for EGFR mutation analysis. However, the accessibility of tumor samples is not always possible and satisfactory in advanced NSCLC patients. Moreover, totality of EGFR mutated NSCLC patients will develop resistance to EGFR-TKIs. Repeat biopsies to study genetic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumor heterogeneity. Thus, exploring accurate and less invasive techniques to (I) diagnosis EGFR mutation if tissue is not available or not appropriate for molecular analysis and to (II) monitor EGFR-TKI treatment are needed. Circulating DNA fragments carrying tumor specific sequence alterations [circulating cell-free tumor DNA (cftDNA)] are found in the cell-free fraction of blood, representing a variable and generally small fraction of the total circulating DNA. cftDNA has a high degree of specificity to detect EGFR gene mutations in NSCLC. Studies have shown the feasibility of using cftDNA to diagnosis of EGFR activating gene mutations and also to monitor tumor dynamics in NSCLC patients treated with EGFR-TKIs. These evidences suggested that non-invasive techniques based on blood samples had a great potential in EGFR mutated NSCLC patients. In this review, we summarized these non-invasive approaches and relative scientific data now available, considering their possible applications in clinical practice of NSCLC treatment. PMID:26629427

  8. Tetrandrine Combined with Gemcitabine and Cisplatin for Patients with Advanced Non-Small Cell Lung Cancer Improve Efficacy

    PubMed Central

    Liu, Wenchao; Zhang, Ju; Ying, Cheng; Wang, Qianrong; Yan, Chen; Jingyue, Yang; Zhaocai, Yu; Yan, Xue; Heng-jun, Shi; Lin, Jiang

    2012-01-01

    Lung cancer has the highest morbidity and mortality of any malignant tumor. To improve efficacy and reduce toxicity in patients with advanced non-small cell lung cancer (NSCLC), it is important to integrate traditional and conventional medicine. Two hundred and forty patients with advanced NSCLC were randomized to tetrandrine plus GP or GP only. We infused gemcitabine on days 1 and 8; cisplatin on day 1. The tetrandrine group received continuous i.v. infusion for 10 days, with treatment repeated every 21 days. After 2 consecutive treatment cycles, we used RECIST criteria to evaluate short-term efficacy. Quality of life (QOL) was assessed according to Karnofsky score (KPS) and body weight change. We used NCI CTC 3.0 to evaluate treatment toxicity. The short-term objective response rate was 36.1% in the tetrandrine group and 24.3% in the controls (P=0.057). The short-term disease control rate was 63.9% in the tetrandrine group and 52.3% in the controls (P=0.081). The 1-year survival rates were 45.7% and 31.3%, respectively (P=0.059). KPS scores improved by 49.1% and 32.4%, respectively (P=0.012). Body weight increased by 28.7% in the tetrandrine group and 16.2% in the controls (P=0.027). The incidence of grade 2-4 leukopenia, thrombocytopenia, nausea, and vomiting in the tetrandrine group was 38.0%, 19.4%, 46.3%, and 16.7%, respectively; the control group figures were 53.2%, 34.2%, 63.0% and 27.9% (P<0.05). Tetrandrine may improve short-term efficacy and survival in patients with advanced NSCLC. Tetrandrine may also mitigate adverse reactions to chemotherapy and improve QOL for patients with NSCLC. PMID:23675254

  9. Microwave Ablation in Combination with Chemotherapy for the Treatment of Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Wei, Zhigang Ye, Xin Yang, Xia Zheng, Aimin Huang, Guanghui Li, Wenhong Ni, Xiang Wang, Jiao; Han, Xiaoying

    2015-02-15

    PurposeTo verify whether microwave ablation (MWA) used as a local control treatment had an improved outcome regarding advanced non-small cell lung cancer (NSCLC) when combined with chemotherapy.MethodsThirty-nine patients with histologically verified advanced NSCLC and at least one measurable site other than the ablative sites were enrolled. Primary tumors underwent MWA followed by platinum-based doublet chemotherapy. Modified response evaluation criteria in solid tumors (mRECIST) and RECIST were used to evaluate therapeutic response. Complications were assessed using the National Cancer Institute Common Toxicity Criteria (version 3.0).ResultsMWA was administered to 39 tumors in 39 patients. The mean and median diameters of the primary tumor were 3.84 cm and 3.30 cm, respectively, with a range of 1.00–9.00 cm. Thirty-three (84.6 %) patients achieved a partial response. No correlation was found between MWA efficacy and clinicopathologic characteristics. For chemotherapy, 11 patients (28.2 %) achieved a partial response, 18 (46.2 %) showed stable disease, and 10 (25.6 %) had progressive disease. The overall objective response rate and disease control rate were 28.2 and 74.4 %, respectively. The median progression-free survival time was 8.7 months (95 % CI 5.5–11.9). The median overall survival time was 21.3 months (95 % CI 17.0–25.4). Complications were observed in 22 (56.4 %) patients, and grade 3 adverse events were observed in 3 (7.9 %) patients.ConclusionsPatients with advanced NSCLC could benefit from MWA in combination with chemotherapy. Complications associated with MWA were common but tolerable.

  10. Matrine promotes the efficacy and safety of platinum-based doublet chemotherapy for advanced non-small cell lung cancer

    PubMed Central

    Rong, Biaoxue; Zhao, Chongchong; Gao, Wenlong; Yang, Shuanying

    2015-01-01

    Purpose: Many studies have investigated the efficacy of matrine combined with platinum-based doublet chemotherapy (PBDC) versus PBDC alone for treating advanced non-small cell lung cancer (NSCLC). This study is an analytic value of available evidence. Methods: twenty-two studies reporting matrine combined with PBDC versus PBDC alone for treating advanced NSCLC were reviewed. Pooled odds ratios and hazard ratio with 95% confidence intervals were calculated using either the fixed effects model or random effects model. Results: The overall response rate (ORR) and disease control rate (DCR) of matrine combined with PBDC for treating NSCLC were significantly higher than those of PBDC alone, with 15.1% and 19.7% improvement, respectively (P < 0.00001). In addition, the mean survival time (MST) and quality of life (QOL) were improved after the treatment of matrine combined with PBDC (P < 0.00001). The main adverse effects found in this review were hematological reactions, nausea and vomiting. Matrine combined with PBDC had a lower incidence of adverse reactions compared with PBDC alone (P < 0.05). Conclusions: Matrine combined with PBDC was associated with higher RR, DCR, and MST as well as superior QOL profiles compared with PBDC alone. Matrine combined with PBDC decrease the incidence of adverse reactions compared with PBDC alone. PMID:26628952

  11. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations

    PubMed Central

    Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng

    2016-01-01

    Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309

  12. Assessment of cytology based molecular analysis to guide targeted therapy in advanced non-small-cell lung cancer

    PubMed Central

    Guo, Lei; Qiu, Tian; Ling, Yun; Cao, Jian; Guo, Huiqin; Zhao, Huan; Li, Lin; Ying, Jianming

    2016-01-01

    To investigate the use of molecular testing on cytological specimens in selecting advanced non-small cell lung cancer (NSCLC) patients who are adequate for targeted treatment, a total of 137 NSCLC cases were analyzed by fluorescence in situ hybridization (FISH) for anaplastic lymphoma kinase (ALK) rearrangements, and Epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were evaluated by quantitative real-time PCR (qRT-PCR) platform combining amplification refractory mutation system (ARMS) primers and TaqMan probes. Cytological specimens included 91 fine-needle aspirates, 5 fibreoptic bronchoscopic derived samples and 41 pleural effusions. Among 137 NSCLCs analyzed for ALK FISH, 16 (11.7%, of 137) were detected to harbor ALK rearrangement. FISH positive cases were all defined as adenocarcinoma (ADC) histologic subtype and the FNA samples showed the highest ALK positive rate (13.2%, 12/91). Of the 9 ALK FISH positive patients who received crizotinib treatment, 8 (88.9%) patients exhibited tumor regression. In addition, 60 (44.8%, of 134) cases were found to harbor EGFR mutations and 22 patients with EGFR sensitive mutations who received gefitinib or erlotinib treatment showed a median PFS of 16.0 months. Mutations of KRAS occurred in 8 (6.0%, of 134) cases and this was mutually exclusive from EGFR mutation. Our results demonstrated that ALK FISH and EGFR, KRAS mutational analysis on cytological specimens are sensitive methods for screening advanced stage NSCLC patients who are adequate for targeted treatment. PMID:26789109

  13. Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond.

    PubMed

    Chi, Alexander; Nguyen, Nam Phong; Welsh, James S; Tse, William; Monga, Manish; Oduntan, Olusola; Almubarak, Mohammed; Rogers, John; Remick, Scot C; Gius, David

    2014-01-01

    Radiation dose in the setting of chemo-radiation for locally advanced non-small cell lung cancer (NSCLC) has been historically limited by the risk of normal tissue toxicity and this has been hypothesized to correlate with the poor results in regard to local tumor recurrences. Dose escalation, as a means to improve local control, with concurrent chemotherapy has been shown to be feasible with three-dimensional conformal radiotherapy in early phase studies with good clinical outcome. However, the potential superiority of moderate dose escalation to 74 Gy has not been shown in phase III randomized studies. In this review, the limitations in target volume definition in previous studies; and the factors that may be critical to safe dose escalation in the treatment of locally advanced NSCLC, such as respiratory motion management, image guidance, intensity modulation, FDG-positron emission tomography incorporation in the treatment planning process, and adaptive radiotherapy, are discussed. These factors, along with novel treatment approaches that have emerged in recent years, are proposed to warrant further investigation in future trials in a more comprehensive and integrated fashion. PMID:24999451

  14. Techno-economic projections for advanced small solar thermal electric power plants to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.

    1979-01-01

    Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.

  15. Characterization of mechanical properties of aluminized coatings in advanced gas turbine blades using a small punch method

    SciTech Connect

    Sugita, Y.; Ito, M.; Sakurai, S.; Bloomer, T.E.; Kameda, J. |

    1997-04-01

    Advanced technologies of superalloy casting and coatings enable one to enhance the performance of combined cycle gas turbines for electric power generation by increasing the firing temperature. This paper describes examination of the microstructure/composition and mechanical properties (22--950 C) in aluminized CoCrAlY coatings of advanced gas turbine blades using scanning Auger microprobe and a small punch (SP) testing method. Aluminized coatings consisted of layered structure divided into four regimes: (1) Al enriched and Cr depleted region, (2) Al and Cr graded region, (3) fine grained microstructure with a mixture of Al and Cr enriched phases and (4) Ni/Co interdiffusion zone adjacent to the interface. SP specimens were prepared in order that the specimen surface would be located in the various coating regions. SP tests indicated strong dependence of the fracture properties on the various coatings regimes. Coatings 1 and 2 with very high microhardness showed much easier formation of brittle cracks in a wide temperature range, compared to coatings 3 and 4 although the coating 2 had ductility improvement at 950 C. The coating 3 had lower room temperature ductility than the coating 4. However, the ductility in the coating 3 exceeded that in the region 4 above 730 C due to a precipitous ductility increase. The integrity of aluminized coatings while in-service is discussed in light of the variation of the low cycle fatigue life as well as the ductility in the layered structure.

  16. Pilot study of a novel combination of two therapeutic vaccines in advanced non-small-cell lung cancer patients.

    PubMed

    Herrera, Zaima Mazorra; Ramos, Tania Crombet

    2014-07-01

    Cancer vaccines contain tumor antigens in a pro-inflammatory context with the purpose to generate potent antitumor immune responses. However, tumor cells develop different immunosuppressive mechanisms that limit the effectiveness of an anticancer immune response. Therefore, therapeutic vaccine treatment alone is usually not sufficient to generate tumor regression or survival improvement, especially in the advanced disease scenario in which most clinical studies have been conducted. Combining cancer vaccines with different anticancer therapies such as chemotherapy, radiotherapy and other immunotherapeutic agents has had different levels of success. However, the combination of cancer vaccines with different mechanisms of action has not been explored in clinical trials. To address this issue, the current review summarizes the main clinical and immunological results obtained with two different therapeutic vaccines used in advanced non-small-cell lung cancer patients, inducing an immune response against epidermal growth factor (CIMAvax-EGF) and NGcGM3 ganglioside (racotumomab). We also discuss preliminary findings obtained in a trial of combination of these two vaccines and future challenges with these therapies. PMID:24777612

  17. The modularity of pollination networks

    PubMed Central

    Olesen, Jens M.; Bascompte, Jordi; Dupont, Yoko L.; Jordano, Pedro

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with <50 species were never modular. Both module number and size increased with species number. Each module includes one or a few species groups with convergent trait sets that may be considered as coevolutionary units. Species played different roles with respect to modularity. However, only 15% of all species were structurally important to their network. They were either hubs (i.e., highly linked species within their own module), connectors linking different modules, or both. If these key species go extinct, modules and networks may break apart and initiate cascades of extinction. Thus, species serving as hubs and connectors should receive high conservation priorities. PMID:18056808

  18. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  19. Mutation Rules and the Evolution of Sparseness and Modularity in Biological Systems

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2013-01-01

    Biological systems exhibit two structural features on many levels of organization: sparseness, in which only a small fraction of possible interactions between components actually occur; and modularity – the near decomposability of the system into modules with distinct functionality. Recent work suggests that modularity can evolve in a variety of circumstances, including goals that vary in time such that they share the same subgoals (modularly varying goals), or when connections are costly. Here, we studied the origin of modularity and sparseness focusing on the nature of the mutation process, rather than on connection cost or variations in the goal. We use simulations of evolution with different mutation rules. We found that commonly used sum-rule mutations, in which interactions are mutated by adding random numbers, do not lead to modularity or sparseness except for in special situations. In contrast, product-rule mutations in which interactions are mutated by multiplying by random numbers – a better model for the effects of biological mutations – led to sparseness naturally. When the goals of evolution are modular, in the sense that specific groups of inputs affect specific groups of outputs, product-rule mutations also lead to modular structure; sum-rule mutations do not. Product-rule mutations generate sparseness and modularity because they tend to reduce interactions, and to keep small interaction terms small. PMID:23936433

  20. Modular Approach to Spintronics

    PubMed Central

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  1. Daily Modular Scheduling Practice at Pahranagat Valley High School. Report.

    ERIC Educational Resources Information Center

    Anderson, David Neil

    The main topic discussed is a daily modular scheduling system initiated for the small enrollment at Pahranagat Valley High School in Alamo, Nevada, with specific reference to types of instruction, schedule procedures, and conflict problems. An evaluation of the scheduling system is also included. The report is written in dissertation format, which…

  2. The Emergence of Modularity in Biological Systems

    PubMed Central

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2015-01-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks. There once were two watchmakers, named Hora and Tempus, who manufactured very fine watches. Both of them were highly regarded, and the phones in their workshops rang frequently — new customers were constantly calling them. However, Hora prospered, while Tempus became poorer and poorer and finally lost his shop. What was the reason? The watches the men made consisted of about 1,000 parts each. Tempus had so constructed his that if he had one partly assembled and had to put it down — to answer the phone say— it immediately fell to pieces and had to be reassembled from the elements. The better the customers liked his watches, the more they phoned him, the more difficult it became for him to find enough uninterrupted time to finish a watch. The watches that Hora made were no less complex than those of Tempus. But he had designed them so that he could put together subassemblies of about ten elements each. Ten of these subassemblies, again, could be put together into a larger subassembly; and a system of ten of the latter sub

  3. Analysis of the characteristics and prognosis of advanced non-small-cell lung cancer in older patients

    PubMed Central

    Gao, Ying; Gao, Fei; Ma, Jin-lu; Zhang, Xiao-zhi; Li, Yi; Song, Li-ping; Zhao, Dong-li

    2015-01-01

    Objective Lung cancer is still the leading cause of cancer-related deaths worldwide. However, most elderly patients with advanced non-small-cell lung cancer (NSCLC) have been undertreated and the outcome related to age is controversial. A retrospective analysis was conducted for advanced NSCLC in order to investigate the characteristics and prognosis of older patients. Methods Medical records were collected from 165 patients with NSCLC (stages IIIA–IIIB) who had been treated with concurrent chemoradiotherapy (CRT) or radiotherapy from January 2009 to January 2011. The cases were divided into two age groups 1) patients ≥70 years old; 2) patients <70 years old. There were 73 patients in group I, 92 in group II. Patient characteristics, treatment toxicities, and prognosis were evaluated. Results Of the 165 patients analyzed, 34 patients (34/73) in group I received concurrent CRT while 47 (47/92) in group II completed that treatment. No significant difference was observed in the reason for patients who discontinued CRT in two groups (P>0.05). In the patients with adenocarcinoma, more cases were found in group II than that in group I; the more squamous cell carcinoma and the more smokers with squamous cell carcinoma were seen in older group (P<0.05). With a median follow-up of 20.5 months, the 1-year survival for group I and II were 49.3% and 40.2% respectively (P=0.243). Two-year survival for the two groups was 20.5% and 16.3% (P=0.483); 3-year survival was 9.6% and 9.8% (P=0.967). There was no significant difference between two groups statistically in survival by univariate analysis (P>0.05). The therapy-related toxicities in group I seem to be similar to the group II (P>0.05). Conclusion More adenocarcinoma patients were found in youthful lung cancer and the more smokers with squamous cell carcinoma were seen in older group. Age is not the important factor for the selection and allocation of treatment in advanced NSCLC. The same prognosis and toxicities had been

  4. Can computational efficiency alone drive the evolution of modularity in neural networks?

    PubMed Central

    Tosh, Colin R.

    2016-01-01

    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means. PMID:27573614

  5. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  6. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOEpatents

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  7. Lightweight composites for modular panelized construction

    NASA Astrophysics Data System (ADS)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  8. Coal-fueled diesels for modular power generation

    SciTech Connect

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  9. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2015-03-17

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  10. Modular isotopic thermoelectric generator

    SciTech Connect

    Schock, A.

    1981-01-01

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development. 14 refs.

  11. A Modular Re-configurable Rover System

    NASA Astrophysics Data System (ADS)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    design allows the MTR to lift, lower, roll or tilt its body. It also provides the ability to lift any of the legs by nearly 300mm, enhancing internal re-configurability and therefore rough terrain stability off the robotic vehicle. A modular software and control architecture will be used so that integration to, and operation through the MTR, of different Packs can be demonstrated. An on-board high-level controller [4] will communicate with a small network of micro-controllers through an RS485 bus. Additional processing power could be obtained through a Pack with equivalent or higher computational capabilities. 1 The nature of the system offers many opportunities for behavior based control. The control system must accommodate not only rover based behaviors like obstacle avoidance and vehicle stabilization, but also any additional behaviors that different Packs may introduce. The Ego-Behavior Architecture (EBA) [5] comprises a number of behaviors which operate autonomously and independent of each other. This facilitates the design and suits the operation of the MTR since it fulfills the need for uncomplicated assimilation of new behaviors in the existing architecture. Our work at the moment focuses on the design and construction of the mechanical and electronic systems for the MTR and an associated Pack. References [1] NASA, Human Exploration of Mars: The Reference Mission (Version 3.0 with June, 1998 Addendum) of the NASA Mars Exploration Study Team, Exploration Office, Advanced Development Office, Lyndon B. Johnson Space Center, Houston, TX 77058, June, 1998. [2] A. Trebi-Ollennu, H Das Nayer, H Aghazarian, A ganino, P Pirjanian, B Kennedy, T Huntsberger and P Schenker, Mars Rover Pair Cooperatively Transporting a Long Payload, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, May 2002, pp. 3136-3141. [3] A. K. Bouloubasis, G. T McKee, P. S. Schenker, A Behavior-Based Manipulator for Multi-Robot Transport Tasks, in proceedings of the

  12. Treatment Recommendations for Locally Advanced, Non-Small-Cell Lung Cancer: The Influence of Physician and Patient Factors

    SciTech Connect

    Lee, Irwin H.; Hayman, James A.; Landrum, Mary Beth; Tepper, Joel; Goodman, Karyn A.; Keating, Nancy L.

    2009-08-01

    Purpose: To determine the impact of patient age, comorbidity, and physician factors on treatment recommendations for locally advanced, unresectable non-small-cell lung cancer (NSCLC). Methods and Materials: We surveyed radiation oncologists regarding their recommendations for treatment (chemoradiation, radiation alone, chemotherapy alone, or no therapy) for hypothetical patients with Stage IIIB NSCLC who varied by age (55 vs. 80 years) and comorbid illness (none, moderate, or severe chronic obstructive pulmonary disease [COPD]). Multinomial logistic regression was used to assess the impact of physician and practice characteristics on radiation oncologists' treatment recommendations for three scenarios with the least agreement. Results: Of 214 radiation oncologists, nearly all (99%) recommended chemoradiation for a healthy 55 year old. However, there was substantial variability in recommendations for a 55 year old with severe COPD, an 80-year-old with moderate COPD, and an 80-year-old with severe COPD. Physicians seeing a lower volume of lung cancer patients were statistically less likely to recommend radiotherapy for younger or older patients with severe COPD (both p < 0.05), but the impact was modest. Conclusions: Nearly all radiation oncologists report following the evidence-based recommendation of chemoradiation for young, otherwise healthy patients with locally advanced, unresectable NSCLC, but there is substantial variability in treatment recommendations for older or sicker patients, probably related to the lack of clinical trial data for such patients. The physician and practice characteristics we examined only weakly affected treatment recommendations. Additional clinical trial data are necessary to guide recommendations for treatment of elderly patients and patients with poor pulmonary function to optimize their management.

  13. Treatment Recommendations for Locally Advanced, Non-small Cell Lung Cancer: The Influence of Physician and Patient Factors

    PubMed Central

    Lee, Irwin H.; Hayman, James A.; Landrum, Mary Beth; Tepper, Joel; Tao, May Lin; Goodman, Karyn A.; Keating, Nancy L.

    2011-01-01

    Purpose To determine the impact of patient age, comorbidity, and physician factors on treatment recommendations for locally-advanced, unresectable non-small cell lung cancer (NSCLC). Methods and Materials We surveyed radiation oncologists regarding their recommendations for treatment (chemoradiation, radiation alone, chemotherapy alone, or no therapy) for hypothetical patients with stage IIIB NSCLC who varied by age (55 vs. 80 years) and comorbid illness (none, moderate, or severe chronic obstructive pulmonary disease [COPD]). Multinomial logistic regression was used to assess the impact of physician and practice characteristics on radiation oncologists’ treatment recommendations for 3 scenarios with the least agreement. Results Of 214 radiation oncologists, nearly all (99%) recommended chemoradiation for a healthy 55-year-old. However, there was substantial variability in recommendations for a 55-year-old with severe COPD, an 80-year-old with moderate COPD, and an 80-year-old with severe COPD. Physicians seeing a lower volume of lung cancer patients were statistically less likely to recommend radiotherapy for younger or older patients with severe COPD (both p <0.05) but the impact was modest. Conclusions Nearly all radiation oncologists report following evidence-based recommendations of chemoradiation for young, otherwise healthy patients with locally advanced, unresectable NSCLC; but there is substantial variability in treatment recommendations for older or sicker patients, probably related to the lack of clinical trial data for such patients. The physician and practice characteristics we examined only weakly impacted treatment recommendations. Additional clinical trial data are needed to guide recommendations for treatment of elderly patients and patients with poor pulmonary function in order to optimize their management. PMID:19409730

  14. Concomitant chemoradiotherapy with docetaxel and cisplatin followed by consolidation chemotherapy in locally advanced unresectable non-small cell lung cancer

    PubMed Central

    Eroglu, Celalettin; Orhan, Okan; Unal, Dilek; Dogu, Gamze G.; Karaca, Halit; Dikilitas, Mustafa; Oztürk, Ahmet; Ozkan, Metin; Kaplan, Bünyamin

    2013-01-01

    OBJECTIVES: To evaluate treatment results and toxicities in patients who received concomitant chemoradiotherapy (CRT) followed by consolidation with docetaxel and cisplatin in locally advanced unresectable non-small cell lung cancer (NSCLC). METHODS: Ninety three patients were included in this retrospective study. The patients received 66 Gy radiotherapy and weekly 20 mg/m2 docetaxel and 20 mg/m2 cisplatin chemotherapy concomitantly. One month later than the end of CRT, consolidation chemotherapy with four cycles of docetaxel 75 mg/m2 and cisplatin 75 mg/m2 were administered at each 21 days. RESULTS: Median age of the patients was 57 (range, 30-74). Following concomitant CRT, 14 patients (15%) showed complete and 50 patients (54%) showed partial response (total response rate was 69%). The median follow-up was 13 months (range: 2-51 months). The median overall survival was 18 months (95% confidential interval [CI]: 13.8-22.1 months); local control was 15 months (95% CI: 9.3-20.6 months); progression-free survival was 9 months (95% CI: 6.5-11.4 months). Esophagitis in eight (9%) patients, neutropenia in seven (8%) patients and pneumonitis in eight (9%) patients developed as grade III-IV toxicity due to concomitant CRT. CONCLUSION: Concomitant CRT with docetaxel and cisplatin followed by docetaxel and cisplatin consolidation chemotherapy might be considered as a feasible, and well tolerated treatment modality with high response rates despite the fact that it has not a survival advantage in patients with locally advanced unresectable NSCLC. PMID:23741274

  15. ESA Experiments with the European Modular Cultivation System (EMCS)

    NASA Astrophysics Data System (ADS)

    Brillouet, Claude; Briganti, Luca; Schwarzwalder, Achim

    2008-06-01

    The European Modular Cultivation System (EMCS) is an ESA developed facility dedicated to gravitational biology and especially to plant research. However, experiments using small animals, like insects and small invertebrates are also possible. EMCS is onboard the International Space Station (ISS) since July 2006 and four experiments, including two from ESA, have been already performed. Several others are in their final development phase and shall be flown within the next following years.

  16. Economic evaluation of first-line and maintenance treatments for advanced non-small cell lung cancer: a systematic review

    PubMed Central

    Chouaïd, Christos; Crequit, Perinne; Borget, Isabelle; Vergnenegre, Alain

    2015-01-01

    During these last years, there have been an increased number of new drugs for non-small cell lung cancer (NSCLC), with a growing financial effect on patients and society. The purpose of this article was to review the economics of first-line and maintenance NSCLC treatments. We reviewed economic analyses of NSCLC therapies published between 2004 and 2014. In first-line settings, in unselected patients with advanced NSCLC, the cisplatin gemcitabine doublet appears to be cost-saving compared with other platinum doublets. In patients with nonsquamous NSCLC, the incremental cost-effectiveness ratios (ICERs) per life-year gained (LYG) were $83,537, $178,613, and more than $300,000 for cisplatin-pemetrexed compared with, respectively, cisplatin-gemcitabine, cisplatin-carboplatin-paclitaxel, and carboplatin-paclitaxel-bevacizumab. For all primary chemotherapy agents, use of carboplatin is associated with slightly higher costs than cisplatin. In all the analysis, bevacizumab had an ICER greater than $150,000 per quality-adjusted life-year (QALY). In epidermal growth factor receptor mutated advanced NSCLC, compared with carboplatin-paclitaxel doublet, targeted therapy based on testing available tissue yielded an ICER of $110,644 per QALY, and the rebiopsy strategy yielded an ICER of $122,219 per QALY. Compared with the triplet carboplatin-paclitaxel-bevacizumab, testing and rebiopsy strategies had ICERs of $25,547 and $44,036 per QALY, respectively. In an indirect comparison, ICERs per LYG and QALY of erlotinib versus gefitinib were $39,431 and $62,419, respectively. In anaplastic lymphoma kinase-positive nonsquamous advanced NSCLC, the ICER of first-line crizotinib compared with that of chemotherapy was $255,970 per QALY. For maintenance therapy, gefitinib had an ICER of $19,214 per QALY, erlotinib had an ICER of $127,343 per LYG, and pemetrexed had an ICER varying between $183,589 and $205,597 per LYG. Most recent NSCLC strategies are based on apparently no cost

  17. Image Guided Hypofractionated 3-Dimensional Radiation Therapy in Patients With Inoperable Advanced Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Osti, Mattia Falchetto; Agolli, Linda; Valeriani, Maurizio; Falco, Teresa; Bracci, Stefano; De Sanctis, Vitaliana; Enrici, Riccardo Maurizi

    2013-03-01

    Purpose: Hypofractionated radiation therapy (HypoRT) can potentially improve local control with a higher biological effect and shorter overall treatment time. Response, local control, toxicity rates, and survival rates were evaluated in patients affected by inoperable advanced stage non-small cell lung cancer (NSCLC) who received HypoRT. Methods and Materials: Thirty patients with advanced NSCLC were enrolled; 27% had stage IIIA, 50% had stage IIIB, and 23% had stage IV disease. All patients underwent HypoRT with a prescribed total dose of 60 Gy in 20 fractions of 3 Gy each. Radiation treatment was delivered using an image guided radiation therapy technique to verify correct position. Toxicities were graded according to Radiation Therapy Oncology Group morbidity score. Survival rates were estimated using the Kaplan-Meier method. Results: The median follow-up was 13 months (range, 4-56 months). All patients completed radiation therapy and received the total dose of 60 Gy to the primary tumor and positive lymph nodes. The overall response rate after radiation therapy was 83% (3 patients with complete response and 22 patients with partial response). The 2-year overall survival and progression-free survival rates were 38.1% and 36%, respectively. Locoregional recurrence/persistence occurred in 11 (37%) patients. Distant metastasis occurred in 17 (57%) patients. Acute toxicities occurred consisting of grade 1 to 2 hematological toxicity in 5 patients (17%) and grade 3 in 1 patient; grade 1 to 2 esophagitis in 12 patients (40%) and grade 3 in 1 patient; and grade 1 to 2 pneumonitis in 6 patients (20%) and grade 3 in 2 patients (7%). Thirty-three percent of patients developed grade 1 to 2 late toxicities. Only 3 patients developed grade 3 late adverse effects: esophagitis in 1 patient and pneumonitis in 2 patients. Conclusions: Hypofractionated curative radiation therapy is a feasible and well-tolerated treatment for patients with locally advanced NSCLC. Randomized

  18. Recent ARC developments: Through modularity to interoperability

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Cameron, D.; Dóbé, P.; Ellert, M.; Frågåt, T.; Grønager, M.; Johansson, D.; Jönemo, J.; Kleist, J.; Kočan, M.; Konstantinov, A.; Kónya, B.; Márton, I.; Möller, S.; Mohn, B.; Nagy, Zs; Nilsen, J. K.; Ould Saada, F.; Qiang, W.; Read, A.; Rosendahl, P.; Roczei, G.; Savko, M.; Skou Andersen, M.; Stefán, P.; Szalai, F.; Taga, A.; Toor, S. Z.; Wäänänen, A.

    2010-04-01

    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  19. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study

    PubMed Central

    2011-01-01

    Background Overall therapeutic outcomes of advanced non-small-cell lung cancer (NSCLC) are poor. The dendritic cell (DC) immunotherapy has been developed as a new strategy for the treatment of lung cancer. The purpose of this study was to evaluate the feasibility, safety and immunologic responses in use in mature, antigen-pulsed autologous DC vaccine in NSCLC patients. Methods Five HLA-A2 patients with inoperable stage III or IV NSCLC were selected to receive two doses of 5 × 107 DC cells administered subcutaneous and intravenously two times at two week intervals. The immunologic response, safety and tolerability to the vaccine were evaluated by the lymphoproliferation assay and clinical and laboratorial evolution, respectively. Results The dose of the vaccine has shown to be safe and well tolerated. The lymphoproliferation assay showed an improvement in the specific immune response after the immunization, with a significant response after the second dose (p = 0.005). This response was not long lasting and a tendency to reduction two weeks after the second dose of the vaccine was observed. Two patients had a survival almost twice greater than the expected average and were the only ones that expressed HER-2 and CEA together. Conclusion Despite the small sample size, the results on the immune response, safety and tolerability, combined with the results of other studies, are encouraging to the conduction of a large clinical trial with multiples doses in patients with early lung cancer who underwent surgical treatment. Trial Registration Current Controlled Trials: ISRCTN45563569 PMID:21682877

  20. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    PubMed

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements. PMID:27250375

  1. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  2. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    NASA Astrophysics Data System (ADS)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.

  3. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-01-01

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design.

  4. [The certification of advanced therapy medicinal products. A quality label for product development in small and medium-sized enterprises].

    PubMed

    Berger, A; Schüle, S; Flory, E

    2011-07-01

    Advanced therapy medicinal products (ATMPs) are gene therapy, cell therapy, and tissue engineered products. To gain access to the market within the European Union, ATMPs must be authorized by the European Commission (EC). Especially for small and medium-sized enterprises (SMEs), the European centralized procedure of marketing authorization that is conducted by the European Medicines Agency (EMA) constitutes a major challenge, because SMEs often have little experience with regulatory procedures and many have limited financial possibilities. To tackle these challenges, a certification procedure exclusively for SMEs and their ATMP development was introduced by the EC. Independently from a marketing authorization application, development and/or production processes can be certified. An issued certificate demonstrates that the respective process meets the current regulatory and scientific requirements of the EMA, representing a valuable milestone for putative investors and licensees. This article highlights the background, the detailed procedure, the minimum requirements, as well as the costs of certification, while giving further noteworthy guidance for interested parties. PMID:21698534

  5. The Long-Term Outcomes of Induction Chemoradiotherapy Followed by Surgery for Locally Advanced Non-Small Cell Lung Cancer

    PubMed Central

    Uramoto, Hidetaka; Akiyama, Hirohiko; Nakajima, Yuki; Kinoshita, Hiroyasu; Inoue, Takuya; Kurimoto, Futoshi; Nishimura, Yu; Saito, Yoshihiro; Sakai, Hiroshi; Kobayashi, Kunihiko

    2014-01-01

    Background Although the concept of induction therapy followed by surgical resection for locally advanced non-small cell lung cancer (LA-NSCLC) has found general acceptance, the appropriate indications and the strategy for this treatment are still controversial. Methods From 2000 through 2008, 36 patients received concurrent chemoradiotherapy followed by surgery. We retrospectively reviewed these cases, analyzed the outcomes and examined the prognosis. Results The median radiation dose given was 60 Gy. Chemotherapy included a platinum agent in all cases; cisplatin-based chemotherapy was administered to 9 cases, and a carboplatin-based chemotherapy regimen was administered to 27. A complete resection was performed in 94% of the patients. Seventeen (47.2%) patients exhibited a complete pathological response, and downstaging was induced in 26 (72%) cases. The morbidity and 30-day mortality rates were 11.1 and 0%, respectively. The 5-year overall survival rate in the patients with complete resection (n = 33) was 83.3%. Conclusions Induction chemoradiotherapy followed by surgery for LA-NSCLC provided a favorable prognosis for selected patients. A complete pathological response was found in about half of cases. This strategy is feasible and was associated with low morbidity and high resectability rates, suggesting that it contributed to improving the treatment results. PMID:25493083

  6. Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients.

    PubMed

    Xu, Song; Lou, Feng; Wu, Yi; Sun, Da-Qiang; Zhang, Jing-Bo; Chen, Wei; Ye, Hua; Liu, Jing-Hao; Wei, Sen; Zhao, Ming-Yu; Wu, Wen-Jun; Su, Xue-Xia; Shi, Rong; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jun

    2016-01-28

    Non-small cell lung cancers (NSCLC) have unique mutation patterns, and some of these mutations may be used to predict prognosis or guide patient treatment. Mutation profiling before and during treatment often requires repeated tumor biopsies, which is not always possible. Recently, cell-free, circulating tumor DNA (ctDNA) isolated from blood plasma has been shown to contain genetic mutations representative of those found in the primary tumor tissue DNA (tDNA), and these samples can readily be obtained using non-invasive techniques. However, there are still no standardized methods to identify mutations in ctDNA. In the current study, we used a targeted sequencing approach with a semi-conductor based next-generation sequencing (NGS) platform to identify gene mutations in matched tDNA and ctDNA samples from 42 advanced-stage NSCLC patients from China. We identified driver mutations in matched tDNA and ctDNA in EGFR, KRAS, PIK3CA, and TP53, with an overall concordance of 76%. In conclusion, targeted sequencing of plasma ctDNA may be a feasible option for clinical monitoring of NSCLC in the near future. PMID:26582655

  7. [Gefitinib therapy in advanced non-small cell lung cancer in patients with EGFR mutations: cost-effectiveness analysis].

    PubMed

    Protsenko, S A; Rudakova, A V

    2015-01-01

    Therapy for advanced non-small cell lung cancer (NSCLC) is very complex clinical problem. The optimal choice of therapy demands not only the analysis of data on clinical effectiveness, but also an assessment of cost-effectiveness of the applied drugs. The current options for first- or second/third-line of lung cancer treatment are tirosine kinase inhibitors (TKI)--gefitinib, erlotinib and afatinib. According to the received results TKI first-line therapy for NSCLC in patients with EGFR mutations is not only clinically effective but also is economically acceptable from a position of the Russian budgetary health care. TKI second-line therapy for NSCLC patients who fail first-line therapy also provides improvement of the quality of life and prolonged time to progression. Comparable clinical effectiveness and safety of erlotinib and gefitinib in patients with EGFR mutations allows making drug choice on the basis of regional price characteristics. Afatinib is highly effective both in the first- and in the second/third-line of therapy in patients with the most frequent mutations (a deletion in exon 19 or a point mutation L858R in exon 21) but first-line therapy demands an increase of financial expenses caused by substantial increase of time to progression and duration of therapy. Thus TKI therapy of both the first-, and second/third-line of patients with NSCLC with EGFR mutations is characterized by acceptable cost-effectiveness. PMID:26571844

  8. Paternal Transmission of Small Supernumerary Marker Chromosome 15 Identified in Prenatal Diagnosis Due to Advanced Maternal Age

    PubMed Central

    Melo, Bruna C. S.; Portocarrero, Ana; Alves, Cláudia; Sampaio, André; Mota-Vieira, Luisa

    2015-01-01

    The detection of supernumerary marker chromosomes (SMCs) in prenatal diagnosis is always a challenge. In this study, we report a paternally inherited case of a small SMC(15) that was identified in prenatal diagnosis due to advanced maternal age. A 39-year-old woman underwent amniocentesis at 16 weeks of gestation. A fetal abnormal karyotype – 47,XX,+mar – with one sSMC was detected in all metaphases. Since this sSMC was critical in the parental decision to continue or interrupt this pregnancy, we proceeded to study the fetus and their parents. Cytogenetic and molecular analyses revealed a fetal karyotype 47,XX,+mar pat.ish idic(15)(ql2)(D15Zl++,SNRPN−), in which the sSMC(15) was a paternally inherited inverted duplicated chromosome and did not contain the critical region of Prader–Willi/Angelman syndromes. Moreover, fetal uniparental disomy was excluded. Based on this information and normal obstetric ultrasounds, the parents decided to proceed with the pregnancy and a phenotypically normal girl was born at 39 weeks of gestation. In conclusion, the clinical effects of sSMCs need to be investigated, especially when sSMCs are encountered at prenatal diagnosis. Here, although the paternal sSMC(15) was not associated with an abnormal phenotype, its characterization allows more accurate genetic counseling for the family progeny. PMID:26523119

  9. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  10. Phase II trial of S-1 and cisplatin with concurrent radiotherapy for locally advanced non-small-cell lung cancer

    PubMed Central

    Ohyanagi, F; Yamamoto, N; Horiike, A; Harada, H; Kozuka, T; Murakami, H; Gomi, K; Takahashi, T; Morota, M; Nishimura, T; Endo, M; Nakamura, Y; Tsuya, A; Horai, T; Nishio, M

    2009-01-01

    Background: To assess the efficacy and safety of S-1 and cisplatin with concurrent thoracic radiation for unresectable stage III non-small-cell lung cancer (NSCLC). Methods: Eligible patients were 20–74 years old and had histologically or cytologically confirmed NSCLC, a performance status of 0–1, and no prior chemotherapy. Patients were treated with cisplatin (60 mg m−2 on day 1) and S-1 (orally at 40 mg m−2 per dose, b.i.d., on days 1–14), with the treatment repeated every 4 weeks for four cycles. Beginning on day 2, a 60-Gy thoracic radiation dose was delivered in 30 fractions. Results: Of 50 patients, 48 were eligible. Partial response was observed in 42 patients (87.5%; 95% CI: 79.1–96.9%). This regimen was well tolerated. Common toxicities included grade 3/4 neutropenia (32%), grade 3/4 leukopenia (32%), grade 3/4 thrombocytopenia (4%), grade 3 febrile neutropenia (6%), grade 3 oesophagitis (10%), and grade 3 pneumonitis (5%). Median progression-free survival was 12.0 months and median overall survival was 33.1 months. The 1- and 2-year survival rates were 89.5 and 56%, respectively. Conclusion: This chemotherapy regimen with concomitant radiotherapy is a promising treatment for locally advanced NSCLC because of its high response rates, good survival rates, and mild toxicities. PMID:19603031

  11. Portable or Modular? There Is a Difference....

    ERIC Educational Resources Information Center

    Morton, Mike

    2002-01-01

    Describes differences between two types of school facilities: portable (prebuilt, temporary wood structure installed on site) and modular (method of construction for permanent buildings). Provides details of modular construction. (PKP)

  12. Benefit from modular design of high-pressure pumps

    SciTech Connect

    Mueller, H.D.; Hohenstein, D. )

    1993-12-01

    This article examines advances in pump design that produce a more economical pump that is also efficient and reliable. The topics of the article include design developments, double-casing design, modular design, machined diffuser channels for system-specific characteristic curves, hydraulic balancing, adaptation of the casing center line to the rotor deflection line, and selection of appropriate materials for high corrosion or abrasion areas.

  13. 48 CFR 3417.70 - Modular contracting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Modular contracting. 3417... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Modular Contracting 3417.70 Modular contracting. (a) FSA—May incrementally conduct successive procurements of modules of...

  14. Evolution and the Modularity of Mindreading.

    ERIC Educational Resources Information Center

    Moore, Chris

    1996-01-01

    Reviews Baron-Cohen's study of autism and an explanatory theory called modularity of mindreading, which proposed a domain-specific modular psychological model based on evolutionary, developmental, psychopathological, and neurobiological considerations. Enumerates problems with the modularity approach and emphasized the evolution of domain general…

  15. The Modular Mind and Intrapersonal Communication Processes.

    ERIC Educational Resources Information Center

    Stacks, Don W.

    Based on a prior model on modularity of the brain, a new modular model of intrapersonal communication was developed which focuses on brain processing, encompassing both the structures and the functions of those structures in the creation of messages. The modular mind is a bio-social model of communication which presupposes a relationship between…

  16. Modularity in Cognition: Framing the Debate

    ERIC Educational Resources Information Center

    Barrett, H. Clark; Kurzban, Robert

    2006-01-01

    Modularity has been the subject of intense debate in the cognitive sciences for more than 2 decades. In some cases, misunderstandings have impeded conceptual progress. Here the authors identify arguments about modularity that either have been abandoned or were never held by proponents of modular views of the mind. The authors review arguments that…

  17. Modular Building Institute. 2003 Educational Showcase.

    ERIC Educational Resources Information Center

    Roman, Michael; Robert, Laurie; Reynolds, Pamela; Ulrey, Bill; Crawford, Doug; Shield, Tom; Soenksen, Steven

    "Commercial Modular Construction Magazine" regularly contains articles where the use of modular schools and classrooms is highlighted. This document contains a selection of those articles, including: (1) "Relocatable Classrooms Come of Age" (Michael Roman); (2) "Systems Building" (Laurie Robert); (3) "Realizing Modular's Merits" (Michael Roman);…

  18. Gefitinib Plus Interleukin-2 in Advanced Non-Small Cell Lung Cancer Patients Previously Treated with Chemotherapy

    PubMed Central

    Bersanelli, Melissa; Buti, Sebastiano; Camisa, Roberta; Brighenti, Matteo; Lazzarelli, Silvia; Mazza, Giancarlo; Passalacqua, Rodolfo

    2014-01-01

    The activation of lymphocytes by gefitinib treatment has been described. In this phase II pilot trial, we explored the possible synergism between IL-2 and gefitinib for non-small cell lung cancer (NSCLC) treatment. From September, 2003, to November, 2006, 70 consecutive patients with advanced, progressive NSCLC, previously treated with chemotherapy, received oral gefitinib 250 mg daily. The first 39 patients received gefitinib alone (G group). The other 31 also received subcutaneous IL-2 (GIL-2 group): 1 MIU/m2 (Million International Unit/m2)twice a day on Days 1 and 2, once a day on Days 3, 4, 5 every week for four consecutive weeks with a four-week rest period. Median follow-up was 25.2 months. Grade 3–4 toxicity of gefitinib was represented by skin rash (7%), asthenia/anorexia (6%) and diarrhea (7%); patients treated with IL-2 showed grade 2–3 fever (46%), fatigue (21%) and arthralgia (13%). In the GIL-2 group and G-group, we respectively observed: an overall response rate of 16.1% (6.4% complete response) and 5.1% (only partial response); a disease control rate of 41.9% and 41%; a median time to progression of 3.5 (CI 95% = 3.2–3.8) and 4.1 (CI 95% = 2.6–5.7) months; a median overall survival of 20.1 (CI 95% = 5.1–35.1) and 6.9 (CI 95% = 4.9–8.9) months (p = 0.002); and an actuarial one-year survival rate of 54% and 30%. Skin toxicity (p < 0.001; HR = 0.29; CI 95% = 0.16–0.54) and use of IL-2 (p < 0.001; HR = 0.33; CI 95% = 0.18–0.60) were independently associated with improvement of survival. In this consecutive, non-randomized, series of advanced NSCLC patients, the use of IL-2 increased the efficacy of gefitinib. PMID:25271833

  19. Chemotherapy plus Erlotinib versus Chemotherapy Alone for Treating Advanced Non-Small Cell Lung Cancer: A Meta-Analysis

    PubMed Central

    Xu, J. L.; Jin, B.; Ren, Z. H.; Lou, Y. Q.; Zhou, Z. R.; Yang, Q. Z.; Han, B. H.

    2015-01-01

    Background Whether a combination of chemotherapy and erlotinib is beneficial for advanced non-small cell lung cancer (NSCLC) remains controversial. This study aimed to summarize the currently available evidence and compare the efficacy and safety of chemotherapy plus erlotinib versus chemotherapy alone for treating advanced NSCLC. Methods EMBASE, PubMed, and the Cochrane Central Register of Controlled Trials were searched for relevant studies. Our protocol was registered in PROSPERO (CRD42014015015). Results Nine randomized controlled trials with a total of 3599 patients were included. Compared to chemotherapy alone, chemotherapy plus erlotinib was superior in PFS (HR = 0.76 [95% CI 0.62, 0.92], P = 0.006), and no statistically significant difference was observed in OS (HR = 0.94 [95% CI 0.86, 1.03], P = 0.16). Intercalated erlotinib plus chemotherapy demonstrated improvements in PFS (HR = 0.67 [95% CI 0.50, 0.91], P = 0.009) and OS (HR = 0.82 [95% CI 0.69, 0.98], P = 0.03). Continuous erlotinib plus chemotherapy treatment failed to demonstrate improvements in PFS (HR = 0.91 [95% CI 0.80, 1.04], P = 0.16) and OS (HR = 0.98 [95% CI 0.89, 1.09], P = 0.75). The association of chemotherapy plus erlotinib with improvement in PFS was significant in never smoking patients (HR = 0.46 [95% CI 0.37, 0.56], P<0.00001) but not in smoking patients (HR = 0.70 [95% CI 0.49, 1.00], P = 0.05). Among patients with EGFR mutant tumors, chemotherapy plus erlotinib demonstrated significant improvements in PFS (HR = 0.31 [95% CI 0.17, 0.58], P = 0.0002) and OS (HR = 0.52 [95% CI 0.30, 0.88], P = 0.01). Among patients with EGFR wild-type tumors, no statistically significant difference was observed with respect to PFS (HR = 0.87 [95% CI 0.70, 1.08], P = 0.21) and OS (HR = 0.78 [95% CI 0.59, 1.01], P = 0.06). Conclusion Combination of chemotherapy and erlotinib is a viable treatment option for patients with NSCLC, especially for patients who never smoked and patients with EGFR mutation

  20. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  1. Targeted drugs for unselected patients with advanced non-small-cell lung cancer: a network meta-analysis

    PubMed Central

    Zhao, Yueguang; Wang, Fang; Li, Shanshan; Wang, Xiaojie; Shou, Tao; Luo, Ying

    2016-01-01

    Background Currently, targeted therapy has shown encouraging treatment benefits in selected patients with advanced non-small cell lung cancer (NSCLC). However, the comparative benefits of targeted drugs and chemotherapy (CT) treatments in unselected patients are not clear. We therefore conduct a network meta-analysis to assess the relative efficacy and safety of these regimens. Methods PubMed, EMBASE, Cochrane Library and abstracts from major scientific meetings were searched for eligible literatures. The odds ratio (OR) for objective response rate (ORR) and safety was used for pooling effect sizes. Bayesian network meta-analysis was conducted to calculate the efficacy and safety of all included treatments. All tests of statistical significance were two sided. Results A total of 13,060 patients from 24 randomized controlled trials (RCT) were assessed. The targeted agents included bevacizumab (Bev), gefitinib (Gef), erlotinib (Erl) and cetuximab (Cet). Network meta-analysis showed that Bev + CT had a statistically significantly higher incidence of ORR relative to the other six different treatments, including placebo (OR =6.47; 95% CI, 3.85–10.29), Erl (OR =2.81; 95% CI, 2.08–3.70), CT (OR =1.92; 95% CI, 1.61–2.28), Gef (OR =1.40; 95% CI, 1.10–1.75), Erl + CT (OR =1.46; 95% CI, 1.17–1.80) and Gef + CT (OR =1.75; 95% CI, 1.36–2.22), whereas placebo and Erl were associated with statistically significantly lower incidence of ORR. Trend analyses of rank probability revealed that Bev + CT had the highest probability of being the best treatment arm in term of ORR, followed by Cet + CT. Meanwhile, Cet + CT showed significant severer rash and thrombocytopenia compared with Bev + CT. Gef was probable to be the rank 3 for ORR but was associated with relatively low risk for grade ≥3 toxicities. Conclusions Our study suggested that Bev + CT may offer better ORR in the treatment of unselected patients with advanced NSCLC. Future studies will be needed to investigate

  2. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  3. Induction in a Modular Learner.

    ERIC Educational Resources Information Center

    Carroll, Susanne E.

    2002-01-01

    Presents a theory of inductive learning--Autonomous Induction Theory--a form of induction that takes place within the autonomous and modular representational systems of the language faculty. Argues that Autonomous Induction Theory is constrained enough to be taken seriously as a plausible approach to explaining second language acquisition.…

  4. Efficacy of erlotinib in patients with advanced non-small cell lung cancer: a pooled analysis of randomized trials.

    PubMed

    Gao, Hui; Ding, Xin; Wei, Dong; Cheng, Peng; Su, Xiaomei; Liu, Huanyi; Aziz, Fahad; Wang, Daoyuan; Zhang, Tao

    2011-10-01

    Erlotinib is a potent reversible HER1/epidermal growth factor receptor tyrosine kinase inhibitor with single-agent activity in patients with non-small cell lung cancer. The aim of this study was to evaluate the efficacy of erlotinib for treating advanced non-small cell lung cancer by carrying out a pooled analysis of randomized controlled trials that compared erlotinib-based regimens with other agent-based regimens between January 1997 and 2011. Outcomes analyzed were objective response rate (ORR), progression-free survival (PFS), overall survival (OS), and adverse events. Fourteen trials including 7974 patients were identified. As first-line therapy was compared with chemotherapy, there was a similar ORR [OR: 0.33; 95% confidence interval (CI): 0.64-17.36; P=0.15], but decreased PFS [hazard ratio (HR): 1.55; 95% CI: 1.24-1.93; P<0.01] and OS (HR: 1.39; 95% CI: 0.99-1.94; P=0.05). As maintenance therapy was compared with placebo, erlotinib-based regimens significantly increased ORR (OR: 0.47; 95% CI: 0.31-0.70; P<0.01), prolonged PFS (HR: 0.71; 95% CI: 0.60-0.83; P<0.01), but did not improve OS (HR: 0.87; 95% CI: 0.68-1.11; P=0.22). As second/third-line therapy was compared with placebo, erlotinib-based regimens also significantly increased ORR (OR: 0.10; 95% CI: 0.02-0.41; P<0.01), prolonged PFS (HR: 0.61; 95% CI: 0.51-0.73; P<0.01), and improved OS (HR: 0.70; 95% CI: 0.58-0.84; P<0.01). However, as second/third-line therapy was compared with chemotherapy, the outcomes were similar between the two arms. When compared with PF299804, there was a decreased ORR (OR: 3.87; 95% CI: 1.27-11.81; P=0.02), and shortened PFS (HR: 0.58; 95% CI: 0.49-0.95; P=0.02). Meanwhile, erlotinib-based regimens showed no significant difference in adverse events, except for diarrhea, rash, and anemia. Erlotinib-based regimens significantly increased ORR and improved PFS as a first-line maintenance therapy or as a second/third-line therapy when compared with placebo. PMID:21808188

  5. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  6. Individualized Dose Prescription for Hypofractionation in Advanced Non-Small-Cell Lung Cancer Radiotherapy: An in silico Trial

    SciTech Connect

    Hoffmann, Aswin L.; Troost, Esther G.C.; Huizenga, Henk; Kaanders, Johannes H.A.M.; Bussink, Johan

    2012-08-01

    Purpose: Local tumor control and outcome remain poor in patients with advanced non-small-cell lung cancer (NSCLC) treated by external beam radiotherapy. We investigated the therapeutic gain of individualized dose prescription with dose escalation based on normal tissue dose constraints for various hypofractionation schemes delivered with intensity-modulated radiation therapy. Methods and Materials: For 38 Stage III NSCLC patients, the dose level of an existing curative treatment plan with standard fractionation (66 Gy) was rescaled based on dose constraints for the lung, spinal cord, esophagus, brachial plexus, and heart. The effect on tumor total dose (TTD) and biologic tumor effective dose in 2-Gy fractions (TED) corrected for overall treatment time (OTT) was compared for isotoxic and maximally tolerable schemes given in 15, 20, and 33 fractions. Rescaling was accomplished by altering the dose per fraction and/or the number of fractions while keeping the relative dose distribution of the original treatment plan. Results: For 30 of the 38 patients, dose escalation by individualized hypofractionation yielded therapeutic gain. For the maximally tolerable dose scheme in 33 fractions (MTD{sub 33}), individualized dose escalation resulted in a 2.5-21% gain in TTD. In the isotoxic schemes, the number of fractions could be reduced with a marginal increase in TED. For the maximally tolerable dose schemes, the TED could be escalated up to 36.6%, and for all patients beyond the level of the isotoxic and the MTD{sub 33} schemes (range, 3.3-36.6%). Reduction of the OTT contributed to the therapeutic gain of the shortened schemes. For the maximally tolerable schemes, the maximum esophageal dose was the dominant dose-limiting constraint in most patients. Conclusions: This modeling study showed that individualized dose prescription for hypofractionation in NSCLC radiotherapy, based on scaling of existing treatment plans up to normal tissue dose constraints, enables dose

  7. Approval summary: pemetrexed maintenance therapy of advanced/metastatic nonsquamous, non-small cell lung cancer (NSCLC).

    PubMed

    Cohen, Martin H; Cortazar, Patricia; Justice, Robert; Pazdur, Richard

    2010-01-01

    On July 2, 2009, the U.S. Food and Drug Administration approved pemetrexed injection (Alimta® Injection; Eli Lilly and Company, Indianapolis, IN) for maintenance treatment of patients with locally advanced or metastatic nonsquamous non-small cell lung cancer whose disease has not progressed after four cycles of platinum-based doublet induction chemotherapy. A double-blind study of pemetrexed plus best supportive care versus placebo plus best supportive care was conducted. Pemetrexed, 500 mg/m(2) i.v., was administered every 21 days until disease progression. Folic acid, vitamin B(12), and a corticosteroid were given to all study patients. There were 663 randomized patients (pemetrexed, 441; placebo, 222). Treatments were well balanced with respect to baseline disease characteristics and stratification factors. The median overall survival (OS) time for intent-to-treat (ITT) patients was 13.4 months for patients receiving pemetrexed and 10.6 months for those receiving placebo (hazard ratio [HR] 0.79; 95% confidence interval [CI], 0.65-0.95; p = .012). Median OS times were 15.5 months versus 10.3 months for patients with nonsquamous histologies receiving pemetrexed and placebo, respectively (HR, 0.70; 95% CI, 0.56-0.88). The median OS time in patients with squamous histology receiving pemetrexed was 9.9 months, versus 10.8 months for those receiving placebo (HR, 1.07; 95% CI, 0.77-1.50). A significantly longer progression-free survival interval for both the ITT and nonsquamous patient populations receiving pemetrexed maintenance therapy was also observed. The most common (>5%) adverse reactions in patients receiving pemetrexed were hematologic toxicity, an increase in hepatic enzymes, fatigue, gastrointestinal toxicity, sensory neuropathy, and skin rash. PMID:21148615

  8. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease.

    PubMed

    Benet, Marta; Guzmán, Carla; Pisonero-Vaquero, Sandra; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Martínez-Chantar, M Luz; Donato, M Teresa; Castell, José Vicente; Jover, Ramiro

    2015-04-01

    The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD. PMID:25576488

  9. Second-line erlotinib in patients with advanced non-small-cell lung cancer: subgroup analyses from the TRUST study.

    PubMed

    Heigener, David F; Wu, Yi-Long; van Zandwijk, Nico; Mali, Pekka; Horwood, Keith; Reck, Martin

    2011-11-01

    Erlotinib is a highly potent inhibitor of epidermal growth factor receptor tyrosine-kinase activity that significantly prolongs overall survival in patients with non-small-cell lung cancer (NSCLC), and improves symptom control and quality of life compared with placebo. The safety and efficacy of erlotinib has been investigated in a large, international, phase IV, open-label study (TRUST) in patients (n=6665) with advanced stage IIIB/IV NSCLC. An analysis of efficacy and safety outcomes is reported for patients receiving erlotinib as second-line therapy in TRUST (n=3224). Best response data were available for all 3224 patients. Complete response, partial response and stable disease were achieved in 25 (<1%), 368 (14%) and 1444 (54%) patients, respectively, for a disease control rate of 68%. Median progression-free and overall survivals were 13.6 weeks and 8.6 months, respectively; 1-year survival was 39.4%. Safety data were available for all patients. Of these, 389 patients (12%) had an erlotinib-related adverse event (AE) other than pre-specified AEs defined in the protocol; only 96 patients (3%) had an erlotinib-related AE ≥ grade 3. Of 1376 patients (43%) with serious AEs (SAEs), only 122 (4%) had treatment-related SAEs and most were gastrointestinal disorders (mainly diarrhoea and nausea). No treatment-related SAE occurred in ≥ 1% of patients. Data on the incidence of erlotinib-related rash were collected for all patients, 2302 (71%) of whom experienced rash. Of these rash events, 83% were of grade 1/2. These data confirm the good efficacy and tolerability of second-line erlotinib in a broad range of patients with NSCLC. PMID:21439671

  10. Systemic inflammatory status at baseline predicts bevacizumab benefit in advanced non-small cell lung cancer patients

    PubMed Central

    Botta, Cirino; Barbieri, Vito; Ciliberto, Domenico; Rossi, Antonio; Rocco, Danilo; Addeo, Raffaele; Staropoli, Nicoletta; Pastina, Pierpaolo; Marvaso, Giulia; Martellucci, Ignazio; Guglielmo, Annamaria; Pirtoli, Luigi; Sperlongano, Pasquale; Gridelli, Cesare; Caraglia, Michele; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Correale, Pierpaolo

    2013-01-01

    Bevacizumab is a humanized anti-VEGF monoclonal antibody able to produce clinical benefit in advanced non-squamous non-small-cell lung cancer (NSCLC) patients when combined to chemotherapy. At present, while there is a rising attention to bevacizumab-related adverse events and costs, no clinical or biological markers have been identified and validated for baseline patient selection. Preclinical findings suggest an important role for myeloid-derived inflammatory cells, such as neutrophils and monocytes, in the development of VEGF-independent angiogenesis. We conducted a retrospective analysis to investigate the role of peripheral blood cells count and of an inflammatory index, the neutrophil-to-lymphocyte ratio (NLR), as predictors of clinical outcome in NSCLC patients treated with bevacizumab plus chemotherapy. One hundred twelve NSCLC patients treated with chemotherapy ± bevacizumab were retrospectively evaluated for the predictive value of clinical or laboratory parameters correlated with inflammatory status. Univariate analysis revealed that a high number of circulating neutrophils and monocytes as well as a high NLR were associated with shorter progression-free survival (PFS) and overall survival (OS) in bevacizumab-treated patients only. We have thus developed a model based on the absence or the presence of at least one of the above-mentioned inflammatory parameters. We found that the absence of all variables strongly correlated with longer PFS and OS (9.0 vs. 7.0 mo, HR: 0.39, p = 0.002; and 20.0 vs. 12.0 mo, HR: 0.29, p < 0.001 respectively) only in NSCLC patients treated with bevacizumab plus chemotherapy. Our results suggest that a baseline systemic inflammatory status is marker of resistance to bevacizumab treatment in NSCLC patients. PMID:23760488

  11. Systemic inflammatory status at baseline predicts bevacizumab benefit in advanced non-small cell lung cancer patients.

    PubMed

    Botta, Cirino; Barbieri, Vito; Ciliberto, Domenico; Rossi, Antonio; Rocco, Danilo; Addeo, Raffaele; Staropoli, Nicoletta; Pastina, Pierpaolo; Marvaso, Giulia; Martellucci, Ignazio; Guglielmo, Annamaria; Pirtoli, Luigi; Sperlongano, Pasquale; Gridelli, Cesare; Caraglia, Michele; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Correale, Pierpaolo

    2013-06-01

    Bevacizumab is a humanized anti-VEGF monoclonal antibody able to produce clinical benefit in advanced non-squamous non-small-cell lung cancer (NSCLC) patients when combined to chemotherapy. At present, while there is a rising attention to bevacizumab-related adverse events and costs, no clinical or biological markers have been identified and validated for baseline patient selection. Preclinical findings suggest an important role for myeloid-derived inflammatory cells, such as neutrophils and monocytes, in the development of VEGF-independent angiogenesis. We conducted a retrospective analysis to investigate the role of peripheral blood cells count and of an inflammatory index, the neutrophil-to-lymphocyte ratio (NLR), as predictors of clinical outcome in NSCLC patients treated with bevacizumab plus chemotherapy. One hundred and twelve NSCLC patients treated with chemotherapy ± bevacizumab were retrospectively evaluated for the predictive value of clinical or laboratory parameters correlated with inflammatory status. Univariate analysis revealed that a high number of circulating neutrophils and monocytes as well as a high NLR were associated with shorter progression-free survival (PFS) and overall survival (OS) in bevacizumab-treated patients only. We have thus developed a model based on the absence or the presence of at least one of the above-mentioned inflammatory parameters. We found that the absence of all variables strongly correlated with longer PFS and OS (9.0 vs. 7.0 mo, HR: 0.39, p = 0.002; and 20.0 vs. 12.0 mo, HR: 0.29, p < 0.001 respectively) only in NSCLC patients treated with bevacizumab plus chemotherapy. Our results suggest that a baseline systemic inflammatory status is marker of resistance to bevacizumab treatment in NSCLC patients. PMID:23760488

  12. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer

    PubMed Central

    Morse, Michael A; Garst, Jennifer; Osada, Takuya; Khan, Shubi; Hobeika, Amy; Clay, Timothy M; Valente, Nancy; Shreeniwas, Revati; Sutton, Mary Ann; Delcayre, Alain; Hsu, Di-Hwei; Le Pecq, Jean-Bernard; Lyerly, H Kim

    2005-01-01

    Background There is a continued need to develop more effective cancer immunotherapy strategies. Exosomes, cell-derived lipid vesicles that express high levels of a narrow spectrum of cell proteins represent a novel platform for delivering high levels of antigen in conjunction with costimulatory molecules. We performed this study to test the safety, feasibility and efficacy of autologous dendritic cell (DC)-derived exosomes (DEX) loaded with the MAGE tumor antigens in patients with non-small cell lung cancer (NSCLC). Methods This Phase I study enrolled HLA A2+ patients with pre-treated Stage IIIb (N = 4) and IV (N = 9) NSCLC with tumor expression of MAGE-A3 or A4. Patients underwent leukapheresis to generate DC from which DEX were produced and loaded with MAGE-A3, -A4, -A10, and MAGE-3DPO4 peptides. Patients received 4 doses of DEX at weekly intervals. Results Thirteen patients were enrolled and 9 completed therapy. Three formulations of DEX were evaluated; all were well tolerated with only grade 1–2 adverse events related to the use of DEX (injection site reactions (N = 8), flu like illness (N = 1), and peripheral arm pain (N = 1)). The time from the first dose of DEX until disease progression was 30 to 429+ days. Three patients had disease progression before the first DEX dose. Survival of patients after the first DEX dose was 52–665+ days. DTH reactivity against MAGE peptides was detected in 3/9 patients. Immune responses were detected in patients as follows: MAGE-specific T cell responses in 1/3, increased NK lytic activity in 2/4. Conclusion Production of the DEX vaccine was feasible and DEX therapy was well tolerated in patients with advanced NSCLC. Some patients experienced long term stability of disease and activation of immune effectors PMID:15723705

  13. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    SciTech Connect

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-05-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p {<=}.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  14. Modularity and emergence: biology's challenge in understanding life.

    PubMed

    Lüttge, U

    2012-11-01

    This essay juxtaposes modularity and emergence in the consideration of biological systems at various scalar levels of spatio-temporal organisation. It is noted that reductionism, specialisation and modularity are basic prerequisites for understanding life. It is realised that increased progress of scientific biology in elucidating mechanisms at the level of modular components supports the accusation that the more it advances in materialistic description of details, the more it diverts from understanding the innate properties of life. It is clear that modularity, by taking the whole as the sum of its parts, is insufficient for understanding living systems. At the same time, however, there is emergence, as advocated by Robert Laughlin. Emergence after the integration of modules leads to completely new properties of individual organisms as unique unitary entities, and also of systems of organisms with synergistic and antagonistic interactions of the integrated species. The discussion is predominantly based on examples from plant biology. At hierarchically higher scalar levels emergent biological systems are networks integrating species, biotopes, ecosystems and the entire biosphere of Earth, also named Gaia by James Lovelock, in a natural scientific respect. While investigating modules remains essential, biology as a nature science needs to merge and integrate such information to be able to unfold emergence. Through efforts towards visualising and understanding emergent diversity and complexity, the research discipline of biology will provide invaluable contributions to understanding life, and thus refute the accusation that it diverts from embracing the innate properties of life. PMID:23016697

  15. Modular Connector Keying Concept

    NASA Technical Reports Server (NTRS)

    Ishman, Scott; Dukes, Scott; Warnica, Gary; Conrad, Guy; Senigla, Steven

    2013-01-01

    For panel-mount-type connectors, keying is usually "built-in" to the connector body, necessitating different part numbers for each key arrangement. This is costly for jobs that require small quantities. This invention was driven to provide a cost savings and to reduce documentation of individual parts. The keys are removable and configurable in up to 16 combinations. Since the key parts are separate from the connector body, a common design can be used for the plug, receptacle, and key parts. The keying can then be set at the next higher assembly.

  16. Modularity and stability in ecological communities

    PubMed Central

    Grilli, Jacopo; Rogers, Tim; Allesina, Stefano

    2016-01-01

    Networks composed of distinct, densely connected subsystems are called modular. In ecology, it has been posited that a modular organization of species interactions would benefit the dynamical stability of communities, even though evidence supporting this hypothesis is mixed. Here we study the effect of modularity on the local stability of ecological dynamical systems, by presenting new results in random matrix theory, which are obtained using a quaternionic parameterization of the cavity method. Results show that modularity can have moderate stabilizing effects for particular parameter choices, while anti-modularity can greatly destabilize ecological networks. PMID:27337386

  17. Quasispecies Theory for Evolution of Modularity

    PubMed Central

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent. PMID:25679649

  18. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  19. Modular hydrodam: concept definition study

    SciTech Connect

    Not Available

    1981-07-01

    The purpose of this investigation was to explore the potential for developing economical new ultra low-head (6 to 10 ft) sites using an innovative concept known as the Modular Hydrodam (MH). This concept combines the benefits of shop fabrication, installation of equipment in truck transportable, waterproof power modules, and prefabricated gate sections that can be located between the power modules. The size and weight of the power module permits it to be fully assembled and checked out in the manufacturer's shop. The module can then be broken down into four pieces and shipped by truck to the site. Once in place, concrete ballast will be added, as necessary, to prevent flotation. The following aspects were investigated: tubular and cross flow turbines; modularized components; the use of a cable support system for horizontal stability of the dam and powerhouse; and construction in the wet as well as in the dry.

  20. Modular Stellarator Fusion Reactor concept

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  1. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  2. Modular color evolution facilitated by a complex nanostructure in birds.

    PubMed

    Eliason, Chad M; Maia, Rafael; Shawkey, Matthew D

    2015-02-01

    The way in which a complex trait varies, and thus evolves, is critically affected by the independence, or modularity, of its subunits. How modular designs facilitate phenotypic diversification is well studied in nonornamental (e.g., cichlid jaws), but not ornamental traits. Diverse feather colors in birds are produced by light absorption by pigments and/or light scattering by nanostructures. Such structural colors are deterministically related to the nanostructures that produce them and are therefore excellent systems to study modularity and diversity of ornamental traits. Elucidating if and how these nanostructures facilitate color diversity relies on understanding how nanostructural traits covary, and how these traits map to color. Both of these remain unknown in an evolutionary context. Most dabbling ducks (Anatidae) have a conspicuous wing patch with iridescent color caused by a two-dimensional photonic crystal of small (100-200 nm) melanosomes. Here, we ask how this complex nanostructure affects modularity of color attributes. Using a combination of electron microscopy, spectrophotometry, and comparative methods, we show that nanostructural complexity causes functional decoupling and enables independent evolution of different color traits. These results demonstrate that color diversity is facilitated by how nanostructures function and may explain why some birds are more color-diverse than others. PMID:25494613

  3. Risk Factors for Brain Metastases in Locally Advanced Non-Small Cell Lung Cancer With Definitive Chest Radiation

    SciTech Connect

    Ji, Zhe; Bi, Nan; Wang, Jingbo; Hui, Zhouguang; Xiao, Zefen; Feng, Qinfu; Zhou, Zongmei; Chen, Dongfu; Lv, Jima; Liang, Jun; Fan, Chengcheng; Liu, Lipin; Wang, Luhua

    2014-06-01

    Purpose: We intended to identify risk factors that affect brain metastases (BM) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving definitive radiation therapy, which may guide the choice of selective prevention strategies. Methods and Materials: The characteristics of 346 patients with stage III NSCLC treated with thoracic radiation therapy from January 2008 to December 2010 in our institution were retrospectively reviewed. BM rates were analyzed by the Kaplan-Meier method. Multivariate Cox regression analysis was performed to determine independent risk factors for BM. Results: The median follow-up time was 48.3 months in surviving patients. A total of 74 patients (21.4%) experienced BM at the time of analysis, and for 40 (11.7%) of them, the brain was the first site of failure. The 1-year and 3-year brain metastasis rates were 15% and 28.1%, respectively. In univariate analysis, female sex, age ≤60 years, non-squamous cell carcinoma, T3-4, N3, >3 areas of lymph node metastasis, high lactate dehydrogenase and serum levels of tumor markers (CEA, NSE, CA125) before treatment were significantly associated with BM (P<.05). In multivariate analysis, age ≤60 years (P=.004, hazard ratio [HR] = 0.491), non-squamous cell carcinoma (P=.000, HR=3.726), NSE >18 ng/mL (P=.008, HR=1.968) and CA125 ≥ 35 U/mL (P=.002, HR=2.129) were independent risk factors for BM. For patients with 0, 1, 2, and 3 to 4 risk factors, the 3-year BM rates were 7.3%, 18.9%, 35.8%, and 70.3%, respectively (P<.001). Conclusions: Age ≤60 years, non-squamous cell carcinoma, serum NSE >18 ng/mL, and CA125 ≥ 35 U/mL were independent risk factors for brain metastasis. The possibilities of selectively using prophylactic cranial irradiation in higher-risk patients with LA-NSCLC should be further explored in the future.

  4. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  5. High density modular avionics packaging

    NASA Astrophysics Data System (ADS)

    Poradish, F.

    Requirements and design configurations for high density modular avionics packaging are examined, with particular attention given to new hardware trends, the design of high-density standard modules (HDSM's), and HDSM requirements. The discussion of the HDSM's covers thermal management, system testability, power supply, and performance specifications. The general design of an integrated HDSM demonstration system currently under construction is briefly described, and some test data are presented.

  6. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  7. FORTRAN M. FORTRAN Extensions for Modular Parallel Processing

    SciTech Connect

    Foster, Ian; Olson, Robert; Tuecke, Steven

    1993-08-01

    FORTRAN M is a small set of extensions to FORTRAN that supports a modular approach to the construction of sequential and parallel programs. FORTRAN M programs use channels to plug together processes which may be written in FORTRAN M or FORTRAN 77. Processes communicate by sending and receiving messages on channels. Channels and processes can be created dynamically, but programs remain deterministic unless specialized nondeterministic constructs are used.

  8. Deinterlacing using modular neural network

    NASA Astrophysics Data System (ADS)

    Woo, Dong H.; Eom, Il K.; Kim, Yoo S.

    2004-05-01

    Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.

  9. Is there a role of nab-paclitaxel in the treatment of advanced non-small cell lung cancer? The data suggest yes

    PubMed Central

    Villaruz, Liza C.; Socinski, Mark A.

    2016-01-01

    Nab-paclitaxel is a novel therapeutic agent, which was approved in combination with carboplatin in the first-line treatment of advanced non-small cell lung cancer (NSCLC) regardless of histologic subtype in the United States of America by the Food and Drug Administration in 2012 and by the European Commission in 2015. This approval was based on the results of a phase III clinical trial showing superior response rates compared with solvent-based paclitaxel in combination with carboplatin. This review will focus on the early development and clinical data to date supporting the use of nab-paclitaxel in advanced NSCLC. The clinical question central to this review is whether nab-paclitaxel has a place in the current therapeutic landscape of advanced NSCLC. PMID:26875112

  10. Effect of Amifostine on Response Rates in Locally Advanced Non-Small-Cell Lung Cancer Patients Treated on Randomized Controlled Trials: A Meta-Analysis

    SciTech Connect

    Mell, Loren K. . E-mail: lmell@radonc.uchicago.edu; Malik, Renuka; Komaki, Ritsuko; Movsas, Benjamin; Swann, R. Suzanne; Langer, Corey; Antonadou, Dosia; Koukourakis, Michael

    2007-05-01

    Purpose: Amifostine can reduce the cytotoxic effects of chemotherapy and radiotherapy in patients with locally advanced non-small-cell lung cancer, but concerns remain regarding its possible tumor-protective effects. Studies with sufficient statistical power to address this question are lacking. Methods and Materials: We performed a meta-analysis of all published clinical trials involving locally advanced non-small-cell lung cancer patients treated with radiotherapy with or without chemotherapy, who had been randomized to treatment with amifostine vs. no amifostine or placebo. Random effects estimates of the relative risk of overall, partial, and complete response were obtained. Results: Seven randomized trials involving 601 patients were identified. Response rate data were available for six studies (552 patients). The pooled relative risk (RR) estimate was 1.07 (95% confidence interval, 0.97-1.18; p = 0.18), 1.21 (95% confidence interval, 0.83-1.78; p = 0.33), and 0.99 (95% confidence interval, 0.78-1.26; p = 0.95) for overall, complete, and partial response, respectively (a RR >1 indicates improvement in response with amifostine compared with the control arm). The results were similar after sensitivity analyses. No evidence was found of treatment effect heterogeneity across the studies. Conclusions: Amifostine has no effect on tumor response in patients with locally advanced non-small-cell lung cancer treated with radiotherapy with or without chemotherapy.

  11. Modular microrobot for swimming in heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Meshkati; Fu, Henry; Kim, Minjun; Drexel University Team; University of Nevada, Reno Team

    2015-11-01

    One of the difficulties in navigating in vivo is to overcome many types of environments. This includes blood vessels of different diameters, fluids with different mechanical properties, and physical barriers. Inspired by conventional modular robotics, we demonstrate modular microrobotics using magnetic particles as the modular units to change size and shape through docking and undocking. Much like the vast variety of microorganisms navigating many different bio-environments, modular microswimmers have the ability to dynamically adapt different environments by reconfiguring the swimmers' physical characteristics. We model the docking as magnetic assembly and undocking mechanisms as deformation by hydrodynamic forces. We characterize the swimming capability of the modular microswimmer with different size and shapes. Finally, we demonstrate modular microrobotics by assembling a three-bead microswimmer into a nine-bead microswimmer, and then disassemble it into several independently swimming microswimmers..

  12. Intelligent CAD approach for modular design

    NASA Astrophysics Data System (ADS)

    Ouyang, Miao-an; Li, Chenggang; Zhong, Yifang; Yu, Jun; Zhou, Ji

    1996-03-01

    In this paper, the technology of Artificial Intelligence is introduced into a modular design and manufacturing for machine tools. The authors present a methodology to realize the modular conceptual design combined with traditional CAD, and develop an intelligent machine tools modular conceptual system. The problem-solving strategies are described in detail. The design model and system architecture are set up. Techniques and their incorporation of expert system, case-based reasoning and artificial neural networks are clarified.

  13. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  14. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance

    PubMed Central

    Jotte, Robert M; Spigel, David R

    2015-01-01

    Molecularly targeted therapies, directed against the features of a given tumor, have allowed for a personalized approach to the treatment of advanced non-small-cell lung cancer (NSCLC). The reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib had undergone turbulent clinical development until it was discovered that these agents have preferential activity in patients with NSCLC harboring activating EGFR mutations. Since then, a number of phase 3 clinical trials have collectively shown that EGFR-TKI monotherapy is more effective than combination chemotherapy as first-line therapy for EGFR mutation-positive advanced NSCLC. The next generation of EGFR-directed agents for EGFR mutation-positive advanced NSCLC is irreversible TKIs against EGFR and other ErbB family members, including afatinib, which was recently approved, and dacomitinib, which is currently being tested in phase 3 trials. As research efforts continue to explore the various proposed mechanisms of acquired resistance to EGFR-TKI therapy, agents that target signaling pathways downstream of EGFR are being studied in combination with EGFR TKIs in molecularly selected advanced NSCLC. Overall, the results of numerous ongoing phase 3 trials involving the EGFR TKIs will be instrumental in determining whether further gains in personalized therapy for advanced NSCLC are attainable with newer agents and combinations. This article reviews key clinical trial data for personalized NSCLC therapy with agents that target the EGFR and related pathways, specifically based on molecular characteristics of individual tumors, and mechanisms of resistance. PMID:26310719

  15. High performance backplane components for modular avionics

    NASA Astrophysics Data System (ADS)

    Groves-Kirkby, C. J.; Goodwin, M. J.; Hall, J. P.; Glynn, G.; Hankey, J.; Salik, M. D.; Goodfellow, R. C.; Jibb, D. J.

    1994-10-01

    The design and development of optoelectronic transceiver and optical pathway components for application in a modular avionics backplane demonstrator system are described and initial performance results are presented.

  16. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  17. Models of modular inflation and their phenomenological consequences

    SciTech Connect

    Ben-Dayan, Ido; Brustein, Ram; De Alwis, Senarath P E-mail: ramyb@bgu.ac.il

    2008-07-15

    We study models of modular inflation of the form expected to arise from low energy effective actions of superstring theories. We argue on general grounds that the most likely models are small field models in which the inflaton moves about a Planck distance from an extremum of the potential. We then explain the generic difficulties in designing small field models of supergravity modular inflation. We show that if the Kaehler potential of the inflaton is logarithmic as in perturbative string theories, then it is not possible to satisfy the slow-roll conditions for any superpotential. We find that if the corrections to the Kaehler potential are large enough that it can be approximated by a canonical Kaehler potential in the vicinity of the extremum, then viable slow-roll inflation is possible and we give a prescription for designing such models. In this case, several parameters have to be tuned to a fraction of a per cent. Generic models of this class predict a red spectrum of scalar perturbations and negligible spectral index running. They also predict a characteristic suppression of tensor perturbations despite the high scale of inflation. Consequently, a detection of primordial tensor anisotropies or spectral index running in cosmic microwave background observations in the foreseeable future will rule out this entire class of modular inflation models.

  18. Predictive potential role of GSTs gene polymorphisms in the treatment outcome of advanced non-small cell lung cancer patients.

    PubMed

    Liu, Kaixiong; Lin, Qichang; Ding, Haibo; Jin, Yongxu; Chen, Gongping

    2015-01-01

    This study aimed to investigate the possible association between GSTP1, GSTM1, and GSTT1 polymorphisms and treatment outcome of advanced NSCLC. Between October 2009 and October 2011, a total of 308 patients of NSCLC on stage IIIA, IIIB or IV, treated with cisplatin-based chemotherapy were included. Polymerase chain reaction-restriction fragment length polymorphism was used to genotype the GSTP1 and GSTM1, and GSTT1 polymorphisms. We found that the IIe/Val and Val/Val genotypes of GSTP1 showed more CR+PR to chemotherapy in advanced NSCLC when compared with IIe/IIe genotype, and the Ors (95% CI) were 0.37 (0.18-0.71) and 0.15 (0.07-0.38). The IIe/Val and Val/Val genotypes of GSTP1 were associated with longer overall survival of advanced NSCLC when compared with the IIe/IIe genotype (For IIe/Val vs IIe/IIe, 37.63 ± 2.01 months vs 30.25 ± 2.06 months; for Val/Val vs IIe/IIe, 39.84 ± 3.36 months vs 30.25 ± 2.06 months). In the Cox proportional hazards model, the IIe/Val and Val/Val genotypes significantly decreased risk of death from all causes in patients with advanced NSCLC, and the HRs (95% CIs) were 0.51 (0.28-0.94) and 0.35 (0.16-0.78), respectively. We found that the GSTP1 polymorphisms might affect the clinical outcome of patients with advanced NSCLC, and our results could help us to facilitate therapeutic decision for individualized therapy. PMID:26885019

  19. Parameter and cost optimizations for a modular stellarator reactor

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.; Johnson, P. C.; Watson, C. J. H.

    1983-02-01

    The physical scaling and cost scaling of a modular stellarator reactor are described. It is shown that configurations based on l=2 are best able to support adequate beta, and physical relationships are derived which enable the geometry and parameters of an l=2 modular stellarator to be defined. A cost scaling for the components of the nuclear island is developed using Starfire (tokamak reactor study) engineering as a basis. It is shown that for minimum cost the stellarator should be of small aspect ratio. For a 4000 MWth plant, as Starfire, the optimum configuration is a 15 coil, 3 field period, l=2 device with a major radius of 16 m and a plasma minor radius of 2 m; and with a conservative wall loading of 2 MW/m2 and an average beta of 3.9%; the estimated cost per kilowatt (electrical) is marginally (7%) greater than Starfire.

  20. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.