Science.gov

Sample records for advanced sodium-cooled reactors

  1. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  2. A 100 MWe advanced sodium-cooled fast reactor core concept

    SciTech Connect

    Kim, T. K.; Grandy, C.; Hill, R. N.

    2012-07-01

    An Advanced sodium-cooled Fast Reactor core concept (AFR-100) was developed targeting a small electrical grid to be transportable to the plant site and operable for a long time without frequent refueling. The reactor power rating was strategically decided to be 100 MWe, and the core barrel diameter was limited to 3.0 m for transportability. The design parameters were determined by relaxing the peak fast fluence limit and bulk coolant outlet temperature to beyond irradiation experience assuming that advanced cladding and structural materials developed under US-DOE programs would be available when the AFR-100 is deployed. With a de-rated power density and U-Zr binary metallic fuel, the AFR-100 can maintain criticality for 30 years without refueling. The average discharge burnup of 101 MWd/kg is comparable to conventional design values, but the peak discharge fast fluence of {approx}6x10{sup 23} neutrons/cm{sup 2} is beyond the current irradiation experiences with HT-9 cladding. The evaluated reactivity coefficients provide sufficient negative feedbacks and the reactivity control systems provide sufficient shutdown margins. The integral reactivity parameters obtained from quasi-static reactivity balance analysis indicate that the AFR-100 meets the sufficient conditions for acceptable asymptotic core outlet temperature following postulated unprotected accidents. Additionally, the AFR-100 has sufficient thermal margins by grouping the fuel assemblies into eight orifice zones. (authors)

  3. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  4. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    SciTech Connect

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  5. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  6. The Industrial Sodium Cooled Fast Reactor

    SciTech Connect

    Samuel E. Bays; Haihua Zhao; Hongbin Zhang

    2009-04-01

    This paper investigates the use of enrichment and moderator zoning methods for optimizing the r-z power distribution within sodium cooled fast reactors. These methods allow overall greater fuel utilization in the core resulting in more fuel being irradiated near the maximum allowed thermal power. The peak-to-average power density was held to 1.18. This core design, in conjunction with a multiple-reheat Brayton power conversion system, has merit for producing an industrial level of electrical output (2400MWth, 1000MWe) from a relatively compact core size. The total core radius, including reflectors and shields, was held to 1.78m. Preliminary safety analysis suggests that positive reactivity insertion resulting from a leak between the sodium primary loop and helium power conversion system can be mitigated using simple gas-liquid centripetal separation strategies in the plant’s primary loop.

  7. A resting bottom sodium cooled fast reactor

    SciTech Connect

    Costes, D.

    2012-07-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  8. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  9. Prism sodium-cooled reactor design and performance

    SciTech Connect

    Kwant, W.; Magee, P.M.; Patel, M.R. )

    1989-01-01

    The Power Reactor Inherently Safe Module (PRISM) program is being conducted at General Electric (GE) under U.S. Department of Energy sponsorship to develop a conceptual design for an advanced sodium-cooled liquid-metal reactor plant. The PRISM design emphasizes inherent safety, modular construction, and factory fabrication. A PRISM power plant includes a number of reactor modules, which will be fabricated in a factory and shipped by whatever combination of barge, rail, and road transport that is most economical for a particular site. The target commercial PRISM plant utilizes nine reactor modules arranged in three identical 465-MW(electric) power blocks for an overall plant net electrical rating of 1395 MW(electric). Each power block has three identical reactor modules, each with its own steam generator, that jointly supply saturated steam to a single turbine generator. The PRISM's features of fewer and simpler safety systems, seismic isolation, passive decay heat removal, inherent reactivity control, and generous margins from structural and fuel damage limits during potential accident situations will result in significant gains in public safety and protection of the owner's investment. The use of standardized modular construction and extensive factory fabrication is resulting in a plant design that is economically competitive against projected coal plants and other nuclear design approaches.

  10. Startup of the FFTF sodium cooled reactor. [Acceptance Test Program

    SciTech Connect

    Redekopp, R.D.; Umek, A.M.

    1981-03-01

    The Fast Flux Test Facility (FFTF), located on the Department of Energy (DOE) Hanford Reservation near Richland, Washington, is a 3 Loop 400 MW(t) sodium cooled fast reactor with a primary mission to test fuels and materials for development of the Liquid Metal Fast Breeder Reactor (LMFBR). Bringing FFTF to a condition to accomplish this mission is the goal of the Acceptance Test Program (ATP). This program was the mechanism for achieving startup of the FFTF. Highlights of the ATP involving the system inerting, liquid metal and inerted cell testing and initial ascent to full power are discussed.

  11. Shape optimization of a sodium cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Schmitt, Damien; Allaire, Grégoire; Pantz, Olivier; Pozin, Nicolas

    2014-06-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth.(1, 2) Usual optimization methods for core conception are based on a parametric description of a given core design(3).(4) New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints.(5, 6) First studies show that these methods could be applied to sodium cooled core conception.(7) In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a get realistic core layout. Its caracteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas.

  12. Advanced MOX Core Design Study of Sodium Cooled Reactors in Current Feasibility Study on Commercialized Fast Reactor Cycle Systems in Japan

    SciTech Connect

    Mizuno, T.; Niwa, H.

    2002-07-01

    The Sodium cooled MOX core design studies are performed with the target burnup of 150 GWd/t and measures against the recriticality issues in core disruptive accidents (CDAs). Four types of core are comparatively studied in viewpoints of core performance and reliability. Result shows that all the types of core satisfy the target and that the homogeneous core with axial blanket partial elimination subassembly is the most superior concept in case the effectiveness of measures against recriticality issues by the axial blanket partial elimination is assured. (authors)

  13. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  14. Qualification of Simulation Software for Safety Assessment of Sodium Cooled Fast Reactors. Requirements and Recommendations

    SciTech Connect

    Brown, Nicholas R.; Pointer, William David; Sieger, Matt; Flanagan, George F.; Moe, Wayne; HolbrookINL, Mark

    2016-04-01

    The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.

  15. An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor

    SciTech Connect

    Haihua Zhao; Hongbin Zhang

    2007-11-01

    The existing sodium cooled fast reactors (SFR) have two types of designs – loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphénix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL’s Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

  16. Final report-passive safety optimization in liquid sodium-cooled reactors.

    SciTech Connect

    Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

    2007-08-13

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  17. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    SciTech Connect

    C. Fiorina; N. E. Stauff; F. Franceschini; M. T. Wenner; A. Stanculescu; T. K. Kim; A. Cammi; M. E. Ricotti; R. N. Hill; T. A. Taiwo; M. Salvatores

    2013-12-01

    The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.

  18. Conceptual design features of the Kalimer-600 sodium cooled fast reactor

    SciTech Connect

    Hahn, Dohee; Kim, Yeong-Il; Kim, Seong-O; Lee, Jae-Han; Lee, Yong-Bum; Jeong, Hae-Yong

    2007-07-01

    An advanced sodium cooled fast reactor concept, KALIMER-600, has been developed by the Korea Atomic Energy Research Institute to satisfy the Gen-IV technology goals of sustainability, safety and reliability, economics and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on a proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design were verified through a safety analysis of its bounding events. The results for various unprotected events imply that the KALIMER-600 design can accommodate all the analyzed ATWS events. This self-regulation capability of the power without a scram is mainly attributed to the inherent reactivity feedback mechanisms implemented in the metal fuel core design and completely passive decay heat removal system. (authors)

  19. Study of guided wave transmission through complex junction in sodium cooled reactor

    SciTech Connect

    Elie, Q.; Le Bourdais, F.; Jezzine, K.; Baronian, V.

    2015-07-01

    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presented in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)

  20. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    SciTech Connect

    Takeda, T.; Shimazu, Y.; Hibi, K.; Fujimura, K.

    2012-07-01

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of this project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)

  1. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors

    SciTech Connect

    Hongbin Zhang; Haihua Zhao; Cliff Davis

    2008-06-01

    An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heat from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet

  2. Ways of improvement for the materials of sodium cooled fast reactors

    SciTech Connect

    Horowitz, E.

    2012-07-01

    The French sodium cooled prototype reactor ASTRID will take into account 'Generation IV' requirements, especially a long operational life-time (60 years) and a high efficiency. The good behavior of austenitic steel AISI316L(N), should be confirmed for a use, in moderately irradiated and unirradiated parts of ASTRID. Parts recovered from dismantled French sodium-cooled reactors will be characterized. Further experiments must be carried out concerning ageing of these components. Other materials will be chosen for fuel wrapping and cladding, in order to reduce creep and swelling under irradiation, (either conventional, or oxide-dispersed strengthened steels (ODSS). Corrosion of ODSS in the presence of sodium needs a serious assessment The lifetime of primary pumps components made of Duplex steels should also be assessed. The disruptions in steam generator tubes should be minimized and controlled; therefore, optimised designs and geometries must be established before defining the corresponding materials. Either Modified 9Cr1Mo or Incoloy 800H, might be candidates;it will be necessary to check whether austenitic steels are compatible with Modified 9Cr1Mo or Incoloy 800H in the same circuit. For all materials, the best manufacturing processes must be combined with thermal, mechanical treatments; calculations of phase diagrams (CALPHAD) might be used to optimise both treatments and chemical compositions. (authors)

  3. Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors

    SciTech Connect

    Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

    2008-09-01

    An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

  4. Inherent Prevention and Mitigation of Severe Accident Consequences in Sodium-Cooled Fast Reactors

    SciTech Connect

    Roald A. Wigeland; James E. Cahalan

    2011-04-01

    Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.

  5. Post-dryout heat transfer in sodium-cooled fast reactors

    SciTech Connect

    Cheung, F.B.; Pedersen, D.R.

    1982-01-01

    The heat-transfer behavior of a heat-generating, dry, particulate bed resulting from a postulated core meltdown accident in sodium-cooled fast reactors is investigated theoretically. The processes of combined conduction and thermal radiation in the dry particulate bed and transient heat conduction in the structure in contact with the bed are modeled. Also modeled is the contribution of direct gamma-ray radiation to heat transfer. Results for the transient temperature distribution of the system are obtained by the method of successive approximation. Various post-dryout situations are considered and the conditions leading either to an incipient melting system or to a coolable non-melting system are identified. These are found to depend on four groups of dimensionless parameters, namely, the thermal property group, the radiation and internal heating group, the gamma-ray heating group, and the external cooling group.

  6. Impact of nuclear data on sodium-cooled fast reactor calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril

    2016-03-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.

  7. Safety design approach for external events in Japan sodium-cooled fast reactor

    SciTech Connect

    Yamano, H.; Kubo, S.; Tani, A.; Nishino, H.; Sakai, T.

    2012-07-01

    This paper describes a safety design approach for external events in the design study of Japan sodium-cooled fast reactor. An emphasis is introduction of a design extension external condition (DEEC). In addition to seismic design, other external events such as tsunami, strong wind, abnormal temperature, etc. were addressed in this study. From a wide variety of external events consisting of natural hazards and human-induced ones, a screening method was developed in terms of siting, consequence, frequency to select representative events. Design approaches for these events were categorized on the probabilistic, statistical and deterministic basis. External hazard conditions were considered mainly for DEECs. In the probabilistic approach, the DEECs of earthquake, tsunami and strong wind were defined as 1/10 of exceedance probability of the external design bases. The other representative DEECs were also defined based on statistical or deterministic approaches. (authors)

  8. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    SciTech Connect

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  9. The development of a realistic source term for sodium-cooled fast reactors : assessment of current status and future needs.

    SciTech Connect

    LaChance, Jeffrey L.; Phillips, Jesse; Parma, Edward J., Jr.; Olivier, Tara Jean; Middleton, Bobby D.

    2011-06-01

    Sodium-cooled fast reactors (SFRs) continue to be proposed and designed throughout the United States and the world. Although the number of SFRs actually operating has declined substantially since the 1980s, a significant interest in advancing these types of reactor systems remains. Of the many issues associated with the development and deployment of SFRs, one of high regulatory importance is the source term to be used in the siting of the reactor. A substantial amount of modeling and experimental work has been performed over the past four decades on accident analysis, sodium coolant behavior, and radionuclide release for SFRs. The objective of this report is to aid in determining the gaps and issues related to the development of a realistic, mechanistically derived source term for SFRs. This report will allow the reader to become familiar with the severe accident source term concept and gain a broad understanding of the current status of the models and experimental work. Further, this report will allow insight into future work, in terms of both model development and experimental validation, which is necessary in order to develop a realistic source term for SFRs.

  10. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    SciTech Connect

    Ponciroli, Roberto; Passerini, Stefano; Vilim, Richard B.

    2016-01-01

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based on the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.

  11. Experimental Study on Flow Optimization in Upper Plenum of Reactor Vessel for a Compact Sodium-Cooled Fast Reactor

    SciTech Connect

    Kimura, Nobuyuki; Hayashi, Kenji; Kamide, Hideki; Itoh, Masami; Sekine, Tadashi

    2005-11-15

    An innovative sodium-cooled fast reactor has been investigated in a feasibility study of fast breeder reactor cycle systems in Japan. A compact reactor vessel and a column-type upper inner structure with a radial slit for an arm of a fuel-handling machine (FHM) are adopted. Dipped plates are set in the reactor vessel below the free surface to prevent gas entrainment. We performed a one-tenth-scaled model water experiment for the upper plenum of the reactor vessel. Gas entrainment was not observed in the experiment under the same velocity condition as the reactor. Three vortex cavitations were observed near the hot-leg inlet. A vertical rib on the reactor vessel wall was set to restrict the rotating flow near the hot leg. The vortex cavitation between the reactor vessel wall and the hot leg was suppressed by the rib under the same cavitation factor condition as in the reactor. The cylindrical plug was installed through the hole in the dipped plates for the FHM to reduce the flow toward the free surface. It was effective when the plug was submerged into the middle height in the upper plenum. This combination of two components had a possibility to optimize the flow in the compact reactor vessel.

  12. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    SciTech Connect

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  13. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  14. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

    SciTech Connect

    Ronald Farris; David Gertman; Jacques Hugo

    2014-03-01

    This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would

  15. Validation of CONTAIN-LMR code for accident analysis of sodium-cooled fast reactor containments

    SciTech Connect

    Gordeev, S.; Hering, W.; Schikorr, M.; Stieglitz, R.

    2012-07-01

    CONTAIN-LMR 1 is an analytical tool for the containment performance of sodium cooled fast reactors. In this code, the modelling for the sodium fire is included: the oxygen diffusion model for the sodium pool fire, and the liquid droplet model for the sodium spray fire. CONTAIN-LMR is also able to model the interaction of liquid sodium with concrete structure. It may be applicable to different concrete compositions. Testing and validation of these models will help to qualify the simulation results. Three experiments with sodium performed in the FAUNA facility at FZK have been used for the validation of CONTAIN-LMR. For pool fire tests, calculations have been performed with two models. The first model consists of one gas cell representing the volume of the burn compartment. The volume of the second model is subdivided into 32 coupled gas cells. The agreement between calculations and experimental data is acceptable. The detailed pool fire model shows less deviation from experiments. In the spray fire, the direct heating from the sodium burning in the media is dominant. Therefore, single cell modeling is enough to describe the phenomena. Calculation results have reasonable agreement with experimental data. Limitations of the implemented spray model can cause the overestimation of predicted pressure and temperature in the cell atmosphere. The ability of the CONTAIN-LMR to simulate the sodium pool fire accompanied by sodium-concrete reactions was tested using the experimental study of sodium-concrete interactions for construction concrete as well as for shielding concrete. The model provides a reasonably good representation of chemical processes during sodium-concrete interaction. The comparison of time-temperature profiles of sodium and concrete shows, that the model requires modifications for predictions of the test results. (authors)

  16. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    SciTech Connect

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  17. Fuel Cycle System Analysis Implications of Sodium-Cooled Metal-Fueled Fast Reactor Transuranic Conversion Ratio

    SciTech Connect

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays; Gretchen E. Matthern; Jacob J. Jacobson; Ryan Clement; David W. Gerts

    2013-03-01

    If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR [approximately] 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to [approximately]1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron fluence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR [right arrow] FR fuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time

  18. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  19. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    SciTech Connect

    Moe, Wayne; Honma, George

    2016-03-01

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical information is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.

  20. In vessel detection of delayed neutron emitters from clad failure in sodium cooled nuclear reactors: An estimation of the signal

    NASA Astrophysics Data System (ADS)

    Filliatre, P.; Jammes, C.; Chapoutier, N.; Jeannot, J.-P.; Jadot, F.; Batail, R.; Verrier, D.

    2014-04-01

    The detection of clad failures is mandatory in sodium-cooled fast neutron reactors in compliance with the "clean sodium" concept. An in-vessel detection system, sensitive to delayed neutrons from fission products released into the primary coolant by failures, partially tested in SUPERPHENIX, is foreseen in current SFR projects in order to reduce significantly the delay before an alarm is issued. In this paper, an estimation of the signal received by such a system in case of a failure is derived, taking the French project ASTRID as a working example. This failure induced signal is compared to that of the contribution of the neutrons from the core itself. The sensitivity of the system is defined in terms of minimal detectable surface of clad failure. Possible solutions to improve this sensitivity are discussed, involving either the sensor itself, or the hydraulic design of the vessel in the early stage of the reactor conception.

  1. Application of GRS method to evaluation of uncertainties of calculation parameters of perspective sodium-cooled fast reactor

    SciTech Connect

    Peregudov, A.; Andrianova, O.; Raskach, K.; Tsibulya, A.

    2012-07-01

    A number of recent studies have been devoted to the estimation of errors of reactor calculation parameters by the GRS (Generation Random Sampled) method. This method is based on direct sampling input data resulting in formation of random sets of input parameters which are used for multiple calculations. Once these calculations are performed, statistical processing of the calculation results is carried out to determine the mean value and the variance of each calculation parameter of interest. In our study this method is used for estimation of errors of calculation parameters (K{sub eff}, power density, dose rate) of a perspective sodium-cooled fast reactor. Neutron transport calculations were performed by the nodal diffusion code TRIGEX and Monte Carlo code MMK. (authors)

  2. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    SciTech Connect

    Ferroni, Paolo; Tatli, Emre; Czerniak, Luke; Sienicki, James J.; Chien, Hual-Te; Yoichi, Momozaki; Bakhtiari, Sasan

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  3. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    NASA Astrophysics Data System (ADS)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  4. Investigation of Nuclear Data Libraries with TRIPOLI-4 Monte Carlo Code for Sodium-cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Lee, Y.-K.; Brun, E.

    2014-04-01

    The Sodium-cooled fast neutron reactor ASTRID is currently under design and development in France. Traditional ECCO/ERANOS fast reactor code system used for ASTRID core design calculations relies on multi-group JEFF-3.1.1 data library. To gauge the use of ENDF/B-VII.0 and JEFF-3.1.1 nuclear data libraries in the fast reactor applications, two recent OECD/NEA computational benchmarks specified by Argonne National Laboratory were calculated. Using the continuous-energy TRIPOLI-4 Monte Carlo transport code, both ABR-1000 MWth MOX core and metallic (U-Pu) core were investigated. Under two different fast neutron spectra and two data libraries, ENDF/B-VII.0 and JEFF-3.1.1, reactivity impact studies were performed. Using JEFF-3.1.1 library under the BOEC (Beginning of equilibrium cycle) condition, high reactivity effects of 808 ± 17 pcm and 1208 ± 17 pcm were observed for ABR-1000 MOX core and metallic core respectively. To analyze the causes of these differences in reactivity, several TRIPOLI-4 runs using mixed data libraries feature allow us to identify the nuclides and the nuclear data accounting for the major part of the observed reactivity discrepancies.

  5. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  6. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    NASA Astrophysics Data System (ADS)

    Plevacova, K.; Journeau, C.; Piluso, P.; Zhdanov, V.; Baklanov, V.; Poirier, J.

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U x, Zr y)O 2-z water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO 2, the zirconium carbide coating keeps its role of protective barrier with UO 2-Al 2O 3 below 2000 °C but does not resist to a UO 2-Eu 2O 3 mixture.

  7. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    SciTech Connect

    Samuel Bays; Pavel Medvedev; Michael Pope; Rodolfo Ferrer; Benoit Forget; Mehdi Asgari

    2009-04-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  8. Performance of low smeared density sodium-cooled fast reactor metal fuel

    SciTech Connect

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  9. Performance of low smeared density sodium-cooled fast reactor metal fuel

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Chichester, H. J. M.; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-10-01

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  10. Ferritic steels for sodium-cooled fast reactors: Design principles and challenges

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Vijayalakshmi, M.

    2010-09-01

    An overview of the current status of development of ferritic steels for emerging fast reactor technologies is presented in this paper. The creep-resistant 9-12Cr ferritic/martensitic steels are classically known for steam generator applications. The excellent void swelling resistance of ferritic steels enabled the identification of their potential for core component applications of fast reactors. Since then, an extensive knowledge base has been generated by identifying the empirical correlations between chemistry of the steels, heat treatment, structure, and properties, in addition to their in-reactor behavior. A few concerns have also been identified which pertain to high-temperature irradiation creep, embrittlement, Type IV cracking in creep-loaded weldments, and hard zone formation in dissimilar joints. The origin of these problems and the methodologies to overcome the limitations are highlighted. Finally, the suitability of the ferritic steels is re-evaluated in the emerging scenario of the fast reactor technology, with a target of achieving better breeding ratio and improved thermal efficiency.

  11. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    SciTech Connect

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  12. Performance of low smeared density sodium-cooled fast reactor metal fuel

    DOE PAGES

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; ...

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactormore » designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less

  13. Design and Testing of D.C. Conduction Pump for Sodium Cooled Fast Reactor

    SciTech Connect

    Nashine, B.K.; Dash, S.K.; Gurumurthy, K.; Rajan, M.; Vaidyanathan, G.

    2006-07-01

    DC Conduction pump immersed in sodium forms a part of Failed Fuel Location Module (FFLM) of 500 MWe Fast Breeder Reactor (PFBR) currently under construction. FFLM housed in control plug of the reactor, is used to locate the failed fuel sub-assembly due to clad rupture in the fuel pin. The DC conduction pump sucks the sodium from the top of fuel sub-assemblies through the selector valve and pumps the sodium to hold up for detecting the presence of delayed neutrons. Presence of delayed neutron is the indication of failure in the sampled fuel sub-assembly. The DC Conduction Pump was chosen because of its low voltage operation (2 V) where argon/alumina ceramic can provide required electrical insulation even at operating temperature of 560 deg. C without much complication on the manufacturing front. Sampling of sodium from top of different sub-assemblies is achieved by operation of selector valve in-conjunction with the drive motor. FFLM requires the pump to be immersed in sodium pool at {approx} 560 deg. C located above the fuel sub-assemblies in the reactor. The Pump of 0.36 m{sup 3}/h capacity and developing 1.45 Kg/ cm{sup 2} pressure was designed, manufactured and tested. The DC Conduction Pump has a stainless steel duct filled with liquid sodium, which is to be pumped. The stainless steel duct is kept in magnetic field obtained by means of electromagnet. The electromagnet is made of soft iron and the coil made of copper conductor surrounds the yoke portion of electromagnet. The external DC source of 2000 Amps, 2 Volt is used to send current through sodium placed in the stainless steel duct and the same current is sent through copper coil of electromagnet for producing required magneto motive force, which in turn produces required magnetic field. The interaction of current in sodium (placed in stainless steel duct) and magnetic field produced by the electromagnet in the duct region produces pumping force in the sodium. Electromagnet, copper coil, stainless steel

  14. CFD Analysis of Upper Plenum Flow for a Sodium-Cooled Small Modular Reactor

    SciTech Connect

    Kraus, A.; Hu, R.

    2015-01-01

    Upper plenum flow behavior is important for many operational and safety issues in sodium fast reactors. The Prototype Gen-IV Sodium Fast Reactor (PGSFR), a pool-type, 150 MWe output power design, was used as a reference case for a detailed characterization of upper plenum flow for normal operating conditions. Computational Fluid Dynamics (CFD) simulation was utilized with detailed geometric modeling of major structures. Core outlet conditions based on prior system-level calculations were mapped to approximate the outlet temperatures and flow rates for each core assembly. Core outlet flow was found to largely bypass the Upper Internal Structures (UIS). Flow curves over the shield and circulates within the pool before exiting the plenum. Cross-flows and temperatures were evaluated near the core outlet, leading to a proposed height for the core outlet thermocouples to ensure accurate assembly-specific temperature readings. A passive scalar was used to evaluate fluid residence time from core outlet to IHX inlet, which can be used to assess the applicability of various methods for monitoring fuel failure. Additionally, the gas entrainment likelihood was assessed based on the CFD simulation results. Based on the evaluation of velocity gradients and turbulent kinetic energies and the available gas entrainment criteria in the literature, it was concluded that significant gas entrainment is unlikely for the current PGSFR design.

  15. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    SciTech Connect

    Riber Marklund, A.; Prakash, V.; Rajan, K.K.

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  16. Safe and Effective Deactivation of Metallic Sodium Filled Scrap and Cold Traps From Sodium-cooled Nuclear Reactor D and D - 12176

    SciTech Connect

    Nester, Dean; Crocker, Ben; Smart, Bill

    2012-07-01

    As part of the Plateau Remediation Project at US Department of Energy's Hanford, Washington site, CH2M Hill Plateau Remediation Company (CHPRC) contracted with IMPACT Services, LLC to receive and deactivate approximately 28 cubic meters of sodium metal contaminated debris from two sodium-cooled research reactors (Enrico Fermi Unit 1 and the Fast Flux Test Facility) which had been stored at Hanford for over 25 years. CHPRC found an off-site team composed of IMPACT Services and Commodore Advanced Sciences, Inc., with the facilities and technological capabilities to safely and effectively perform deactivation of this sodium metal contaminated debris. IMPACT Services provided the licensed fixed facility and the logistical support required to receive, store, and manage the waste materials before treatment, and the characterization, manifesting, and return shipping of the cleaned material after treatment. They also provided a recycle outlet for the liquid sodium hydroxide byproduct resulting from removal of the sodium from reactor parts. Commodore Advanced Sciences, Inc. mobilized their patented AMANDA unit to the IMPACT Services site and operated the unit to perform the sodium removal process. Approximately 816 Kg of metallic sodium were removed and converted to sodium hydroxide, and the project was accomplished in 107 days, from receipt of the first shipment at the IMPACT Services facility to the last outgoing shipment of deactivated scrap metal. There were no safety incidents of any kind during the performance of this project. The AMANDA process has been demonstrated in this project to be both safe and effective for deactivation of sodium and NaK. It has also been used in other venues to treat other highly reactive alkali metals, such as lithium (Li), potassium (K), NaK and Cesium (Cs). (authors)

  17. Metallic fuels for advanced reactors

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  18. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    SciTech Connect

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-31

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  19. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-01

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  20. Challenges in the Development of Advanced Reactors

    SciTech Connect

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  1. Impact of reducing sodium void worth on the severe accident response of metallic-fueled sodium-cooled reactors

    SciTech Connect

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-03-01

    Analyses have performed on the severe accident response of four 90 MWth reactor cores, all designed using the metallic fuel of the Integrated Fast Reactor (IFR) concept. The four core designs have different sodium void worth, in the range of {minus}3$ to 5$. The purpose of the investigation is to determine the improvement in safety, as measured by the severe accident consequences, that can be achieved from a reduction in the sodium void worth for reactor cores designed using the IFR concept.

  2. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    NASA Astrophysics Data System (ADS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  3. Investigation of plant control strategies for the supercritical C0{sub 2}Brayton cycle for a sodium-cooled fast reactor using the plant dynamics code.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J.

    2011-04-12

    The development of a control strategy for the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle has been extended to the investigation of alternate control strategies for a Sodium-Cooled Fast Reactor (SFR) nuclear power plant incorporating a S-CO{sub 2} Brayton cycle power converter. The SFR assumed is the 400 MWe (1000 MWt) ABR-1000 preconceptual design incorporating metallic fuel. Three alternative idealized schemes for controlling the reactor side of the plant in combination with the existing automatic control strategy for the S-CO{sub 2} Brayton cycle are explored using the ANL Plant Dynamics Code together with the SAS4A/SASSYS-1 Liquid Metal Reactor (LMR) Analysis Code System coupled together using the iterative coupling formulation previously developed and implemented into the Plant Dynamics Code. The first option assumes that the reactor side can be ideally controlled through movement of control rods and changing the speeds of both the primary and intermediate coolant system sodium pumps such that the intermediate sodium flow rate and inlet temperature to the sodium-to-CO{sub 2} heat exchanger (RHX) remain unvarying while the intermediate sodium outlet temperature changes as the load demand from the electric grid changes and the S-CO{sub 2} cycle conditions adjust according to the S-CO{sub 2} cycle control strategy. For this option, the reactor plant follows an assumed change in load demand from 100 to 0 % nominal at 5 % reduction per minute in a suitable fashion. The second option allows the reactor core power and primary and intermediate coolant system sodium pump flow rates to change autonomously in response to the strong reactivity feedbacks of the metallic fueled core and assumed constant pump torques representing unchanging output from the pump electric motors. The plant behavior to the assumed load demand reduction is surprising close to that calculated for the first option. The only negative result observed is a slight increase in the intermediate

  4. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  5. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  6. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  7. Estimation of the sub-criticality of the sodium-cooled fast reactor Monju using the modified neutron source multiplication method

    SciTech Connect

    Truchet, G.; Van Rooijen, W. F. G.; Shimazu, Y.; Yamaguchi, K.

    2012-07-01

    The Modified Neutron Source Method (MNSM) is applied to the Monju reactor. This static method to estimate sub-criticality has already given good results on commercial Pressurized Water Reactors. The MNSM consists both in the extraction of the fundamental mode seen by a detector to avoid the effect of higher modes near sources, and the correction of flux distortion effects due to control rod movement. Among Monju's particularities that have a big influence on MNSM factors are: the presence of two californium sources and the position of the detector which is located far from the core outside of the reactor vessel. The importance of spontaneous fission and ({alpha}, n) reactions which have increased during the shutdown period of 15 years will also be discussed. The relative position of detectors and sources deeply affect the correction factors in some regions. In order to evaluate the detector count rate, an analytical propagation has been conducted from the reactor vessel. For two subcritical states, an estimation of the reactivity has been made and compared to experimental data obtained in the restart experiments at Monju (2010). (authors)

  8. Advanced Reactors Around the World

    SciTech Connect

    Majumdar, Debu

    2003-09-01

    At the end of 2002, 441 nuclear power plants were operating around the globe and providing 17% of the world's electricity. Although the rate of population growth has slowed, recent United Nations data suggest that two billion more people will be added to the world by 2050. A special report commissioned by the Intergovernmental Panel on Climate Change estimated that electricity demand would grow almost eight-fold from 2000 to 2050 in a high economic grown scenario and more than double in a low-growth scenario. There is also a global aspiration to keep the environment pristine. Because of these reasons, it is expected that a large number of new nuclear reactors may be operating by 2050. Realization of this has created an impetus for the development of a new generation of reactors in several countries. The goal is to make nuclear power cost-competitive with other resources and to enhance safety to a level that no evacuation outside a plant site would be necessary. It should also generate less waste, prevent materials diversion for weapons production, and be sustainable. This article discusses the status of next-generation reactors under development around the world. Specifically highlighted are efforts related to the Generation IV International Forum (GIF) and its six reactor concepts for research and development: Very High Temperature Reactor (VHTR); Gas-Cooled Fast Reactor (GFR); Supercritical Water-Cooled Reactor (SCWR); Sodium-Cooled Fast Reactor (SFR); Lead-Cooled Fast Reactor (LFR); and Molten Salt Reactor (MSR). Also highlighted are nuclear activities specific to Russia and India.

  9. Conceptual design study of JSFR reactor building

    SciTech Connect

    Yamamoto, T.; Katoh, A.; Chikazawa, Y.; Ohya, T.; Iwasaki, M.; Hara, H.; Akiyama, Y.

    2012-07-01

    Japan Sodium-cooled Fast Reactor (JSFR) is planning to adopt the new concepts of reactor building. One is that the steel plate reinforced concrete is adopted for containment vessel and reactor building. The other is the advanced seismic isolation system. This paper describes the detail of new concepts for JSFR reactor building and engineering evaluation of the new concepts. (authors)

  10. Polarized advanced fuel reactors

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    The d-/sup 3/He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs.

  11. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described.

  12. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; J. S. Herring

    2007-09-01

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

  13. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  14. Progress in reliability of fast reactor operation and new trends to increased inherent safety

    SciTech Connect

    Merk, Bruno; Stanculescu, Alexander; Chellapandi, Perumal; Hill, Robert

    2015-06-01

    The reasons for the renewed interest in fast reactors and an overview of the progress in sodium cooled fast reactor operation in the last ten years are given. The excellent operational performance of sodium cooled fast reactors in this period is highlighted as a sound basis for the development of new fast reactors. The operational performance of the BN-600 is compared and evaluated against the performance of German light water reactors to assess the reliability. The relevance of feedback effects for safe reactor design is described, and a new method for the enhancement of feedback effects in fast reactors is proposed. Experimental reactors demonstrating the inherent safety of advanced sodium cooled fast reactor designs are described and the potential safety improvements resulting from the use of fine distributed moderating material are discussed.

  15. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  16. Advances by the Integral Fast Reactor Program

    SciTech Connect

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs.

  17. Advanced sodium fast reactor accident source terms :

    SciTech Connect

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  18. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    SciTech Connect

    Honma, George

    2015-10-01

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will be used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).

  19. In service inspection and repair of sodium cooled ASTRID prototype

    SciTech Connect

    Baque, F.; Jadot, F.; Marlier, R.; Saillant, J-F.

    2015-07-01

    In the frame of the large R and D work which is performed for the future ASTRID sodium cooled prototype, In Service Inspection and Repair (ISI and R) has been identified as a major issue to be taken into account in order to enlarge the plant safety, to consolidate its availability and to protect the associated investment. After the first part of pre-conceptual design phase (2008-2012), the running second part of pre-conceptual phase (2013-2015) allows to increase the ISI and R tool ability for immersed sodium structures of ASTRID, at about 200 deg. C, on the basis of consolidated specifications and thanks to their qualification through more and more realistic laboratory tests and simulation with CIVA code. ISI and R items are being developed and qualified during a pluri-annual program which mainly deals with the reactor block structures, the primary components and circuit, and the Power Conversion System. It ensures a strong connection between the reactor designers and inspection specialists, as the optimization of inspectability and repairability is looked at: this already induced specific rules for design, in order to shorten and ease the ISI and R operations, which have been merged into RCC-MRx rules. In the frame of increasing technology readiness level with corresponding performance demonstration, this paper presents R and D dealing with the ISI and R items: it highlights the sensor development (both ultrasonic and electromagnetic concepts, compatible with sodium at 200 deg. C), then their applications for ASTRID structure control (under sodium telemetry, imaging and NDE). Activity for repair is also presented (a single laser tool for sodium sweeping, machining and welding), and finally the effort for associated robotic (generic program for ASTRID applications, specific technological tools for sodium medium, tight immersed bell). The main results of testing and simulation are given for telemetry, vision, NDE applications, laser process repair and under sodium

  20. Proceedings of the NEACRP/IAEA Specialists meeting on the international comparison calculation of a large sodium-cooled fast breeder reactor at Argonne National Laboratory on February 7-9, 1978

    SciTech Connect

    LeSage, L.G.; McKnight, R.D.; Wade, D.C.; Freese, K.E.; Collins, P.J.

    1980-08-01

    The results of an international comparison calculation of a large (1250 MWe) LMFBR benchmark model are presented and discussed. Eight reactor configurations were calculated. Parameters included with the comparison were: eigenvalue, k/sub infinity/, neutron balance data, breeding reaction rate ratios, reactivity worths, central control rod worth, regional sodium void reactivity, core Doppler and effective delayed neutron fraction. Ten countries participated in the comparison, and sixteen solutions were contributed. The discussion focuses on the variation in parameter values, the degree of consistency among the various parameters and solutions, and the identification of unexpected results. The results are displayed and discussed both by individual participants and by groupings of participants (e.g., results from adjusted data sets versus non-adjusted data sets).

  1. Health and Safety Considerations Associated with Sodium-Cooled Experimental Nuclear Fuel Dismantlement

    SciTech Connect

    Carvo, Alan E.

    2015-04-01

    Between the mid-1970s and the mid-1980s Sandia National Laboratory constructed eleven experimental assemblies to simulate debris beds formed in a sodium-cooled fast breeder reactor. All but one of the assemblies were irradiated. The experimental assemblies were transferred to the Idaho National Laboratory (INL) in 2007 and 2008 for storage, dismantlement, recovery of the uranium for reuse in the nuclear fuel cycle, and disposal of unneeded materials. This paper addresses the effort to dismantle the assemblies down to the primary containment vessel and repackage them for temporary storage until such time as equipment necessary for sodium separation is in place.

  2. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L.

    2012-05-31

    Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural

  3. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  4. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  5. Advances in Tandem Mirror fusion power reactors

    SciTech Connect

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  6. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  7. Advanced Catalytic Hydrogenation Retrofit Reactor

    SciTech Connect

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  8. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    SciTech Connect

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  9. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    SciTech Connect

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  10. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  11. Advances in reactor physics education: Visualization of reactor parameters

    SciTech Connect

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-07-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  12. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    BOWEN, W.W.

    1999-11-08

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FFTF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This document reflects the 1 Oct 1999 baseline.

  13. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    GANTT, D.A.

    2000-01-12

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

  14. Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  15. Reliability assurance for regulation of advanced reactors

    SciTech Connect

    Fullwood, R.; Lofaro, R.; Samanta, P.

    1991-12-31

    The advanced nuclear power plants must achieve higher levels of safety than the first generation of plants. Showing that this is indeed true provides new challenges to reliability and risk assessment methods in the analysis of the designs employing passive and semi-passive protection. Reliability assurance of the advanced reactor systems is important for determining the safety of the design and for determining the plant operability. Safety is the primary concern, but operability is considered indicative of good and safe operation. This paper discusses several concerns for reliability assurance of the advanced design encompassing reliability determination, level of detail required in advanced reactor submittals, data for reliability assurance, systems interactions and common cause effects, passive component reliability, PRA-based configuration control system, and inspection, training, maintenance and test requirements. Suggested approaches are provided for addressing each of these topics.

  16. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    SciTech Connect

    Ingersoll, D.T.

    2004-07-29

    equivalent temperature of heat delivered to either the power conversion system or a hydrogen production plant. Using a comparative cost analysis, the construction costs per unit output are projected to be 50-55% of the costs for modular gas-cooled or sodium-cooled reactor systems. This is primarily a consequence of substantially larger power output and higher conversion efficiency for the AHTR. The AHTR has a number of unique technical challenges in meeting the NGNP requirements; however, it appears to offer advantages over high-temperature helium-cooled reactors and provides an alternative development path to achieve the NGNP requirements. Primary challenges include optimizing the core design for improved response to transients, designing an internal blanket to thermally protect the reactor vessel, and engineering solutions to high-temperature refueling and maintenance.

  17. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  18. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  19. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  20. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  1. Assessment of Sensor Technologies for Advanced Reactors

    SciTech Connect

    Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.; Kisner, Roger A.; Britton, Jr, Charles L.; Wootan, D. W.; Anheier, Jr, N. C.; Diaz, A. A.; Hirt, E. H.; Chien, H. T.; Sheen, S.; Bakhtiari, Sasan; Gopalsami, S.; Heifetz, A.; Tam, S. W.; Park, Y.; Upadhyaya, B. R.; Stanford, A.

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributes to the design and implementation of AdvRx concepts.

  2. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  3. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    NASA Technical Reports Server (NTRS)

    Sanders, J C; Wilsted, H D; Mulcahy, B A

    1943-01-01

    Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear-spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  4. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.

    1943-01-01

    A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  5. Performance and reliability monitoring of advanced reactors

    SciTech Connect

    Robinson, D. G.

    2006-07-01

    Advanced nuclear reactor designs must be designed for long core life and high fuel burn-up. This will pose new challenges for monitoring the state of the highly integrated and largely inaccessible components within the primary reactor vessel. As reactors age, characterizing and predicting the internal operational performance (e.g. vibration/flow characteristics) will be critical for determining maintenance strategies and early identification of safety and reliability issues. This paper discusses a current research program into a new approach for monitoring that provides the capability to combine information from in-situ monitoring sensors within a reactor with maintenance and repair histories to characterize the current probability of a failure event. The proposed approach suggests the application of Bayesian concepts similar to that used in medical monitoring. System-based medical monitoring utilizes hierarchical Bayesian methods such as Markov Chain Monte Carlo (MCMC) and particle filtering methods to deliver estimates of the state of health of a process based on data taken from the process in real-time. Preliminary results from the application of the methodology to the monitoring of corrosion in electronics is presented. (authors)

  6. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  7. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation

  8. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    SciTech Connect

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A.; Fiorina, C.; Franceschini, F.

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  9. Plant maintenance and advanced reactors, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: A new day for energy in America; Committed to success more than ever, by Andy White, GE--Hitachi Nuclear Energy; Competitive technology for decades, by Steve Tritch, Westinghouse Electric Company; Pioneers of positive community relationship, by Exelon Nuclear; A robust design for 60-years, by Ray Ganthner, Areva; Aiming at no evacuation plants, by Kumiaki Moriya, Hitachi-GE Nuclear Energy, Ltd.; and, Desalination and hydrogen economy, by Dr. I. Khamis, International Atomic Energy Agency. Industry innovation articles in this issue are: Reactor vessel closure head project, by Jeff LeClair, Prairie Island Nuclear Generating Plant; and Submersible remote-operated vehicle, by Michael S. Rose, Entergy's Fitzpatrick Nuclear Station.

  10. Status of the advanced neutron source. [Advanced Neutron Source Reactor

    SciTech Connect

    Hayter, J.B.

    1990-01-01

    Research reactors in the United States are becoming more and more outdated, at a time when neutron scattering is being recognized as an increasingly important technique in areas vital to the US scientific and technological future. The last US research reactor was constructed over 25 years ago, whereas new facilities have been built or are under construction in Japan, Russia and, especially, Western Europe, which now has a commanding lead in this important field. Concern over this situation in the early 1980's by a number of organizations, including the National Academy of Sciences, led to a recommendation that design work start urgently on an advanced US neutron research facility. This recommendation is realized in the Advanced Neutron Source Project. The centerpiece of the Advanced Neutron Source will be a new research reactor of unprecedented flux (>7.5 {times} 10{sup 19} m{sup {minus}2}{center dot}s{sup {minus}1}), equipped with a wide variety of state-of-the-art spectrometers and diffractometers on hot, thermal, and cold neutron beams. Very cold and ultracold neutron beams will also be provided for specialized experiments. This paper will discuss the current status of the design and the plans for scattering instrumentation. 5 refs.

  11. Preliminary engineering design of sodium-cooled CANDLE core

    NASA Astrophysics Data System (ADS)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  12. Preliminary engineering design of sodium-cooled CANDLE core

    SciTech Connect

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-06

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CANDLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  13. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  14. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  15. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  16. SABR fusion-fission hybrid transmutation reactor design concept

    NASA Astrophysics Data System (ADS)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  17. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  18. Development of a New Thermochemical and Electrolytic Hybrid Hydrogen Production System for Sodium Cooled FBR

    NASA Astrophysics Data System (ADS)

    Nakagiri, Toshio; Kase, Takeshi; Kato, Shoichi; Aoto, Kazumi

    A new thermo-chemical and electrolytic hybrid hydrogen production system in lower temperature range is newly proposed by the Japan Nuclear Cycle Development Institute (JAEA) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeder Reactor (FBR). The system is based on sulfuric acid (H2SO4) synthesis and decomposition process developed earlier (Westinghouse process), and sulfur trioxide (SO3) decomposition process is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce the operation temperature 200-300°C lower than Westinghouse process. SO3 decomposition with the voltage lower than 0.5V was confirmed in the temperature range of 500 to 600°C and theoretical thermal efficiency of the system evaluated based on chemical reactions was within the range of 35% to 55% under the influence of H2SO4 concentration and heat recovery. Furthermore, hydrogen production experiments to substantiate the whole process were performed. Stable hydrogen and oxygen production were observed in the experiments, and maximum duration of the experiments was about 5 hours.

  19. Advanced reactor vessel steels for reactors with supercritical coolant parameters

    NASA Astrophysics Data System (ADS)

    Markov, S. I.; Dub, V. S.; Lebedev, A. G.; Kuleshova, E. A.; Balikoev, A. G.; Makarycheva, E. V.; Tolstykh, D. S.; Frolov, A. S.; Krikun, E. V.

    2016-09-01

    A set of studies, tests, and technological works is performed to design promising high-strength vessel steels for reactors with supercritical coolant parameters. Compositions and technological parameters are proposed for the production of reference steel (within the limits of the grade composition of 15Kh2NMFA-A steel) and high-nickel steel. These steels are characterized by high properties, including metallurgical quality and service and technological parameters. Steel of the reference composition has high (higher by 15%) strength properties, improved viscoplastic properties, and ductile-brittle transition temperature t c of at most-125°C. The strength properties of the high-nickel steel are higher than those of the existing steels by 40-50% and higher than those of advanced foreign steels by 15-20% at ductile-brittle transition temperature t c of at most-165°C. Moreover, the designed steels are characterized by a low content of harmful impurity elements and nonmetallic inclusions, a fine-grained structure, and a low susceptibility to thermal embrittlement.

  20. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  1. Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)

    SciTech Connect

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G. )

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II (NED, 1986). The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs.

  2. Advanced ceramic cladding for water reactor fuel

    SciTech Connect

    Feinroth, H.

    2000-07-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of {approximately}60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies {ge}50% would be examined.

  3. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  4. 77 FR 76089 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  5. Advanced nuclear reactor public opinion project

    SciTech Connect

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  6. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  7. Development of a system model for advanced small modular reactors.

    SciTech Connect

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  8. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  9. ANDES Measurements for Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Plompen, A. J. M.; Hambsch, F.-J.; Kopecky, S.; Nyman, M.; Rouki, C.; Salvador Castiñeira, P.; Schillebeeckx, P.; Belloni, F.; Berthoumieux, E.; Gunsing, F.; Lampoudis, C.; Calviani, M.; Guerrero, C.; Cano-Ott, D.; Gonzalez Romero, E.; Aïche, M.; Jurado, B.; Mathieu, L.; Derckx, X.; Farget, F.; Rodrigues Tajes, C.; Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Borcea, C.; Negret, A.; Colonna, N.; Goncalves, I.; Penttilä, H.; Rinta-Antila, S.; Kolhinen, V. S.; Jokinen, A.

    2014-05-01

    A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23Na, Mo, Zr, and 238U, neutron capture cross sections of 238U, 241Am, neutron induced fission cross sections of 240Pu, 242Pu, 241Am, 243Am and 245Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am, Cm and Cf. Finally, four isotopes are studied which are important to improve predictions for delayed neutron precursors and decay heat by total absorption gamma-ray spectrometry (88Br, 94Rb, 95Rb, 137I). The measurements which are performed at state-of-the-art European facilities have the ambition to achieve the lowest possible uncertainty, and to come as close as is reasonably achievable to the target uncertainties established by sensitivity studies. An overview is presented of the activities and achievements, leaving detailed expositions to the various parties contributing to the conference.

  10. DOE/NE robotics for advanced reactors

    SciTech Connect

    Not Available

    1991-01-01

    ORNL is continuing to transfer technology under the NE Robotics for Advanced Reactors Program to other programs and institutions. The HELIX computer architecture developed under the NE robotics program are currently being transferred to the University of Florida for control of their Articulated Transporter Manipulator (ATMS or snake) robot prototype. The Modular Integrated Control architecture (MICA), also developed under the NE Robotics Program is currently being utilized by the DOE ER WM Robotics Program to control a long-reach manipulator for use in cleanup of underground storage tanks at Hanford. HELIX and MICA were developed at ORNL in response to the need to integrate software and hardware developed on different computer systems by the university participants. The University of Texas is constructing and assembling the actuator module. Several parts have been re-machined. The Tennessee group has performed a series of experiments to verify the performance of their system for object localization, identification, and manipulation using 3D Geometric models (SOLIDGEM). The Michigan group has completed experiments on the radiation resistance of ultrasonic range sensors (URSs). The Florida team continues to model key features of the ALMR. Drawings have been received from GE providing much greater detail on many structures. These details are being incorporated into the IGRIP model of the ALMR. A conceptual design for the Articulated Transporter/Manipulator System (ATMS) has been finalized.

  11. Shielding considerations for advanced space nuclear reactor systems

    NASA Astrophysics Data System (ADS)

    Angelo, J. P., Jr.; Buden, D.

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO2) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The status of this advanced heat pipe reactor is reviewed and the radiation environments and shielding requirements for representative manned and unmanned applications are explored.

  12. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  13. Conceptual design of the advanced marine reactor MRX

    NASA Astrophysics Data System (ADS)

    1991-02-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at the Japan Atomic Energy Research Institute (JAERI) in order to develop attractive marine reactors for the next generation. At present, two marine reactor concepts are being formulated. One is 100 MWt MRX (Marine Reactor X) for an icebreaker and the other is 300 kWe DRX (Deep-sea Reactor X) for a deep-sea research vessel. They are characterized by an integral type pressurized water reactor (PWR) built-in type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. This paper is a detailed report including all major results of the MRX design study.

  14. Reactor assessments of advanced bumpy torus configurations

    SciTech Connect

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1984-02-01

    Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.

  15. Safety analysis of the advanced thermionic initiative reactor

    NASA Astrophysics Data System (ADS)

    Lee, Hsing H.; Klein, Andrew C.

    1995-01-01

    Previously, detailed analysis was conducted to assess the technology developed for the Advanced Thermionic Initiative reactor. This analysis included the development of an overall system design code capability and the improvement of analytical models necessary for the assessment of the use of single cell thermionic fuel elements in a low power space nuclear reactor. The present analysis extends this effort to assess the nuclear criticality safety of the ATI reactor for various different scenarios. The analysis discusses the efficacy of different methods of reactor control such as control rods, and control drums.

  16. 78 FR 66968 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  17. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  18. 78 FR 46621 - Status of the Office of New Reactors' Implementation of Electronic Distribution of Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... COMMISSION Status of the Office of New Reactors' Implementation of Electronic Distribution of Advanced Reactor Correspondence AGENCY: Nuclear Regulatory Commission. ACTION: Implementation of electronic distribution of advanced reactor correspondence; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission...

  19. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  20. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  1. SOAR: Space Orbiting Advanced Fusion Power Reactor.

    DTIC Science & Technology

    1987-09-01

    this are the possibility of electrostatic direct conversion and the ease of increasing magnetic fields to maintain plasma pressure . The gene- ral...106 0.2 29 290 Known Reserves 3 x 103 0.2 187 1870 MAN-MADE U.S. DOE MRC Sales 1.3/yr MRC Inventory 13.4 CANDU Reactors (by year 2000) Production 2/yr...Research Corp. currently sells up to 1.3 kg/yr and has a 13 kg inventory. The Canadian CANDU reactors produce tritium in their D20 moderators. By 1987, 5

  2. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR..., Chief, Reactor Safety Branch A, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  3. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    SciTech Connect

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-12-31

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR`s) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design.

  4. Advanced development of immobilized enzyme reactors

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.; Carter, Layne

    1991-01-01

    Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.

  5. A wall-crawling robot for reactor vessel inspection in advanced reactors

    SciTech Connect

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-06-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected.

  6. FASTER Test Reactor Preconceptual Design Report

    SciTech Connect

    Grandy, C.; Belch, H.; Brunett, A. J.; Heidet, F.; Hill, R.; Hoffman, E.; Jin, E.; Mohamed, W.; Moisseytsev, A.; Passerini, S.; Sienicki, J.; Sumner, T.; Vilim, R.; Hayes, S.

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  7. FASTER test reactor preconceptual design report summary

    SciTech Connect

    Grandy, C.; Belch, H.; Brunett, A.; Heidet, F.; Hill, R.; Hoffman, E.; Jin, E.; Mohamed, W.; Moisseytsev, A.; Passerini, S.; Sienicki, J.; Sumner, T.; Vilim, R.; Hayes, Steven

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  8. Toward a Mechanistic Source Term in Advanced Reactors: A Review of Past Incidents, Experiments, and Analyses

    SciTech Connect

    Bucknor, Matthew; Brunett, Acacia J.; Grabaskas, David

    2016-04-17

    In 2015, as part of a Regulatory Technology Development Plan (RTDP) effort for sodium-cooled fast reactors (SFRs), Argonne National Laboratory investigated the current state of knowledge of source term development for a metal-fueled, pool-type SFR. This paper provides a summary of past domestic metal-fueled SFR incidents and experiments and highlights information relevant to source term estimations that were gathered as part of the RTDP effort. The incidents described in this paper include fuel pin failures at the Sodium Reactor Experiment (SRE) facility in July of 1959, the Fermi I meltdown that occurred in October of 1966, and the repeated melting of a fuel element within an experimental capsule at the Experimental Breeder Reactor II (EBR-II) from November 1967 to May 1968. The experiments described in this paper include the Run-Beyond-Cladding-Breach tests that were performed at EBR-II in 1985 and a series of severe transient overpower tests conducted at the Transient Reactor Test Facility (TREAT) in the mid-1980s.

  9. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  10. 78 FR 37595 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR.... Kathy Weaver, Acting Chief, Technical Support Branch, Advisory Committee on Reactor Safeguards....

  11. 76 FR 5218 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor... inconvenience. Dated: January 24, 2011. Antonio Dias, Chief, Reactor Safety Branch B, Advisory Committee...

  12. 77 FR 59678 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Branch, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  13. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting.... Antonio Dias, Technical Advisor, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  14. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  15. 76 FR 18585 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water...

  16. 76 FR 11524 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactors (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water...

  17. Metal fire implications for advanced reactors. Part 1, literature review.

    SciTech Connect

    Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean; Blanchat, Thomas K.

    2007-10-01

    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior.

  18. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  19. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

    2012-09-15

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  20. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  1. Sodium fast reactor evaluation: Core materials

    NASA Astrophysics Data System (ADS)

    Cheon, Jin Sik; Lee, Chan Bock; Lee, Byoung Oon; Raison, J. P.; Mizuno, T.; Delage, F.; Carmack, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor (SFR) Program the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. In this paper the status of available and developmental materials for SFR core cladding and duct applications is reviewed. To satisfy the Generation IV SFR fuel requirements, an advanced cladding needs to be developed. The candidate cladding materials are austenitic steels, ferritic/martensitic (F/M) steels, and oxide dispersion strengthened (ODS) steels. A large amount of irradiation testing is required, and the compatibility of cladding with TRU-loaded fuel at high temperatures and high burnup must be investigated. The more promising F/M steels (compared to HT9) might be able to meet the dose requirements of over 200 dpa for ducts in the GEN-IV SFR systems.

  2. An advanced carbon reactor subsystem for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, Gary P.; Cusick, Robert J.

    1986-01-01

    An evaluation is presented of the development status of an advanced carbon-reactor subsystem (ACRS) for the production of water and dense, solid carbon from CO2 and hydrogen, as required in physiochemical air revitalization systems for long-duration manned space missions. The ACRS consists of a Sabatier Methanation Reactor (SMR) that reduces CO2 with hydrogen to form methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolize methane to carbon and hydrogen; the carbon is recycled to the SMR, while the produce carbon is periodically removed from the CFR. A preprototype ACRS under development for the NASA Space Station is described.

  3. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect

    O'Hern, T. J.

    2012-03-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  4. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  5. DOE/NE robotics for advanced reactors

    SciTech Connect

    Not Available

    1991-01-01

    This document details activities during this reporting period. The Michigan group has developed, built, and tested a general purpose interface circuit for DC motors and encoders. This interface is based on an advanced microchip, the HCTL 1100 manufactured by Hewlett Packard. The HCTL 1100 can be programmed by a host computer in real-time, allowing sophisticated motion control for DC motors. At the University of Florida, work on modeling the details of the seismic isolators and the jack mechanism has been completed. A separate 3D solid view of the seismic isolator floor, with the full set of isolators shown in detail, has been constructed within IGRIP. ORNL led the robotics team at the ALMR review meeting. Discussions were held with General Electric (GE) engineers and contractors on the robotic needs for the ALMR program. The Tennessee group has completed geometric modeling of the Andros Mark VI mobile platform with two fixed tracks and for articulated tracks, the give degree-of-freedom manipulator and its end-effector, and two cameras. A graphical control of panel was developed which allow the user to operate the simulated robot. The University of Texas team visited ORNL to complete the implementation of computed-torque controller on the CESARm manipulator. This controller was previously developed and computer simulations were carried out specifically for the CESARm robot.

  6. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  7. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D; Holcomb, David Eugene; Wood, Richard Thomas

    2012-10-01

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  8. Recent Advances in Pd-Based Membranes for Membrane Reactors.

    PubMed

    Arratibel Plazaola, Alba; Pacheco Tanaka, David Alfredo; Van Sint Annaland, Martin; Gallucci, Fausto

    2017-01-01

    Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.

  9. Current Status of the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Qualls, A L; Peretz, Fred J; Varma, Venugopal Koikal; Bradley, Eric Craig; Cisneros, Anselmo T.

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

  10. Current status of the advanced high temperature reactor

    SciTech Connect

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  11. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  12. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  13. Quantitative void fraction measurement with an eddy current flowmeter for generation IV Sodium cooled Fast Reactor

    SciTech Connect

    Kumar, M.; Tordjeman, Ph.; Bergez, W.; Cavaro, M.; Paumel, K.; Jeannot, J.P.

    2015-07-01

    This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)

  14. Quantitative void fraction detection with an eddy current flowmeter for generation IV Sodium cooled Fast Reactor

    SciTech Connect

    Kumar, M.; Tordjeman, Ph.; Bergez, W.; Cavaro, M.; Paumel, K.; Jeannot, J. P.

    2015-07-01

    This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)

  15. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  16. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  17. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  18. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt; Groten, Will; Judzis, Arvids; Foley, Richard; Smith, Larry; Cross, Will; Vogt, T.

    2011-06-27

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  19. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    SciTech Connect

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-06-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report.

  20. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of shipment of irradiated reactor fuel or nuclear waste must contain the following... irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel...

  1. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. 75 FR 10840 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will hold a meeting on March 18... 3, 2010. Antonio F. Dias, Chief, Reactor Safety Branch B, Advisory Committee on Reactor...

  3. 75 FR 7632 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR) The ACRS Subcommittee on ABWR will hold a meeting on March 2, 2010, at 11545...: February 12, 2010. Antonio F. Dias, Chief Reactor Safety Branch B, Advisory Committee on Reactor...

  4. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  5. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G. )

    1990-01-01

    Research and development in fast reactor reprocessing has been under way [approximately] 20 yr in several countries. During the past decade, France and the United Kingdom have developed active programs in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the Experimental Breeder Reactor II (EBR-II) facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. The Federal Republic of Germany (FRG) and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper focuses on the search for improved facility concepts and better maintenance systems in the CFRP, and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  6. Cermet-fueled reactors for advanced space applications

    SciTech Connect

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.; Vaidyanathan, S.; Bhattacharyya, S.K.; Barner, J.O.

    1987-12-01

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.

  7. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley; Steven Taylor

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  8. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; K. Condie

    2011-06-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  9. Prognostics Health Management for Advanced Small Modular Reactor Passive Components

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-10-18

    In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

  10. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Advanced Space Nuclear Reactors from Fiction to Reality

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  13. Research reactor of the future: The advanced neutron source

    SciTech Connect

    Appleton, B.; West, C.

    1994-12-31

    Agents for cancer detection and treatment, stronger materials, better electronic gadgets, and other consumer and industrial products - these are assured benefits of a research reactor project proposed for Oak Ridge. Just as American companies have again assumed world leadership in producing semiconductor chips as well as cars and trucks, the United States is poised to retake the lead in neutron science by building and operating the $2.9 billion Advanced Neutron Source (ANS) research reactor by the start of the next century. In 1985, the neutron community, led by ORNL researchers, proposed a pioneering project, later called the ANS. Scheduled to begin operation in 2003, the ANS is seen not only as a replacement for the aging HFIR and HFBR but also as the best laboratory in the world for conducting neutron-based research.

  14. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  15. Nondestructive Measurements for Diagnostics of Advanced Reactor Passive Components

    SciTech Connect

    Prowant, Matthew S.; Dib, Gerges; Roy, Surajit; Luzi, Lorenzo; Ramuhalli, Pradeep

    2016-09-20

    Information on advanced reactor (AdvRx) component condition and failure probability is necessary to maintaining adequate safety margins and avoiding unplanned shutdowns, both of which have regulatory and economic consequences. Prognostic health management (PHM) technologies provide one approach to addressing these needs by providing the technical means for lifetime management of significant passive components and reactor internals. However, such systems require measurement data that are sensitive to degradation of the component. This paper describes results to date of ongoing research on nondestructive measurements of component condition for degradation mechanisms of relevance to AdvRx concepts. The focus of this paper is on in-situ ultrasonic measurements during high-temperature creep degradation. The data were analyzed to assess the sensitivity of the measurements to creep degradation, with the specific objective of assessing the suitability of the resulting correlations for remaining life prediction. The details of the measurements, results of data analysis, and ongoing research in this area are discussed.

  16. Evolutionary/advanced light water reactor data report

    SciTech Connect

    1996-02-09

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

  17. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  18. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  19. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  20. Metal fires and their implications for advanced reactors.

    SciTech Connect

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean; Hewson, John C.; Blanchat, Thomas K.

    2010-10-01

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in these areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety

  1. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance

  2. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  3. INEL advanced test reactor plutonium-238 production feasibility assessment

    SciTech Connect

    Schnitzler, B.G. )

    1993-01-10

    Results of a preliminary neutronics assessment indicate the feasibility of [sup 238]Pu production in the Idaho National Engineering Laboratory Advanced Test Reactor (ATR). Based on the results of this assessment, an annual production of 11.3 kg [sup 238]Pu can be achieved in the ATR. An annual loading of 102 kg [sup 237]Np is required for the particular target configuration and irradiation scenario examined. The [sup 236]Pu contaminant level is approximately 6 parts per million at zero cooling time. The product quality is about 90% [sup 238]Pu. Neptunium feedstock requirements, [sup 238]Pu production rates, or product purity can be optimized depending on their relative importances.

  4. INEL advanced test reactor plutonium-238 production feasibility assessment

    NASA Astrophysics Data System (ADS)

    Schnitzler, Bruce G.

    1993-01-01

    Results of a preliminary neutronics assessment indicate the feasibility of 238Pu production in the Idaho National Engineering Laboratory Advanced Test Reactor (ATR). Based on the results of this assessment, an annual production of 11.3 kg 238Pu can be achieved in the ATR. An annual loading of 102 kg 237Np is required for the particular target configuration and irradiation scenario examined. The 236Pu contaminant level is approximately 6 parts per million at zero cooling time. The product quality is about 90% 238Pu. Neptunium feedstock requirements, 238Pu production rates, or product purity can be optimized depending on their relative importances.

  5. Advanced fuels for plutonium management in pressurized water reactors

    NASA Astrophysics Data System (ADS)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  6. Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover; John Maki; David Petti

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during

  7. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    NASA Astrophysics Data System (ADS)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  8. Flow excursion time scales in the advanced neutron source reactor

    SciTech Connect

    Sulfredge, C.D.

    1995-04-01

    Flow excursion transients give rise to a key thermal limit for the proposed Advanced Neutron Source (ANS) reactor because its core involves many parallel flow channels with a common pressure drop. Since one can envision certain accident scenarios in which the thermal limits set by flow excursion correlations might be exceeded for brief intervals, a key objective is to determine how long a flow excursion would take to bring about a system failure that could lead to fuel damage. The anticipated time scale for flow excursions has been examined by subdividing the process into its component phenomena: bubble nucleation and growth, deceleration of the resulting two-phase flow, and finally overcoming thermal inertia to heat up the reactor fuel plates. Models were developed to estimate the time required for each individual stage. Accident scenarios involving sudden reduction in core flow or core exit pressure have been examined, and the models compared with RELAP5 output for the ANS geometry. For a high-performance reactor like the ANS, flow excursion time scales were predicted to be in the millisecond range, so that even very brief transients might lead to fuel damage. These results should prove useful whenever one must determine the time involved in any portion of a flow excursion transient.

  9. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  10. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  11. FFTF and Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    GANTT, D.A.

    2000-10-31

    This Resource Load Schedule (RLS) addresses two missions. The Advanced Reactors Transition (ART) mission, funded by DOE-EM, is to transition assigned, surplus facilities to a safe and compliant, low-cost, stable, deactivated condition (requiring minimal surveillance and maintenance) pending eventual reuse or D&D. Facilities to be transitioned include the 309 Building Plutonium Recycle Test Reactor (PRTR) and Nuclear Energy Legacy facilities. This mission is funded through the Environmental Management (EM) Project Baseline Summary (PBS) RL-TP11, ''Advanced Reactors Transition.'' The second mission, the Fast Flux Test Facility (FFTF) Project, is funded through budget requests submitted to the Office of Nuclear Energy, Science and Technology (DOE-NE). The FFTF Project mission is maintaining the FFTF, the Fuels and Materials Examination Facility (FMEF), and affiliated 400 Area buildings in a safe and compliant standby condition. This mission is to preserve the condition of the plant hardware, software, and personnel in a manner not to preclude a plant restart. This revision of the Resource Loaded Schedule (RLS) is based upon the technical scope in the latest revision of the following project and management plans: Fast Flux Test Facility Standby Plan (Reference 1); Hanford Site Sodium Management Plan (Reference 2); and 309 Building Transition Plan (Reference 4). The technical scope, cost, and schedule baseline is also in agreement with the concurrent revision to the ART Fiscal Year (FY) 2001 Multi-Year Work Plan (MYWP), which is available in an electronic version (only) on the Hanford Local Area Network, within the ''Hanford Data Integrator (HANDI)'' application.

  12. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  13. Dynamical Safety Analysis of the SABR Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Sumner, Tyler; Stacey, Weston; Ghiaassian, Seyed

    2009-11-01

    A hybrid fusion-fission reactor for the transmutation of spent nuclear fuel is being developed at Georgia Tech. The Subcritical Advanced Burner Reactor (SABR) is a 3000 MWth sodium-cooled, metal TRU-Zr fueled fast reactor driven by a tokamak fusion neutron source based on ITER physics and technology. We are investigating the accident dynamics of SABR's coupled fission, fusion and heat removal systems to explore the safety characteristics of a hybrid reactor. Possible accident scenarios such as loss of coolant mass flow (LOFA), of power (LOPA) and of heat sink (LOHSA), as well as inadvertent reactivity insertions and fusion source excursion are being analyzed using the RELAP5-3D code, the ATHENA version of which includes liquid metal coolants.

  14. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Romano, A.J.

    1980-01-01

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  15. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  16. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  17. Flow blockage analysis for the advanced neutron source reactor

    SciTech Connect

    Stovall, T.K.; Crabtree, J.A.; Felde, D.K.; Park, J.E.

    1996-01-01

    The Advanced Neutron Source (ANS) reactor was designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design required high-speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris disrupts the fluid flow to the plate surfaces and can prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate so that any flow disruption would recover, thus providing adequate heat removal from the downstream, heated portions of the fuel plates. As part of the safety analysis, the adequacy of this unheated entrance length was assessed using both analytical models and experimental measurements. The Flow Blockage Test Facility (FBTF) was designed and built to conduct experiments in an environment closely matching the ANS channel geometry. The FBTF permitted careful measurements of both heat transfer and hydraulic parameters. In addition to these experimental efforts, a thin, rectangular channel was modeled using the Fluent computational fluid dynamics computer code. The numerical results were compared with the experimental data to benchmark the hydrodynamics of the model. After this comparison, the model was extended to include those elements of the safety analysis that were difficult to measure experimentally. These elements included the high wall heat flux pattern and variable fluid properties. The results were used to determine the relationship between potential blockage sizes and the unheated entrance length required.

  18. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  19. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  20. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration

    SciTech Connect

    Curtis Smith; Steven Prescott; Tony Koonce

    2014-04-01

    A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

  1. Overview of the US program of controls for advanced reactors

    SciTech Connect

    White, J.D.; Sackett, J.I.; Monson, R.; Lindsay, R.W.; Carroll, D.G.

    1989-01-01

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed.

  2. Evaluation of Enhanced Risk Monitors for Use on Advanced Reactors

    SciTech Connect

    Ramuhalli, Pradeep; Veeramany, Arun; Bonebrake, Christopher A.; Ivans, William J.; Coles, Garill A.; Hirt, Evelyn H.

    2016-09-26

    This study provides an overview of the methodology for integrating time-dependent failure probabilities into nuclear power reactor risk monitors. This prototypic enhanced risk monitor (ERM) methodology was evaluated using a hypothetical probabilistic risk assessment (PRA) model, generated using a simplified design of a liquid-metal-cooled advanced reactor (AR). Component failure data from industry compilation of failures of components similar to those in the simplified AR model were used to initialize the PRA model. Core damage frequency (CDF) over time were computed and analyzed. In addition, a study on alternative risk metrics for ARs was conducted. Risk metrics that quantify the normalized cost of repairs, replacements, or other operations and management (O&M) actions were defined and used, along with an economic model, to compute the likely economic risk of future actions such as deferred maintenance based on the anticipated change in CDF due to current component condition and future anticipated degradation. Such integration of conventional-risk metrics with alternate-risk metrics provides a convenient mechanism for assessing the impact of O&M decisions on safety and economics of the plant. It is expected that, when integrated with supervisory control algorithms, such integrated-risk monitors will provide a mechanism for real-time control decision-making that ensure safety margins are maintained while operating the plant in an economically viable manner.

  3. Advanced neutron source reactor probabilistic flow blockage assessment

    SciTech Connect

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

  4. Fuel qualification plan for the Advanced Neutron Source Reactor

    SciTech Connect

    Copeland, G.L.

    1995-07-01

    This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

  5. Advanced Reactor Innovation Evaluation Study (ARIES) Properties Archive

    DOE Data Explorer

    ARIES stands for Advanced Reactor Innovation Evaluation Study. It is a program and a team that explores the commercial potential of fusion as an energy resource. Though it is a multi-institutional program, ARIES is led by the University of California at San Diego. ARIES studies both magnetic fusion energy (MFE) and inertial fusion energy (IFE), using an approach that integrates theory, experiments, and technology. The ARIES team proposes fusion reactor designs and works to understand how technology, materials and plasma physics processes interact and influence each other. A 2005 report to the Fusion Energy Sciences Advisory Committee ("Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program") noted on page 98 an example of the importance of this materials properties aspect: "For instance, effects on plasma edge by various plasma facing materials and effects on various plasma stabilization and control techniques by highly conducting liquid metal blankets are being considered by physicists." This web page is an archive of material properties collected here for the use of the ARIES Fusion Power Plant Studies Team.

  6. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  7. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  8. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  9. Advanced nuclear reactor public opinion project. Interim report

    SciTech Connect

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  10. Petascale algorithms for reactor hydrodynamics.

    SciTech Connect

    Fischer, P.; Lottes, J.; Pointer, W. D.; Siegel, A.

    2008-01-01

    We describe recent algorithmic developments that have enabled large eddy simulations of reactor flows on up to P = 65, 000 processors on the IBM BG/P at the Argonne Leadership Computing Facility. Petascale computing is expected to play a pivotal role in the design and analysis of next-generation nuclear reactors. Argonne's SHARP project is focused on advanced reactor simulation, with a current emphasis on modeling coupled neutronics and thermal-hydraulics (TH). The TH modeling comprises a hierarchy of computational fluid dynamics approaches ranging from detailed turbulence computations, using DNS (direct numerical simulation) and LES (large eddy simulation), to full core analysis based on RANS (Reynolds-averaged Navier-Stokes) and subchannel models. Our initial study is focused on LES of sodium-cooled fast reactor cores. The aim is to leverage petascale platforms at DOE's Leadership Computing Facilities (LCFs) to provide detailed information about heat transfer within the core and to provide baseline data for less expensive RANS and subchannel models.

  11. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.'' DATES... developed using this Catalog along with the Operator Licensing Examination Standards for Power...

  12. Methods for quantifying uncertainty in fast reactor analyses.

    SciTech Connect

    Fanning, T. H.; Fischer, P. F.

    2008-04-07

    Liquid-metal-cooled fast reactors in the form of sodium-cooled fast reactors have been successfully built and tested in the U.S. and throughout the world. However, no fast reactor has operated in the U.S. for nearly fourteen years. More importantly, the U.S. has not constructed a fast reactor in nearly 30 years. In addition to reestablishing the necessary industrial infrastructure, the development, testing, and licensing of a new, advanced fast reactor concept will likely require a significant base technology program that will rely more heavily on modeling and simulation than has been done in the past. The ability to quantify uncertainty in modeling and simulations will be an important part of any experimental program and can provide added confidence that established design limits and safety margins are appropriate. In addition, there is an increasing demand from the nuclear industry for best-estimate analysis methods to provide confidence bounds along with their results. The ability to quantify uncertainty will be an important component of modeling that is used to support design, testing, and experimental programs. Three avenues of UQ investigation are proposed. Two relatively new approaches are described which can be directly coupled to simulation codes currently being developed under the Advanced Simulation and Modeling program within the Reactor Campaign. A third approach, based on robust Monte Carlo methods, can be used in conjunction with existing reactor analysis codes as a means of verification and validation of the more detailed approaches.

  13. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.

  14. Advanced BWR stability monitoring tests with a hybrid reactor facility

    SciTech Connect

    He, Weidong; Huang, Zhengyu; Edwards, Robert M.

    2002-07-01

    A stability monitor for a boiling reactor is implemented and evaluated with the Penn State Hybrid Reactor System. The stability monitor is based on an extended Kalman filter which employs a reduced-order BWR reactor model. The filter uses measured power signal and estimates the void reactivity feedback gain and the decay ratio. The hybrid reactor system is a system combining a simulation module of BWR thermal hydraulics and the Penn State TRIGA reactor. A description of the hybrid system is also presented. (authors)

  15. Development and application of modeling tools for sodium fast reactor inspection

    SciTech Connect

    Le Bourdais, Florian; Marchand, Benoît; Baronian, Vahan

    2014-02-18

    To support the development of in-service inspection methods for the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID) project led by the French Atomic Energy Commission (CEA), several tools that allow situations specific to Sodium cooled Fast Reactors (SFR) to be modeled have been implemented in the CIVA software and exploited. This paper details specific applications and results obtained. For instance, a new specular reflection model allows the calculation of complex echoes from scattering structures inside the reactor vessel. EMAT transducer simulation models have been implemented to develop new transducers for sodium visualization and imaging. Guided wave analysis tools have been developed to permit defect detection in the vessel shell. Application examples and comparisons with experimental data are presented.

  16. Development and application of modeling tools for sodium fast reactor inspection

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoît; Baronian, Vahan

    2014-02-01

    To support the development of in-service inspection methods for the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID) project led by the French Atomic Energy Commission (CEA), several tools that allow situations specific to Sodium cooled Fast Reactors (SFR) to be modeled have been implemented in the CIVA software and exploited. This paper details specific applications and results obtained. For instance, a new specular reflection model allows the calculation of complex echoes from scattering structures inside the reactor vessel. EMAT transducer simulation models have been implemented to develop new transducers for sodium visualization and imaging. Guided wave analysis tools have been developed to permit defect detection in the vessel shell. Application examples and comparisons with experimental data are presented.

  17. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... Non-Safety Systems for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission... Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November...

  18. 78 FR 41436 - Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... COMMISSION Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors... Treatment of Non-Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The NRC seeks public...- Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' This area includes a revised...

  19. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  20. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    SciTech Connect

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs.

  1. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    DTIC Science & Technology

    2006-12-01

    calculate the generation of Polonium - 210 in reactors cooled by lead and lead- bismuth eutectic. The motivation for this is to address a noted lack of...calculate the generation of Polonium - 210 in reactors cooled by lead and lead-bismuth eutectic. The motivation for this is to address a noted lack of...coolants. The objectives of thesis are two fold. The first objective is to independently calculate the generation of Polonium - 210 in reactors

  2. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  3. Proceedings of a Symposium on Advanced Compact Reactor Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.

  4. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    SciTech Connect

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

  5. 75 FR 66803 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will hold a meeting...

  6. 3-D THERMAL EVALUATIONS FOR a FUELED EXPERIMENT in the ADVANCED TEST REACTOR

    SciTech Connect

    Ambrosek, R.G.; Chang, G.S.; Utterbeck, D.J.

    2004-10-06

    The DOE Advanced Fuel Cycle Initiative and Generation IV reactor programs are developing new fuel types for use in the current Light Water Reactors and future advanced reactor concepts. The Advanced Gas Reactor program is planning to test fuel to be used in the Next Generation Nuclear Plant (NGNP) nuclear reactor. Preliminary information for assessing performance of the fuel will be obtained from irradiations performed in the Advanced Test Reactor large ''B'' experimental facility. A test configuration has been identified for demonstrating fuel types typical of gas cooled reactors or fast reactors that may play a role in closing the fuel cycle or increasing efficiency via high temperature operation Plans are to have 6 capsules, each containing 12 compacts, for the test configuration. Each capsule will have its own temperature control system. Passing a helium-neon gas through the void regions between the fuel compacts and the graphite carrier and between the graphite carrier and the capsule wall will control temperature. This design with three compacts per axial level was evaluated for thermal performance to ascertain the temperature distributions in the capsule and test specimens with heating rates that encompass the range of initial heat generation rates.

  7. 3-D Thermal Evaluations for a Fueled Experiment in the Advanced Test Reactor

    SciTech Connect

    Richard Ambrosek; Gray Chang; Debra Utterbeck

    2004-10-01

    The DOE Advanced Fuel Cycle Initiative and Generation IV reactor programs are developing new fuel types for use in the current Light Water Reactors and future advanced reactor concepts. The Advanced Gas Reactor program is planning to test fuel to be used in the Next Generation Nuclear Plant (NGNP) nuclear reactor. Preliminary information for assessing performance of the fuel will be obtained from irradiations performed in the Advanced Test Reactor large “B” experimental facility. A test configurations has been identified for demonstrating fuel types typical of gas cooled reactors or fast reactors that may play a role in closing the fuel cycle or increasing efficiency via high temperature operation Plans are to have 6 capsules, each containing 12 compacts, for the test configuration. Each capsule will have its own temperature control system. Passing a helium-neon gas through the void regions between the fuel compacts and the graphite carrier and between the graphite carrier and the capsule wall will control temperature. This design with three compacts per axial level was evaluated for thermal performance to ascertain the temperature distributions in the capsule and test specimens with heating rates that encompass the range of initial heat generation rates.

  8. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  9. Mirror Advanced Reactor Study (MARS): executive summary and overview

    SciTech Connect

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

  10. Advanced reactor development: The LMR integral fast reactor program at Argonne

    SciTech Connect

    Till, C.E.

    1990-01-01

    Reactor technology for the 21st Century must develop with characteristics that can now be seen to be important for the future, quite different from the things when the fundamental materials and design choices for present reactors were made in the 1950s. Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 3 figs.

  11. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  12. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  13. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  14. Development of an advanced antineutrino detector for reactor monitoring

    NASA Astrophysics Data System (ADS)

    Classen, T.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Ho, A.; Jonkmans, G.; Kogler, L.; Reyna, D.; Sur, B.

    2015-01-01

    Here we present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. This paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass per detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.

  15. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    2004-07-01

    This factsheet describes a research project whose goal is to develop the knowledge and tools required to develop and scale a novel multiphase pulse-flow, catalytic reactor for acid catalyzed C4 paraffin/olefin alkylation, to industrial dimensions.

  16. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  17. Advanced-power-reactor design concepts and performance characteristics

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  18. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  19. Review of the proposed materials of construction for the SBWR and AP600 advanced reactors

    SciTech Connect

    Diercks, D.R.; Shack, W.J.; Chung, H.M.; Kassner, T.F.

    1994-06-01

    Two advanced light water reactor (LWR) concepts, namely the General Electric Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive 600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory. The objectives of these reviews were to (a) evaluate proposed advanced-reactor designs and the materials of construction for the safety systems, (b) identify all aging and environmentally related degradation mechanisms for the materials of construction, and (c) evaluate from the safety viewpoint the suitability of the proposed materials for the design application. Safety-related systems selected for review for these two LWRs included (a) reactor pressure vessel, (b) control rod drive system and reactor internals, (c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators (AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the use of cobalt-based alloys in these plants was reviewed. The selected materials for both reactors were generally sound, and no major selection errors were found. It was apparent that considerable thought had been given to the materials selection process, making use of lessons learned from previous LWR experience. The review resulted in the suggestion of alternate an possibly better materials choices in a number of cases, and several potential problem areas have been cited.

  20. Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Franceschini, Fausto; Evans, Thomas M.; Gehin, Jess C.

    2016-02-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed.

  1. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    SciTech Connect

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-04-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

  2. Advances in process intensification through multifunctional reactor engineering.

    SciTech Connect

    Cooper, Marcia A.; Miller, James Edward; O'Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  3. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    SciTech Connect

    Holbrook, Mark; Kinsey, Jim

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  4. MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER

    SciTech Connect

    Rick J. Migliore

    2009-09-01

    The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

  5. Advanced Fast Reactor - 100 (AFR-100) Report for the Technical Review Panel

    SciTech Connect

    Grandy, Christopher; Sienicki, James J.; Moisseytsev, Anton; Krajtl, Lubomir; Farmer, Mitchell T.; Kim, Taek K.; Middleton, B.

    2014-06-04

    This report is written to provide an overview of the Advanced Fast Reactor-100 in the requested format for a DOE technical review panel. This report was prepared with information that is responsive to the DOE Request for Information, DE-SOL-0003674 Advanced Reactor Concepts, dated February 27, 2012 from DOE’s Office of Nuclear Energy, Office of Nuclear Reactor Technologies. The document consists of two main sections. The first section is a summary of the AFR-100 design including the innovations that are incorporated into the design. The second section contains a series of tables that respond to the various questions requested of the reactor design team from the subject DOE RFI.

  6. Advances in the development of wire mesh reactor for coal gasification studies.

    PubMed

    Zeng, Cai; Chen, Lei; Liu, Gang; Li, Wenhua; Huang, Baoming; Zhu, Hongdong; Zhang, Bing; Zamansky, Vladimir

    2008-08-01

    In an effort to further understand the coal gasification behavior in entrained-flow gasifiers, a high pressure and high temperature wire mesh reactor with new features was recently built. An advanced LABVIEW-based temperature measurement and control system were adapted. Molybdenum wire mesh with aperture smaller than 70 mum and type D thermocouple were used to enable high carbon conversion (>90%) at temperatures >1000 degrees C. Gaseous species from wire mesh reactor were quantified using a high sensitivity gas chromatography. The material balance of coal pyrolysis in wire mesh reactor was demonstrated for the first time by improving the volatile's quantification techniques.

  7. Safety aspects of the US advanced LMR (liquid metal reactor) design

    SciTech Connect

    Pedersen, D.R.; Gyorey, G.L.; Marchaterre, J.F.; Rosen, S.; General Electric Co., San Jose, CA; Argonne National Lab., IL; USDOE Assistant Secretary for Nuclear Energy, Washington, DC )

    1989-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. This paper discusses the US regulatory framework for design of an ALMR, safety aspects of the IFR program at ANL, the IFR fuel cycle and actinide recycle, and the ALMR plant design program at GE. 6 refs., 5 figs.

  8. Advances in the development of wire mesh reactor for coal gasification studies - article no. 084102

    SciTech Connect

    Zeng, C.; Chen, L.; Liu, G.; Li, W.H.; Huang, B.M.; Zhu, H.D.; Zhang, B.; Zamansky, V.

    2008-08-15

    In an effort to further understand the coal gasification behavior in entrained-flow gasifiers, a high pressure and high temperature wire mesh reactor with new features was recently built. An advanced LABVIEW-based temperature measurement and control system were adapted. Molybdenum wire mesh with aperture smaller than 70 {mu} m and type D thermocouple were used to enable high carbon conversion ({gt}90%) at temperatures {gt}1000 {sup o}C. Gaseous species from wire mesh reactor were quantified using a high sensitivity gas chromatography. The material balance of coal pyrolysis in wire mesh reactor was demonstrated for the first time by improving the volatile's quantification techniques.

  9. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    SciTech Connect

    Bohachek, Randolph Charles

    2015-09-01

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  10. SMAHTR - A Concept for a Small, Modular Advanced High Temperaure Reactor

    SciTech Connect

    Gehin, Jess C; Greene, Sherrell R; Holcomb, David Eugene; Carbajo, Juan J; Cisneros, Anselmo T; Corwin, William R; Ilas, Dan; Wilson, Dane F; Varma, Venugopal Koikal; Bradley, Eric Craig; Yoder, III, Graydon L

    2010-01-01

    Several new high temperature reactor concepts, referred to as Fluoride Salt Cooled High Temperature Reactors (FHRs), have been developed over the past decade. These FHRs use a liquid salt coolant combined with high temperature gas-cooled reactor fuels (TRISO) and graphite structural materials to provide a reactor that operates at very high temperatures and is scalable to large sizes perhaps exceeding 2400 MWt. This paper presents a new small FHR the Small Modular Advanced High Temperature Reactor or SmAHTR . SmAHTR is targeted at applications that require compact, high temperature heat sources either for high efficiency electricity production or process heat applications. A preliminary SmAHTR concept has been developed that delivers 125 MWt of energy in an integral primary system design that places all primary and decay heat removal heat exchangers inside the reactor vessel. The current reactor baseline concept utilizes a prismatic fuel block core, but multiple removable fuel assembly concepts are under evaluation as well. The reactor vessel size is such that it can be transported on a standard tractor-trailer to support simplified deployment. This paper will provide a summary of the current SmAHTR system concept and on-going technology and system architecture trades studies.

  11. Advanced reactors transition fiscal year 1995 multi-year program plan WBS 7.3

    SciTech Connect

    Loika, E.F.

    1994-09-22

    This document describes in detail the work to be accomplished in FY-1995 and the out years for the Advanced Reactors Transition (WBS 7.3). This document describes specific milestones and funding profiles. Based upon the Fiscal Year 1995 Multi-Year Program Plan, DOE will provide authorization to perform the work outlined in the FY 1995 MYPP. Following direction given by the US Department of Energy (DOE) on December 15, 1993, Advanced Reactors Transition (ART), previously known as Advanced Reactors, will provide the planning and perform the necessary activities for placing the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown condition. The DOE goal is to accomplish the shutdown in approximately five years. The Advanced Reactors Transition Multi-Year Program Plan, and the supporting documents; i.e., the FFTF Shutdown Program Plan and the FFTF Shutdown Project Resource Loaded Schedule (RLS), are defined for the life of the Program. During the transition period to achieve the Shutdown end-state, the facilities and systems will continue to be maintained in a safe and environmentally sound condition. Additionally, facilities that were associated with the Office of Nuclear Energy (NE) Programs, and are no longer required to support the Liquid Metal Reactor Program will be deactivated and transferred to an alternate sponsor or the Decontamination and Decommissioning (D and D) Program for final disposition, as appropriate.

  12. Status report on high fidelity reactor simulation.

    SciTech Connect

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-12-11

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool.

  13. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  14. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Hamrita, H.; Jammes, C.; Galli, G.; Laine, F.

    2017-03-01

    Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.

  15. VELM61 and VELM22: Multigroup cross-section libraries for sodium-cooled reactor shield analysis

    SciTech Connect

    Fu, C.Y.; Ingersoll, D.T.

    1987-04-01

    Two coupled neutron and photon multigroup cross-section libraries, derived from ENDF/B-V nuclear data, are described. The energy group structures, 61n/23..gamma.. and 22n/10..gamma.., are subsets of the Vitamin-E 174n/38..gamma.. group structure, and are tailored to the iron and sodium resonances, windows, and capture gamma-ray spectra. Each of the two libraries are available in two formats, the AMPX master format and the ANISN format. Cross sections for all materials in the Vitamin-E library were collapsed using a standard energy weighting function, and in addition, several cross-section sets for each of the major constituents of commercial grade sodium, stainless steel (types 304 and 316), and carbon steel were derived using several problem-dependent weighting functions for averaging the fine groups. Effects of various group structures and weighting functions on the accuracy of the broad group libraries are studied by ANISN analysis of a typical sodium-iron shield configuration.

  16. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  17. Compiled reports on the applicability of selected codes and standards to advanced reactors

    SciTech Connect

    Benjamin, E.L.; Hoopingarner, K.R.; Markowski, F.J.; Mitts, T.M.; Nickolaus, J.R.; Vo, T.V.

    1994-08-01

    The following papers were prepared for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission under contract DE-AC06-76RLO-1830 NRC FIN L2207. This project, Applicability of Codes and Standards to Advance Reactors, reviewed selected mechanical and electrical codes and standards to determine their applicability to the construction, qualification, and testing of advanced reactors and to develop recommendations as to where it might be useful and practical to revise them to suit the (design certification) needs of the NRC.

  18. Piping benchmark problems for the General Electric Advanced Boiling Water Reactor

    SciTech Connect

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1993-08-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boiling water reactor standard design, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set.

  19. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  20. Advanced Reactor Safety Program – Stakeholder Interaction and Feedback

    SciTech Connect

    Szilard, Ronaldo H.; Smith, Curtis L.

    2014-08-01

    In the Spring of 2013, the Idaho National Laboratory (INL) began discussions with industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling and simulation could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  1. Safety Characteristics of LBE Cooled Long-Life Small Reactor, 'LSPR'

    SciTech Connect

    Hiroshi Sekimoto; Shinichi Makino

    2002-07-01

    Lead bismuth eutectic (LBE) shows a good performance on neutron economy, and LBE cooled fast reactor can be designed as an excellent long-life small reactor. LBE is good not only for neutron economy but for chemical inertness and high boiling point, which may realize a much safer reactor than conventional sodium-cooled reactor. We have designed such a long-life small reactor and name it LSPR. This paper presents safety characteristics of LSPR. (authors)

  2. On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks

    SciTech Connect

    Samuel Bays; Ayodeji Alajo

    2010-05-01

    This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

  3. Insights from the WGRISK workshop on the PSA of advanced and new reactors

    SciTech Connect

    Georgescu, G.; Ahn, K. I.; Amri, A.

    2012-07-01

    Probabilistic Safety Assessment /Probabilistic Risk Assessment for new and advanced reactors is recognized as an essential complement of the deterministic approaches to achieve improved safety and performances of new nuclear power plants, comparing to the operating plants. However, the development of PSA to these reactors is encountered to concurrent challenges, mainly due to the limited available design information, as well as due to potentially new initiating events, accident sequences and phenomena. The use of PSA in the decision making process is also challenging since the resulting PSA may not sufficiently reflect the future as-built, as-operated plant information. In order to address these aspects, the OECD/NEA/WGRISK initiated two coordinated tasks on 'PSA for Advanced Reactors' and 'PSA in the frame of Design and Commissioning of New NPPs'. In this context, a joint workshop was organized by OECD, during which related subjects were presented and discussed, including PSA for generation IV reactors, PSA for evolutionary reactors, PSA for small modular reactors, severe accidents and Level 2 PSA, Level 3 PSA and consequences analysis, digital I and C modeling, passive systems reliability, safety-security interface, as well as the results of the surveys performed in the frame of theses WGRISK tasks. (authors)

  4. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    SciTech Connect

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  5. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  6. Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011

    SciTech Connect

    Not Listed

    2011-11-01

    The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

  7. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    SciTech Connect

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  8. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

  9. Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory

    SciTech Connect

    Sivill, R.L.

    1990-03-01

    This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

  10. Lessons Learned about Liquid Metal Reactors from FFTF Experience

    SciTech Connect

    Wootan, David W.; Casella, Andrew M.; Omberg, Ronald P.; Burke, Thomas M.; Grandy, Christopher

    2016-09-20

    The Fast Flux Test Facility (FFTF) is the most recent liquid-metal reactor (LMR) to operate in the United States, from 1982 to 1992. FFTF is located on the DOE Hanford Site near Richland, Washington. The 400-MWt sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission test reactor was designed specifically to irradiate Liquid Metal Fast Breeder Reactor (LMFBR) fuel and components in prototypical temperature and flux conditions. FFTF played a key role in LMFBR development and testing activities. The reactor provided extensive capability for in-core irradiation testing, including eight core positions that could be used with independent instrumentation for the test specimens. In addition to irradiation testing capabilities, FFTF provided long-term testing and evaluation of plant components and systems for LMFBRs. The FFTF was highly successful and demonstrated outstanding performance during its nearly 10 years of operation. The technology employed in designing and constructing this reactor, as well as information obtained from tests conducted during its operation, can significantly influence the development of new advanced reactor designs in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor operations. The FFTF complex included the reactor, as well as equipment and structures for heat removal, containment, core component handling and examination, instrumentation and control, and for supplying utilities and other essential services. The FFTF Plant was designed using a “system” concept. All drawings, specifications and other engineering documentation were organized by these systems. Efforts have been made to preserve important lessons learned during the nearly 10 years of reactor operation. A brief summary of Lessons Learned in the following areas will be discussed: Acceptance and Startup Testing of FFTF FFTF Cycle Reports

  11. 2015 Groundwater Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Ponds

    SciTech Connect

    Lewis, Michael George

    2016-02-01

    This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  12. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  13. Selection of the reference steam generator for the advanced liquid metal reactor

    SciTech Connect

    Loewen, Eric P.; Boardman, Chuck

    2007-07-01

    In February 2006 President Bush announced the Advanced Energy Initiative, which included the Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP). GNEP has seven broad goals; one of the major elements being to develop and deploy advanced nuclear fuel recycling technology that includes consuming spent nuclear fuel in an Advanced Recycling Reactor (ARR). DOE is contemplating accelerating the deployment of these technologies to achieve the construction of a commercial scale application of these technologies. DOE now defines this approach as 'two simultaneous tracks: (1) deployment of commercial scale facilities for which advanced technologies are available now or in the near future, and (2) further research and development of transmutation fuels technologies'. GEHitachi Nuclear Energy Americas LLC (GHNEA) believes an integrated technical solution is achievable in the near term to accelerate the commercial demonstration of GNEP infrastructure. The GHNEA ARR concept involves a single integrated recycling facility sized to service a single reactor module ARR capable of destroying light water and fast reactor sourced actinides. This paper describes the bases and rationale behind the selection of the helical coil steam generator (HCSG) as the reference steam generator concept for the ALMR and S-PRISM reactor concepts. (authors)

  14. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  15. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  16. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. Advanced Computational Thermal Studies and their Assessment for Supercritical-Pressure Reactors (SCRs)

    SciTech Connect

    D. M. McEligot; J. Y. Yoo; J. S. Lee; S. T. Ro; E. Lurien; S. O. Park; R. H. Pletcher; B. L. Smith; P. Vukoslavcevic; J. M. Wallace

    2009-04-01

    The goal of this laboratory / university collaboration of coupled computational and experimental studies is the improvement of predictive methods for supercritical-pressure reactors. The general objective is to develop supporting knowledge needed of advanced computational techniques for the technology development of the concepts and their safety systems.

  19. Advanced propulsion engine assessment based on a cermet reactor

    NASA Technical Reports Server (NTRS)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  20. Calculated analysis of experiments in fast neutron reactors

    SciTech Connect

    Davydov, V. K. Kalugina, K. M.; Gomin, E. A.

    2012-12-15

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  1. Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. B. Grover

    2007-05-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment

  2. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    SciTech Connect

    Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin

    2016-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.

  3. The IAEA CRP on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste

    SciTech Connect

    Maschek, W.; Chen, X.; Rineiski, A.; Schikorr, M.; Stanculescu, A.; Arien, B.; Malambu, E.; Bai, Y.; Li, J.; Wu, Y.; Zheng, S.; Chabert, C.; Peneliau, Y.; Chebeskov, A.; Dekoussar, V.; Vorotyntsev, M.; da Cruz, D.F.; Devan, K.; Gopalakrishnan, V.; Harish, R.; Mohanakrishnan, P.; Pandikumar, G.; Dulla, S.; Ravetto, P.; Feynberg, O.; Ignatiev, V.; Subbotin, V.; Surenkov, A.; Zakirov, R.; Kophazi, J.; Szieberth, M.; Morita, K.; Srivenkatesan, R.; Taczanowski, S.; Tucek, K.; Wider, H.; Vertes, P.; Uhlir, J.

    2007-07-01

    In 2003, the IAEA has initiated the Coordinated Research Project (CRP) on 'Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste'. The overall objective of the CRP, performed within the framework of IAEA's Nuclear Energy Department's Technical Working Group on Fast Reactors, is to increase the capability of Member States in developing and applying advanced technologies in the area of long-lived radioactive waste utilization and transmutation. Twenty institutions from 15 Member States and one international organization participated in this CRP. The CRP concentrated on the assessment of the dynamic behavior of various transmutation systems. The reactor systems investigated comprise critical reactors, sub-critical accelerator driven systems with heavy liquid metal and gas cooling, critical molten salt systems, and hybrid fusion/fission systems. Both fertile and fertile-free fuel options have been investigated. Apart from the benchmarking of steady state core configurations (including the investigation of transmutation potential, burn-up behavior and decay heat of minor actinide (MA) bearing fuels), the CRP participants determined the safety coefficients for the individual systems and, in a second stage, performed transient analyses which reflected the generic safety related behavior of the various reactors types. (authors)

  4. Requirements for Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. aSMRs are conceived for applications in remote locations and for diverse missions that include providing process or district heating, water desalination, and hydrogen production. Several challenges exist with respect to cost-effective operations and maintenance (O&M) of aSMRs, including the impacts of aggressive operating environments and modularity, and limiting these costs and staffing needs will be essential to ensuring the economic feasibility of aSMR deployment. In this regard, prognostic health management (PHM) systems have the potential to play a vital role in supporting the deployment of aSMR systems. This paper identifies requirements and technical gaps associated with implementation of PHM systems for passive aSMR components.

  5. Robotics application for in-service inspection of the ALMR. [Advanced Liquid Metal Reactor (ALMR)

    SciTech Connect

    Kwant, W.; Ramsour, N.L. . Nuclear Energy Div.); Sweeney, F.J. )

    1993-01-01

    The US Advanced Liquid Metal Reactor (ALMR) Program is developing and licensing a reactor system that is compact for factory fabrication and modular construction. The design includes provisions for in-service inspection to verify performance and safety capabilities throughout the life of the plant. A DOE sponsored robotics team, comprised of members from the universities of Florida, Michigan, Tennessee, Texas and from Oak Ridge National Laboratory, is developing advanced inspection equipment using robotics for nuclear application. This equipment is compact and remotely operated and particularly suited for inspection of the ALMR. Extensive 3D simulations are used to refine and demonstrate the inspection methods. This paper focuses on inspection methods for the reactor vessel and the reactor vessel auxiliary cooling system (RVACS). Inspection capabilities are included for visual inspection of the reactor vessel outer surface and volumetric inspection of the welds. The robotics team is devising a compact crawler design with the capabilities to perform these inspections. Similarly, various robot concepts are being evaluated for accomplishing the RVACS visual inspection and cleaning procedures.

  6. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    SciTech Connect

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for load following operation in regions where dry air cooling is a requirement

  7. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  8. Testing of an advanced thermochemical conversion reactor system

    NASA Astrophysics Data System (ADS)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.

  9. Examination of loop-operator-initiated events for the advanced test reactor

    SciTech Connect

    Durney, J.L.; Majumdar, D.

    1989-01-01

    The Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory is a unique high-flux test reactor having nine major test positions for irradiation of reactor materials. These test positions contain inpile tubes (IPT) that are connected to external piping and equipment (loops) to provide the high-temperature, high-pressure environment for the testing. The design of the core has intimately integrated the IPTs into the fuel region by means of a serpentine fuel arrangement resulting in a close reactivity coupling between the loop thermal hydraulics and the core. Consequently, operator actions potentially have an impact on the reactor power transients resulting from off-normal conditions in these facilities. This paper examines these operator-initiated events and their consequences. The analysis of loop-operator-initiated events indicates there is no damage to the reactor core even when assuming no operator intervention for mitigation. However, analysis does assume a scram occurs when required by the reactor protection systems.

  10. A new advanced fixed in-core instrumentation for a PWR reactor

    NASA Astrophysics Data System (ADS)

    Barbet, M.; Guillery, M.

    1981-06-01

    Gamma thermometer studies have been done at E.D.F. for four years. These studies started in France with a feasibility study in 1975. E.D.F.'s scope was to develop a new fixed "in-core" instrumentation for PWR based on the gamma heat measurements. The advanced gamma thermometer design has been done in such a way to be able to manufacture strings of 6 to 9 detectors each. The results of gamma thermometer make up in 1976 were encouraging and E.D.F. went on to develop a gamma thermometer assembly for a reactor application. Before being mounted on the reactor vessel, the gamma thermometer strings are calibrated in a loop test by means of an electrical current giving the ΔT versus the specific power ( W/ g). The loop test simulates the thermohydraulic conditions in the reactor tube guide. Two gamma thermometer strings have been installed in the BUGEY 5 reactor since June 1979. Four gamma thermometer strings are provided for insertion in the TRICASTIN 2 reactor and four more gamma thermometer strings are manufactured to be ready for the start up of the TRICASTIN 3 reactor in 1980.

  11. Example Work Domain Analysis for a Reference Sodium Fast Reactor

    SciTech Connect

    Hugo, Jacques; Oxstrand, Johanna

    2015-01-01

    The nuclear industry is currently designing and building a new generation of reactors that will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. Uncertainty about the effect of large scale changes in plant design will remain until sound technical bases are developed for new operational concepts and strategies. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. This report describes how the classical Work Domain Analysis method was adapted to develop operational concept frameworks for new plants. This adaptation of the method is better able to deal with the uncertainty and incomplete information typical of first-of-a-kind designs. Practical examples are provided of the systematic application of the method in the operational analysis of sodium-cooled reactors. Insights from this application and its utility are reviewed and arguments for the formal adoption of Work Domain Analysis as a value-added part of the Systems Engineering process are presented.

  12. Start-up fuel and power flattening of sodium-cooled candle core

    SciTech Connect

    Takaki, Naoyuki; Sagawa, Yu; Umino, Akitake; Sekimoto, Hiroshi

    2013-07-01

    The hard neutron spectrum and unique power shape of CANDLE enable its distinctive performances such as achieving high burnup more than 30% and exempting necessity of both enrichment and reprocessing. On the other hand, they also cause several challenging problems. One is how the initial fuel can be prepared to start up the first CANDLE reactor because the equilibrium fuel composition that enables stable CANDLE burning is complex both in axial and radial directions. Another prominent problem is high radial power peaking factor that worsens averaged burnup, namely resource utilization factor in once-through mode and shorten the life time of structure materials. The purposes of this study are to solve these two problems. Several ideas for core configurations and startup fuel using single enrichment uranium and iron as a substitute of fission products are studied. As a result, it is found that low enriched uranium is applicable to ignite the core but all concepts examined here exceeded heat limits. Adjustment in enrichment and height of active and burnt zone is opened for future work. Sodium duct assemblies and thorium fuel assemblies loaded in the center region are studied as measures to reduce radial power peaking factor. Replacing 37 fuels by thorium fuel assemblies in the zeroth to third row provides well-balanced performance with flattened radial power distribution. The CANDLE core loaded with natural uranium in the outer and thorium in the center region achieved 35.6% of averaged burnup and 7.0 years of cladding life time owing to mitigated local fast neutron irradiation at the center. Using thorium with natural or depleted uranium in CANDLE reactor is also beneficial to diversifying fission resource and extending available term of fission energy without expansion of needs for enrichment and reprocessing.

  13. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    SciTech Connect

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  14. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  15. Advanced Reactors Transition program fiscal year 1998 multi-year work plan

    SciTech Connect

    Gantt, D.A.

    1997-09-25

    The mission of the Advanced Reactors Transition program is two-fold. First, the program is to maintain the Fast Flux Test Facility (FFTF) and the Fuels and Materials Examination Facility (FMEF) in Standby to support a possible future role in the tritium production strategy. Secondly, the program is to continue deactivation activities which do not conflict with the Standby directive. On-going deactivation activities include the processing of non-usable, irradiated, FFTF components for storage or disposal; deactivation of Nuclear Energy legacy test facilities; and deactivation of the Plutonium Recycle Test Reactor (PRTR) facility, 309 Building.

  16. DEVELOPMENT OF HUMAN FACTORS ENGINEERING GUIDANCE FOR SAFETY EVALUATIONS OF ADVANCED REACTORS.

    SciTech Connect

    O'HARA, J.; PERSENSKY, J.; SZABO, A.

    2006-10-01

    Advanced reactors are expected to be based on a concept of operations that is different from what is currently used in today's reactors. Therefore, regulatory staff may need new tools, developed from the best available technical bases, to support licensing evaluations. The areas in which new review guidance may be needed and the efforts underway to address the needs will be discussed. Our preliminary results focus on some of the technical issues to be addressed in three areas for which new guidance may be developed: automation and control, operations under degraded conditions, and new human factors engineering methods and tools.

  17. Contribution to the validation of MCNP neutronics design of the advanced neutron source reactor

    SciTech Connect

    Rubio, G.A.; Ougouag, A.M.; Wemple, C.A.; Ryskamp, J.M. )

    1993-01-01

    In the research and development plan of the advanced neutron source (ANS) reactor, one of the steps planned for neutronics design methods validation is to compare computational model results and experimental results for a critical facility exhibiting similarities with the ANS reactor. One such facility is the FOEHN experiment. In this paper, an MCNP model of the FOEHN experiment is developed, and its results are compared with experimental data from the literature. The MCNP models reproduces measured quantities of interest with a high level of agreement.

  18. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    SciTech Connect

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  19. Reactor physics studies for the Advanced Fuel Cycle Initiative (AFCI) Reactor-Accelerator Coupling Experiments (RACE) Project

    NASA Astrophysics Data System (ADS)

    Stankovskiy, Evgeny Yuryevich

    In the recently completed RACE Project of the AFCI, accelerator-driven subcritical systems (ADS) experiments were conducted to develop technology of coupling accelerators to nuclear reactors. In these experiments electron accelerators induced photon-neutron reactions in heavy-metal targets to initiate fission reactions in ADS. Although the Idaho State University (ISU) RACE ADS was constructed only to develop measurement techniques for advanced experiments, many reactor kinetics experiments were conducted there. In the research reported in this dissertation, a method was developed to calculate kinetics parameters for measurement and calculation of the reactivity of ADS, a safety parameter that is necessary for control and monitoring of power production. Reactivity is measured in units of fraction of delayed versus prompt neutron from fission, a quantity that cannot be directly measured in far-subcritical reactors such as the ISU RACE configuration. A new technique is reported herein to calculate it accurately and to predict kinetic behavior of a far-subcritical ADS. Experiments conducted at ISU are first described and experimental data are presented before development of the kinetic theory used in the new computational method. Because of the complexity of the ISU ADS, the Monte-Carlo method as applied in the MCNP code is most suitable for modeling reactor kinetics. However, the standard method of calculating the delayed neutron fraction produces inaccurate values. A new method was developed and used herein to evaluate actual experiments. An advantage of this method is that its efficiency is independent of the fission yield of delayed neutrons, which makes it suitable for fuel with a minor actinide component (e.g. transmutation fuels). The implementation of this method is based on a correlated sampling technique which allows the accurate evaluation of delayed and prompt neutrons. The validity of the obtained results is indicated by good agreement between experimental

  20. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  1. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  2. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  3. In-Situ Creep Testing Capability for the Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2012-09-01

    An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 °C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

  4. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  5. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    SciTech Connect

    Agarwal, Vivek; Smith, James A.; Jewell, James Keith

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  6. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  7. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  8. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    SciTech Connect

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong; Housley, Gregory K.

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  9. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  10. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    SciTech Connect

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' (Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety) is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document.

  11. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  12. Roadmap for development of an advanced head-end reactor

    SciTech Connect

    Del Cul, G.D.; Johnson, J.A.; Spencer, B.B.; Collins, E.D.

    2013-07-01

    A novel dry treatment process for used nuclear fuel (UNF) using nitrogen dioxide is being developed to remove volatile and semi-volatile fission products and convert the monolithic fuel material to a fine powder suitable as a feed to many different separations processes. The process may be considered an advanced form of voloxidation, which was envisioned to remove tritium from the fuel prior to introduction of the fuel into the aqueous separations systems, where subsequent separation of tritium from the water would be difficult and expensive. The product from NO{sub 2} reaction can be selectively chosen to be U{sub 3}O{sub 8}, UO{sub 3}, or a nitrate by adjusting the processing conditions; all products are generated at temperatures lower than those used in standard voloxidation. All the fundamental tenants of the process have been successfully demonstrated as a proof of principle, and many aspects have been corroborated multiple times at laboratory scale. The goal of this roadmap is to define the activities required to develop the process to a technology-readiness level sufficient to an engineering-scale implementation. (authors)

  13. Application of the LBB regulatory approach to the steamlines of advanced WWER 1000 reactor

    SciTech Connect

    Kiselyov, V.A.; Sokov, L.M.

    1997-04-01

    The LBB regulatory approach adopted in Russia in 1993 as an extra safety barrier is described for advanced WWER 1000 reactor steamline. The application of LBB concept requires the following additional protections. First, the steamline should be a highly qualified piping, performed in accordance with the applicable regulations and guidelines, carefully screened to verify that it is not subjected to any disqualifying failure mechanism. Second, a deterministic fracture mechanics analysis and leak rate evaluation have been performed to demonstrate that postulated through-wall crack that yields 95 1/min at normal operation conditions is stable even under seismic loads. Finally, it has been verified that the leak detection systems are sufficiently reliable, diverse and sensitive, and that adequate margins exist to detect a through wall crack smaller than the critical size. The obtained results are encouraging and show the possibility of the application of the LBB case to the steamline of advanced WWER 1000 reactor.

  14. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    SciTech Connect

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  15. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    SciTech Connect

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs.

  16. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    SciTech Connect

    Holmes, Forest Howard

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  17. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Yoder, G.L. ); Wendel, M.W. )

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs.

  18. Advanced reactors transition FY 1997 multi-year work plan WBS 7.3

    SciTech Connect

    Hulvey, R.K.

    1996-09-27

    This document describes in detail the work to be accomplised in FY 1997 and the out-years for the Advanced Reactors Transition (WBS 7.3) under the management of the Babcock & Wilcox Hanford Company. This document also includes specific milestones and funding profiles. Based upon the Fiscal Year 1997 Multi-Year Work Plan, the Department of Energy will provide authorization to perform the work described.

  19. Advanced Light Water Reactor Program: Program management and staff review methodology

    SciTech Connect

    Moran, D.H.

    1986-12-01

    This report summarizes the NRC/EPRI coordinated effort to develop design requirements for a standardized advanced light water reactor (ALWR) and the procedures for screening and applying new generic safety issues to this program. The end-product will be an NRC-approved ALWR Requirements Document for use by the nuclear industry in generating designs of LWRs to be constructed for operation in the 1990s and beyond.

  20. Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors

    SciTech Connect

    William Richins; Stephen Novascone; Cheryl O'Brien

    2009-08-01

    Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors William Richins1, Stephen Novascone1, and Cheryl O’Brien1 1Idaho National Laboratory, US Dept. of Energy, Idaho Falls, Idaho, USA, e-mail: William.Richins@inl.gov The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selected to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; 1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and 2) calibrating simulation software and methods that address topic 1 The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.

  1. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    SciTech Connect

    Bolisetti, Chandrakanth; Coleman, Justin Leigh

    2015-06-01

    of interest. The specific nonlinear soil behavior included in the NLSSI calculation presented in this report is gapping and sliding. Other NLSSI effects are not included in the calculation. The results presented in this report document initial model runs in the linear and nonlinear analysis process. Final comparisons between traditional and advanced SPRA will be presented in the September 30th deliverable.

  2. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  3. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    SciTech Connect

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  4. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  5. Design of a Gas Test Loop Facility for the Advanced Test Reactor

    SciTech Connect

    C. A. Wemple

    2005-09-01

    The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

  6. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    SciTech Connect

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard; Sabharwall, Piyush

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  7. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    SciTech Connect

    Blanchard, James; Butt, Darryl; Meyer, Mitchell; Xu, Peng

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  8. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  9. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  10. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    SciTech Connect

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  11. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  12. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  13. Safeguards and Non-proliferation Issues as Related to Advanced Fuel Cycle and Advanced Fast Reactor Development with Processing of Reactor Fuel

    SciTech Connect

    Rahmat Aryaeinejad; Jerry D. Cole; Mark W. Drigert; Dee E. Vaden

    2006-10-01

    The goal of this work is to establish basic data and techniques to enable safeguards appropriate to a new generation of nuclear power systems that will be based on fast spectrum reactors and mixed actinide fuels containing significant quantities of "minor" actinides, possibly due to reprocessing, and determination of what new radiation signatures and parameters need to be considered. The research effort focuses on several problems associated with the use of fuel having significantly different actinide inventories that current practice and on the development of innovative techniques using new radiation signatures and other parameters useful for safeguards and monitoring. In addition, the development of new distinctive radiation signatures as an aid in controlling proliferation of nuclear materials has parallel applications to support Gen-IV and current advanced fuel cycle initiative (AFCI) goals as well as the anticipated Global Nuclear Energy Partnership (GNEP).

  14. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  15. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  16. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  17. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  18. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    SciTech Connect

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  19. ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs

    SciTech Connect

    Murphy, BD

    2004-03-10

    Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

  20. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    SciTech Connect

    Thompson, P.B.; Meek, W.E.

    1993-07-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

  1. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  2. Summary of the Advanced Reactor Design Criteria (ARDC) Phase 2 Activities

    SciTech Connect

    Holbrook, Mark Raymond

    2015-09-01

    This report provides an end-of-year summary reflecting the progress and status of proposed regulatory design criteria for advanced non-LWR designs in accordance with the Level 3 milestone in M3AT-15IN2001017 in work package AT-15IN200101. These criteria have been designated as ARDC, and they provide guidance to future applicants for addressing the GDC that are currently applied specifically to LWR designs. The report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of example adaptations of ARDC for Sodium Fast Reactor (SFR) and modular High Temperature Gas-cooled Reactor (HTGR) designs.

  3. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A. T. D.; Georgii, R.; Hao, L. J.; Liu, Y. T.

    2016-06-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×107 n/cm2/s at neutron incident energy Ei=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  4. Temperature monitoring options available at the Idaho national laboratory advanced test reactor

    NASA Astrophysics Data System (ADS)

    Daw, J. E.; Rempe, J. L.; Knudson, D. L.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.

    2013-09-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Clearly, temperature sensor selection for irradiation tests will be determined based on the irradiation environment and budget. However, temperature sensors now offered by INL include a wide array of melt wires in small capsules, silicon carbide monitors, commercially available thermocouples, and specialized high temperature irradiation resistant thermocouples containing doped molybdenum and niobium alloy thermoelements. In addition, efforts have been initiated to develop and evaluate ultrasonic thermometers for irradiation testing. This array of temperature monitoring options now available to ATR and other Material and Test Reactor (MTR) users fulfills recent customer requests.

  5. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  6. Fiscal year 1999 multi-year work plan, advanced reactors transition program

    SciTech Connect

    Gantt, D.A.

    1998-09-17

    The Advanced Reactors Transition (ART) has two missions. One, funded by DOE-EM is to transition assigned, surplus facilities to a safe and compliant, low-cost stable, deactivated condition (requiring minimal surveillance and maintenance) pending eventual reuse or D and D. Facilities to be transitioned include the 309 Building/Plutonium Recycle Test Reactor (PRTR) and Nuclear Energy (NE) Legacy Facilities. The second mission, funded by DOE-NE, is to maintain the Fast Flux Test Facility (FFTF) and affiliated 400 Area buildings in a safe and compliant standby condition. The condition of the plant hardware, software and personnel is to be preserved in a manner not to preclude a plant restart.

  7. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  8. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  9. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    SciTech Connect

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C.

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  10. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  11. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  12. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  13. A New Method for Shear Stabilization of Advanced Tokamak Reactors via Mode Converted Ion Bernstein Waves*

    NASA Astrophysics Data System (ADS)

    Sund, Richard; Scharer, John

    2002-11-01

    We examine a new method for generating sheared flows in advanced tokamak D-T reactors with the goal of creating and controlling internal transport barriers. Ion-Bernstein waves (IBWs) have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. Under reactor conditions, the IBW can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side (HFS) on the second harmonic resonance of a minority hydrogen component, with near 100200 MHz) minimizes parasitic absorption and permits the converted IBW to approach the fifth tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. Placement of the 5T absorption layer on the HFS is advantageous for shear production. The scheme is applicable to reactors with aspect ratio < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Various factors (adequate separation of the mode conversion layer from the magnetic axis, concentration of the fast wave near the midplane, large machine size, and plasma elongation) minimize poloidal field effects in the conversion zone and permit a slab analysis. We use a 1-D full-wave code to analyze the conversion and absorption. A 2-D ray-tracing code incorporating poloidal magnetic fields is used to follow the IBW for various equilibria. Within this analysis a weak bean shape appears most favorable. This is an attractive scheme for future advanced tokamak reactors. *Research supported by the Univ. of Wisconsin, Madison

  14. Fuel density, uranium enrichment, and performance studies for the Advanced Neutron Source reactor

    SciTech Connect

    Alston, E.E.; Gehin, J.C.; West, C.D.

    1994-06-01

    Consistent with the words of the budget request for the Advanced Neutron Source (ANS), DOE commissioned a study of the impact on performance of using medium- or low-enriched uranium (MEU or LEU) in the fuel of the reactor that generates the neutrons. In the course of the study, performance calculations for 19 different combinations of reactor core volume, fuel density and enrichment, power level, and other relevant parameters were carried out. Since then, another 14 cases have been analyzed at Oak Ridge to explore some of the more interesting and important configurations and to gain further insights into the tradeoffs between performance and enrichment. Furthermore, with the aid of the data from these additional cases, we have been able to correlate the most important performance parameters (peak thermal neutron flux in the reflector and core life) with reactor power, fuel density, and fuel enrichment. This enables us to investigate intermediate cases, or alternative cases that might be proposed by people within or outside the project, without the time and expense of doing completely new neutronics calculations for each new example. The main drivers of construction and operating costs are the reactor power level and the number of fuel plates to be fabricated each year; these quantities can be calculated from the correlations. The results show that the baseline two-element core design cannot be adapted to any practical fuel of greatly reduced enrichment without great performance penalties, but that a modification of the design, in which one additional fuel element is incorporated to provide extra volume for lower enrichment fuels, has the capability of using existing, or more advanced, fuel types to lower the uranium enrichment.

  15. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  16. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates

  17. Results of the Irradiation of R6R018 in the Advanced Test Reactor

    SciTech Connect

    Adam B Robinson; Daniel Wachs; Pavel Medvedev; Curtis Clark; Gray Chang; Misti Lillo; Jan-Fong Jue; Glenn Moore; Jared Wight

    2010-04-01

    For over 30 years the Reduced Enrichment for Research and Test Reactors (RERTR) program has worked to provide the fuel technology and analytical support required to convert research and test reactors from nuclear fuels that utilize highly enriched uranium (HEU) to fuels based on low-enriched uranium (LEU) (defined as <20% U-235). This effort is driven by a desire to minimize international civilian commerce in weapons usable materials. The RERTR fuel development program has executed a wide array of fuel tests over the last decade that clearly established the viability of research reactor fuels based on uranium-molybdenum (U-Mo) alloys. Fuel testing has included a large number of dispersion type fuels capable of providing uranium densities up to approximately 8.5 g U/cc (~1.7 g U-235/cc at 20% enrichment). The dispersion fuel designs tested are very similar to existing research test reactor fuels in that the U-Mo particles simply replace the current fuel phase within the matrix. In 2003 it became evident that the first generation U-Mo-based dispersion fuel within an aluminum matrix exhibited significant fuel performance problems at high power and burn-up. These issues have been successfully addressed with a modest modification to the matrix material composition. Testing has shown that small additions of silicon (2–5 wt%) to the aluminum (Al) matrix stabilizes the fuel performance. The fuel plate R6R018 which was irradiated in the Advanced Test Reactor (ATR) as part of the RERTR-9B experiment was part of an investigation into the role of the silicon content in the matrix. This plate consisted of a U-7Mo fuel phase dispersed in an Al-3.5Si matrix clad in Al-6061. This report outlines the fabrication history, the as fabricated analysis performed prior to irradiation, the irradiation conditions, the post irradiation examination results, and an analysis of the plates behavior.

  18. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Varma, Venugopal Koikal; Cisneros, Anselmo T; Kelly, Ryan P; Gehin, Jess C

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  19. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    SciTech Connect

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.; Qualls, A. L.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  20. Regulatory Review of the Digital Plant Protection System for Advanced Power Reactor 1400

    SciTech Connect

    Kim, DAI. I.; Ji, S.H.; Park, H.S.; Kim, B.R.; Kang, Y.D.; Oh, S.H.

    2002-07-01

    This paper presents the evaluation result and the regulatory approach of digital plant protection system (DPPS) for Advanced Power Reactor (APR-1400). Firstly, we discuss the issue associated with the integration of bistable processor (BP) and local coincidence logic processor (LCLP) as one of design changes over digital plant protection system. Secondly, regulatory approach is presented on the safety classification and the independence of the soft controller to be installed in digital engineered safety features actuation system (DESFAS). Finally, hardwired back up systems against common mode failure of a digital system and the safety classification of Remote Shutdown Panel (RSP) are described. (authors)

  1. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  2. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  3. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  4. Utility leadership in reopening the nuclear option with advanced light water reactors

    SciTech Connect

    Marston, T.U.; Layman, W.H. )

    1992-01-01

    Since 1981, the Electric Power Research Institute (EPRI) has been pursing the development of the advanced light water reactor (ALWR). The ALWR Program is comprised of five phases and are described in the paper. In order to meet the anticipated baseline power generation requirements in the US, the Nuclear Power Oversight Committee (NPOC) has developed a strategic plan for ALWR implementation in order to regain the nuclear option in the United States. The paper also covers the policies behind the utility requirements, the status of ALWR developments in the United States, the electricity demands during the period 1990-2010, and some of the innovative features of the passive plants presently under design.

  5. Summary of Thermocouple Performance During Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor and Out-of-Pile Thermocouple Testing in Support of Such Experiments

    SciTech Connect

    A. J. Palmer; DC Haggard; J. W. Herter; M. Scervini; W. D. Swank; D. L. Knudson; R. S. Cherry

    2011-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina

  6. Summary of thermocouple performance during advanced gas reactor fuel irradiation experiments in the advanced test reactor and out-of-pile thermocouple testing in support of such experiments

    SciTech Connect

    Palmer, A. J.; Haggard, DC; Herter, J. W.; Swank, W. D.; Knudson, D. L.; Cherry, R. S.; Scervini, M.

    2015-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to be only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000 deg. C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700 deg. C - 1200 deg. C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150 deg. C and 1200 deg. C for 2,000 hours at each temperature, followed by 200 hours at 1250 deg. C and 200 hours at 1300 deg. C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl{sub 2}O{sub 4}) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly

  7. Advance Liquid Metal Reactor Discrete Dynamic Event Tree/Bayesian Network Analysis and Incident Management Guidelines (Risk Management for Sodium Fast Reactors)

    SciTech Connect

    Denman, Matthew R.; Groth, Katrina M.; Cardoni, Jeffrey N.; Wheeler, Timothy A.

    2015-04-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self-correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayesian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The authors would like to acknowledge the U.S. Department of Energy's Office of Nuclear Energy for funding this research through Work Package SR-14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at Argonne National Laboratory, Oak Ridge National Laboratory, and Idaho National Laboratory for their continue d contributions to the advanced reactor PRA mission area.

  8. Nuclear data needs for advanced reactor systems. A NEA nuclear science committee initiative.

    SciTech Connect

    Salvatores, M.; Aliberti, G.; Palmiotti, G.; Rochman, D.; Oblozinsky, P.; Hermann, M.; Talou, P.; Kawano, T.; Leal, L.; Koning, A.; Kodeli, I.; Nuclear Engineering Division; CEA Cadarache; BNL; LANL; ORNL; NRG-Petten; NEA-Databank

    2008-01-01

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered. The methodology, the systems considered and the sensitivity approach are consistent with the work reported in ref. [1]. For the present study, the approach has been extended to the ABTR Na-cooled core, recently studied within the GNEP initiative [2]. Sensitivity coefficients (in a 15 energy group structure) have been calculated at ANL with the ERANOS code system [3] for all reactors and for the parameters most sensitive to nuclear data uncertainties: Multiplication factor, Power peak, Burn-up {Delta}k/k, Coolant void reactivity coefficient, Doppler reactivity coefficient, Nuclide density at end of cycle (transmutation potential), Neutron source at fuel fabrication, Dose in a repository.

  9. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  10. Criticality Safety Evaluation for the Advanced Test Reactor U-Mo Demonstration Elements

    SciTech Connect

    Leland M. Montierth

    2010-12-01

    The Reduced Enrichment Research Test Reactors (RERTR) fuel development program is developing a high uranium density fuel based on a (LEU) uranium-molybdenum alloy. Testing of prototypic RERTR fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. Two RERTR-Full Size Demonstration fuel elements based on the ATR-Reduced YA elements (all but one plate fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). The two fuel elements will be irradiated in alternating cycles such that only one element is loaded in the reactor at a time. Existing criticality analyses have analyzed Standard (HEU) ATR elements (all plates fueled) from which controls have been derived. This criticality safety evaluation (CSE) documents analysis that determines the reactivity of the Demonstration fuel elements relative to HEU ATR elements and shows that the Demonstration elements are bound by the Standard HEU ATR elements and existing HEU ATR element controls are applicable to the Demonstration elements.

  11. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  12. IMPROVED COMPUTATIONAL NEUTRONICS METHODS AND VALIDATION PROTOCOLS FOR THE ADVANCED TEST REACTOR

    SciTech Connect

    David W. Nigg; Joseph W. Nielsen; Benjamin M. Chase; Ronnie K. Murray; Kevin A. Steuhm

    2012-04-01

    The Idaho National Laboratory (INL) is in the process of modernizing the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009 was successfully completed during 2011. This demonstration supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR fuel cycle management process beginning in 2012. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry were conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for a flexible, easily-repeatable ATR physics code validation protocol that is consistent with applicable ASTM standards.

  13. Expansion of Perturbation Theory Applied to Shim Rotation Automation of the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Peterson, Joshua Loren

    In 2007, the Department of Energy (DOE) declared the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF). This declaration expanded the focus of the ATR to include diversified classes of academic and industrial experiments. An essential part of the new suite of more accurate and flexible codes being deployed to support the NSUF is their ability to predict reactor behavior at startup, particularly the position of the outer shim control cylinders (OSCC). The current method used for calculating the OSCC positions during a cycle startup utilizes a heuristic trial and error approach that is impractical with the computationally intensive reactor physics tools, such as NEWT. It is therefore desirable that shim rotation prediction for startup be automated. Shim rotation prediction with perturbation theory was chosen to be investigated as one method for use with startup calculation automation. A modified form of first order perturbation theory, called phase space interpolated perturbation theory, was developed to more accurately model shim rotation prediction. Shim rotation prediction is just one application for this new modified form of perturbation theory. Phase space interpolated perturbation theory can be used on any application where the range of change to the system is known a priori, but the magnitude of change is not known. A cubic regression method was also developed to automate shim rotation prediction by using only forward solutions to the transport equation.

  14. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    SciTech Connect

    Lebedev, G. V. Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-15

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  15. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  16. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  17. Advances in high-rate anaerobic treatment: staging of reactor systems.

    PubMed

    van Lier, J B; van der Zee, F P; Tan, N C; Rebac, S; Kleerebezem, R

    2001-01-01

    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptance of AnWT. In the last decade up to the present, the application potentials of AnWT are further explored. Research shows the feasibility of anaerobic reactors under extreme conditions, such as low and high temperatures. Also toxic and/or recalcitrant wastewaters, that were previously believed not to be suitable for anaerobic processes, are now effectively treated. The recent advances are made possible by adapting the conventional anaerobic high-rate concept to the more extreme conditions. Staged anaerobic reactor concepts show advantages under non-optimal temperature conditions as well as during the treatment of chemical wastewater. In other situations, a staged anaerobic-aerobic approach is required for biodegradation of specific pollutants, e.g. the removal of dyes from textile processing wastewaters. The current paper illustrates the benefits of reactor staging and the yet un-exploited potentials of high-rate AnWT.

  18. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  19. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  20. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    SciTech Connect

    Curtis Smith

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  1. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  2. Interim results of the study of control room crew staffing for advanced passive reactor plants

    SciTech Connect

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  3. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    SciTech Connect

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; R. Schley; J. Palmer; K. Condie

    2014-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.

  4. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    SciTech Connect

    J. L. Rempe; D. L. Knudson; J. E. Daw

    2011-03-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  5. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  6. The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program

    SciTech Connect

    David Petti; Hans Gougar; Gary Bell

    2005-05-01

    The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

  7. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  8. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  9. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  10. Benchmark Development in Support of Generation-IV Reactor Validation (IRPhEP 2010 Handbook)

    SciTech Connect

    John D. Bess; J. Blair Briggs

    2010-06-01

    The March 2010 edition of the International Reactor Physics Experiment Evaluation Project (IRPhEP) Handbook includes additional benchmark data that can be implemented in the validation of data and methods for Generation IV (GEN-IV) reactor designs. Evaluations supporting sodium-cooled fast reactor (SFR) efforts include the initial isothermal tests of the Fast Flux Test Facility (FFTF) at the Hanford Site, the Zero Power Physics Reactor (ZPPR) 10B and 10C experiments at the Idaho National Laboratory (INL), and the burn-up reactivity coefficient of Japan’s JOYO reactor. An assessment of Russia’s BFS-61 assemblies at the Institute of Physics and Power Engineering (IPPE) provides additional information for lead-cooled fast reactor (LFR) systems. Benchmarks in support of the very high temperature reactor (VHTR) project include evaluations of the HTR-PROTEUS experiments performed at the Paul Scherrer Institut (PSI) in Switzerland and the start-up core physics tests of Japan’s High Temperature Engineering Test Reactor. The critical configuration of the Power Burst Facility (PBF) at the INL which used ternary ceramic fuel, U(18)O2-CaO-ZrO2, is of interest for fuel cycle research and development (FCR&D) and has some similarities to “inert-matrix” fuels that are of interest in GEN-IV advanced reactor design. Two additional evaluations were revised to include additional evaluated experimental data, in support of light water reactor (LWR) and heavy water reactor (HWR) research; these include reactor physics experiments at Brazil’s IPEN/MB-01 Research Reactor Facility and the French High Flux Reactor (RHF), respectively. The IRPhEP Handbook now includes data from 45 experimental series (representing 24 reactor facilities) and represents contributions from 15 countries. These experimental measurements represent large investments of infrastructure, experience, and cost that have been evaluated and preserved as benchmarks for the validation of methods and collection of

  11. Providing the Basis for Innovative Improvements in Advanced LWR Reactor Passive Safety Systems Design: An Educational R&D Project

    SciTech Connect

    Brian G. Williams; Jim C. P. Liou; Hiral Kadakia; Bill Phoenix; Richard R. Schultz

    2007-02-27

    This project characterizes typical two-phase stratified flow conditions in advanced water reactor horizontal pipe sections, following activation of passive cooling systems. It provides (1) a means to educate nuclear engineering students regarding the importance of two-phase stratified flow in passive cooling systems to the safety of advanced reactor systems and (2) describes the experimental apparatus and process to measure key parameters essential to consider when designing passive emergency core cooling flow paths that may encounter this flow regime. Based on data collected, the state of analysis capabilities can be determined regarding stratified flow in advanced reactor systems and the best paths forward can be identified to ensure that the nuclear industry can properly characterize two-phase stratified flow in passive emergency core cooling systems.

  12. A station blackout simulation for the Advanced Neutron Source Reactor using the integrated primary and secondary system model

    SciTech Connect

    Schneider, E.A.

    1994-06-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at Oak Ridge National Laboratory. This paper deals with thermal-hydraulic analysis of ANSR`s cooling systems during nominal and transient conditions, with the major effort focusing upon the construction and testing of computer models of the reactor`s primary, secondary and reflector vessel cooling systems. The code RELAP5 was used to simulate transients, such as loss of coolant accidents and loss of off-site power, as well as to model the behavior of the reactor in steady state. Three stages are involved in constructing and using a RELAP5 model: (1) construction and encoding of the desired model, (2) testing and adjustment of the model until a satisfactory steady state is achieved, and (3) running actual transients using the steady-state results obtained earlier as initial conditions. By use of the ANSR design specifications, a model of the reactor`s primary and secondary cooling systems has been constructed to run a transient simulating a loss of off-site power. This incident assumes a pump coastdown in both the primary and secondary loops. The results determine whether the reactor can survive the transition from forced convection to natural circulation.

  13. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  14. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub

  15. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    SciTech Connect

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  16. UNCERTAINTY QUANTIFICATION OF CALCULATED TEMPERATURES FOR ADVANCED GAS REACTOR FUEL IRRADIATION EXPERIMENTS

    SciTech Connect

    Pham, Binh Thi-Cam; Hawkes, Grant Lynn; Einerson, Jeffrey James

    2015-08-01

    This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technology Research and Development program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR tests, the results of the numerical simulations are used in combination with statistical analysis methods to improve qualification of measured data. The temperature simulation data for AGR tests are also used for validation of the fission product transport and fuel performance simulation models. These crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. To quantify the uncertainty of AGR calculated temperatures, this study identifies and analyzes ABAQUS model parameters of potential importance to the AGR predicted fuel temperatures. The selection of input parameters for uncertainty quantification of the AGR calculated temperatures is based on the ranking of their influences on variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. Propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of AGR calculated temperatures. Expert judgment is used as the basis to specify the uncertainty range for selected input parameters. The input uncertainties are dynamic accounting for the effect of unplanned events and changes in thermal properties of capsule components over extended exposure to high temperature and fast neutron irradiation. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using experimental design, analysis of pairwise interactions of model parameters was performed to establish

  17. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  18. Decay heat of sodium fast reactor: Comparison of experimental measurements on the PHENIX reactor with calculations performed with the French DARWIN package

    SciTech Connect

    Benoit, J. C.; Bourdot, P.; Eschbach, R.; Boucher, L.; Pascal, V.; Fontaine, B.; Martin, L.; Serot, O.

    2012-07-01

    A Decay Heat (DH) experiment on the whole core of the French Sodium-Cooled Fast Reactor PHENIX has been conducted in May 2008. The measurements began an hour and a half after the shutdown of the reactor and lasted twelve days. It is one of the experiments used for the experimental validation of the depletion code DARWIN thereby confirming the excellent performance of the aforementioned code. Discrepancies between measured and calculated decay heat do not exceed 8%. (authors)

  19. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  20. RELAP5 analyses of two hypothetical flow reversal events for the advanced neutron source reactor

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr.

    1995-09-01

    This paper presents RELAP5 results of two hypothetical, low flow transients analyzed as part of the Advanced Neutron Source Reactor safety program. The reactor design features four independent coolant loops (three active and one in standby), each containing a main curculation pump (with battery powered pony motor), heat exchanger, an accumulator, and a check valve. The first transient assumes one of these pumps fails, and additionally, that the check valve in that loop remains stuck in the open position. This accident is considered extremely unlikely. Flow reverses in this loop, reducing the core flow because much of the coolant is diverted from the intact loops back through the failed loop. The second transient examines a 102-mm-diam instantaneous pipe break near the core inlet (the worst break location). A break is assumed to occur 90 s after a total loss-of-offsite power. Core flow reversal occurs because accumulator injection overpowers the diminishing pump flow. Safety margins are evaluated against four thermal limits: T{sub wall}=T{sub sat}, incipient boiling, onset of significant void, and critical heat flux. For the first transient, the results show that these limits are not exceeded (at a 95% non-exceedance probability level) if the pony motor battery lasts 30 minutes (the present design value). For the second transient, the results show that the closest approach of the fuel surface temperature to the local saturation temperature during core flow reversal is about 39{degrees}C. Therefore the fuel remains cool during this transient. Although this work is done specifically for the ANSR geometry and operating conditions, the general conclusions may be applicable to other highly subcooled reactor systems.

  1. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    SciTech Connect

    Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

  2. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs.

  3. Three-dimensional thermal-hydraulic analysis of an advanced liquid metal reactor design by the COMMIX computer code

    SciTech Connect

    Shin, Y.W.

    1991-01-01

    The emphasis in the development of advanced liquid metal reactors (LMRs) is on inherent safety and economics. One such feature is the adoption of thermal radiation and natural-convection cooling of the reactor to handle decay heat following a reactor shutdown. The decay heat removal feature of the LMR design under investigation here involves an in-vessel overflow of hot-pool sodium next to the reactor vessel (RV) in such a way that in the event of a reactor heat-up due to decay heat, the RV temperature is elevated and thereby the rate of heat removal from the reactor to the ambient air is increased. The purpose is to limit the temperature rise due to the decay heat. The objective of this study is to evaluate the performance of the simple passive decay heat removal feature of an advanced LMR design based on radiation and natural convection. The evaluation was carried out by performing calculations using the COMMIX Code for two cases, one with the passive heat removal features and the other without the features, and comparing the results. 2 refs., 6 figs., 1 tab.

  4. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

    SciTech Connect

    Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

    2010-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  5. A fission matrix based validation protocol for computed power distributions in the advanced test reactor

    SciTech Connect

    Nielsen, J. W.; Nigg, D. W.; LaPorta, A. W.

    2013-07-01

    The Idaho National Laboratory (INL) has been engaged in a significant multi year effort to modernize the computational reactor physics tools and validation procedures used to support operations of the Advanced Test Reactor (ATR) and its companion critical facility (ATRC). Several new protocols for validation of computed neutron flux distributions and spectra as well as for validation of computed fission power distributions, based on new experiments and well-recognized least-squares statistical analysis techniques, have been under development. In the case of power distributions, estimates of the a priori ATR-specific fuel element-to-element fission power correlation and covariance matrices are required for validation analysis. A practical method for generating these matrices using the element-to-element fission matrix is presented, along with a high-order scheme for estimating the underlying fission matrix itself. The proposed methodology is illustrated using the MCNP5 neutron transport code for the required neutronics calculations. The general approach is readily adaptable for implementation using any multidimensional stochastic or deterministic transport code that offers the required level of spatial, angular, and energy resolution in the computed solution for the neutron flux and fission source. (authors)

  6. Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor

    SciTech Connect

    KELLY, RYAN; Ilas, Dan

    2013-01-01

    This study describes a new approach employing the Dancoff correction method to model the TRISO-based fuel form used by the Advanced High-Temperature Reactor (AHTR) reactor design concept. The Dancoff correction method is used to perform isotope depletion analysis using the TRITON sequence of SCALE and is verified by code-to-code comparisons. The current AHTR fuel design has TRISO particles concentrated along the edges of a slab fuel element. This geometry prevented the use of the DOUBLEHET treatment, previously developed in SCALE to model spherical and cylindrical fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel configuration typical of the Next Generation Nuclear Plant (NGNP), where DOUBLEHET treatment is possible. A confirmatory study was performed on the AHTR reference core geometry using the VESTA code, which uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu, and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where DOUBLEHET treatment cannot be performed.

  7. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  8. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  9. Study for requirement of advanced long life small modular fast reactor

    NASA Astrophysics Data System (ADS)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung; Kim, T. K.

    2016-01-01

    To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length.

  10. Study for requirement of advanced long life small modular fast reactor

    SciTech Connect

    Tak, Taewoo Choe, Jiwon Jeong, Yongjin Lee, Deokjung; Kim, T. K.

    2016-01-22

    To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length.

  11. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    SciTech Connect

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.; Jamison, R. K.; Nef, E. C.; Nigg, D. W.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  12. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2013

    SciTech Connect

    David W. Nigg

    2013-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for effective application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  13. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  14. Maintenance Cycle Extension in the IRIS Advanced Light Water Reactor Plant Design

    SciTech Connect

    Galvin, Mark R.; Todreas, Neil E.; Conway, Larry E.

    2003-09-15

    New nuclear power generation in the United States will be realized only if the economic performance can be made competitive with other methods of electrical power generation. The economic performance of a nuclear power plant can be significantly improved by increasing the time spent on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described that can be used to resolve, in the design phase, maintenance-related operating cycle length barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the International Reactor, Innovative and Secure (IRIS) design. IRIS is an advanced light water nuclear power plant that is being designed to maximize this on-line generating time by increasing the operating cycle length. This is consequently a maintenance strategy paper using the IRIS plant as the example.Potential IRIS operating cycle length maintenance-related barriers, determined by modification of an earlier operating pressurized water reactor (PWR) plant cycle length analysis to account for differences between the design of IRIS and this operating PWR, are presented. The proposed methodology to resolve these maintenance-related barriers by the design process is described. The results of applying the methodology to two potential IRIS cycle length barriers, relief valve testing and emergency heat removal system testing, are presented.

  15. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    SciTech Connect

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  16. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  17. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  18. A structured approach to evaluating aging of the advanced test reactor

    SciTech Connect

    Dwight, J.E.

    1990-01-01

    An aging evaluation program has been developed for the United States Department of Energy's Advanced Test Reactor to support the current goal of operation through the year 2014 and beyond. The Aging Evaluation and Life Extension Program (AELEX) employs a three-phased approach. In Phases 1 and 2, now complete, components were identified, categorized and prioritized. Critical components were selected and aging mechanisms for the critical components identified. An initial evaluation of the critical components was performed and extended life operation for the plant appears to be both technically and economically feasible. Detailed evaluations of the critical components are now in progress in the early stages of Phase 3. Some results are available. Evaluations of many non-critical components and refinements to the program based on probabilistic risk assessment results will follow in later stages of Phase 3. 6 refs., 2 figs., 5 tabs.

  19. DOE/NE University Program in robotics for advanced reactors research

    SciTech Connect

    Trivedi, M.M.

    1990-01-01

    The document presents the bimonthly progress reports published during 1990 regarding the US Department of Energy/NE-sponsored research at the University of Tennessee Knoxville under the DOE Robitics for Advanced Reactors Research Grant. Significant accomplishments are noted in the following areas: development of edge-segment based stereo matching algorithm; vision system integration in the CESAR laboratory; evaluation of algorithms for surface characterization from range data; comparative study of data fusion techniques; development of architectural framework, software, and graphics environment for sensor-based robots; algorithms for acquiring tactile images from planer surfaces; investigations in geometric model-based robotic manipulation; investigations of non-deterministic approaches to sensor fusion; and evaluation of sensor calibration techniques. (MB)

  20. A flammability and combustion model for integrated accident analysis. [Advanced light water reactors

    SciTech Connect

    Plys, M.G.; Astleford, R.D.; Epstein, M. )

    1988-01-01

    A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs.

  1. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    SciTech Connect

    Hugo, Jacques

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  2. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  3. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  4. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  5. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  6. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979

    SciTech Connect

    Not Available

    1980-03-07

    The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  7. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  8. Testimony of Fred R. Mynatt before the Energy Research and Development Subcommittee of the Committee on Science, Space, and Technology, US House of Representatives. [Advanced fuel technology, gas-cooled reactor technology, and liquid metal-cooled reactor technology programs

    SciTech Connect

    Mynatt, F.R.

    1987-03-18

    This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)

  9. Optimization of a heterogeneous fast breeder reactor core with improved behavior during unprotected transients

    SciTech Connect

    Poumerouly, S.; Schmitt, D.; Massara, S.; Maliverney, B.

    2012-07-01

    Innovative Sodium-cooled Fast Reactors (SFRs) are currently being investigated by CEA, AREVA and EDF in the framework of a joint French collaboration, and the construction of a GEN IV prototype, ASTRID (Advanced Sodium Technical Reactor for Industrial Demonstration), is scheduled in the years 2020. Significant improvements are expected so as to improve the reactor safety: the goal is to achieve a robust safety demonstration of the mastering of the consequences of a Core Disruptive Accident (CDA), whether by means of prevention or mitigation features. In this framework, an innovative design was proposed by CEA in 2010. It aims at strongly reducing the sodium void effect, thereby improving the core behavior during unprotected loss of coolant transients. This design is strongly heterogeneous and includes, amongst others, a fertile plate, a sodium plenum associated with a B{sub 4}C upper blanket and a stepwise modulation of the fissile height of the core (onwards referred to as the 'diabolo shape'). In this paper, studies which were entirely carried out at EDF are presented: the full potential of this heterogeneous concept is thoroughly investigated using the SDDS methodology. (authors)

  10. Component-Level Prognostics Health Management Framework for Passive Components - Advanced Reactor Technology Milestone: M2AT-15PN2301043

    SciTech Connect

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.; Prowant, Matthew S.; Pitman, Stan G.; Tucker, Joseph C.; Dib, Gerges; Pardini, Allan F.

    2015-06-19

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical advanced reactor passive components (to establish condition indices for monitoring) with model-based prognostics methods. Achieving this objective will necessitate addressing several of the research gaps and technical needs described in previous technical reports in this series.

  11. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    SciTech Connect

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  12. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    SciTech Connect

    Ramuhalli, Pradeep; Hirt, Evelyn H.; Pitman, Stan G.; Dib, Gerges; Roy, Surajit; Good, Morris S.; Walker, Cody M.

    2016-07-16

    Report documents design of bench-scale experiments for evaluating capability and sensitivity of selected nondestructive measurement technologies for early detection of degradation modes of interest for passive components condition in advanced reactors. Includes requirements for deploying instrumentation for in-situ monitoring at ongoing materials testing sites.

  13. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    SciTech Connect

    Shamsuddin Ilias

    2001-06-25

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. To have better understanding of the membrane reactor, during this reporting period, we developed a two-dimensional pseudo-homogeneous reactor model for steam reforming of methane by equilibrium shift in a tubular membrane reactor. In numerical solution of the reactor model equations, numerical difficulties were encountered and we seeking alternative solution techniques to overcome the problem.

  14. EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

    SciTech Connect

    Douglas L. Porter

    2011-02-01

    Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 °C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 °C through pin power increase increased the MOX centerline temperature to more than 3300 °C and the metal fuel peak cladding temperature to more than 700 °C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design ‘fixes’, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

  15. Capabilities and Facilities Available at the Advanced Test Reactor to Support Development of the Next Generation Reactors

    SciTech Connect

    S. Blaine Grover; Raymond V. Furstenau

    2005-10-01

    The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. It is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The Irradiation Test Vehicle (ITV) installed in 1999 enhanced these capabilities by providing a built in experiment monitoring and control system for instrumented and/or temperature controlled experiments. This built in control system significantly reduces the cost for an actively monitored/temperature controlled experiments by providing the thermocouple connections, temperature control system, and temperature control gas supply and exhaust systems already in place at the irradiation position. Although the ITV in-core hardware was removed from the ATR during the last core replacement completed in early 2005, it (or a similar facility) could be re-installed for an irradiation program when the need arises. The proposed Gas Test Loop currently being designed for installation in the ATR will provide additional capability for testing of not only gas reactor materials and fuels but will also include enhanced fast flux rates for testing of materials and fuels for other next generation reactors including preliminary testing for fast reactor fuels and materials. This paper discusses the different irradiation capabilities available and the cost benefit issues related to each capability.

  16. The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Snowdon, Doug; Pickering, Karen D.; Callahan, Michael

    2007-01-01

    Advanced water processors being developed for NASA s Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS) and is based primarily on ISS experience related to the development of the VRA. The second ersatz solution was defined by NASA in support of a study contract to Hamilton Sundstrand to evaluate the VRA as a potential post processor for the Cascade Distillation system being developed by Honeywell. This second ersatz solution contains several low molecular weight alcohols, organic acids, and several inorganic species. A range of residence times, oxygen concentrations and operating temperatures have been studied with both ersatz solutions to provide addition performance capability of the VRA catalyst.

  17. Development of a Polysilicon Process Based on Chemical Vapor Deposition of Dichlorosilane in an Advanced Siemen's Reactor

    NASA Technical Reports Server (NTRS)

    Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.

    1983-01-01

    Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.

  18. Enhancement of Irradiation Capability of the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Maeda, Shigetaka; Serine, Takashi; Aoyama, Takafumi; Suzuki, Soju

    2009-08-01

    The experimental fast reactor Joyo is the first sodium-cooled fast reactor in Japan. One of its primary missions is to perform irradiation tests of fuel and structural materials to support the development of fast reactors. The MK-III high performance core upgrade to enhance the irradiation testing capabilities was completed in 2003. In order to expand Joyo's capabilities for innovative irradiation testing applications, neutron spectrum tailoring, lower irradiation temperature, movable sample devices and fast neutron beam holes are being considered. This program responds to existing irradiation needs and aims to further expand capabilities for a variety of irradiation tests.

  19. Impact of FY 1987 budget on advanced reactor technology programs at Oak Ridge National Laboratory

    SciTech Connect

    Mynatt, F.R.

    1986-05-05

    The testimony reviews information on the consolidated fuel reprocessing program and reactor technology programs for the Department of Energy (DOE) and the reactor safety research programs for the Nuclear Regulatory Commission (NRC).

  20. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    SciTech Connect

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to exhibit better heat

  1. Fission Product Monitoring and Release Data for the Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John B. Walter; Jason M. Harp; Mark W. Drigert; Edward L. Reber

    2010-10-01

    The AGR-1 experiment is a fueled multiple-capsule irradiation experiment that was irradiated in the Advanced Test Reactor (ATR) from December 26, 2006 until November 6, 2009 in support of the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Fuel Development and Qualification program. An important measure of the fuel performance is the quantification of the fission product releases over the duration of the experiment. To provide this data for the inert fission gasses(Kr and Xe), a fission product monitoring system (FPMS) was developed and implemented to monitor the individual capsule effluents for the radioactive species. The FPMS continuously measured the concentrations of various krypton and xenon isotopes in the sweep gas from each AGR-1 capsule to provide an indicator of fuel irradiation performance. Spectrometer systems quantified the concentrations of Kr-85m, Kr-87, Kr-88, Kr-89, Kr-90, Xe-131m, Xe-133, Xe 135, Xe 135m, Xe-137, Xe-138, and Xe-139 accumulated over repeated eight hour counting intervals.-. To determine initial fuel quality and fuel performance, release activity for each isotope of interest was derived from FPMS measurements and paired with a calculation of the corresponding isotopic production or birthrate. The release activities and birthrates were combined to determine Release-to-Birth ratios for the selected nuclides. R/B values provide indicators of initial fuel quality and fuel performance during irradiation. This paper presents a brief summary of the FPMS, the release to birth ratio data for the AGR-1 experiment and preliminary comparisons of AGR-1 experimental fuels data to fission gas release models.

  2. Methodology for the Weapons-Grade MOX Fuel Burnup Analysis in the Advanced Test Reactor

    SciTech Connect

    G. S. Chang

    2005-08-01

    A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2, and is therefore called the MCWO. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. MCWO is capable of handling a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) lobe powers, and irradiation time intervals. MCWO processes user input that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN-2, and data process module calculations are output in succession as MCWO executes. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN-2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN-2 back to MCNP in a repeated, cyclic fashion. The basic requirements of MCWO are a working MCNP input file and some additional input parameters; all interaction with ORIGEN-2 as well as other calculations are performed by CMO. This paper presents the MCWO-calculated results for the Reduced Enrichment Research and Test Reactor (RERTR) experiments RERTR-1 and RERTR-2 as well as the Weapons-Grade Mixed Oxide (WG-MOX) fuel testing in ATR. Calculations performed for the WG-MOX test irradiation, which is managed by the Oak Ridge National Laboratory (ORNL), supports the DOE Fissile Materials Disposition Program (FMDP). The MCWO-calculated results are compared with measured data.

  3. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  4. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    DOE PAGES

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...

    2016-12-21

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate

  5. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    SciTech Connect

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; Carbajo, Juan J.; Greenwood, M. Scott; Hale, Richard; Harrison, Thomas J.; Powers, Jeffrey J.; Robb, Kevin R.; Terrell, Jerry; Wysocki, Aaron J.; Gehin, Jess C.; Worrall, Andrew

    2016-12-21

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It

  6. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Galvez, Cristhian

    2011-12-01

    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the passive safety cooling system with a dual purpose, to assess the capacity to maintain the core at safe temperatures and to assist the design process of this system to achieve this objective. The analysis requires the use of complex computational tools for simulation and verification using analytical solutions and comparisons with experimental data. This investigation builds upon previous detailed design work for the PB-AHTR components, including the core, reactivity control mechanisms and the intermediate heat exchanger, developed in 2008. In addition the study of this reference plant design employs a wealth of auxiliary information including thermal-hydraulic physical phenomena correlations for multiple geometries and thermophysical properties for the constituents of the plant. Finally, the set of performance requirements and limitations imposed from physical constrains and safety considerations provide with a criteria and metrics for acceptability of the design. The passive safety cooling system concept is turned into a detailed design as a result from this study. A methodology for the design of air-cooled passive safety systems was developed and a transient analysis of the plant, evaluating a scrammed loss of forced cooling event was performed. Furthermore, a design optimization study of the passive safety system and an approach for the validation and verification of the analysis is presented. This study demonstrates that the resulting point design responds properly to the

  7. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  8. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  9. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  10. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  11. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  12. Fabrication and Comparison of Fuels for Advanced Gas Reactor Irradiation Tests

    SciTech Connect

    Jeffrey Phillips; Charles Barnes; John Hunn

    2010-10-01

    As part of the program to demonstrate TRISO-coated fuel for the Next Generation Nuclear Plant, a series of irradiation tests of Advanced Gas Reactor (AGR) fuel are being performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 until November 2009. Development of AGR-1 fuel sought to replicate the properties of German TRISO-coated particles. No particle failures were seen in the nearly 3-year irradiation to a burn up of 19%. The AGR-1 particles were coated in a two-inch diameter coater. Following fabrication of AGR-1 fuel, process improvements and changes were made in each of the fabrication processes. Changes in the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a six-inch diameter coater using a change size about twenty-one times that of the two-inch diameter coater used to coat AGR-1 particles. Changes were also made in the compacting process, including increasing the temperature and pressure of pressing and using a different type of press. Irradiation of AGR-2 fuel began in late spring 2010. Properties of AGR-2 fuel compare favorably with AGR-1 and historic German fuel. Kernels are more homogeneous in shape, chemistry and density. TRISO-particle sphericity, layer thickness standard deviations, and defect fractions are also comparable. In a sample of 317,000 particles from deconsolidated AGR-2 compacts, 3 exposed kernels were found in a leach test. No SiC defects were found in a sample of 250,000 deconsolidated particles, and no IPyC defects in a sample of 64,000 particles. The primary difference in properties between AGR-1 and AGR-2 compacts is that AGR-2 compacts have a higher matrix density, 1.6 g/cm3 compared to about 1.3 g/cm3 for AGR-1 compacts. Based on

  13. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    SciTech Connect

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-15

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  14. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    SciTech Connect

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  15. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  16. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit

  17. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  18. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    NASA Astrophysics Data System (ADS)

    Kit Chan, Wai; Jouët, Justine; Heng, Samuel; Lun Yeung, King; Schrotter, Jean-Christophe

    2012-05-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation.

  19. The integral fast reactor and its role in a new generation of nuclear power plants, Tokai, Japan, November 19-21, 1986

    SciTech Connect

    Smith, R.R.

    1986-01-01

    This report presents information on the Integral Fast Reactor and its role in the future. Information is presented in the areas of: inherent safety; other virtues of sodium-cooled breeder; and solving LWR fuel cycle problems with IFR technologies. (JDB)

  20. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO

  1. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012

    SciTech Connect

    David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

    2012-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core

  2. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  3. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    SciTech Connect

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  4. Passive ALWR requirements to prevent containment failure. Advanced Reactor Severe Accident Program

    SciTech Connect

    Additon, S.L.; Blanchard, D.P.; Leaver, D.E.; Persinko, D. |

    1991-12-01

    The purpose of this report is to document a systematic evaluation of the Passive Advanced Light Water Reactor (ALWR) design requirements which address severe accident mitigation. This evaluation was performed concurrent with completion of the ALWR Requirements Document to assure the adequacy of these mitigation requirements. The passive plant approach to containment integrity assurance reflects an expansion of the approach established earlier for evolutionary ALWRs. The report identifies containment challenges that might occur coincident with or result from a core damage event, compiles the set of passive ALWR design requirements which addresses each challenge, and evaluates each set of requirements on an integrated basis to confirm that the requirements provide substantial assurance that coincident core damage and containment failure are precluded. Based on past PRAs, a review of pertinent safety functions, severe accident analyses, current regulatory requirements, and reviews by ALWR design personnel, twenty-three (23) potential containment challenges were identified. The report concludes that the relevant ALWR requirements severe to limit the likelihood and magnitude of the challenges, and to assure the capability of the containment to accommodate all challenges which remain potentially risk-significant.

  5. Passive ALWR requirements to prevent containment failure. [Advanced light water reactors

    SciTech Connect

    Additon, S.L.; Blanchard, D.P.; Leaver, D.E.; Persinko, D. TENERA, L.P., Bethesda, MD )

    1991-12-01

    The purpose of this report is to document a systematic evaluation of the Passive Advanced Light Water Reactor (ALWR) design requirements which address severe accident mitigation. This evaluation was performed concurrent with completion of the ALWR Requirements Document to assure the adequacy of these mitigation requirements. The passive plant approach to containment integrity assurance reflects an expansion of the approach established earlier for evolutionary ALWRs. The report identifies containment challenges that might occur coincident with or result from a core damage event, compiles the set of passive ALWR design requirements which addresses each challenge, and evaluates each set of requirements on an integrated basis to confirm that the requirements provide substantial assurance that coincident core damage and containment failure are precluded. Based on past PRAs, a review of pertinent safety functions, severe accident analyses, current regulatory requirements, and reviews by ALWR design personnel, twenty-three (23) potential containment challenges were identified. The report concludes that the relevant ALWR requirements severe to limit the likelihood and magnitude of the challenges, and to assure the capability of the containment to accommodate all challenges which remain potentially risk-significant.

  6. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  7. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  8. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect

    Ogden, Dan

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  9. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  10. Improved methodology for integral analysis of advanced reactors employing passive safety

    NASA Astrophysics Data System (ADS)

    Muftuoglu, A. Kursad

    After four decades of experience with pressurized water reactors, a new generation of nuclear plants are emerging. These advanced designs employ passive safety which relies on natural forces, such as gravity and natural circulation. The new concept of passive safety also necessitates improvement in computational tools available for best-estimate analyses. The system codes originally designed for high pressure conditions in the presence of strong momentum sources such as pumps are challenged in many ways. Increased interaction of the primary system with the containment necessitates a tool for integral analysis. This study addresses some of these concerns. An improved tool for integral analysis coupling primary system with containment calculation is also presented. The code package is based on RELAP5 and CONTAIN programs, best-estimate thermal-hydraulics code for primary system analysis and containment code for containment analysis, respectively. The suitability is demonstrated with a postulated small break loss of coolant accident analysis of Westinghouse AP600 plant. The thesis explains the details of the analysis including the coupling model.

  11. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  12. Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum

    NASA Astrophysics Data System (ADS)

    Delage, F.; Carmack, J.; Lee, C. B.; Mizuno, T.; Pelletier, M.; Somers, J.

    2013-10-01

    The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxide and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels.

  13. Study on recriticality of fuel debris during hypothetical severe accidents in the Advanced Neutron Source reactor

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.; Shin, S.T.

    1995-09-01

    A study has been performed to measure the potential of recriticality during hypothetical severe accident in Advanced Neutron Source (ANS). For the lumped debris configuration in the Reactor Coolant System (RCS), as found in the previous study, recriticality potential may be very low. However, if fuel debris is dispersed and mixed with heavy water in RCS, recriticality potential has been predicted to be substantial depending on thermal-hydraulic conditions surrounding fuel debris mixture. The recriticality potential in RCS is substantially reduced for the three element core design with 50% enrichment. Also, as observed in the previous study, strong dependencies of k{sub eff} on key thermal hydraulic parameters are shown. Light water contamination is shown to provide a positive reactivity, and void formation due to boiling of mixed water provides enough negative reactivity and to bring the system down to subcritical. For criticality potential in the subpile room, the lumped debris configuration does not pose a concern. Dispersed configuration in light water pool of the subpile room is also unlikely to result in criticality. However, if the debris is dispersed in the pool that is mixed with heavy water, the results indicate that a substantial potential exists for the debris to reach the criticality. However, if prompt recriticality disperses the debris completely in the subpile room pool, subsequent recriticality may be prevented since neutron leakage effects become large enough.

  14. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    SciTech Connect

    Greene, Sherrell R; Gehin, Jess C; Holcomb, David Eugene; Carbajo, Juan J; Ilas, Dan; Cisneros, Anselmo T; Varma, Venugopal Koikal; Corwin, William R; Wilson, Dane F; Yoder Jr, Graydon L; Qualls, A L; Peretz, Fred J; Flanagan, George F; Clayton, Dwight A; Bradley, Eric Craig; Bell, Gary L; Hunn, John D; Pappano, Peter J; Cetiner, Sacit M

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  15. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    SciTech Connect

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.

  16. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE PAGES

    Bartel, N.; Chen, M.; Utgikar, V. P.; ...

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  17. 2015 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    SciTech Connect

    Lewis, Michael George

    2016-02-01

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.

  18. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Edwards, Geoffrey W R; Priest, Nicholas D

    2014-11-01

    The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low

  19. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies

    SciTech Connect

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Petrie, L.M.; Primm, R.T. III; Waddell, M.W.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.

    1987-01-01

    Multigroup P3 neutron, P0-P3 secondary gamma ray production (SGRP), and P6 gamma ray interaction (GRI) cross section libraries have been generated to support design work on the Advanced Neutron Source (ANS) reactor. The libraries, designated ANSL-V (Advanced Neutron Source Cross-Section Libraries), are data bases in a format suitable for subsequent generation of problem dependent cross sections. The ANSL-V libraries are available on magnetic tape from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

  20. Advanced concepts in coal liquefaction: Optimization of reactor configuration in coal liquefaction. Final report

    SciTech Connect

    Pradhan, V.R.; Comolli, A.G.; Lee, L.K.

    1994-11-01

    The overall objective of this Project was to find the ways to effectively reduce the cost of coal liquids to about dollar 25 per barrel of crude oil equivalent. The work described herein is primarily concerned with the testing at the laboratory scale of three reactor configuration concepts, namely (1) a fixed-bed plug-flow reactor as a ``finishing reactor`` in coal liquefaction, (2) three-stage well-mixed reactors in series, and (3) interstage stream concentration/product separation. The three reactor configurations listed above were tested during this project using a 20 cc tubing microreactor, a fixed-bed plug flow reactor, and a two-stage modified Robinson-Mahoney reactor system. The reactor schemes were first evaluated based on theoretical modelling studies, then experimentally evaluated at the microautoclave level and laboratory scale continuous operations. The fixed-bed ``finishing reactor`` concept was evaluated in both the upflow and the downflow modes of operation using a partially converted coal-solvent slurry as feed. For most of the testing of concepts at the microautoclave level, simulated coal, recycle oil, and slurry feedstocks were either specially prepared (to represent a specific state of coal/resid conversion) and/or obtained from HRI`s other ongoing bench-scale and PDU scale coal liquefaction experiments. The three-stage continuous stirred tank reactors (CSTR) and interstage product stream separation/concentration concepts were tested using a simulated three-stage CSTR system by employing a laboratory-scale ebullated-bed system and a modified version of the HRI`s existing Robinson-Mahoney fixed catalyst basket reactor system. This testing was conducted as a fourteen day long continuous run, divided into four Conditions to allow for a comparison of the new three-stage CSTR and interstage product concentration concepts with a two-stage CSTR baseline configuration.