Science.gov

Sample records for advanced space communications

  1. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  2. Advanced technology for space communications and tracking systems

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    1988-10-01

    Technological advances in the communications and tracking areas being developed by NASA and applicable to future missions and associated space operations are discussed. The applications scenarios considered include the Space Shuttle, Space Station, lunar base, and Mars missions. Performance goals and conceptual designs are discussed, and the relevance of optical, laser, and millimeter wave-based implementations to the various applications are examined. Recommendations for future systems developments are addressed.

  3. MMIC technology for advanced space communications systems

    NASA Technical Reports Server (NTRS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  4. Advanced technology for space communications and tracking systems

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    The communications needs for the Growth Space Station (GSS) are envisioned to drive NASA to seek unique concepts and capability to establish this permanent presence in space. Furthermore, it will provide a facility to assemble, test, and deploy rather large and unique communications systems/subsystems. GSS is envisioned to need or desire the capability to communicate with many more satellites and spacecraft than the initial operating capability (IOC). The increased interconnectivity will include links with numerous NASA and other U.S. Government satellites, commercial satellites, foreign spacecraft, and deep space missions. In parallel, the payloads/experiments on Space Station are expected to increase in numbers and in terms of data gathering capabilities. The use of automation and robotics will require high data rate and extremely reliable links. The GSS will need to accommodate continually evolving and largely unknown future requirements for coverage, data rates, number of users, etc. This requirement for flexibility over a long term will provide a unique challenge to develop systems which are user transparent and which are quickly reconfigurable. Deep space communications are driven by the relatively near-term envisioned missions to the Moon and Mars. In addition to these, projected NASA missions include Saturn, Uranus, Neptune, and comet/asteroid probes. These future deep space missions will require highly reliable, long life, and very efficient communications and tracking systems to ensure success. Additionally, for space proximity operations, systems capable of supporting rendezvous, station keeping, and soft docking between various vehicles, Shuttle, satellites, unknown objects, and Space Stations are needed. In this paper, technology advancements in the communications and tracking areas being pursued within NASA, as applicable to future missions and associated space operations, are presented. The relevance of optical-, laser-, and millimeter-wave based

  5. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  6. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  7. Distress detection, location, and communications using advanced space technology

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  8. Advanced space communications architecture study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Horstein, Michael; Hadinger, Peter J.

    1987-01-01

    The technical feasibility and economic viability of satellite system architectures that are suitable for customer premise service (CPS) communications are investigated. System evaluation is performed at 30/20 GHz (Ka-band); however, the system architectures examined are equally applicable to 14/11 GHz (Ku-band). Emphasis is placed on systems that permit low-cost user terminals. Frequency division multiple access (FDMA) is used on the uplink, with typically 10,000 simultaneous accesses per satellite, each of 64 kbps. Bulk demodulators onboard the satellite, in combination with a baseband multiplexer, convert the many narrowband uplink signals into a small number of wideband data streams for downlink transmission. Single-hop network interconnectivity is accomplished via downlink scanning beams. Each satellite is estimated to weigh 5600 lb and consume 6850W of power; the corresponding payload totals are 1000 lb and 5000 W. Nonrecurring satellite cost is estimated at $110 million, with the first-unit cost at $113 million. In large quantities, the user terminal cost estimate is $25,000. For an assumed traffic profile, the required system revenue has been computed as a function of the internal rate of return (IRR) on invested capital. The equivalent user charge per-minute of 64-kbps channel service has also been determined.

  9. Advanced space communications architecture study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Horstein, Michael; Hadinger, Peter J.

    1987-01-01

    The technical feasibility and economic viability of satellite system architectures that are suitable for Customer Premise Service (CPS) communications is investigated. System evaluation is performed at 30/20 GHz (Ka-band); however, the system architectures examined are equally applicable to 14/11 GHz (Ku-band). Emphasis is placed on system that permit low cost user terminals. Frequency Division Multiple Access (FDMA) is used on the uplink, with typically 10,000 simultaneous accesses per satellite, each of 64 kbps. Bulk demodulators onboard the satellite, in combination with a baseband multiplexer, convert the many narrowband uplink signals into a small number of wideband data streams for downlink transmission. Single hop network interconnectivity is accomplished through use of downlink scanning beams. Each satellite is estimated to weigh 5600 lb and consume 6850W of power; the corresponding payload totals are 1000 lb and 5000W. Nonrecurring satellite cost is estimated at $110 million, with the first unit cost at $113 million. In large quantities, the user terminal cost estimate is $25,000.

  10. CCSDS Advanced Orbiting Systems - International data communications standards for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.

    1990-01-01

    Established in 1982, the Consultative Committee for Space Data Systems (CCSDS) is an international organization that is staffed by data-handling experts from nearly all of the world's major space agencies. Its goal is to develop standard data-communications techniques so that several agencies may cross-support each other's data flow and thus allow complex, international missions to be flown. Under the general umbrella of Advanced Orbiting Systems (AOS), an international CCSDS task force was formed in 1985 to develop standard data-communications concepts for manned missions, such as the Space Station Freedom and the Hermes space plane, and large unmanned vehicles, such as polar orbiting platforms. The history of the CCSDS and the development of the AOS recommendation are reviewed, and the user services and protocols embodied in its systems architecture are introduced.

  11. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  12. Communication spaces

    PubMed Central

    Coiera, Enrico

    2014-01-01

    Background and objective Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. Methods A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Results Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Discussion Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, ‘programming through annotation’. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Conclusions Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment. PMID:24005797

  13. Deep space laser communications

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Kovalik, Joseph M.; Srinivasan, Meera; Shaw, Matthew; Piazzolla, Sabino; Wright, Malcolm W.; Farr, William H.

    2016-03-01

    A number of laser communication link demonstrations from near Earth distances extending out to lunar ranges have been remarkably successful, demonstrating the augmented channel capacity that is accessible with the use of lasers for communications. The next hurdle on the path to extending laser communication and its benefits throughout the solar system and beyond is to demonstrate deep-space laser communication links. In this paper, concepts and technology development being advanced at the Jet Propulsion Laboratory (JPL) in order to enable deep-space link demonstrations to ranges of approximately 3 AU in the next decade, will be discussed.

  14. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  15. Modular space station, phase B extension. Information management advanced development. Volume 2: Communications terminal breadboard

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.

  16. Space Communications

    DTIC Science & Technology

    1977-03-15

    sponsored Survivability Analysis Group (SAG), (b) Reviewing for the Air Force some spacecraft radioisotope - thermoelectric - generator (RTG) and... Thermoelectric Generator SADA Solar Array Drive Assembly SAG Survivahilily Analysis Group SAMSO Space and Missile Systems Organization SAOS Solar Array Drive...over was accomplished without incident except that the third- generation gyro (TGG) drift-rate compensation was observed to have changed sometime after

  17. VCM-OFDM technique for advanced space communications system with high spectral efficiency

    NASA Astrophysics Data System (ADS)

    Li, Jionghui; Zhou, Qing; Xiong, Weiming; Zhang, Ying; Yao, Chen

    2016-11-01

    The development of precise scientific payloads brings higher demand on the efficiency of space communications system to transmit the increasing volume of scientific data. Aiming to this issue, Orthogonal Frequency Division Multiplexing (OFDM) is chosen for its inherent capability of high-rate data transmission. Further, considering the dynamic link condition due to satellite orbital motion, we propose a new technique which combines Variable Coding Modulation (VCM) with OFDM to enhance the communication link spectral efficiency with required transmission reliability. With VCM-OFDM technique, the channel coding and modulation mode can be variable with time according to the link conditions, in order to fit the link budget curve and maintain a relatively fixed link margin. Hence, link resource waste can be reduced and throughput can be remarkably improved. Considering that OFDM-based systems are sensitive to Doppler shifts/spread, the coding and modulation mode (CODMOD) selection should be optimized subject to this scenario. This paper introduces the architecture of near-earth space data transmission system based on VCM-OFDM technique. The Doppler influence is analyzed through simulation and the CODMOD selection algorithm is discussed. The results prove the high performance on spectral efficiency enhancement of VCM-OFDM by comparison with several existing alternative methods.

  18. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.

    PubMed

    Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman

    2017-02-28

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'.

  19. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    NASA Astrophysics Data System (ADS)

    Willner, Alan E.; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-02-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue 'Optical orbital angular momentum'.

  20. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    NASA Technical Reports Server (NTRS)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  1. Advances in Scanning Reflectarray Antennas Based on Ferroelectric Thin Film Phase Shifters for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    Though there are a few examples of scanning phased array antennas that have flown successfully in space, the quest for low-cost, high-efficiency, large aperture microwave phased arrays continues. Fixed and mobile applications that may be part of a heterogeneous exploration communication architecture will benefit from the agile (rapid) beam steering and graceful degradation afforded by phased array antennas. The reflectarray promises greater efficiency and economy compared to directly-radiating varieties. Implementing a practical scanning version has proven elusive. The ferroelectric reflectarray, under development and described herein, involves phase shifters based on coupled microstrip patterned on Ba(x)Sr(1-x)TiO3 films, that were laser ablated onto LaAlO3 substrates. These devices outperform their semiconductor counterparts from X- through and K-band frequencies. There are special issues associated with the implementation of a scanning reflectarray antenna, especially one realized with thin film ferroelectric phase shifters. This paper will discuss these issues which include: relevance of phase shifter loss; modulo 2(pi) effects and phase shifter transient effects on bit error rate; scattering from the ground plane; presentation of a novel hybrid ferroelectric-semiconductor phase shifter; and the effect of mild radiation exposure on phase shifter performance.

  2. Advanced quantum communication systems

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan Robert

    Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.

  3. Wireless Communications in Space

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In 1992, NASA and the U.S. Department of Defense jointly commissioned the research and development of a technology solution to address the challenges and requirements of communicating with their spacecraft. The project yielded an international consortium composed of representatives from the space science community, industry, and academia. This group of experts developed a broad suite of protocols specifically designed for space-based communications, known today as Space Communications Protocol Standards (SCPS). Having been internationally standardized by the Consultative Committee on Space Data Systems and the International Standards Organization, SCPS is distributed as open source technology by NASA s Jet Propulsion Laboratory (JPL). The protocols are used for every national space mission that takes place today.

  4. Space lab system analysis: Advanced Solid Rocket Motor (ASRM) communications networks analysis

    NASA Technical Reports Server (NTRS)

    Ingels, Frank M.; Moorhead, Robert J., II; Moorhead, Jane N.; Shearin, C. Mark; Thompson, Dale R.

    1990-01-01

    A synopsis of research on computer viruses and computer security is presented. A review of seven technical meetings attended is compiled. A technical discussion on the communication plans for the ASRM facility is presented, with a brief tutorial on the potential local area network media and protocols.

  5. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  6. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Connolly, D. J.

    1986-10-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  7. Advanced Optical Fiber Communication Systems

    DTIC Science & Technology

    1992-08-01

    Optical Network with Physical Star Topology," Advanced Fiber Communications Technologies , Leonid G. Kazovsky... advances in the performance and capabilities of optical fiber communication systems. While some of these technologies are interrelated (for example...multi gigabit per second hybrid circuit/packet switched lightwave network ," Proc. SPIE Advanced Fiber Communications Technologies , Boston 󈨟, Sept.

  8. Free Space Laser Communications

    NASA Technical Reports Server (NTRS)

    Lesh, James

    2000-01-01

    This presentation concerns the use of Laser communication for deep space applications. The presentation reviews the problems with electromagnetic beams and then the advantages and disadvantages of the use of optical communication. The presentation then reviews some of the spacecraft technology with pictures of some of the devices. The ground reception systems and the simplified link calculation are also reviewed. Recent and planned demonstration projects are also reviewed.

  9. Advanced satellite communication system

    NASA Astrophysics Data System (ADS)

    Staples, Edward J.; Lie, Sen

    1992-05-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  10. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  11. Communication protocol standards for space data systems

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.; Desjardins, Richard

    1990-01-01

    The main elements and requirements of advanced space data networks are identified. The communication protocol standards for use on space missions during the coming decades are described. In particular, the blending of high-performance space-unique data transmission techniques with off-the-shelf open systems interconnection (OSI) protocols is described.

  12. This Quarter in Space Communications

    NASA Video Gallery

    Space Communications Projects at NASA's Goddard Space Flight Center in Greenbelt, Maryland, have made significant accomplishments since December 2014. From supporting the EFT-1 launch to building a...

  13. Space Based Communications

    NASA Technical Reports Server (NTRS)

    Simpson, James; Denson, Erik; Valencia, Lisa; Birr, Richard

    2003-01-01

    Current space lift launches on the Eastern and Western Range require extensive ground-based real-time tracking, communications and command/control systems. These are expensive to maintain and operate and cover only limited geographical areas. Future spaceports will require new technologies to provide greater launch and landing opportunities, support simultaneous missions, and offer enhanced decision support models and simulation capabilities. These ranges must also have lower costs and reduced complexity while continuing to provide unsurpassed safety to the public, flight crew, personnel, vehicles and facilities. Commercial and government space-based assets for tracking and communications offer many attractive possibilities to help achieve these goals. This paper describes two NASA proof-of-concept projects that seek-to exploit the advantages of a space-based range: Iridium Flight Modem and Space-Based Telemetry and Range Safety (STARS). Iridium Flight Modem uses the commercial satellite system Iridium for extremely low cost, low rate two-way communications and has been successfully tested on four aircraft flights. A sister project at Goddard Space Flight Center's (GSFC) Wallops Flight Facility (WFF) using the Globalstar system has been tested on one rocket. The basic Iridium Flight Modem system consists of a L1 carrier Coarse/Acquisition (C/A)-Code Global Positioning System (GPS) receiver, an on-board computer, and a standard commercial satellite modem and antennas. STARS uses the much higher data rate NASA owned Tracking and Data Relay Satellite System (TDRSS), a C/A-Code GPS receiver, an experimental low-power transceiver, custom built command and data handler processor, and digitized flight termination system (FTS) commands. STARS is scheduled to fly on an F-15 at Dryden Flight Research Center in the spring of 2003, with follow-on tests over the next several years.

  14. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  15. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  16. Advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Disher, J. H.; Hethcoat, J. P.; Page, M. A.

    1981-01-01

    Projected growth in space transportation capabilities beyond the initial Space Shuttle is discussed in terms of earth-to-low-orbit launch vehicles as well as transportation beyond low orbit (orbit transfer vehicles). Growth versions of the Shuttle and heavy-lift derivatives of the Shuttle are shown conceptually. More advanced launch vehicle concepts are also shown, based on rocket propulsion or combinations of rocket and air-breathing propulsion. Orbit transfer vehicle concepts for personnel transport and for cargo transport are discussed, including chemical rocket as well as electric propulsion. Finally, target levels of capability and efficiencies for later time periods are discussed and compared with the prospective vehicle concepts mentioned earlier.

  17. Space Communications Emulation Facility

    NASA Technical Reports Server (NTRS)

    Hill, Chante A.

    2004-01-01

    Establishing space communication between ground facilities and other satellites is a painstaking task that requires many precise calculations dealing with relay time, atmospheric conditions, and satellite positions, to name a few. The Space Communications Emulation Facility (SCEF) team here at NASA is developing a facility that will approximately emulate the conditions in space that impact space communication. The emulation facility is comprised of a 32 node distributed cluster of computers; each node representing a satellite or ground station. The objective of the satellites is to observe the topography of the Earth (water, vegetation, land, and ice) and relay this information back to the ground stations. Software originally designed by the University of Kansas, labeled the Emulation Manager, controls the interaction of the satellites and ground stations, as well as handling the recording of data. The Emulation Manager is installed on a Linux Operating System, employing both Java and C++ programming codes. The emulation scenarios are written in extensible Markup Language, XML. XML documents are designed to store, carry, and exchange data. With XML documents data can be exchanged between incompatible systems, which makes it ideal for this project because Linux, MAC and Windows Operating Systems are all used. Unfortunately, XML documents cannot display data like HTML documents. Therefore, the SCEF team uses XML Schema Definition (XSD) or just schema to describe the structure of an XML document. Schemas are very important because they have the capability to validate the correctness of data, define restrictions on data, define data formats, and convert data between different data types, among other things. At this time, in order for the Emulation Manager to open and run an XML emulation scenario file, the user must first establish a link between the schema file and the directory under which the XML scenario files are saved. This procedure takes place on the command

  18. Advanced space transportation technologies

    NASA Technical Reports Server (NTRS)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  19. Space Shuttle Wireless Crew Communications

    NASA Technical Reports Server (NTRS)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  20. Space communication link propagation data for selected cities within the multiple beam and steerable antenna coverage areas of the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1988-01-01

    Rain attenuation propagation data for 68 cities within the coverage area of the multiple beam and steerable antennas of the Advanced Communications Technology Satellite (ACTS) are presented. These data provide the necessary data base for purposes of communication link power budgeting and rain attenuation mitigation controller design. These propagation parameters are derived by applying the ACTS Rain Attenuation Prediction Model to these 68 locations. The propagation parameters enumerated in tabular form for each location are as follows: (1) physical description of the link and location (e.g., latitude, longitude, antenna elevation angle, etc.), link availability versus attenuation margin (also in graphical form), fading time across fade depths of 3, 5, 8, and 15 dB versus fade duration, and required fade control response time for controller availabilities of 99.999, 99.99, 99.9, and 99 percent versus sub-threshold attenuation levels. The data for these specific locations can be taken to be representative of regions near these locations.

  1. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  2. Deep Space Communication

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    2012-01-01

    ITU defines deep space as the volume of Space at distances from the Earth equal to, or greater than, 2 106 km. Deep Space Spacecraft have to travel tens of millions of km from Earth to reach the nearest object in deep space. Spacecraft mass and power are precious. Large ground-based antennas and very high power transmitters are needed to overcome large space loss and spacecraft's small antennas and low power transmitters. Navigation is complex and highly dependent on measurements from the Earth. Every deep space mission is unique and therefore very costly to develop.

  3. Space Communications Networks Support MMS

    NASA Video Gallery

    All three of NASA’s Space Communications Networks are excited to support the Magnetospheric Multiscale (MMS) Mission in its journey to study the microphysics of magnetic reconnection. The Near Eart...

  4. Goldstone Deep Space Communication Complex

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Three 34m (110 ft.) diameter Beam Waveguide antennas located at the Goldstone Deep Space Communications Complex, situated in the Mojave Desert in California. This is one of three complexes which comprise NASA's Deep Space Network (DSN). The DSN provides radio communications for all of NASA's interplanetary spacecraft and is also utilized for radio astronomy and radar observations of the solar system and the universe.

  5. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  6. Space to Space Advanced EMU Radio

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic

  7. Advanced Communications Architecture Demonstration Made Significant Progress

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2004-01-01

    Simulation for a ground station located at 44.5 deg latitude. The Advanced Communications Architecture Demonstration (ACAD) is a concept architecture to provide high-rate Ka-band (27-GHz) direct-to-ground delivery of payload data from the International Space Station. This new concept in delivering data from the space station targets scientific experiments that buffer data onboard. The concept design provides a method to augment the current downlink capability through the Tracking Data Relay Satellite System (TDRSS) Ku-band (15-GHz) communications system. The ACAD concept pushes the limits of technology in high-rate data communications for space-qualified systems. Research activities are ongoing in examining the various aspects of high-rate communications systems including: (1) link budget parametric analyses, (2) antenna configuration trade studies, (3) orbital simulations (see the preceding figure), (4) optimization of ground station contact time (see the following graph), (5) processor and storage architecture definition, and (6) protocol evaluations and dependencies.

  8. Global services systems - Space communication

    NASA Technical Reports Server (NTRS)

    Shepphird, F. H.; Wolbers, H. L.

    1979-01-01

    The requirements projected to the year 2000 for space-based global service systems, including both personal communications and innovative services, are developed based on historic trends and anticipated worldwide demographic and economic growth patterns. The growing demands appear to be best satisfied by developing larger, more sophisticated space systems in order to reduce the size, complexity, and expense of ground terminals. The availability of low-cost ground terminals will, in turn, further stimulate the generation of new services and new customers.

  9. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  10. Advanced materials for space

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Slemp, W. S.; Long, E. R., Jr.; Sykes, G. F.

    1980-01-01

    The principal thrust of the LSST program is to develop the materials technology required for confident design of large space systems such as antennas and platforms. Areas of research in the FY-79 program include evaluation of polysulfones, measurement of the coefficient of thermal expansion of low expansion composite laminates, thermal cycling effects, and cable technology. The development of new long thermal control coatings and adhesives for use in space is discussed. The determination of radiation damage mechanisms of resin matrix composites and the formulation of new polymer matrices that are inherently more stable in the space environment are examined.

  11. Advanced Management Communication: An Elective Course in Corporate Communication.

    ERIC Educational Resources Information Center

    Argenti, Paul A.

    1986-01-01

    Proposes a college-level elective course in advanced management communication that would teach future managers how to communicate with shareholders, the media, financial analysts, and the labor force. (SRT)

  12. Space weather effects on communications

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    In the 150 years since the advent of the first electrical communication system - the electrical telegraph - the diversity of communications technologies that are embedded within space-affected environments have vastly increased. The increasing sophistication of these communications technologies, and how their installation and operations may relate to the environments in which they are embedded, requires ever more sophisticated understanding of natural physical phenomena. At the same time, the business environment for most present-day communications technologies that are affected by space phenomena is very dynamic. The commercial and national security deployment and use of these technologies do not wait for optimum knowledge of possible environmental effects to be acquired before new technological embodiments are created, implemented, and marketed. Indeed, those companies that might foolishly seek perfectionist understanding of natural effects can be left behind by the marketplace. A well-considered balance is needed between seeking ever deeper understanding of physical phenomena and implementing `engineering' solutions to current crises. The research community must try to understand, and operate in, this dynamic environment.

  13. Space network support for lunar communications

    NASA Technical Reports Server (NTRS)

    Jordan, Michael A.

    1991-01-01

    The space network can provide high data rate lunar communications as an alternative or adjunct to an expansion of the deep space network. Use of a space-based system can provide continuous coverage for lunar users and reduce terrestrial communication costs by delivering data directly to a single domestic location. Adapting the space network for lunar communications support would also maximize the use of the existing and planned space network and Space Station infrastructure. Several alternative architectures are evaluated.

  14. Advanced Communications Technology: Mobile Communications Requirements Report

    NASA Astrophysics Data System (ADS)

    1998-05-01

    The Coast Guard's mobile communications requirements will outstrip existing system capabilities, available capacity, and affordability by the late 1990s. This will require changes in the mix of mobile communications equipment and services used by operational units. New commercial mobile satellite services are available now, with many others arriving on the market between 1998 and 2003. These new services present unique opportunities to satisfy mission requirements, reduce investment in communications infrastructure, and realize more costeffective communications services. The Coast Guard Research and Development Center (R&DC) has undertaken an effort to identify and evaluate current and emerging satellite services that may be used to satisfy Coast Guard mobile communications requirements. As part of this effort, Anteon Corporation has been tasked by R&DC to collect the mobile communications functional requirements that have been identified by program managers. Anteon analysts have reviewed the Government Furnished Information (GFI) and researched other related documentation to identify and collect the requirements that may be used to describe the needed operating environment. Anteon analysts assessed the functional requirements to develop system requirements that describe the features that a communications system must provide to support the functional requirements. This report presents the current and projected Coast Guard mobile communications system requirements.

  15. Advances in space robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio

    1989-01-01

    The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.

  16. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  17. Advanced Space-Based Detectors

    DTIC Science & Technology

    2014-07-17

    Research Laboratory 8. PERFORMING ORGANIZATION REPORT NUMBER Space Vehicles Directorate 3550 Aberdeen Ave., SE Kirtland AFB, NM 87117-5776 AFRL -RV...Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0010 TR-2014-0010 ADVANCED SPACE-BASED DETECTORS David Cardimona 17 Jul 2014 Final Report APPROVED FOR PUBLIC

  18. Earth-lunar communications using the advanced TDRSS

    NASA Technical Reports Server (NTRS)

    Brandel, Daniel L.; Jordan, Michael A.

    1991-01-01

    The Tracking and Data Relay Satellite System (TDRSS) is an operational geostationary satellite system used by the NASA to communicate with low earth orbiting missions such as the NASA Space Transportation System and the Hubble Space Telescope. The Advanced TDRSS (ATDRSS) is a continuation to TDRSS and will develop new spacecraft to replenish and maintain the TDRSS space network into the second decade of the 21st century. This paper describes an approach which could permit the future ATDRSS space network to meet the future communications required for lunar missions as well as those projected for low earth missions in this time frame.

  19. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  20. Advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    Freitas, R. A., Jr.; Healy, T. J.; Long, J. E.

    1982-01-01

    A NASA/ASEE Summer Study conducted at the University of Santa Clara in 1980 examined the feasibility of using advanced artificial intelligence and automation technologies in future NASA space missions. Four candidate applications missions were considered: (1) An intelligent earth-sensing information system, (2) an autonomous space exploration system, (3) an automated space manufacturing facility, and (4) a self-replicating, growing lunar factory. The study assessed the various artificial intelligence and machine technologies which must be developed if such sophisticated missions are to become feasible by century's end.

  1. Space flight operations communications phraseology and techniques

    NASA Technical Reports Server (NTRS)

    Noneman, S. R.

    1986-01-01

    Communications are a critical link in space flight operations. Specific communications phraseology and techniques have been developed to allow rapid and clear transfer of information. Communications will be clear and brief through the use of procedural words and phrases. Communications protocols standardize the required information transferred. The voicing of letters and numbers is discussed. The protocols used in air-to-ground communications are given. A glossary of communications terminology is presented in the appendix.

  2. Facility for the evaluation of space communications and related systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  3. NASA Integrated Space Communications Network

    NASA Technical Reports Server (NTRS)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  4. Technology developments integrating a space network communications testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.

  5. The Next Generation of Space Communications

    NASA Video Gallery

    NASA is looking for the next generation of space communications technology and Laser Comm may be the answer. Optical communications provide higher bandwidth, which allows for faster data flow and e...

  6. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    detection and avoidance, damage control and mitigation, and crew ejection systems. These systems, working together, will greatly increase survivability of crewed systems. Implicit in this varied list of technology and integration is industry risk. Aerospace industry must relearn to accept risk in space technology development in order to advance capability. All of these items wrap up in a total system view that will allow for more advanced, reliable capability in space.

  7. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  8. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  9. Space Station Live: ISS Communications Unit Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

  10. Deep space communication - Past, present, and future

    NASA Technical Reports Server (NTRS)

    Posner, E. C.; Stevens, R.

    1984-01-01

    This paper reviews the progress made in deep space communication from its beginnings until now, describes the development and applications of NASA's Deep Space Network, and indicates directions for the future. Limiting factors in deep space communication are examined using the upcoming Voyager encounter with Uranus, centered on the downlink telemetry from spacecraft to earth, as an example. A link calculation for Voyager at Uranus over Australia is exhibited. Seven basic deep space communication functions are discussed, and technical aspects of spacecraft communication equipment, ground antennas, and ground electronics and processing are considered.

  11. Advanced Learning Space as an Asset for Students with Disabilities

    ERIC Educational Resources Information Center

    Císarová, Klára; Lamr, Marián; Vitvarová, Jana

    2015-01-01

    The paper describes an e-learning system called Advanced Learning Space that was developed at the Technical University of Liberec. The system provides a personalized virtual work space and promotes communication among students and their teachers. The core of the system is a module that can be used to automatically record, store and playback…

  12. Multiple beam phased array for Space Station Control Zone Communications

    NASA Astrophysics Data System (ADS)

    Halsema, P. B.

    The Space Station Communications Control Zone is a disk shaped region 40 nautical miles in diameter and 10 nautical miles thick centered about the Space Station. It is estimated that 6 simultaneous Multiple Access (MA) channels will be required to satisfy the projected communications needs within this zone. These channels will be used to communicate with MA users located anywhere within the Control Zone. This paper details the tradeoffs and design implementation of a multiple beam integrated phased array to provide antenna coverage of the Control Zone. The array is a compact, modular assembly using Gallium Arsenide circuits, microstrip elements, and advanced packaging techniques. This results in a small, reliable antenna system capable of meeting the projected Space Station requirements and flexible enough to grow and evolve as the Space Station communications needs develop.

  13. Overview of the Space Station communications networks

    NASA Technical Reports Server (NTRS)

    Smith, Joseph F.; Willett, Daniel; Paul, Sunil

    1990-01-01

    Within the Space Station Freedom program, the communications and data-processing capabilities that will be used to handle the operational and scientific information needs will be provided by a Space Station information and communications system. This system will be composed of a variety of elements, networks, and subnetworks. The networks and how they are interconnected are described. The discussion covers communications system elements and services, elements of the onboard systems, wide-area transport network elements, and command and control elements.

  14. Software-Defined Radio for Space-to-Space Communications

    NASA Technical Reports Server (NTRS)

    Fisher, Ken; Jih, Cindy; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben A.; Fritz, Justin A.

    2011-01-01

    A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission.

  15. Technology Developments Integrating a Space Network Communications Testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.

  16. Space Station communications system design and analysis

    NASA Technical Reports Server (NTRS)

    Ratliff, J. E.

    1986-01-01

    Attention is given to the methodologies currently being used as the framework within which the NASA Space Station's communications system is to be designed and analyzed. A key aspect of the CAD/analysis system being employed is its potential growth in size and capabilities, since Space Station design requirements will continue to be defined and modified. The Space Station is expected to furnish communications between itself and astronauts on EVA, Orbital Maneuvering Vehicles, Orbital Transfer Vehicles, Space Shuttle orbiters, free-flying spacecraft, coorbiting platforms, and the Space Shuttle's own Mobile Service Center.

  17. The NASA Space Communications Data Networking Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.

    2006-01-01

    The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.

  18. Recent advances on integrated quantum communications

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Diamanti, Eleni

    2016-08-01

    In recent years, the use of integrated technologies for applications in the field of quantum information processing and communications has made great progress. The resulting devices feature valuable characteristics such as scalability, reproducibility, low cost and interconnectivity, and have the potential to revolutionize our computation and communication practices in the future, much in the way that electronic integrated circuits have drastically transformed our information processing capacities since the last century. Among the multiple applications of integrated quantum technologies, this review will focus on typical components of quantum communication systems and on overall integrated system operation characteristics. We are interested in particular in the use of photonic integration platforms for developing devices necessary in quantum communications, including sources, detectors and both passive and active optical elements. We also illustrate the challenges associated with performing quantum communications on chip, by using the case study of quantum key distribution—the most advanced application of quantum information science. We conclude with promising perspectives in this field.

  19. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  20. Laser Relay: Improving Space Communications

    NASA Video Gallery

    The Laser Communications Relay Demonstration mission proposes to revolutionize the way we send and receive data, video and other information, using lasers to encode and transmit data at rates 10 to...

  1. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  2. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  3. Advanced Communication and Networking Technologies for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  4. Transition From NASA Space Communication Systems to Commerical Communication Products

    NASA Technical Reports Server (NTRS)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  5. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  6. Face to Face Communications in Space

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.; Davon, Bonnie P. (Technical Monitor)

    1999-01-01

    It has been reported that human face-to-face communications in space are compromised by facial edema, variations in the orientations of speakers and listeners, and background noises that are encountered in the shuttle and in space stations. To date, nearly all reports have been anecdotal or subjective, in the form of post-flight interviews or questionnaires; objective and quantitative data are generally lacking. Although it is acknowledged that efficient face-to-face communications are essential for astronauts to work safely and effectively, specific ways in which the space environment interferes with non-linguistic communication cues are poorly documented. Because we have only a partial understanding of how non-linguistic communication cues may change with mission duration, it is critically important to obtain objective data, and to evaluate these cues under well-controlled experimental conditions.

  7. The Politics of Canadian Space Communication Programs.

    ERIC Educational Resources Information Center

    Singh, Indu B.; McDaniel, Drew O.

    In 1968, the Science Council of Canada recommended that Canada focus its scientific and technological effort on the creation of major programs designed to help solve some of the country's social and economic problems and, specifically, that a space program be initiated. The Canadian decision to become involved in space communication activities was…

  8. Experiments Program for NASA's Space Communications Testbed

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Reinhart, Richard

    2012-01-01

    NASA developed a testbed for communications and navigation that was launched to the International Space Station in 2012. The testbed promotes new software defined radio (SDR) technologies and addresses associated operational concepts for space-based SDRs, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. The experiments program consists of a mix of in-house and external experiments from partners in industry, academia, and government. The experiments will investigate key challenges in communications, networking, and global positioning system navigation both on the ground and on orbit. This presentation will discuss some of the key opportunities and challenges for the testbed experiments program.

  9. Adaptive Power Control for Space Communications

    NASA Technical Reports Server (NTRS)

    Thompson, Willie L., II; Israel, David J.

    2008-01-01

    This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).

  10. Advanced Power Sources for Space Missions

    DTIC Science & Technology

    1989-01-01

    baseload operation of the space platform, including communication, station-keeping, and surveillance systems. A typical household consumes energy at the...RESEARCH CENTER, CLEVELAND, OHIO June 25,1987 NASA space power need» and programs SDI space power architecture studies SDI nonnuclear baseload

  11. Space Communication and Navigation Testbed Communications Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  12. Deep-Space Optical Communications: Visions, Trends, and Prospects

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.; Abraham, D. S.; Shambayati, S.; Rush, J.

    2011-01-01

    Current key initiatives in deep-space optical communications are treated in terms of historical context, contemporary trends, and prospects for the future. An architectural perspective focusing on high-level drivers, systems, and related operations concepts is provided. Detailed subsystem and component topics are not addressed. A brief overview of past ideas and architectural concepts sets the stage for current developments. Current requirements that might drive a transition from radio frequencies to optical communications are examined. These drivers include mission demand for data rates and/or data volumes; spectrum to accommodate such data rates; and desired power, mass, and cost benefits. As is typical, benefits come with associated challenges. For optical communications, these include atmospheric effects, link availability, pointing, and background light. The paper describes how NASA's Space Communication and Navigation Office will respond to the drivers, achieve the benefits, and mitigate the challenges, as documented in its Optical Communications Roadmap. Some nontraditional architectures and operations concepts are advanced in an effort to realize benefits and mitigate challenges as quickly as possible. Radio frequency communications is considered as both a competitor to and a partner with optical communications. The paper concludes with some suggestions for two affordable first steps that can yet evolve into capable architectures that will fulfill the vision inherent in optical communications.

  13. The Space Communications Protocol Standards Program

    NASA Technical Reports Server (NTRS)

    Jeffries, Alan; Hooke, Adrian J.

    1994-01-01

    In the fall of 1992 NASA and the Department of Defense chartered a technical team to explore the possibility of developing a common set of space data communications standards for potential dual-use across the U.S. national space mission support infrastructure. The team focused on the data communications needs of those activities associated with on-lined control of civil and military aircraft. A two-pronged approach was adopted: a top-down survey of representative civil and military space data communications requirements was conducted; and a bottom-up analysis of available standard data communications protocols was performed. A striking intersection of civil and military space mission requirements emerged, and an equally striking consensus on the approach towards joint civil and military space protocol development was reached. The team concluded that wide segments of the U.S. civil and military space communities have common needs for: (1) an efficient file transfer protocol; (2) various flavors of underlying data transport service; (3) an optional data protection mechanism to assure end-to-end security of message exchange; and (4) an efficient internetworking protocol. These recommendations led to initiating a program to develop a suite of protocols based on these findings. This paper describes the current status of this program.

  14. The Space Communications Protocol Standards Program

    NASA Astrophysics Data System (ADS)

    Jeffries, Alan; Hooke, Adrian J.

    1994-11-01

    In the fall of 1992 NASA and the Department of Defense chartered a technical team to explore the possibility of developing a common set of space data communications standards for potential dual-use across the U.S. national space mission support infrastructure. The team focused on the data communications needs of those activities associated with on-lined control of civil and military aircraft. A two-pronged approach was adopted: a top-down survey of representative civil and military space data communications requirements was conducted; and a bottom-up analysis of available standard data communications protocols was performed. A striking intersection of civil and military space mission requirements emerged, and an equally striking consensus on the approach towards joint civil and military space protocol development was reached. The team concluded that wide segments of the U.S. civil and military space communities have common needs for: (1) an efficient file transfer protocol; (2) various flavors of underlying data transport service; (3) an optional data protection mechanism to assure end-to-end security of message exchange; and (4) an efficient internetworking protocol. These recommendations led to initiating a program to develop a suite of protocols based on these findings. This paper describes the current status of this program.

  15. Advanced Approach of Multiagent Based Buoy Communication

    PubMed Central

    Gricius, Gediminas; Drungilas, Darius; Andziulis, Arunas; Dzemydiene, Dale; Voznak, Miroslav; Kurmis, Mindaugas; Jakovlev, Sergej

    2015-01-01

    Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys), which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information. PMID:26345197

  16. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  17. Advanced Shipboard Communications Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Axford, Roy A.; Jedrey, Thomas C.; Rupar, Michael A.

    2000-01-01

    For ships at sea. satellites provide the only option for high data rate (HDR), long haul communications. Furthermore the demand for HDR satellite communications (SATCOM) for military and commercial ships. and other offshore platforms is increasing. Presently the bulk of this maritime HDR SATCOM connectivity is provided via C-band and X-band. However, the shipboard antenna sizes required to achieve a data rate of, say T 1 (1.544 Mbps) with present C-/X-band SATCOM systems range from seven to ten feet in diameter. This limits the classes of ships to which HDR services can be provided to those which are large enough to accommodate the massive antennas. With its high powered K/Ka-band spot beams, the National Aeronautics and Space Administration's (NASA) Advanced Communications Technology Satellite (ACTS) was able to provide T I and higher rate services to ships at sea using much smaller shipboard antennas. This paper discusses three shipboard HDR SATCOM demonstrations that were conducted with ACTS between 1996 and 1998. The first demonstration involved a 2 Mbps link provided to the seismic survey ship MN Geco Diamond equipped with a 16-inch wide, 4.5-inch tall, mechanically steered slotted waveguide array antenna developed by the Jet Propulsion Laboratory. In this February 1996 demonstration ACTS allowed supercomputers ashore to process Geco Diamond's voluminous oceanographic seismic data in near real time. This capability allowed the ship to adjust its search parameters on a daily basis based on feedback from the processed data, thereby greatly increasing survey efficiency. The second demonstration was conducted on the US Navy cruiser USS Princeton (CG 59) with the same antenna used on Geco Diamond. Princeton conducted a six-month (January-July 1997) Western Hemisphere solo deployment during which time T1 connectivity via ACTS provided the ship with a range of valuable tools for operational, administrative and quality-of-life tasks. In one instance, video

  18. Emergency Communications for NASA's Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Lee, Charles H.; Morabito, David D.; Cesarone, Robert J.; Abraham, Douglas S.

    2011-01-01

    The ability to communicate with spacecraft during emergencies is a vital service that NASA's Deep Space Network (DSN) provides to all deep space missions. Emergency communications is characterized by low data rates(typically is approximately10 bps) with the spacecraft using either a low-gain antenna (LGA, including omnidirectional antennas) or,in some cases, a medium-gain antenna (MGA). Because of the use of LGAs/MGAs for emergency communications, the transmitted power requirements both on the spacecraft andon the ground are substantially greater than those required for normal operations on the high-gain antenna (HGA) despite the lower data rates. In this paper, we look at currentand future emergency communications capabilities available to NASA's deep-space missions and discuss their limitations in the context of emergency mode operations requirements.These discussions include the use of the DSN 70-m diameter antennas, the use of the 34-m diameter antennas either alone or arrayed both for the uplink (Earth-to-spacecraft) and the downlink (spacecraft-to-Earth), upgrades to the ground transmitters, and spacecraft power requirements both with unitygain (0 dB) LGAs and with antennas with directivity (>0 dB gain, either LGA or MGA, depending on the gain). Also discussed are the requirements for forward-error-correctingcodes for both the uplink and the downlink. In additional, we introduce a methodology for proper selection of a directionalLGA/MGA for emergency communications.

  19. The Advancement of Humans in Space

    NASA Technical Reports Server (NTRS)

    Graves, John A.

    2014-01-01

    The advancement of humans into space and potentially beyond started slow but has greatly increased in speed over the past 2 generations. NASA has been at the forefront of this development and coontinues to lead the way into space exploration. This presentation provides a brief historical overview of NASA's space exploration efforts and touches on the abilityof each new generation to greatly expand our presence in space.

  20. Space Station Information System integrated communications concept

    NASA Technical Reports Server (NTRS)

    Muratore, J.; Bigham, J.; Whitelaw, V.; Marker, W.

    1987-01-01

    This paper presents a model for integrated communications within the Space Station Information System (SSIS). The SSIS is generally defined as the integrated set of space and ground information systems and networks which will provide required data services to the Space Station flight crew, ground operations personnel, and customer communities. This model is based on the International Standards Organization (ISO) layered model for Open Systems Interconnection (OSI). The requirements used to develop the model are presented, and the various elements of the model described.

  1. Communication services for advanced network applications.

    SciTech Connect

    Bresnahan, J.; Foster, I.; Insley, J.; Toonen, B.; Tuecke, S.

    1999-06-10

    Advanced network applications such as remote instrument control, collaborative environments, and remote I/O are distinguished by traditional applications such as videoconferencing by their need to create multiple, heterogeneous flows with different characteristics. For example, a single application may require remote I/O for raw datasets, shared controls for a collaborative analysis system, streaming video for image rendering data, and audio for collaboration. Furthermore, each flow can have different requirements in terms of reliability, network quality of service, security, etc. They argue that new approaches to communication services, protocols, and network architecture are required both to provide high-level abstractions for common flow types and to support user-level management of flow creation and quality. They describe experiences with the development of such applications and communication services.

  2. Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.; Roberts, William T.

    2014-01-01

    The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.

  3. National Aeronautics and Space Administration plans for space communication technology

    NASA Technical Reports Server (NTRS)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  4. Performance evaluation of cognitive radio in advanced metering infrastructure communication

    NASA Astrophysics Data System (ADS)

    Hiew, Yik-Kuan; Mohd Aripin, Norazizah; Din, Norashidah Md

    2016-03-01

    Smart grid is an intelligent electricity grid system. A reliable two-way communication system is required to transmit both critical and non-critical smart grid data. However, it is difficult to locate a huge chunk of dedicated spectrum for smart grid communications. Hence, cognitive radio based communication is applied. Cognitive radio allows smart grid users to access licensed spectrums opportunistically with the constraint of not causing harmful interference to licensed users. In this paper, a cognitive radio based smart grid communication framework is proposed. Smart grid framework consists of Home Area Network (HAN) and Advanced Metering Infrastructure (AMI), while AMI is made up of Neighborhood Area Network (NAN) and Wide Area Network (WAN). In this paper, the authors only report the findings for AMI communication. AMI is smart grid domain that comprises smart meters, data aggregator unit, and billing center. Meter data are collected by smart meters and transmitted to data aggregator unit by using cognitive 802.11 technique; data aggregator unit then relays the data to billing center using cognitive WiMAX and TV white space. The performance of cognitive radio in AMI communication is investigated using Network Simulator 2. Simulation results show that cognitive radio improves the latency and throughput performances of AMI. Besides, cognitive radio also improves spectrum utilization efficiency of WiMAX band from 5.92% to 9.24% and duty cycle of TV band from 6.6% to 10.77%.

  5. Advanced space system for geostationary orbit surveillance

    NASA Astrophysics Data System (ADS)

    Klimenko, N. N.; Nazarov, A. E.

    2016-12-01

    The structure and orbital configuration of the advanced space system for geostationary orbit surveillance, as well as possible approaches to the development of the satellite bus and payload for the geostationary orbit surveillance, are considered.

  6. Software Defined Radio Architecture Contributions to Next Generation Space Communications

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Eddy, Wesley M.; Smith, Carl R.; Liebetreu, John

    2015-01-01

    Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications

  7. Research in space commercialization, technology transfer, and communications, volume 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  8. Challenges of Integrating NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  9. Challenges of Integrating NASAs Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  10. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  11. Deep space optical communications development program

    NASA Technical Reports Server (NTRS)

    Lesh, James R.

    1987-01-01

    The technology development, spacecraft systems impact, design examples and overall development plan for optical deep space communications are described. Design examples include moderate distance links like ones from Mars to Earth, out through a potential mission to a distance of 1000 A.U. The technology development plan, which includes both ground-based as well as Earth orbit-based reception considerations, spans the period from 1985 to the year 2003. Past technology developments in high efficiency lasers, optical modulation and coding, and high power efficiency communications techniques at multiple bits of information per detected photon are also discussed.

  12. Communication systems of the Space Shuttle

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The Space Shuttle Orbiter radio-frequency systems and data services include an S-band phase modulation (PM) transmitter/receiver, a Ku-band transmitter/receiver, two independent S-band FM transmitters, an S-band payload interrogator transmitter/receiver, and a Ku-band rendezvous radar. A computer system, special processors for interfacing between payloads and RF systems, and television and tape recording systems are also part of the orbiter communications and data systems. The supporting ground systems include the Ground Space Tracking and Data Network, the Mission Control Center, and the Payload Operations Control Center. Five radars track the Orbiter during its re-entry flight path, and domestic communication satellites are used to electronically tie NASA tracking systems together. The voice communications system has been configured for support of two separate voice conversations upward and downward simultaneously, and the station conferencing and monitoring arrangement allows interchange of the 370 voice terminals throughout the world. The Space Shuttle will undergo four flight tests, performing some 1100 experiments, after which it will be put into operation to haul satellites and other equipment into space for paying customers.

  13. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  14. Advanced Imaging for Space Science

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Future NASA interferometric missions will realize high-resolution with less mass and volume compared to filled-apertures thus saving in cost over comparable filled-aperture systems. However, interferometeric aperture systems give reduced sensitivity requiring longer integration times to achieve a desired signal-to-noise ratio but is likely the only cost effective path forward for high-resolution space imaging.

  15. Advanced space program studies. Overall executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1977-01-01

    NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.

  16. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  17. Digital communication constraints in prior space missions

    NASA Technical Reports Server (NTRS)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  18. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  19. Radio propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    This paper presents a review of the most recent information on the effects of the earth's atmosphere on space communications systems. Models and techniques used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission are discussed. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz are reviewed. Particular emphasis is placed on the effects of precipitation on the earth-space path, including rain attenuation, and rain and ice-particle depolarization. Sky noise, antenna gain degradation, scintillations, and bandwidth coherence are also discussed. The impact of the various propagation factors on communications system design criteria is presented. These criteria include link reliability, power margins, noise contributions, modulation and polarization factors, channel crosstalk, error-rate, and bandwidth limitations.

  20. Deep space optical communication via relay satellite

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  1. Advanced Photodetectors for Space Lidar

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Krainak, Michael A.; Abshire, James B.

    2014-01-01

    The detector in a space lidar plays a key role in the instrument characteristics and performance, especially in direct detection lidar. The sensitivity of the detector is usually the limiting factor when determining the laser power and the receiver aperture size, which in turn determines the instrument complexity and cost. The availability of a suitable detector is often a deciding factor in the choice of lidar wavelengths. A direct detection lidar can achieve the highest receiver performance, or the quantum limit, when its detector can detect signals at the single photon

  2. Space Campers Speak With Station Science Communication Coordinator

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, International Space Station Science Communication Coordinator Liz Warren participates in a Digital Learning Network (DLN) event with ...

  3. The Deep Space Network. [tracking and communication functions and facilities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  4. Advanced Technologies and Satellite Services for Enhancing Space Surveillance

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Rieger, Philipp; Suess, Helmut; Neff, Thomas; Duerr, Wolfgang

    2010-08-01

    Space-based systems are becoming part of our infrastructure and our dependency on space-based services has grown. Therefore, the assured availability and operational readiness of space-based services is essential, undoubtedly. However, satellites are subject to a variety of damaging effects and potential threats. These are mostly caused by an increasingly crowded region of outer space, by space weather including solar events and, unfortunately, even attacks on space systems which are no longer sience fiction as impressively demonstrated in 2007 with the Chinese anti-satellite test and the intercept of USA-193 in 2008. Today, German armed forces use several space services primarily for reconnaissance, communications and navigation. As a matter of fact, Germany`s sovereignty and national security depend on the availability of multiple space services. This led the Federal Ministry of Defence to set up a dedicated military Space Situational Awareness Centre at Kalkar/Uedem, Germany, as a significant contribution to a national preventive security. This paper provides information on a range of technical issues related to space assets that are important for anyone involved in the debate over space security and gives a brief survey of the German SSA program. The paper deals with a subset of feasible man-made threats and its fatal effects on space assets. Furthermore, the preliminary conceptual design of an onboard sensor suitable for the instant detection of the previously described types of threats is presented. Finally, advanced technologies for the near real-time transfer of data are highlighted.

  5. Advanced communications payload for mobile applications

    NASA Technical Reports Server (NTRS)

    Ames, S. A.; Kwan, R. K.

    1990-01-01

    An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.

  6. An advanced domestic satellite communications system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.

  7. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  8. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  9. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  10. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  11. A growth path for deep space communications

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Smith, J. G.

    1987-01-01

    Increased Deep Space Network (DPN) receiving capability far beyond that now available for Voyager is achievable through a mix of increased antenna aperture and increased frequency of operation. In this note a sequence of options are considered: adding midsized antennas for arraying with the existing network at X-band; converting to Ka-band and adding array elements; augmenting the DSN with an orbiting Ka-band station; and augmenting the DSN with an optical receiving capability, either on the ground or in space. Costs of these options are compared as means of achieving significantly increased receiving capability. The envelope of lowest costs projects a possible path for moving from X-band to Ka-band and thence to optical frequencies, and potentially for moving from ground-based to space-based apertures. The move to Ka-band is clearly of value now, with development of optical communications technology a good investment for the future.

  12. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  13. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  14. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  15. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  16. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  17. Space Station needs, attributes and architectural options. Volume 2, book 2, part 3: Communication system

    NASA Astrophysics Data System (ADS)

    1983-04-01

    Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.

  18. Space Station needs, attributes and architectural options. Volume 2, book 2, part 3: Communication system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.

  19. Fundamentals of Free-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Moision, Bruce; Erkmen, Baris

    2012-01-01

    Free-space optical communication systems potentially gain many dBs over RF systems. There is no upper limit on the theoretically achievable photon efficiency when the system is quantum-noise-limited: a) Intensity modulations plus photon counting can achieve arbitrarily high photon efficiency, but with sub-optimal spectral efficiency. b) Quantum-ideal number states can achieve the ultimate capacity in the limit of perfect transmissivity. Appropriate error correction codes are needed to communicate reliably near the capacity limits. Poisson-modeled noises, detector losses, and atmospheric effects must all be accounted for: a) Theoretical models are used to analyze performance degradations. b) Mitigation strategies derived from this analysis are applied to minimize these degradations.

  20. Advanced space program studies, overall executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Multidisciplined advanced planning studies were conducted that involve space operations and the associated system elements, identification of potential low cost system techniques, vehicle design, cost synthesis techniques, DoD technology forecasting, and the development of near and far term space initiatives with emphasis on domestic and military use commonality. Specific areas studied include: (1) manned systems utilization; (2) STS users; (3) vehicle cost/performance; (4) space vehicle applications to future national needs; (5) STS spin stabilized upper stage; and (6) technology assessment and forecast.

  1. Advanced transponders for deep space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Kayalar, Selahattin; Yeh, Hen-Geul; Kyriacou, Charles

    1993-01-01

    Three architectures for advanced deep space transponders are proposed. The architectures possess various digital techniques such as fast Fourier transform (FFT), digital phase-locked loop (PLL), and digital sideband aided carrier detection with analog or digital turn-around ranging. Preliminary results on the design and conceptual implementation are presented. Modifications to the command detector unit (CDU) are also presented.

  2. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  3. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  4. Advanced integrated WDM system for POF communication

    NASA Astrophysics Data System (ADS)

    Haupt, M.; Fischer, U. H. P.

    2009-01-01

    Polymer Optical Fibres (POFs) show clear advantages compared to copper and glass fibres. In essence, POFs are inexpensive, space-saving and not susceptible to electromagnetic interference. Thus, the usage of POFs have become a reasonable alternative in short distance data communication. Today, POFs are applied in a wide number of applications due to these specific advantages. These applications include automotive communication systems and in-house-networks. State-of-the-art is to transmit data with only one channel over POF, this limits the bandwidth. To solve this problem, an integrated MUX/DEMUX-element for WDM over POF is designed and developed to use multiple channels. This integration leads to low costs, therefore this component is suitable for mass market applications. The fundamental idea is to separate the chromatic parts of the light in its monochromatic components by means of a grating based on an aspheric mirror. Due to the high NA of the POF the setup has to be designed in a 3D-approach. Therefore this setup cannot be compared with the planar solutions available on market, they would result high losses in the 3rd dimension. To achieve a fast and optimized design an optical simulation program is used. Particular attention has to be paid to the design of the POF as a light source in the simulation program and the optimisation of the grating. The following realization of the demultiplexer is planed to be done with injection molding. This technology offers easy and very economical processing. These advantages make this technology first choice for optical components in the low-cost array.

  5. Utility of Space Transportation System to Space Communication Community

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1975-01-01

    A potentially cost effective technique was investigated of launching operational satellites into synchronous orbit using the space transportation system (STS). This technique uses an unguided spinning solid rocket motor as the means for boosting a satellite from a low altitude shuttle parking orbit into a synchronous transfer orbit. The spacecraft is then injected into a geosynchronous orbit by an apogee kick motor fired at transfer orbit apogee. The approach is essentially that used on all Delta and Atlas-Centaur launches of synchronous satellites with the shuttle orbiter performing the function of the first two stages of the Delta three stage launch vehicle and the perigee kick motor performing the function of the Delta third state. It is concluded that the STS can be useful to the space communication community as well as to other geostationary satellite system users if the recommended actions are implemented.

  6. The Advanced Communication Technology Satellite and ISDN

    NASA Technical Reports Server (NTRS)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  7. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  8. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  9. Research in space commercialization, technology transfer and communications, vol. 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  10. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  11. Advancing Instructional Communication: Integrating a Biosocial Approach

    ERIC Educational Resources Information Center

    Horan, Sean M.; Afifi, Tamara D.

    2014-01-01

    Celebrating 100 years of the National Communication Association necessitates that, as we commemorate our past, we also look toward our future. As part of a larger conversation about the future of instructional communication, this essay reinvestigates the importance of integrating biosocial approaches into instructional communication research. In…

  12. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  13. Semiconductor lasers for space beacons and communications

    NASA Astrophysics Data System (ADS)

    Kung, H.; Worland, D. P.; Nguyen, H.; Streifer, W.; Scifres, D. R.

    1989-06-01

    Semiconductor lasers have been packaged and qualified for various applications in space. In this paper two subsystems are discussed, both of which will be launched shortly. The first subsystem employs a partially coherent semiconductor laser array coupled to an optical fiber, and monitored by a photo-diode.This package is used in a highly reliable, moderate data rate, moderate length communications link. The fiber coupled output power is 28 mW and the package has been fully space qualified. That is, it is free of organics, hermetically sealed, and has been subjected to die shear, acceleration, thermal cycling, and other tests. The laser longevity exceeds 10 years of continuous operation. The second subsystem consists of 27 fiber coupled space qualified packaged lasers of the same type as above, but designed to operate at 200 mW power output from the fiber. Twenty-seven fibers are bundled to produce a source with a total power emission in excess of 5 watts cw. The subsystem is part of a beacon, which will be used very shortly in a polar satellite experiment. The lasers employed in the two subsystems described above are only partially coherent and therefore are insufficiently bright to operate in a long distance, high data rate link, except with a prohibitively large lens.

  14. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  15. Advanced LMMHD space power generation concept

    NASA Astrophysics Data System (ADS)

    Ho, Vincent; Wong, Albert; Kim, Kilyoo; Dhir, Vijay

    Magnetohydrodynamic (MHD) power generation concept has been proposed and studied worldwide as one of the future power generation sources. An advanced one fluid two phase liquid metal (LM) MHD power generation concept was developed for space nuclear power generation design. The concept employs a nozzle to accelerate the liquid metal coolant to an acceptable velocity with Mach number greater than unity. Such nozzle and the MHD power generator replace the turbogenerator of a high temperature Rankine turboelectric cycle concept. As a result, the power generation system contains no movable parts. This provides high reliability, which is a very important factor in space application.

  16. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  17. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Duties regarding space communications... CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.273 Duties regarding space... angles for proper illumination of a given transponder. (c) Space station licensees are responsible...

  18. Fine pointing control for free-space optical communication

    NASA Technical Reports Server (NTRS)

    Portillo, A. A.; Ortiz, G. G.; Racho, C.

    2000-01-01

    Free-Space Optical Communications requires precise, stable laser pointing to maintain operating conditions. This paper also describes the software and hardware implementation of Fine Pointing Control based on the Optical Communications Demonstrator architecture.

  19. The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Stelzried, C. T.; Noreen, G. K.; Slobin, S. D.; Petty, S. M.; Trowbridge, D. L.; Donnelly, H.; Kinman, P. W.; Armstrong, J. W.; Burow, N. A.

    1983-01-01

    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data.

  20. Advanced-to-Revolutionary Space Technology Options - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2013-01-01

    Paper summarizes a spectrum of low TRL, high risk technologies and systems approaches which could massively change the cost and safety of space exploration/exploitation/industrialization. These technologies and approaches could be studied in a triage fashion, the method of evaluation wherein several prospective solutions are investigated in parallel to address the innate risk of each, with resources concentrated on the more successful as more is learned. Technology areas addressed include Fabrication, Materials, Energetics, Communications, Propulsion, Radiation Protection, ISRU and LEO access. Overall and conceptually it should be possible with serious research to enable human space exploration beyond LEO both safe and affordable with a design process having sizable positive margins. Revolutionary goals require, generally, revolutionary technologies. By far, Revolutionary Energetics is the most important, has the most leverage, of any advanced technology for space exploration applications.

  1. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  2. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  3. Updated Deep Space Communications Complex VLBI Processor

    NASA Astrophysics Data System (ADS)

    Navarro, R.; Rogstad, S.; Goodhart, C. E.; Sigman, E.; Soriano, M.; Wang, D.; White, Leslie A.; Jacobs, Christopher S.

    JPL VLBI Data Acquisition Modernization Program has two Current Purposes with two different recording systems. One for Radio Reference Frame and Time & Earth Motion Observations - Uses MarkIV formatters and Mark5A recorders. One for Double Differential One Way Ranging for spacecraft tracking - Uses Wideband VLBI Science Receiver. We are currently working on a new modernized system to merge functions into one new hardware platform. It will replace the current MarkIV, PCFS and Mark5-A equipment. The new system will be called the JPL Deep Space Communications Complex VLBI Processor (DVP) It is based on hardware development at JPL, NRAO and Haystack. It uses a JPL designed digitizer and the CASPER ROACH board to perform digital backend processing: sampling, channelization, formatting. It uses Mark5C disk units to record data. It aims for compatibility with other VLBI centers recording equipment while conforming to JPL DSN system interface requirements.

  4. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  5. NASA's mobile satellite communications program; ground and space segment technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  6. Space Station Power System Advanced Development

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Baraona, C. R.; Valgora, M. E.

    1985-01-01

    The objectives of the Space Station Advanced Development Program are related to the development of a set of design options and/or new capabilities to support Space Station development and operation, taking into account also a quantification of the performance and risk of key state-of-the-art technologies, and a reduction of the cost and schedule risk in Space Station development. Attention is given to the photovoltaic power system, a solar dynamic system, and aspects of power management and distribution. A major issue will be the selection of the power generation system. In view of the advantages of the solar dynamic system, it is attempted to resolve issues associated with this system.

  7. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  8. ISS Update: Communication Delays During Deep Space Missions

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with Jeremy Frank, Autonomous Mission Operations Test Principal Investigator, about how communication delays will affect future deep space missions and...

  9. Monitor and Control of Deep Space Communications Through AI Planning

    NASA Technical Reports Server (NTRS)

    Fisher, F.; Knight, R.; Engelhardt, B.; Chien, S.; Alejandre, N.

    2000-01-01

    In recent years with the large increase in the number of space missions at NASA, the demand for deep space communications services to command and collect data from these missions has become more difficult to manage.

  10. Advances in Ground Transmitters for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Vodonos, Yakov I.; Conroy, Bruce L.; Losh, David L.; Silva, Arnold

    2007-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, is equipped with multiple microwave transmitters ranging in average radiated power from 200 W to 400 kW. The transmitters are used for routine or emergency communication with spacecraft, for navigation, and for radio science tasks. The latest advances in transmitter engineering were implemented in a new generation of 20-kW dual-band transmitters developed for the DSN 34-m beam waveguide antennas. Innovations include additional X-band communication capability for near Earth missions, new control algorithms, automated calibration, improved and expanded computerized monitoring and diagnostics, reduced cabling, and improved maintainability. The innovations were very beneficial for the DSN 'overload' during the Mars 2003/2004 missions and will benefit other missions throughout the next decade. This paper describes the current design of the new transmitters and possible future developments.

  11. The Deep Space Network Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    2010-01-01

    The deep space network (DSN)--with its three complexes in Goldstone, California, Madrid, Spain, and Canberra, Australia--provides the resources to track and communicate with planetary and deep space missions. Each complex consists of an array of capabilities for tracking probes almost anywhere in the solar system. A number of innovative hardware, software and procedural tools are used for day-to-day operations at DSN complexes as well as at the network control at the Jet Propulsion Laboratory (JPL). Systems and technologies employed by the network include large-aperture antennas (34-m and 70-m), cryogenically cooled receivers, high-power transmitters, stable frequency and timing distribution assemblies, modulation and coding schemes, spacecraft transponders, radiometric tracking techniques, etc. The DSN operates at multiple frequencies, including the 2-GHz band, the 7/8-GHz band, and the 32/34-GHz band.

  12. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  13. Deep space communications, weather effects, and error control

    NASA Technical Reports Server (NTRS)

    Posner, Edward C.

    1989-01-01

    Deep space telemetry is and will remain signal-to-noise limited and vulnerable to interference. A need exists to increase received signal power and decrease noise. This includes going to Ka-band in the mid-1990's to increase directivity. The effects of a wet atmosphere can increase the noise temperature by a factor of 5 or more, even at X-band, but the order of magnitude increase in average data rate obtainable at Ka-band relative to X-band makes the increased uncertainty a good trade. Lowbit error probabilities required by data compression are available both theoretically and practically with coding, at an infinitesimal power penalty rather than the 10 to 15 dB more power required to reduce error probabilities without coding. Advances are coming rapidly in coding, as with the new constraint-length 15 rate 1/4 convolutional code concatenated with the already existing Reed-Solomon code to be demonstrated on Galileo. In addition, high density spacecraft data storage will allow selective retransmissions, even from the edge of the Solar System, to overcome weather effects. In general, deep space communication was able to operate, and will continue to operate, closer to theoretical limits than any other form of communication. These include limits in antenna area and directivity, system noise temperature, coding efficiency, and everything else. The deep space communication links of the mid-90's and beyond will be compatible with new instruments and compression algorithms and represent a sensible investment in an overall end-to-end information system design.

  14. A 20 GHz, 75 watt, helix TWT for space communications

    NASA Astrophysics Data System (ADS)

    Heney, J. F.; Tamashiro, R. N.

    A space-qualified, helix-type traveling wave tube is being developed for satellite communication systems in the frequency band of 17.7 to 21.2 GHz. The design approach stresses very high efficiency operation, but with very low distortion. The tube provides multi-mode operation, permitting CW saturated power output levels of 75, 40, and 7.5 W. Operation is also anticipated at 5 dB below these saturation levels to achieve the required low distortion levels. Advanced construction features include a five-stage depressed collector, a diamond supported helix slow-wave circuit, and a type M dispenser cathode. High reliability and long life (10 yr) are objectives of the tube design. Preliminary test results on early developmental models of this tube are very encouraging. An output power of 75 to 90 W has been achieved over the full bandwidth with about 40 dB of saturated gain. More importantly, the basic electronic efficiency of the interaction process has been increased from about 7.5-11 percent by the use of the diamond helix support compared to earlier tubes using BeO support rods. This effort is supported by NASA Lewis Research Center and is aimed toward application in the NASA Advanced Communications Satellite Technology Program.

  15. Global Communications Infrastructure: CTBT Treaty monitoring using space communications

    NASA Astrophysics Data System (ADS)

    Kebeasy, R.; Abaya, E.; Ricker, R.; Demeules, G.

    first global integrated satellite communications network based on VSAT technology. Space segment has been leased to carry more than 9 gigabytes/day of data to the IDC with a designed annual availability of 99.5%. This paper explains the topology of this satellite-based network, and practical limitations encountered in organizing a single network with 250 links that span the majority of countries in the world, plus the Antarctic regions and the earth's oceans. Having now installed about half of the satellite links in 67 countries, CTBTO has had to hurdle regulatory challenges to install VSAT equipment, and operational challenges to keep the earth stations running in unmanned remote locations. Despite the challenges, the GCI has proven its worth in reliably collecting monitoring data and making such available to authorized users. It has also been useful to give scientists real-time access for controlling their remote monitoring stations.

  16. A Course and Curriculum in Advanced Technical Communication.

    ERIC Educational Resources Information Center

    Farkas, David

    A course in advanced technical communication was developed at West Virginia University for upper-division students in engineering and the sciences and those planning careers in technical communication. The first four weeks of the semester are spent copy editing, with the students learning to use standard editing marks and keeping an editor's style…

  17. Free-space laser communication performance in the atmospheric channel

    NASA Astrophysics Data System (ADS)

    Majumdar, Arun K.

    In spite of the tremendous technical advancement of available components, the major limitation of free-space laser communication (lasercom) performance is due to the atmosphere, because a portion of the atmospheric path always includes turbulence and multiple scattering effects. Starting from a fundamental understanding of the laser communications system under diverse weather conditions, this chapter provides a comprehensive treatment of the evaluation of parameters needed for analyzing system performance. The significance of higher-order statistics of probability density functions of irradiance fluctuations due to turbulence to performance analysis is explained. Starting from link analysis, the necessary expressions relating link margin, bit-error-rate, signal-to-noise-ratio, and probability of fade statistics are presented. Results for laboratory-simulated atmospheric turbulence and multiple scattering are presented. Example numerical results for simulations of lasercom systems operating under various at mospheric conditions are presented for various scenarios such as uplink-downlink (e.g., between ground and satellite, aircraft or UAV) and horizontal (terrestrial) link. Both turbulence and multiple scattering effects have been included in the analysis with both on-off keying and pulse-position modulation schemes. Statistical estimation and computation of communication parameters presented in this chapter will be useful in designing and optimizing lasercom systems that are reliable under all weather conditions.

  18. Optical ground station site diversity for Deep Space Optical Communications the Mars Telecom Orbiter optical link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Parvin, B.; Fugate, R.; Kervin, P.; Zingales, S.

    2003-01-01

    Future NASA deep space missions will fly advanced high resolution imaging instruments that will require high bandwidth links to return the huge data volumes generated by these instruments. Optical communications is a key technology for returning these large data volumes from deep space probes. Yet to cost effectively realize the high bandwidth potential of the optical link will require deployment of ground receivers in diverse locations to provide high link availability. A recent analysis of GOES weather satellite data showed that a network of ground stations located in Hawaii and the Southwest continental US can provide an average of 90% availability for the deep space optical link. JPL and AFRL are exploring the use of large telescopes in Hawaii, California, and Albuquerque to support the Mars Telesat laser communications demonstration. Designed to demonstrate multi-Mbps communications from Mars, the mission will investigate key operational strategies of future deep space optical communications network.

  19. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  20. Free-space optical communication alignment system

    NASA Astrophysics Data System (ADS)

    Mariola, M.; Petruccione, F.

    2016-10-01

    Optical communication systems in free space require a coarse and fine alignment system to align the receiver and transmitter. In general a coarse alignment is not entirely accurate to transmit the laser beacon in the exact direction of the visible field of the camera. During this process, some algorithms such as the raster, spiral and raster spiral scan algorithm can be used to find the spot of the laser beacon. Applications that require to transmit data in form of polarization signals, such as quantum cryptography, requires a polarisation bases alignment system to transmit and receive the photons. In this paper we present a fine alignment system using a polarised laser beacon. The system proposed was subdivided into a coarse and fine alignment system. The coarse alignment was implemented by using the GPS to acquire the geographical position of the transmitter, receiver and a reference point. The fine alignment was achieved by using a polarised laser beacon from the receiver to the transmitter and a camera located on the transmitter side. The algorithm presented was capable of excluding the background noise. Furthermore the polarisation of the laser beacon was used to align the polarisation bases of the transmitter and the receiver.

  1. A 20 GHz, 75 watt helix TWT for space communications

    NASA Astrophysics Data System (ADS)

    Heney, J. F.; Tamashiro, R. N.

    A space-qualified, helix-type traveling wave tube is being developed for satellite communication systems in the frequency band of 17.7 to 21.2 GHz. The design approach stresses very high efficiency operation, but with very low distortion. The tube provides multi-mode operation, permitting CW saturated power output levels of 75 watts, 40 watt and 7.5 watts. Operation is also anticipated at 5 dB below these saturation levels to achieve the required low distortion levels. Advanced construction features include a 5 stage depressed collector, a diamond supported helix slow-wave circuit, and a type M dispenser cathode. High reliability and long life (10 years) are objectives of the tube design. The status of the development and recent experimental results are presented.

  2. Plan of advanced satellite communications experiment using ETS-VI

    NASA Technical Reports Server (NTRS)

    Shiomi, Tadashi

    1988-01-01

    Communications Research Laboratory (CRL, Ministry of Posts and Telecommunications, Japan) has been engaged in development of three advanced satellite communication payloads aiming at experiments by Japan's 2-ton class Engineering Test Satellite VI (ETS-VI) which is to be launched in H-II rocket by NASDA in August 1992. CRL's three experimental systems are: (1) S-band inter-satellite communications; (2) millimeter-wave inter-satellite and personal-satellite communications; and (3) optical inter-satellite communications. CRL develops experimental optical communication system with telescope of 75 mm diameter which has gimbal mirror beam pointing/tracking mechanism. The onboard system has fundamental optical communication functions with laser diode transmitter of wavelength 0.83 micron, laser beam point-ahead mechanism, receiver of wavelength 0.51 micron, modulation/demodulation subsystem, and so on.

  3. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  4. Advanced communications technologies for image processing

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Jones, H. W.; Shameson, L.

    1984-01-01

    It is essential for image analysts to have the capability to link to remote facilities as a means of accessing both data bases and high-speed processors. This can increase productivity through enhanced data access and minimization of delays. New technology is emerging to provide the high communication data rates needed in image processing. These developments include multi-user sharing of high bandwidth (60 megabits per second) Time Division Multiple Access (TDMA) satellite links, low-cost satellite ground stations, and high speed adaptive quadrature modems that allow 9600 bit per second communications over voice-grade telephone lines.

  5. MSFC's Advanced Space Propulsion Formulation Task

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Gerrish, Harold P.; Robinson, Joel W.; Taylor, Terry L.

    2012-01-01

    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible.

  6. Communicating space weather to policymakers and the wider public

    NASA Astrophysics Data System (ADS)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  7. Memory assisted free space quantum communication

    NASA Astrophysics Data System (ADS)

    Jordaan, Bertus; Namazi, Mehdi; Goham, Connor; Shahrokhshahi, Reihaneh; Vallone, Giuseppe; Villoresi, Paolo; Figueroa, Eden

    2016-05-01

    A quantum memory assisted node between different quantum channels has the capability to modify and synchronize its output, allowing for easy connectivity, and advanced cryptography protocols. We present the experimental progress towards the storage of single photon level pulses carrying random polarization qubits into a dual rail room temperature quantum memory (RTQM) after ~ 20m of free space propagation. The RTQM coherently stores the input pulses through electromagnetically induced transparency (EIT) of a warm 87 Rb vapor and filters the output by polarization elements and temperature-controlled etalon resonators. This allows the characterization of error rates for each polarization basis and the testing of the synchronization ability of the quantum memory. This work presents a steppingstone towards quantum key distribution and quantum repeater networks. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180.B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  8. Advances and prospects in visible light communications

    NASA Astrophysics Data System (ADS)

    Hongda, Chen; Chunhui, Wu; Honglei, Li; Xiongbin, Chen; Zongyu, Gao; Shigang, Cui; Qin, Wang

    2016-01-01

    Visible light communication (VLC) is an emerging technology in optical wireless communication (OWC) that has attracted worldwide research in recent years. VLC can combine communication and illumination together, which could be applied in many application scenarios such as visible light communication local area networks (VLANs), indoor localization, and intelligent lighting. In recent years, pioneering and significant work have been made in the field of VLC. In this paper, an overview of the recent progress in VLC is presented. We also demonstrate our recent experiment results including bidirectional 100 Mbit/s VLAN or Li-Fi system based on OOK modulation without blue filter. The VLC systems that we proposed are good solutions for high-speed VLC application systems with low-cost and low-complexity. VLC technology shows a bright future due to its inherent advantages, shortage of RF spectra and ever increasing popularity of white LEDs. Project supported by the National High Technology Research and Development Program of China (Nos. 2015AA033303, 2013AA013602, 2013AA013603, 2013AA03A104), the National Natural Science Foundation of China (Nos. 61178051, 61321063, 61335010, 61178048, 61275169), and the National Basic Research Program of China (Nos. 2013CB329205, 2011CBA00608).

  9. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    NASA Technical Reports Server (NTRS)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  10. Compact telescope for free-space communications

    NASA Astrophysics Data System (ADS)

    Draganov, Vladimir; James, Daryl G.

    2002-10-01

    Several types of telescopes are used for free space telecommunications. The most common are Cassegrain and Gregorian telescopes. The main difference between Cassegrain and Gregorian optical systems is that Gregorian telescopes employ a concave secondary mirror located beyond the focus of the primary mirror. This results in longer tube lengths, as the distance between mirrors is slightly more than the sum of their focal lengths, which is the reason Cassegrain systems are the most common. In addition, Gregorian telescopes produce an upright image, while Cassegrain telescopes produce an inverted image. FSONA is presenting a new compact optical system, which can be described as a modified Gregorian telescope. This telescope is ideally suited for free space optical communications but also has many other applications. The compact telescope is created from a standard Gregorian system by flipping the secondary mirror over a folding mirror installed approximately in the middle of the optical path between primary and secondary mirrors. In this manner, the primary mirror is constructed with a concentric "double curved" geometry, and a central obscuring folding mirror which matches the diameter of the smaller curve of the primary is mounted a short distance in front. This "double curved" geometry is easily produced using diamond turning technology, and the result is a compact telescope approximately 1/2 the length of a regular Gregorian telescope and roughly 2/3 the length of a Cassegrain telescope. There are several advantages to using this type of telescope: 1. The system is very compact. Telescope can be as short as 1/7 of the focal length of the system. 2. For Cassegrain and Gregorian systems it is very critical to keep tight tolerances on the centration between primary and secondary mirrors. The modified Gregorian telescope will always have perfect centration because both curved surfaces are machined at the same time on a diamond turning lathe. The folding mirror is flat

  11. Advanced Communications Technology Satellite (ACTS): Design and on-orbit performance measurements

    NASA Technical Reports Server (NTRS)

    Gargione, F.; Acosta, R.; Coney, T.; Krawczyk, R.

    1995-01-01

    The Advanced Communications Technology Satellite (ACTS), developed and built by Lockheed Martin Astro space for the NASA Lewis Research Center, was launched in September 1993 on the shuttle STS 51 mission. ACTS is a digital experimental communications test bed that incorporates gigahertz bandwidth transponders operating at Ka band, hopping spot beams, on-board storage and switching, and dynamic rain fade compensation. This paper describes the ACTS enabling technologies, the design of the communications payload, the constraints imposed on the spacecraft bus, and the measurements conducted to verify the performance of the system in orbit.

  12. Optical multiaccess free-space laser communication system

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Zhang, Li-Zhong; Wang, Chao; An, Yan; Hu, Yuan

    2016-08-01

    With urgent demand for an integrated information network and development of free-space laser communication technology, research on high-rate laser communication networking technology is vital. This study analyzed the technical difficulties related to space laser communication networking and proposed a laser communication networking solution. A wide-angle beam expander and dual-rotating prism group were incorporated into a multiaccess optical laser communication antenna. The wide-angle beam expander collects signal light from different directions; the dual-rotating prism group tracks different targets simultaneously. This paper presents an overall scheme allowing multiaccess free-space laser communications based on the optical antenna described and the associated relay optics and transceiver subsystems.

  13. Underground communications and tracking technology advances

    SciTech Connect

    Fiscor, S.

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  14. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  15. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  16. eHEROES: where Space Weather and Communication meet

    NASA Astrophysics Data System (ADS)

    Vanlomel, Petra; Gressl, Corinna; Lapenta, Giovanni; Crosby, Norma B.; Cessateur, Gaël

    2014-05-01

    Involvement of people outside the scientific community in space weather becomes more and more an issue. To raise awareness and reach involvement, we have to come up with a tide communication plan that answers the questions: what, to whom, why, when, how, by whom? One of the tools to get peoples attention and to communicate about space weather is education, both formal and informal. In the FP7 project eHEROES, a considerable effort was put in communication and dissemination through education to different sorts of audiences. We will shed some light on 'Classroom', 'Hitchhiker's guide to space' and our Quiz-database.

  17. Advanced heterostructure transistor technologies for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, N.-L. Larry; Lin, Barry; Chau, Frank H.-F.; Jackson, Gordon; Chen, Zhengming; Lee, C. P.

    1999-08-01

    Wireless communication has enjoyed tremendous growth in the last five years. Most of the market is below the 3 GHz. Recently, millimeter wave frequency band was also opened up to commercial applications, such as the Local Multipoint Distribution System. The rapid growth of the market demands cost effective RF circuitry with ever better performance. Thus, the heterostructure transistors are pursued to meeting the market needs. This article will first analyze the technical demand on RF transistor circuitry for wireless application. Existing and emerging transistor technologies will be discussed for its strength. A general comparison will be made.

  18. Advanced Technology Direction and Control Communications Systems

    DTIC Science & Technology

    1979-07-16

    WORK UN4IT NUMBERS The MITRE Corporation ’ 1820 flolley Madison Blvd. Work Unit 2214G McLean, VJ rginia 22102 Ii. CONTROLLING OFFICE NAME AND ADDRESS...Satellite communications using low power technique. A spread spectrum system being developed by The MITRE Corporation for the Maritime Commission. vI I,: I...300-3000 MHz; SHF (super high frequency), 3-30 GHz; EHF (extra high frequency), 30-300 GHz. 3-3 The MITRE Corporation prepared a survey of

  19. An advanced laboratory course that emphasizes communication

    NASA Astrophysics Data System (ADS)

    Rieger, Georg

    2012-10-01

    I will introduce a fourth-year laboratory course that has a strong focus on communication skills. The course is meant to give students a preview of how experimental physics is performed in an academic or industrial research lab. The design is such that the course approximates the experience of a graduate student in a research group, which I regard as an ideal learning environment. I will contrast this with the learning experience in a typical first- or second-year lab. Results from a small survey are also presented.

  20. Antenna technology for advanced mobile communication systems

    NASA Technical Reports Server (NTRS)

    Rammos, Emmanuel; Roederer, Antoine; Rogard, Roger

    1988-01-01

    The onboard antenna front end is the key subsystem conditioning configuration and performance of mobile communication satellites. The objectives of this paper are to demonstrate this key role and to review L-band satellite antenna technology for earth coverage and regional applications. Multibeam arrays are first discussed, then unfurlable and inflatable reflector antennas are described. These technologies are now qualified in Europe for future mobile systems, for which the optimum choice of antenna technology has been found to be the key to efficient use of spectrum and power resources.

  1. Thinking strategically about communications for the space sciences: the case of astrobiology

    NASA Astrophysics Data System (ADS)

    Billings, L.

    2007-12-01

    Ongoing concerns about public understanding of science and scientific literacy, coupled with the growing prominence of science in everyday life, demand that science experts know how to explain the work they do and the value it offers. Public funding of scientific research also argues for communications with the public about it. For research funded by NASA, a statutory requirement is in place to "provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." (1958 National Aeronautics and Space Act.) Public interest in space science is substantial, and advances in the field are rapid. Communicating about science is thus an especially important task for researchers working in the space sciences, as well as an obligation for those receiving public funding. This presentation will describe a communication strategy developed for NASA's Astrobiology Program, intended to aid communication among scientists within an expanding and broadly multidisciplinary field as well as communication about science with a range of external audiences. Conceived strategically, communication is an integral element of the overall work of a program or organization. Communication is conceived strategically in the Astrobiology Program. Astrobiology communication strategy offers a way of thinking about communication - an approach to communication, as it were - and provides guidance on methods, messages, tools, and audiences to be considered in implementation. It can help members of the astrobiology community to communicate about their work with experts - in their own fields and in others - and non-experts - employers, funders, policy makers, teachers, students, parents, citizens. It is designed to promote quality, consistency, and continuity in communication endeavors across the astrobiology program and to integrate these endeavors in program planning and activities. Implementation of a communication strategy for the Astrobiology

  2. Potential markets for advanced satellite communications

    NASA Technical Reports Server (NTRS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  3. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  4. Space water electrolysis: Space Station through advance missions

    NASA Astrophysics Data System (ADS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-09-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  5. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  6. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  7. Communications satellite systems operations with the space station, volume 2

    NASA Technical Reports Server (NTRS)

    Price, K.; Dixon, J.; Weyandt, C.

    1987-01-01

    A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.

  8. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.

  9. A systems engineering initiative for NASA's space communications

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.

    1993-01-01

    In addition to but separate from the Red and Blue Teams commissioned by the NASA Administrator, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper, without compromising safety. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo. The Blue Team process and results are summarized. The Associate Administrator for Space Communications subsequently convened a special management session to discuss the significance and implications of the Blue Team's report and to lay the groundwork and teamwork for the next steps, including the transition from engineering systems to systems engineering. The methodology and progress toward realizing the Code O Family vision and accomplishing the systems engineering initiative for NASA's space communications are presented.

  10. Free-Space Optical Communications Program at JPL

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1999-01-01

    Conceptual design of a multi-functional optical instrument is underway for the X2000-Second Delivery Program. The transceiver will perform both free-space optical-communication and science imaging by sharing a common 10-cm aperture telescope.

  11. Diaspora: Multilingual and Intercultural Communication across Time and Space

    ERIC Educational Resources Information Center

    Wei, Li; Hua, Zhu

    2013-01-01

    The nature of diaspora is changing in the 21st century. Yet many of the communication issues remain the same. At the heart of it is multilingual and intercultural communication across time and space. There is much that applied linguists can contribute to the understanding of diaspora in the era of globalization. This article discusses some of the…

  12. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  13. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  14. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    NASA Technical Reports Server (NTRS)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  15. New Opportunities with the Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Bauer, Robert

    1998-01-01

    Various issues associated with the Advanced Communications Technology Satellite (ACTS) are presented in viewgraph form. Specific topics include: 1) ACTS program review; 2) Spot beam locations; 3) Key ACTS technologies; 4) ACTS accomplishments; 5) Experiments operations; 6) Inclined orbit opportunity, mission and impact; 7) Modifications summary; 8) Experiment opportunity, categories, processes; and 9) Recent and ongoing activity.

  16. Epidermal electronics with advanced capabilities in near-field communication.

    PubMed

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A

    2015-02-25

    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities.

  17. A note on deep space optical communication link parameters

    NASA Technical Reports Server (NTRS)

    Dolinar, S. J.; Yuen, J. H.

    1982-01-01

    Topical communication in the context of a deep space communication link. Communication link analysis at the optical frequencies differs significantly from that at microwave frequencies such as the traditional S and X-bands used in deep space applications, due to the different technology of transmitter, antenna, modulators, and receivers. In addition, the important role of quantum noise in limiting system performance is quite different than that of thermal noise. The optical link design is put in a design control table format similar to a microwave telecom link design. Key considerations unique to the optical link are discussed.

  18. Space Communications Capability Roadmap Interim Review

    NASA Technical Reports Server (NTRS)

    Spearing, Robert; Regan, Michael

    2005-01-01

    Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.

  19. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  20. Advanced space transportation systems, BARGOUZIN booster

    NASA Astrophysics Data System (ADS)

    Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, André; Couteau, Jean-Noël

    2008-07-01

    In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

  1. Advanced planar array development for space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of the Advanced Planar Array Development for the Space Station contract are presented. The original objectives of the contract were: (1) to develop a process for manufacturing superstrate assemblies, (2) to demonstrate superstrate technology through fabrication and test, (3) to develop and analyze a preliminary solar array wing design, and (4) to fabricate a wing segment based on wing design. The primary tasks completed were designing test modules, fabricating, and testing them. LMSC performed three tasks which included thermal cycle testing for 2000 thermal cycles, thermal balance testing at the Boeing Environmental Test Lab in Kent, Washington, and acceptance testing a 15 ft x 50 in panel segment for 100 thermal cycles. The surperstrate modules performed well during both thermal cycle testing and thermal balance testing. The successful completion of these tests demonstrate the technical feasibility of a solar array power system utilizing superstrate technology. This final report describes the major elements of this contract including the manufacturing process used to fabricate modules, the tests performed, and the results and conclusions of the tests.

  2. Proceedings of the Eleventh Advanced Communications Technology Satellite Propagation Studies Workshop (APSW 11)

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor); Ho, Christian (Editor)

    1998-01-01

    The Advanced Communications Technology Satellite Propagation Studies Workshop (APSW) is convened each year to present the results of the Advanced Communications Technology Satellite (ACTS) Ka-band propagation campaign. Representatives from the space community including industry, academia, and government who are interested in radiowave propagation at Ka-band are invited to APSW for discussions and exchange of information. The ACTS Propagation campaign will complete five years of Ka-Band data collection at seven sites in North America by December 31, 1998. Through this effort, NASA is making a major contribution to the effective utilization of this band by providing timely propagation data and models for predicting the performance of Ka-band links between space and ground.

  3. [Style of communication between mission control centers and space crews].

    PubMed

    Iusupova, A K; Gushchin, V I; Shved, D M; Cheveleva, L M

    2011-01-01

    The article deals with a pilot investigation into the audio communication of cosmonauts with ground controllers. The purpose was to verify in space flight the patterns and trends revealed in model tests of intergroup communication, and to pinpoint the signature of multinational crew communication with 2 national mission control centers (MCCs). The investigation employed authors' content-analysis adapted to the scenario of long-duration mission. The investigation resulted in a phenomenon of double-loop ground-orbit communication, divergence, difference in opinion predictable from the concept formulated by G.T.Beregovoi. Also, there was a notable difference of expressions used by controllers of 2 MCCs.

  4. Space Station Live: Station Communications Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  5. Operational Concepts for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Vaden, Karl R.; Jones, Robert E.; Roberts, Anthony M.

    2015-01-01

    This document is one of three. It describes the Operational Concept (OpsCon) for a generic space exploration communication architecture. The purpose of this particular document is to identify communication flows and data types. Two other documents accompany this document, a security policy profile and a communication architecture document. The operational concepts should be read first followed by the security policy profile and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes: subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  6. Systems and methods for free space optical communication

    DOEpatents

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  7. Beaconless Pointing for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  8. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  9. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Astrophysics Data System (ADS)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  10. Architectural Options for a Future Deep Space Optical Communications Network

    NASA Technical Reports Server (NTRS)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  11. Optimizing the Galileo space communication link

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1994-01-01

    The Galileo mission was originally designed to investigate Jupiter and its moons utilizing a high-rate, X-band (8415 MHz) communication downlink with a maximum rate of 134.4 kb/sec. However, following the failure of the high-gain antenna (HGA) to fully deploy, a completely new communication link design was established that is based on Galileo's S-band (2295 MHz), low-gain antenna (LGA). The new link relies on data compression, local and intercontinental arraying of antennas, a (14,1/4) convolutional code, a (255,M) variable-redundancy Reed-Solomon code, decoding feedback, and techniques to reprocess recorded data to greatly reduce data losses during signal acquisition. The combination of these techniques will enable return of significant science data from the mission.

  12. Low data rate digital space communications

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1973-01-01

    The low available transmitter power and the large frequency uncertainty constrain the data rate to be low. An all-digital communication receiver is proposed, and its feasibility is established. Although coherent systems should be used whenever practical, the noncoherent MFSK system is more suitable for very low data rates. The effect of Rician fading on the performance of MFSK receiver is studied. Fading characteristics of the Venus channel are examined based on the exponential model and available experimental data on the Venus atmosphere. Because of the requirement of high communication efficiency, three codes are evaluated and compared. The rapidly varying phase error at low data rate has great effects on the tracking loop behaviors which are examined by extensive computer study of the phase plane trajectories.

  13. Laser spot detection and characteristic analysis in space optical communication

    NASA Astrophysics Data System (ADS)

    Duan, Jin; Kong, Chuiliu; Jing, Wenbo; Zhang, Dan; Jiang, Huilin

    2007-11-01

    In the space laser communication, the link of communication is builded in atmospheric random channel. the laser transmission is affected by the atmospheric turbulence seriously. The communication laser is modulated to circular polarized light in order to reduce the influence of the atmospheric turbulence. A several experiments are designed to validate that the circular polarized laser is available to reduce the communication noise in the space optical communication. The methods of the laser spot detection and spot parameter analysis is put forward in this paper: Firstly the subtraction of the background is used in image preprocessing in order to eliminate the influence of static background, then a series of methods such as the local dynamic threshold segmentation, edge extraction are used to detect and recognize the spot. Finally the parameters of the spot are calculated such as spot's average brightness, background's average brightness and the contrast gradient, and the characteristic of the laser communication is analyzed. The experiment results show that the circular polarized laser can enhance the contrast and improve the communication quality in the spatial optical communication. This method satisfies the request of real-time processing in communication, and is also effective and practical. practical.

  14. Utility of space transportation system to space communication community: Executive summary

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1975-01-01

    The space transportation system (STS) offers the opportunity for maintaining, and perhaps accelerating, growth of the space communication community. This new launch vehicle service, however, must be obtained at a cost lower than the current expandable launch vehicles cost. A cost competitive STS is defined for geostationary payloads. It is concluded that the STS will be useful to the space communication community, as well as to other geostationary satellite system users, if the proposed recommendations are adapted.

  15. Unified Communications for Space Inventory Management

    NASA Technical Reports Server (NTRS)

    Gifford, Kevin K.; Fink, Patrick W.; Barton, Richard; Ngo, Phong H.

    2009-01-01

    To help assure mission success for long-duration exploration activities, NASA is actively pursuing wireless technologies that promote situational awareness and autonomy. Wireless technologies are typically extensible, offer freedom from wire tethers, readily support redundancy, offer potential for decreased wire weight, and can represent dissimilar implementation for increased reliability. In addition, wireless technologies can enable additional situational awareness that otherwise would be infeasible. For example, addition of wired sensors, the need for which might not have been apparent at the outset of a program, night be extremely costly due in part to the necessary routing of cables through the vehicle. RFID, or radio frequency identification, is a wireless technology with the potential for significant savings and increased reliability and safety in space operations. Perhaps the most obvious savings relate to the application of inventory management. A fully automated inventory management system is highly desirable for long-term sustaining operations in space environments. This assertion is evidenced by inventory activities on the International Space Station, which represents the most extensive inventory tracking experience base in the history of space operations. In the short tern, handheld RFID readers offer substantial savings owing to reduced crew time for inventory audits. Over the long term, a combination of improved RFID technology and operational concepts modified to fully utilize the technology should result in space based inventory management that is highly reliable and requires very little crew time. In addition to inventory management, RFID is likely to find space applications in real-time location and tracking systems. These could vary from coarse-resolution RFID portals to the high resolution afforded by ultra-wideband (UWB) RFID. Longer range RFID technologies that leverage passive surface acoustic wave (SAW) devices are being investigated to

  16. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  17. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    SciTech Connect

    B. SZALEWSKI

    2005-03-22

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  18. Ultra High Bit-Rate Communications for Future Space Missions

    NASA Astrophysics Data System (ADS)

    Dudelzak, A. E.; Jha, V. K.; Pasmanik, G. A.

    2002-01-01

    systems. Needs of applications such as real-time surveillance of dynamic situations on the ground or in near space, video data on event scenes in search and rescue, real-time video communications with spacecraft, etc. can only be provided with signal carrying frequencies in the optical wavelength range. Today's optical free-space communication technologies promise to reach the performance quality of the ground optical fiber networks. Recent developments based on using the optical phase conjugation and photo- dynamic holography phenomena allow transmission of high data volumes (such as dynamic imagery and real-time video communications) between moving communication terminals. surveillance and communications with spacecraft (both within and beyond solar system) using non-linear optical systems. The advantage of the discussed concept is that it may not require lasers (as sources of the signal-carrying electromagnetic waves) on both communicating terminals. A combination of a limited number of ground-based laser stations with compact, light-weight passive non-linear optical systems on high and low orbits or on long-range spacecraft provides for reliable, ultra-high rate, economic systems for voice, data and video communications as well as real-time observations of Earth, near and deep space. presented.

  19. Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking

  20. Man/computer communication in a space environment

    NASA Technical Reports Server (NTRS)

    Hodges, B. C.; Montoya, G.

    1973-01-01

    The present work reports on a study of the technology required to advance the state of the art in man/machine communications. The study involved the development and demonstration of both hardware and software to effectively implement man/computer interactive channels of communication. While tactile and visual man/computer communications equipment are standard methods of interaction with machines, man's speech is a natural media for inquiry and control. As part of this study, a word recognition unit was developed capable of recognizing a minimum of one hundred different words or sentences in any one of the currently used conversational languages. The study has proven that efficiency in communication between man and computer can be achieved when the vocabulary to be used is structured in a manner compatible with the rigid communication requirements of the machine while at the same time responsive to the informational needs of the man.

  1. Optical deep space communication via relay satellite

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Vilnrotter, V. A.; Dolinar, S. J., Jr.

    1981-01-01

    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed.

  2. Laser space communication experiment: Modulator technology

    NASA Technical Reports Server (NTRS)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  3. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  4. A decoder architecture for high-speed frre space laser communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael; Nakashima, Michael; Hamkins, Jon; Moision, Bruce; Barsoum, Maged

    2005-01-01

    We present a decoding architecture for high-speed free-space laser communications. This system will be used by NASA's Mars Laser Communication Demonstration project, the first use of high-speed laser communication from deep space.

  5. Security Policy for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  6. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  7. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  8. Space Shuttle program communication and tracking systems interface analysis

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Holmes, J. K.; Huth, G. K.; Iwasaki, R. S.; Nilsen, P. W.; Polydoros, A.; Sampaio, D. R.; Udalov, S.

    1984-01-01

    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis.

  9. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  10. Modulation and Coding for NASA's New Space Communications Architecture

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Stocklin, Frank J.; Rush, John J.

    2008-01-01

    With the release in 2006 of NASA's Space Communications and Navigation Architecture, the agency defined its vision for the future in these areas. The results reported in this paper help define the myriad communications links included in this architecture through the year 2030. While these results represent the work of multiple NASA Centers and some of the best experts in the Agency, this is only a first step toward developing international telecommunication link standards that will take the world into the next era of space exploration.

  11. Advancing Space Situational Awareness through International Coordination

    NASA Astrophysics Data System (ADS)

    Onsager, Terrance

    2012-07-01

    The growing interest in Space Situational Awareness and the recognized need for global coordination has led to the involvement of numerous international activities to increase awareness and foster cooperation. These activities are serving to prioritize and to coordinate our efforts and helping to establish a stronger, global Space Situational Awareness enterprise. This coordination is important for our data infrastructure, research developments, and the provision of operational services. Among the organizations that are contributing to this global coordination are: the International Space Environment Service, the World Meteorological Organization, the United Nations Office for Outer Space Affairs, the International Civil Aviation Organization, the Coordination Group for Meteorological Satellites, and the International Committee on GNSS. In this presentation, the contributions of these various organizations to coordinating our Space Situational Awareness efforts will be described, with an emphasis on space weather.

  12. Ground stations for aeronautical and space laser communications at German Aerospace Center

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Shrestha, Amita; Fuchs, Christian

    2015-10-01

    Free-space laser communications are subject of current research and development in many research and industrial bodies. Long distance air-ground and space-ground can be implemented in future communication networks as feeder, backbone and backhaul links for various air- and space-based scenarios. The Institute of Communications and Navigation of the German Aerospace Center (DLR) operates two ground stations to investigate the communication channel and system: the Optical Ground Station Oberpfaffenhofen and the Transportable Optical Ground Station. The first one is a fixed installation and operated as experimental station with focus on channel measurements and tests of new developments. Various measurement devices, communication receivers and optical setups may easily be installed for different objectives. The facility is described with its dome installation, telescope setup and infrastructure. Past and current deployment in several projects is described and selected measurement achievements presented. The second ground station is developed for semi-operational use and demonstration purposes. Based on experience with the experimental ground station, this one is developed with higher level of integration and system robustness. The focus application is the space-ground and air-ground downlink of payload data from Earth observation missions. Therefore, it is also designed to be easily transportable for worldwide deployment. The system is explained and main components are discussed. The characteristics of both ground stations are presented and discussed. Further advancements in the equipment and capability are also presented.

  13. Advanced Mating System Development for Space Applications

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2004-01-01

    This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.

  14. Communications among elements of a space construction ensemble

    NASA Technical Reports Server (NTRS)

    Davis, Randal L.; Grasso, Christopher A.

    1989-01-01

    Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.

  15. A 20 GHz, 70 watt, 48 percent efficient space communications TWT

    NASA Astrophysics Data System (ADS)

    McDermott, M. A.; Tamashiro, R. N.

    A space qualifiable helix traveling wave tube capable of producing saturated output power levels above 70 watts at 48 percent total efficiency has been developed for 20 GHz satellite communications systems. The design approach stresses high reliability consistent with high power and efficiency. Advanced construction features incorporated into the design are a five stage collector, an M-type dispenser cathode, and a dynamic velocity tapered (DVT) helix.

  16. Turbo codes for deep-space communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    Turbo codes were recently proposed by Berrou, Glavieux, and Thitimajshima, and it has been claimed these codes achieve near-Shannon-limit error correction performance with relatively simple component codes and large interleavers. A required E(b)/N(o) of 0.7 dB was reported for a bit error rate of 10(exp -5), using a rate 1/2 turbo code. However, some important details that are necessary to reproduce these results were omitted. This article confirms the accuracy of these claims, and presents a complete description of an encoder/decoder pair that could be suitable for deep-space applications, where lower rate codes can be used. We describe a new simple method for trellis termination, analyze the effect of interleaver choice on the weight distribution of the code, and introduce the use of unequal rate component codes, which yield better performance.

  17. Reconfigurable Transceiver and Software-Defined Radio Architecture and Technology Evaluated for NASA Space Communications

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and

  18. Research into command, control, and communications in space construction

    NASA Technical Reports Server (NTRS)

    Davis, Randal

    1990-01-01

    Coordinating and controlling large numbers of autonomous or semi-autonomous robot elements in a space construction activity will present problems that are very different from most command and control problems encountered in the space business. As part of our research into the feasibility of robot constructors in space, the CSC Operations Group is examining a variety of command, control, and communications (C3) issues. Two major questions being asked are: can we apply C3 techniques and technologies already developed for use in space; and are there suitable terrestrial solutions for extraterrestrial C3 problems? An overview of the control architectures, command strategies, and communications technologies that we are examining is provided and plans for simulations and demonstrations of our concepts are described.

  19. Application of a space station to communications satellites

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.

    1983-01-01

    The economic benefits of a space station relative to communications satellites are discussed in terms of technology experiments, spacecraft checkout, repair, servicing, and refurbishment (RSR), and mating an OTV with satellites for boost to GEO. The zero gravity, vacuum conditions, and atmosphere free long ranges are environmental features that can be used for testing large, flexible antennas and laser communications devices. Some resistance might be encountered to checkout in LEO due to the substantial success of launches to GEO without LEO checkout. However, new generations of larger, more complex satellites may warrant the presence of a space station to verify performance of new spacecraft. One RSR positive aspect for a space station is as a storage site for propellant, as well as for reusable OTV booster engines. Also, the space station can serve as a base for manned or unmanned repair spacecraft which will travel to GEO to fix malfunctions in geostationary satellites.

  20. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1991-01-01

    Research activities related to error control techniques for satellite and space communication are reported. Specific areas of research include: coding gains for bandwidth efficient codes, hardware implementation of a bandwidth efficient coding scheme for the Hubble Space Telescope, construction of long trellis codes for use with sequential decoding, performance analysis of multilevel trellis codes, and M-algorithm decoding of trellis codes. Each topic is discussed in a corresponding paper that appears in the appendices.

  1. Research on key technology of space laser communication network

    NASA Astrophysics Data System (ADS)

    Chang, Chengwu; Huang, Huiming; Liu, Hongyang; Gao, Shenghua; Cheng, Liyu

    2016-10-01

    Since the 21st century, Spatial laser communication has made a breakthrough development. Europe, the United States, Japan and other space powers have carried out the test of spatial laser communication technology on-orbit, and put forward a series of plans. In 2011, China made the first technology demonstration of satellite-ground laser communication carried by HY-2 satellite. Nowadays, in order to improve the transmission rate of spatial network, the topic of spatial laser communication network is becoming a research hotspot at home and abroad. This thesis, from the basic problem of spatial laser communication network to solve, analyzes the main difference between spatial network and ground network, which draws forth the key technology of spatial laser communication backbone network, and systematically introduces our research on aggregation, addressing, architecture of spatial network. From the perspective of technology development status and trends, the thesis proposes the development route of spatial laser communication network in stages. So as to provide reference about the development of spatial laser communication network in China.

  2. Space-to-Ground Communication for Columbus: A Quantitative Analysis.

    PubMed

    Uhlig, Thomas; Mannel, Thurid; Fortunato, Antonio; Illmer, Norbert

    2015-01-01

    The astronauts on board the International Space Station (ISS) are only the most visible part of a much larger team engaged around the clock in the performance of science and technical activities in space. The bulk of such team is scattered around the globe in five major Mission Control Centers (MCCs), as well as in a number of smaller payload operations centres. Communication between the crew in space and the flight controllers at those locations is an essential element and one of the key drivers to efficient space operations. Such communication can be carried out in different forms, depending on available technical assets and the selected operational approach for the activity at hand. This paper focuses on operational voice communication and provides a quantitative overview of the balance achieved in the Columbus program between collaborative space/ground operations and autonomous on-board activity execution. An interpretation of the current situation is provided, together with a description of potential future approaches for deep space exploration missions.

  3. Space-to-Ground Communication for Columbus: A Quantitative Analysis

    PubMed Central

    Uhlig, Thomas; Mannel, Thurid; Fortunato, Antonio; Illmer, Norbert

    2015-01-01

    The astronauts on board the International Space Station (ISS) are only the most visible part of a much larger team engaged around the clock in the performance of science and technical activities in space. The bulk of such team is scattered around the globe in five major Mission Control Centers (MCCs), as well as in a number of smaller payload operations centres. Communication between the crew in space and the flight controllers at those locations is an essential element and one of the key drivers to efficient space operations. Such communication can be carried out in different forms, depending on available technical assets and the selected operational approach for the activity at hand. This paper focuses on operational voice communication and provides a quantitative overview of the balance achieved in the Columbus program between collaborative space/ground operations and autonomous on-board activity execution. An interpretation of the current situation is provided, together with a description of potential future approaches for deep space exploration missions. PMID:26290898

  4. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  5. Enhancing space data exploitation through advanced data routing protocols

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Rontogiannis, A.; Anastasiadis, A.; Sykioti, O.; Balasis, G.; Keramitsoglou, I.; Paronis, D.; Tsaoussidis, V.; Diamantopoulos, S.

    2012-01-01

    Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The project "Space-Data Routers", which was initiated recently, has the aim of allowing space agencies, academic institutes and research centres to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. The approach of "Space-Data Routers" relies on space internetworking - and in particular on Delay-Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The project has started with defining limitations currently imposed by typical space mission scenarios, in which the National Observatory of Athens (NOA) is currently involved, including space exploration, planetary exploration and Earth observation missions. Here we are presenting the mission scenarios and the associated major scientific objectives of "Space-Data Routers", with an emphasis on the Sun-Earth connection and the Mars hyperspectral imaging spectroscopy scenarios. In the case of the Sun-Earth connection scenario, we plan to test and validate the capabilities of Space-Data Routers in providing: a) Simultaneous real- time sampling of space plasmas from multiple points with cost-effective means and measuring of phenomena with higher resolution and better coverage to address outstanding science questions and b) Successful data transmission even in hostile communication conditions. In the case of the Mars hyperspectral imaging spectroscopy scenario we plan to test and validate the capabilities of Space-Data Routers in augmenting the data volume received from Mars Express, through the increase of Mars Express connectivity with ground stations and through the increase of access speed to the hyperspectral data depository.

  6. Optical Communications Study for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Ceniceros, Juan M.

    2000-01-01

    The Next Generation Space Telescope (NGST), part of NASA's Origins program, is a follow on to the Hubble Space Telescope expected to provide timely new science along with answering fundamental questions. NGST is a large diameter, infrared optimized telescope with imaging and spectrographic detectors which will be used to help study the origin of galaxies. Due to the large data NGST will collect, Goddard Space Flight Center has considered the use of optical communications for data downlink. The Optical Communications Group at the Jet Propulsion Laboratory has performed a study on optical communications systems for NGST. The objective of the study was to evaluate the benefits gained through the use of optical communication technologies. Studies were performed for each of four proposed NGST orbits. The orbits considered were an elliptical orbit about the semi stable second Lagrangian point, a 1 by 3 AU elliptic orbit around the sun, a 1 AU drift orbit, and a 1 AU drift orbit at a 15 degree incline to the ecliptic plane. An appropriate optical communications system was determined for each orbit. Systems were evaluated in terms of mass, power consumption, size, and cost for each of the four proposed orbits.

  7. Deep space uplink receiver prototype for optical communications

    NASA Astrophysics Data System (ADS)

    Sburlan, S. E.; Birnbaum, K. M.; Farr, W. H.

    2011-03-01

    A hardware prototype of a flight receiver for deep space optical communications has been developed where a single detector array is used for acquisition, tracking, and high-speed data recovery. A counting algorithm accumulates pulses on every pixel in a photon-counting array and extracts signal information encoded with a nested modulation scheme.

  8. Advances in high energy astronomy from space

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1972-01-01

    Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.

  9. Multiple-wavelength free-space laser communications

    NASA Astrophysics Data System (ADS)

    Purvinskis, Robert; Giggenbach, Dirk; Henniger, Hennes; Perlot, Nicolas; David, Florian

    2003-07-01

    Free-space optical communications systems in the atmosphere, based on intensity modulation and direct detection, are heavily affected by fading caused by turbulence cells of varying scale and motion. Several data sets of fading measurements under different scenarios have been recorded demonstrating this effect. In this paper we introduce a form of free-space laser communications involving a source operating on several wavelengths. The goal is to overcome atmospheric interference on a communications link. We have performed simulations using the DLR PILab Matlab toolbox. These indicate the extent to which the turbulence and beam properties interact. Experimental investigations are planned. Further properties are also taken into account, including the choice of appropriate laser bandwidth and wavelengths, the effect of atmospheric absorption from aerosols and molecular absorption lines, as well as effects of atmospheric structure on beam propagation. Possible scenarios for application of this scheme will be presented as well.

  10. Advanced techniques for future observations from space

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D.

    1980-01-01

    Advanced remote sensing techniques for the study of global meteorology and the chemistry of the atmosphere are considered. Remote sensing from Spacelab/Shuttle and free-flying satellites will provide the platforms for instrumentation based on advanced technology. Several laser systems are being developed for the measurement of tropospheric winds and pressure, and trace species in the troposphere and stratosphere. In addition, a high-resolution passive infrared sensor shows promise for measuring temperature from sea level up through the stratosphere. Advanced optical and microwave instruments are being developed for wind measurements in the stratosphere and mesosphere. Microwave techniques are also useful for the study of meteorological parameters at the air-sea interface.

  11. Space Station Information System requirements for integrated communications

    NASA Technical Reports Server (NTRS)

    Marker, W.; Whitelaw, V.; Muratore, J.; Bigham, J., Jr.

    1987-01-01

    Space Station Information System (SSIS) requirements for integrated end-to-end communications are presented. The SSIS is defined as the integrated set of space and ground data and information systems and networks which will provide required data services to the Space Station flight crew, ground operations personnel, and customer communities. This model is based on the International Standards Organization (ISO) layered model for Open System Interconnection (OSI). These SSIS requirements include grades of service, priority classifications, systems management, flow control, bandwidth allocation, and standard SSIS data services.

  12. Lessons from Communicating Space Science Over the Web

    NASA Technical Reports Server (NTRS)

    Dooling, David, Jr.; Triese, D.

    2000-01-01

    The Science Directorate at NASA's Marshall Space Flight Center uses the web in an aggressive manner to expand communications beyond the traditional "public affairs" or "media relations" routines. The key to success has been developing a balanced process that A) involves laboratory personnel and the NASA center community through a weekly Science Communications Roundtable, B) vests ownership and development of the product (i.e., the story) in the scientist a writer resident in the laboratory, and C) seeks taps the talents of the outside communications community through the Research/Roadmap Communications activity. The process is flexible and responsive, allowing Science@NASA to provide daily coverage for events, such as two materials science missions managed by NASA/Marshall. In addition to developing materials for the web, Science@NASA has conducted extensive research to determine what subjects people seek on the web, and the best methods to position stories so they will be found and read.

  13. Architecting Communication Network of Networks for Space System of Systems

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) are planning Space System of Systems (SoS) to address the new challenges of space exploration, defense, communications, navigation, Earth observation, and science. In addition, these complex systems must provide interoperability, enhanced reliability, common interfaces, dynamic operations, and autonomy in system management. Both NASA and the DoD have chosen to meet the new demands with high data rate communication systems and space Internet technologies that bring Internet Protocols (IP), routers, servers, software, and interfaces to space networks to enable as much autonomous operation of those networks as possible. These technologies reduce the cost of operations and, with higher bandwidths, support the expected voice, video, and data needed to coordinate activities at each stage of an exploration mission. In this paper, we discuss, in a generic fashion, how the architectural approaches and processes are being developed and used for defining a hypothetical communication and navigation networks infrastructure to support lunar exploration. Examples are given of the products generated by the architecture development process.

  14. Developing a Standard Method for Link-Layer Security of CCSDS Space Communications

    NASA Technical Reports Server (NTRS)

    Biggerstaff, Craig

    2009-01-01

    Communications security for space systems has been a specialized field generally far removed from considerations of mission interoperability and cross-support in fact, these considerations often have been viewed as intrinsically opposed to security objectives. The space communications protocols defined by the Consultative Committee for Space Data Systems (CCSDS) have a twenty-five year history of successful use in over 400 missions. While the CCSDS Telemetry, Telecommand, and Advancing Orbiting Systems protocols for use at OSI Layer 2 are operationally mature, there has been no direct support within these protocols for communications security techniques. Link-layer communications security has been successfully implemented in the past using mission-unique methods, but never before with an objective of facilitating cross-support and interoperability. This paper discusses the design of a standard method for cryptographic authentication, encryption, and replay protection at the data link layer that can be integrated into existing CCSDS protocols without disruption to legacy communications services. Integrating cryptographic operations into existing data structures and processing sequences requires a careful assessment of the potential impediments within spacecraft, ground stations, and operations centers. The objective of this work is to provide a sound method for cryptographic encapsulation of frame data that also facilitates Layer 2 virtual channel switching, such that a mission may procure data transport services as needed without involving third parties in the cryptographic processing, or split independent data streams for separate cryptographic processing.

  15. Optoelectronics research for communication programs at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1991-01-01

    Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.

  16. Advanced technology for America's future in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.

  17. Application of advanced technology to space automation

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  18. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  19. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  20. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  1. Center for Space Power and Advanced Electronics, Auburn University

    NASA Technical Reports Server (NTRS)

    Deis, Dan W.; Hopkins, Richard H.

    1991-01-01

    The union of Auburn University's Center for Space Power and Advanced Electronics and the Westinghouse Science and Technology Center to form a Center for the Commercial Development of Space (CCDS) is discussed. An area of focus for the CCDS will be the development of silicon carbide electronics technology, in terms of semiconductors and crystal growth. The discussion is presented in viewgraph form.

  2. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  3. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  4. Space station propulsion: The advanced development program at Lewis

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1985-01-01

    A reference configuration was established for the initial operating capability (IOC) station. The reference configuration has assumed hydrazine fueled thrusters as the propulsion system. This was to establish costing and as a reference for comparison when other propulsion systems are considered. An integral part of the plan to develop the Space Station is the advanced development program. The objective of this program is to provide advanced technology alternatives for the initial and evolutionary Space Station which optimize the system's functional characteristics in terms of performance, cost, and utilization. The portion of the Advanced Development Program that is concerned with auxiliary propulsion and the research and programmatic activities conducted are discussed.

  5. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  6. Advancing digital methods in the fight against communicable diseases.

    PubMed

    Chabot-Couture, Guillaume; Seaman, Vincent Y; Wenger, Jay; Moonen, Bruno; Magill, Alan

    2015-03-01

    Important advances are being made in the fight against communicable diseases by using new digital tools. While they can be a challenge to deploy at-scale, GPS-enabled smartphones, electronic dashboards and computer models have multiple benefits. They can facilitate program operations, lead to new insights about the disease transmission and support strategic planning. Today, tools such as these are used to vaccinate more children against polio in Nigeria, reduce the malaria burden in Zambia and help predict the spread of the Ebola epidemic in West Africa.

  7. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  8. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  9. Advances in Pharmacotherapeutics of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi

    2006-01-01

    Space Motion Sickness (SMS) is common occurrence in the U.S. manned space flight program and nearly 2/3 of Shuttle crewmembers experience SMS. Several drugs have been prescribed for therapeutic management of SMS. Typically, orally-administered SMS medications (scopolamine, promethazine) have poor bioavailability and often have detrimental neurocognitive side effects at recommended doses. Intramuscularly administered promethazine (PMZ) is perceived to have optimal efficacy with minimal side effects in space. However, intramuscular injections are painful and the sedating neurocognitive side effects of promethazine, significant in controlled ground testing, may be masked in orbit because injections are usually given prior to crew sleep. Currently, EVAs cannot be performed by symptomatic crew or prior to flight day three due to the lack of a consistently efficacious drug, concern about neurocognitive side effects, and because an in-suit vomiting episode is potentially fatal. NASA has long sought a fast acting, consistently effective anti-motion sickness medication which has only minor neurocognitive side effects. Development of intranasal formulations of scopolamine and promethazine, the two commonly used SMS drugs at NASA for both space and reduced gravity environment medical operations, appears to be a logical alternative to current treatment modalities for SMS. The advantages are expected to be fast absorption, reliable and high bioavailability, and probably reduced neurocognitive side effects owing to dose reduction. Results from clinical trials with intranasal scopolamine gel formulation and pre-clinical testing of a prototype microcapsule intranasal gel dosage form of PMZ (INPMZ) will be discussed. These formulations are expected to offer a dependable and effective noninvasive treatment option for SMS.

  10. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  11. Advances in space radiation shielding codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  12. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  13. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  14. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  15. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  16. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  17. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  18. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  19. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  20. Development of the free-space optical communications analysis software

    NASA Astrophysics Data System (ADS)

    Jeganathan, Muthu; Mecherle, G. Stephen; Lesh, James R.

    1998-05-01

    The Free-space Optical Communication Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze direct-detection optical communication links. The FOCAS program, implemented in Microsoft Excel, gives it all the power and flexibility built into the spreadsheet. An easy-to-use interface, developed using Visual Basic for Applications (VBA), to the spreadsheet allows easy input of data and parameters. A host of pre- defined components allow an analyst to configure a link without having to know the details of the components. FOCAS replaces the over-a-decade-old FORTRAN program called OPTI widely used previously at JPL. This paper describes the features and capabilities of the Excel-spreadsheet-based FOCAS program.

  1. MEMS-Based Communications Systems for Space-Based Applications

    NASA Technical Reports Server (NTRS)

    DeLosSantos, Hector J.; Brunner, Robert A.; Lam, Juan F.; Hackett, Le Roy H.; Lohr, Ross F., Jr.; Larson, Lawrence E.; Loo, Robert Y.; Matloubian, Mehran; Tangonan, Gregory L.

    1995-01-01

    As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems.

  2. Free Space Optical Communications Utilizing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Kartz, M W; Flath, L M; Wilks, S C; Young, R A; Johnson, G W; Ruggiero, A J

    2002-07-09

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives specifically aimed at corporate intranet and sporting event video applications. These solutions are geared toward solving the ''last mile'' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method to improve signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors, as well as improved communication and computational components.

  3. Open Space Box: communication to support Big Data in orbit

    NASA Astrophysics Data System (ADS)

    Mohammad, Atif F.; Straub, Jeremy

    2015-05-01

    Communication to and from a small spacecraft can be at an extremely slow Baud rate, means both sending and receiving any communication will take some time. Extract, Transform and Load tools designed to transmit and receive data needs to have a flexible protocol. The Open Space Box model provides this base for smaller spacecraft to provide users data in a fashion that is pervasive within satellites as well as the ground stations. It also autonomically distinguishes data streams and disseminates relevant information to the related end users. Streaming Data can also be considered the generation of Big Data. At a ground station, the receiving of data can create the problem of Big Data and its management. Messages are sent in batch mode and communications are done using MapReduce.

  4. Automated Planning for a Deep Space Communications Station

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Fisher, Forest; Mutz, Darren; Chien, Steve

    1999-01-01

    This paper describes the application of Artificial Intelligence planning techniques to the problem of antenna track plan generation for a NASA Deep Space Communications Station. Me described system enables an antenna communications station to automatically respond to a set of tracking goals by correctly configuring the appropriate hardware and software to provide the requested communication services. To perform this task, the Automated Scheduling and Planning Environment (ASPEN) has been applied to automatically produce antenna trucking plans that are tailored to support a set of input goals. In this paper, we describe the antenna automation problem, the ASPEN planning and scheduling system, how ASPEN is used to generate antenna track plans, the results of several technology demonstrations, and future work utilizing dynamic planning technology.

  5. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  6. Reducing the complexity of NASA's space communications infrastructure

    NASA Technical Reports Server (NTRS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-01-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  7. Research in space commercialization, technology transfer, and communications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  8. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  9. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  10. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  11. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  12. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    NASA Astrophysics Data System (ADS)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  13. Concept for Multiple-Access Free-Space Laser Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A design concept for a proposed airborne or spaceborne free-space optical-communication terminal provides for simultaneous reception of signals from multiple other opticalcommunication terminals aboard aircraft or spacecraft that carry scientific instruments and fly at lower altitudes. The concept reflects the need for rapid acquisition and tracking of the signals coming from the lower-altitude terminals as they move across the field of view.

  14. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  15. A new generation of IC based beam steering devices for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Bedi, Vijit

    Free Space Optical (FSO) communication has tremendously advanced within the last decade to meet the ever increasing demand for higher communication bandwidth. Advancement in laser technology since its invention in the 1960's [1] attracted them to be the dominant source in FSO communication modules. The future of FSO systems lay in implementing semiconductor lasers due to their small size, power efficiency and mass fabrication abilities. In the near future, these systems are very likely to be used in space and ground based applications and revolutionary beam steering technologies will be required for distant communications in free-space. The highly directional characteristic inherent to a laser beam challenges and calls for new beam pointing and steering technologies for such type of communication. In this dissertation, research is done on a novel FSO communication device based on semiconductor lasers for high bandwidth communication. The "Fly eye transceiver" is an extremely wide steering bandwidth, completely non-mechanical FSO laser communication device primarily designed to replace traditional mechanical beam steering optical systems. This non-mechanical FSO device possesses a full spherical steering range and a very high tracking bandwidth. Inspired by the evolutionary model of a fly's eye, the full spherical steering range is assured by electronically controlled switching of its sub-eyes. Non mechanical technologies used in the past for beam steering such as acousto-optic Bragg cells, liquid crystal arrays or piezoelectric elements offer the wide steering bandwidth and fast response time, but are limited in their angular steering range. Mechanical gimbals offer a much greater steering range but face a much slower response time or steering bandwidth problem and often require intelligent adaptive controls with bulky driver amplifiers to feed their actuators. As a solution to feed both the fast and full spherical steering, the Fly-eye transceiver is studied as

  16. Space Shuttle 2 advanced space transportation system, volume 2

    NASA Technical Reports Server (NTRS)

    Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.

    1989-01-01

    To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference.

  17. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  18. Advanced space transportation system support contract

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The general focus is on a phase 2 lunar base, or a lunar base during the period after the first return of a crew to the Moon, but before permanent occupancy. The software effort produced a series of trajectory programs covering low earth orbit (LEO) to various node locations, the node locations to the lunar surface, and then back to LEO. The surface operations study took a lunar scenario in the civil needs data base (CNDB) and attempted to estimate the amount of space-suit work or extravehicular activity (EVA) required to set up the base. The maintenance and supply options study was a first look at the problems of supplying and maintaining the base. A lunar surface launch and landing facility was conceptually designed. The lunar storm shelter study examined the problems of radiation protection. The lunar surface construction and equipment assembly study defined twenty surface construction and assembly tasks in detail.

  19. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  20. The Process of Science Communications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  1. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  2. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  3. Communications

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald D.

    1990-01-01

    Communication in its many forms is a critical component for an effective Space Grant Program. Good communication is needed within individual Space Grant College/Consortia, for example between consortium affiliates and the consortium program office. Effective communication between the several programs, NASA Headquarters, and NASA field centers also is required. Further, communication among the above program elements, industry, local and state government, and the public also are necessary for meeting program objectives.

  4. Distributed interactive communication in simulated space-dwelling groups.

    PubMed

    Brady, Joseph V; Hienz, Robert D; Hursh, Steven R; Ragusa, Leonard C; Rouse, Charles O; Gasior, Eric D

    2004-03-01

    This report describes the development and preliminary application of an experimental test bed for modeling human behavior in the context of a computer generated environment to analyze the effects of variations in communication modalities, incentives and stressful conditions. In addition to detailing the methodological development of a simulated task environment that provides for electronic monitoring and recording of individual and group behavior, the initial substantive findings from an experimental analysis of distributed interactive communication in simulated space dwelling groups are described. Crews of three members each (male and female) participated in simulated "planetary missions" based upon a synthetic scenario task that required identification, collection, and analysis of geologic specimens with a range of grade values. The results of these preliminary studies showed clearly that cooperative and productive interactions were maintained between individually isolated and distributed individuals communicating and problem-solving effectively in a computer-generated "planetary" environment over extended time intervals without benefit of one another's physical presence. Studies on communication channel constraints confirmed the functional interchangeability between available modalities with the highest degree of interchangeability occurring between Audio and Text modes of communication. The effects of task-related incentives were determined by the conditions under which they were available with Positive Incentives effectively attenuating decrements in performance under stressful time pressure.

  5. Technology assessment of advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

  6. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Briones, Janette C.; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was con- ducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round- trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  7. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  8. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  9. Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2013-01-01

    NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.

  10. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  11. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  12. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  13. Advanced lightweight optics development for space applications

    SciTech Connect

    Bilbro, James W.

    1998-01-15

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed.

  14. Emerging applications of high temperature superconductors for space communications

    NASA Technical Reports Server (NTRS)

    Heinen, Vernon O.; Bhasin, Kul B.; Long, Kenwyn J.

    1990-01-01

    Proposed space missions require longevity of communications system components, high input power levels, and high speed digital logic devices. The complexity of these missions calls for a high data bandwidth capacity. Incorporation of high temperature superconducting (HTS) thin films into some of these communications system components may provide a means of meeting these requirements. Space applications of superconducting technology has previously been limited by the requirement of cooling to near liquid helium temperatures. Development of HTS materials with transition temperatures above 77 K along with the natural cooling ability of space suggest that space applications may lead the way in the applications of high temperature superconductivity. In order for HTS materials to be incorporated into microwave and millimeter wave devices, the material properties such as electrical conductivity, current density, surface resistivity and others as a function of temperature and frequency must be well characterized and understood. The millimeter wave conductivity and surface resistivity were well characterized, and at 77 K are better than copper. Basic microwave circuits such as ring resonators were used to determine transmission line losses. Higher Q values than those of gold resonator circuits were observed below the transition temperature. Several key HTS circuits including filters, oscillators, phase shifters and phased array antenna feeds are feasible in the near future. For technology to improve further, good quality, large area films must be reproducibly grown on low dielectric constant, low loss microwave substrates.

  15. Advanced Solid State Lighting for AES Deep Space Hab Project

    NASA Technical Reports Server (NTRS)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  16. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-01-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  17. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  18. Advanced communication satellites worldwide - Satellites of opportunity for the ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Girardey, Catherine C.

    1993-01-01

    Space agencies worldwide are involved in advanced satellite communication systems. This paper presents an overview of these satellites and related technologies in the U.S., Europe, and Japan. They are geostationary satellites using high frequency bands such as K/Ka (20/30 GHz) and O-band (millimeter wave), as well as optical frequencies. The similarity of these programs demonstrate a common interest to develop large capacity satellite communication systems, and shows that closer international cooperation could be set up. The ACTS Mobile Terminal (AMT) project discussed here is such an example. The AMT's compatibility with satellites other than ACTS has been studied, and a proposed common experiment is presented here. The Japanese Engineering Test Satellite ETS-VI has been identified as the best initial 'satellite of opportunity' for AMT in this preliminary assessment.

  19. Medium Brigade 2003: Can Space-Based Communications Ensure Information Dominance?

    DTIC Science & Technology

    2007-11-02

    MEDIUM BRIGADE 2003: CAN SPACE-BASED COMMUNICATIONS ENSURE INFORMATION DOMINANCE ? A thesis presented to the Faculty of the U.S. Army Command and...Medium Brigade 2003: Can Space-Based Communications Ensure Information Dominance ? Unclassified 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK...Space-Based Communications Ensure Information Dominance ? Approved by: _____________________________________, Thesis Committee Chairman LTC Heather

  20. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  1. Advanced Engineering Environments for Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  2. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  3. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, Larry P.; Scheer, Dean D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  4. Nanomaterials for Advanced Life Support in Advanced Life Support in Space systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Moloney, Padraig; Yowell, Leonard

    2006-01-01

    A viewgraph presentation describing nanomaterial research at NASA Johnson Space Center with a focus on advanced life support in space systems is shown. The topics include: 1) Introduction; 2) Research and accomplishments in Carbon Dioxide Removal; 3) Research and Accomplishments in Water Purification; and 4) Next Steps

  5. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  6. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  7. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  8. NASA ACTS Multibeam Antenna (MBA) System. [Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Choung, Youn H.; Stiles, W. Herschel; Wu, Joseph; Wong, William C.; Chen, C. Harry

    1986-01-01

    The design of the Advanced Communications Technology Satellite MBA system, which provides both spot beam and scanning beam coverage to both high and low burst rates data-users is examined. The MBA consists of receive and transmit antennas installed on a common precision mounting platform that is integrated to the bus through three flexures; a lightweight system with low thermal distortion is obtained by using composite materials for the MBA structures. The RF design, which is a Cassegrain reflector with a large equivalent focal length/aperture size, is described. Consideration is given to the position of the feed in order to minimize scan loss and sidelobe levels, the size of the subreflector in order to minimize feed spillover, and antenna performance degradation caused by reflector surface distortion. Breadbroad model test result reveal that the maximum sidelobe level outside the 2.5 HPBW region is -30 dB or lower relative to the power.

  9. Study of repeater technology for advanced multifunctional communications satellites

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Investigations are presented concerning design concepts and implementation approaches for the satellite communication repeater subsystems of advanced multifunctional satellites. In such systems the important concepts are the use of multiple antenna beams, repeater switching (routing), and efficient spectrum utilization through frequency reuse. An information base on these techniques was developed and tradeoff analyses were made of repeater design concepts, with the work design taken in a broad sense to include modulation beam coverage patterns. There were five major areas of study: requirements analysis and processing; study of interbeam interference in multibeam systems; characterization of multiple-beam switching repeaters; estimation of repeater weight and power for a number of alternatives; and tradeoff analyses based on these weight and power data.

  10. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  11. The Advanced Communications Technology Satellite - Performance, Reliability and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard J.; Ignaczak, Louis R.

    2000-01-01

    The Advanced Communications Satellite (ACTS) was conceived and developed in the mid- 1980s as an experimental satellite to demonstrate unproven Ka-band technology, and potential new commercial applications and services. Since launch into geostationary orbit in September 1993. ACTS has accumulated almost seven years of essentially trouble-free operation and met all program objectives. The unique technology, service experiments. and system level demonstrations accomplished by ACTS have been reported in many forums over the past several years. As ACTS completes its final experiments activity, this paper will relate the top-level program goals that have been achieved in the design, operation, and performance of the particular satellite subsystems. Pre-launch decisions to ensure satellite reliability and the subsequent operational experiences contribute to lessons learned that may be applicable to other comsat programs.

  12. Advanced technologies for lightweight EHF tactical communications satellites

    NASA Astrophysics Data System (ADS)

    McElroy, David R.; Kolba, Dean P.; Greenberg, William L.; Semprucci, Marilyn

    1993-02-01

    The communications capabilities provided by EHF satellites can range from low data rate services (75 to 2400 bps per channel) to medium data rate links (4.8 kbps to 1.544 Mbps per link) depending on the payload configuration. Through the use of EHF waveform standards, the EHF payloads will be compatible with existing and planned EHF terminals. Advanced technologies permit the development of highly capable, lightweight payloads which can be utilized in a variety of roles. The key payload technologies include adaptive uplink antennas; high speed, low power digital signal processing subsystems; lightweight frequency hopping synthesizers; and efficient solid-state transmitters. The focus in this paper is on the signal processing and frequency generation technologies and their application in a lightweight EHF payload for tactical applications.

  13. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  14. Advancing Information and Communication Technology Knowledge for Undergraduate Nursing Students

    PubMed Central

    Procter, Paula M

    2012-01-01

    Nursing is a dynamic profession; for registered nurses their role is increasingly requiring greater information process understanding and the effective management of information to ensure high quality safe patient care. This paper outlines the design and implementation of Systems of eCare. This is a course which advances information and communication technology knowledge for undergraduate nursing students within a Faculty of Health and Wellbeing appropriately preparing nurses for their professional careers. Systems of eCare entwines throughout the three year programme mapping to the curriculum giving meaning to learning for the student. In conclusion comments from students convey their appreciation of the provision of this element of the undergraduate programme. PMID:24199114

  15. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  16. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  17. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  18. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  19. Proceedings of the Advanced Communications Technology Satellite (ACTS) Conference 2000

    NASA Technical Reports Server (NTRS)

    Bauer, Robert (Editor); Derwae, Robert (Editor)

    2000-01-01

    The ACTS experiments program, which began in December 1993 and consisted of 103 different experiments, has made significant contributions to minimizing the risk of advanced satellite communications technology. The ACTS Conference 2000 (AC2000) was held to report the results of the program since the last ACTS conference was held in 1995 and to celebrate the end of a very successful satellite program. The conference was held on May 31, 2000, as part of the 6th Ka-band Utilization Conference in Cleveland, Ohio. Approximately 280 representatives of industry, academia, and government attended. The conference was organized into two parts: a technical session during the day and an evening reception. During the day, a series of five technical sessions included presentations of 17 papers covering the results of the experiment activity and technical performance of the satellite. In the evening, a reception was held to celebrate the end of the ACTS Experiments Program on one of NASA's most successful experimental communications satellite. These proceedings were developed to capture the entire event, including the evening reception.

  20. Modulation and coding for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H.; Simon, Marvin K.; Pollara, Fabrizio; Divsalar, Dariush; Miller, Warner H.; Morakis, James C.; Ryan, Carl R.

    1990-01-01

    Several modulation and coding advances supported by NASA are summarized. To support long-constraint-length convolutional code, a VLSI maximum-likelihood decoder, utilizing parallel processing techniques, which is being developed to decode convolutional codes of constraint length 15 and a code rate as low as 1/6 is discussed. A VLSI high-speed 8-b Reed-Solomon decoder which is being developed for advanced tracking and data relay satellite (ATDRS) applications is discussed. A 300-Mb/s modem with continuous phase modulation (CPM) and codings which is being developed for ATDRS is discussed. Trellis-coded modulation (TCM) techniques are discussed for satellite-based mobile communication applications.

  1. Space-based radar representation in the advanced warfighting simulation (AWARS)

    NASA Astrophysics Data System (ADS)

    Phend, Andrew E.; Buckley, Kathryn; Elliott, Steven R.; Stanley, Page B.; Shea, Peter M.; Rutland, Jimmie A.

    2004-09-01

    Space and orbiting systems impact multiple battlefield operating systems (BOS). Space support to current operations is a perfect example of how the United States fights. Satellite-aided munitions, communications, navigation and weather systems combine to achieve military objectives in a relatively short amount of time. Through representation of space capabilities within models and simulations, the military will have the ability to train and educate officers and soldiers to fight from the high ground of space or to conduct analysis and determine the requirements or utility of transformed forces empowered with advanced space-based capabilities. The Army Vice Chief of Staff acknowledged deficiencies in space modeling and simulation during the September 2001 Space Force Management Analsyis Review (FORMAL) and directed that a multi-disciplinary team be established to recommend a service-wide roadmap to address shortcomings. A Focus Area Collaborative Team (FACT), led by the U.S. Army Space & Missile Defense Command with participation across the Army, confirmed the weaknesses in scope, consistency, correctness, completeness, availability, and usability of space model and simulation (M&S) for Army applications. The FACT addressed the need to develop a roadmap to remedy Space M&S deficiencies using a highly parallelized process and schedule designed to support a recommendation during the Sep 02 meeting of the Army Model and Simulation Executive Council (AMSEC).

  2. Space-Data Routers: Advanced data routing protocols for enhancing data exploitation for space weather applications

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Daglis, Ioannis A.; Balasis, George; Papadimitriou, Constantinos; Tsaoussidis, Vassilios; Diamantopoulos, Sotirios

    2014-05-01

    Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The availability of multi-spacecraft distributed observation methods and adaptive mission architectures require computationally intensive analysis methods. Moreover, accurate space weather forecasting and future space exploration far from Earth will be in need of real-time data distribution and assimilation technologies. The FP7-Space collaborative research project "Space-Data Routers" (SDR) relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications. SDR unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable addressing outstanding science questions related to space weather, through the provision of simultaneous real-time data sampling at multiple points in space. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  3. A process for free-space laser communications system design

    NASA Astrophysics Data System (ADS)

    Walther, Frederick G.; Moores, John D.; Murphy, Robert J.; Michael, Steven; Nowak, George A.

    2009-08-01

    We present a design methodology for free-space laser communications systems. The first phase includes a characterization through numerical simulations of the channel to evaluate the range of extinction and scintillation. The second phase is the selection of fade mitigation schemes, which would incorporate pointing, acquisition, tracking, and communication system parameters specifically tailored to the channel. Ideally, the process would include sufficient flexibility to adapt to a wide range of channel conditions. We provide an example of the successful application of this design approach to a recent set of field experiments. This work was sponsored by the Department of Defense, RRCO DDR&E, under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  4. Design Reference Missions for Deep-Space Optical Communication

    NASA Astrophysics Data System (ADS)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  5. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  6. Link Analysis for Space Communication Links Using ARQ Protocol

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lau, Chi-Wung; Lee, Charles

    2014-01-01

    In space communications, standard link analysis assumes that messages are sent once. For a communication link that uses an error-correction coding scheme, bit-error-rate (BER) or frame-error-rate (FER), and link margins are common metrics that characterize the quality of a link, and they are used to determine the supportable data rate. With the advent of Automatic Repeat-reQuest (ARQ) protocols, when messages are corrupted during transmission, they can be resent multiple times automatically until they are correctly received and acknowledged. The concept of BER, FER, and link margin cannot be directly applied, and the link analysis approach for ARQ links needs to be re-examined.

  7. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2011-11-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  8. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2012-02-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  9. Study of optical inter-orbit communication technology for next generation space data-relay satellite

    NASA Astrophysics Data System (ADS)

    Hanada, Tatsuyuki; Yamakawa, Shiro; Kohata, Hiroki

    2011-03-01

    JAXA has made efforts to build the next generation space data relay network. The inter-orbit optical links are essential segments for such a network in order to fulfill requirements of high resolution earth observation satellite applications (such as Advanced Land Observing Satellite (ALOS) follow-on missions by JAXA) and manned space flight missions. JAXA's R&D activities for advanced optical communication terminals are introduced. The target of the terminals is to establish the optical data relay link between the LEO user satellite and the GEO data relay satellite up to 2.5 Gbps of data-rate. JAXA has started the development of a Bread Board Model (BBM) of the terminal in order to evaluate the feasibility of the terminal. The terminal is aimed to be small and light-weighted, which is helpful for an onboard capability of the LEO satellite. Furthermore, the modulation of carrier and the acquisition and tracking sequence are selected in order to achieve the interoperability of optical space communication systems. We recently study the feasibility of the acquisition and tracking sensor, the waveguide high power amplifier for a transmitter and the homodyne coherent receiver etc. in the development of BBM.

  10. An advanced Ka band phased array communication system at commercial frequencies

    NASA Astrophysics Data System (ADS)

    Wald, Lawrence; Kacpura, Thomas; Kershner, Dennis

    2000-01-01

    The Glenn Research Center (GRC) Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communication system that transmits information from a technology payload carried by the Space Shuttle in low-Earth orbit (LEO) to a small receiving terminal on the Earth. The Shuttle-based communications package will utilize a solid-state, Ka-band phased array antenna that electronically steers the 19.05 Ghz RF signal toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The project will also demonstrate new digital modulation and processing technology that will allow transmission of user/platform data at rates up to 1200 Mbits per second. This capability will enable the management of the substantially increased amounts of data to be collected from the International Space Station (ISS) or other LEO platforms directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. .

  11. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  12. The Economics of Advanced In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  13. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  14. Concatenated coding for low date rate space communications.

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1972-01-01

    In deep space communications with distant planets, the data rate as well as the operating SNR may be very low. To maintain the error rate also at a very low level, it is necessary to use a sophisticated coding system (longer code) without excessive decoding complexity. The concatenated coding has been shown to meet such requirements in that the error rate decreases exponentially with the overall length of the code while the decoder complexity increases only algebraically. Three methods of concatenating an inner code with an outer code are considered. Performance comparison of the three concatenated codes is made.

  15. R.F Microphotonics for NASA Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Lee, Richard; Miranda, Felix; Hossein-Zadeh, Mani; Cohen, David; Levi, A. F. J.

    2007-01-01

    An RF microphotonic receiver has-been developed at Ka-band. The receiver consists of a lithium niobate micro-disk that enables RF-optical coupling to occur. The modulated optical signal (- 200 THz) is detected by the high-speed photonic signal processing electronics. When compared with an electronic approach, the microphotonic receiver technology offers 10 times smaller volume, smaller weight, and smaller power consumption; greater sensitivity; and optical isolation for use in extreme environments. The status of the technology development will be summarized, and the potential application of the receiver to NASA space communications systems will be described.

  16. Pointing and tracking space mechanism for laser communication

    NASA Technical Reports Server (NTRS)

    Brunschvig, A.; Deboisanger, M.

    1994-01-01

    Space optical communication is considered a promising technology regarding its high data rate and confidentiality capabilities. However, it requires today complex satellite systems involving highly accurate mechanisms. This paper aims to highlight the stringent requirements which had to be fulfilled for such a mechanism, the way an existing design has been adapted to meet these requirements, and the main technical difficulties which have been overcome thanks to extensive development tests throughout the C/D phase initiated in 1991. The expected on-orbit performance of this mechanism is also presented.

  17. Advanced operator/system interface concepts for the Space Station

    NASA Technical Reports Server (NTRS)

    Case, C. M.; Lin, P. S. Y.

    1986-01-01

    Concepts and data developed as part of the Preliminary Space Station Automation and Robotics Plan are reviewed as well as candidate selection criteria, technology assessments, and preliminary candidate recommendations. A need for development of advanced operator/systems interface (OSI) concepts to support future Space Station automation and robotics applications is identified. Four candidate applications, illustrating the potential benefits of an advanced OSI, are described. These include: (1) a conversational OSI system, (2) a laboratory experiment manipulator system, (3) a module safety advisor, and (4) an integrated maintenance/training system. These specific automation and robotics applications are expected to occur relatively early in the growth of the Space Station and to provide significant commercial and station benefits throughout the life of the station.

  18. Integration of On-board EOS Schedule Revision with Space Communication Emulation System

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Morris, Robert

    2004-01-01

    The need for on-board decision-making for planning science observations on Earth Observing Satellites is based on the fact that the desirability of acquiring an image can change dynamically, because of changes in meteorological conditions (e.g. cloud cover), unforeseen events such as fires, floods, or volcanic eruptions, or unexpected changes in satellite or ground station capability. In such cases, satellite resources, such as power and SSR capacity can potentially be better utilized taking another image that is of higher quality. Currently, typical Earth observing satellites cannot communicate directly with each other, and can only communicate with ground stations about 5% to 10% of the time. Because of the limited communication windows, as well as the cost and effort that would need to be expended in revising a mission schedule, a ground-based scheduler would have little or no opportunity to revise the schedule in response to the contingencies that may arise. For this reason, a distributed science planning system combining a ground-based scheduler with on-board schedule revision capabilities is warranted. This paper will describe algorithms for on-board decision-making for science planning and their integration with the advanced satellite control and communications technology developed at the Space Communication Emulation Facility (SCEF) at NASA Glenn Research Center. Our objective of demonstrating how advanced communications and scheduling technology can be combined to improve the scientific utility of images acquired by Earth observing systems will be discussed via a description of a number of realistic flight scenarios.

  19. Space station communications and tracking equipment management/control system

    NASA Technical Reports Server (NTRS)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  20. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  1. NASA's Advanced Space Transportation Program: A Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    1999-01-01

    The realization of low-cost assess to space is one of NASA's three principal goals or "pillars" under the Office of Aero-Space Technology. In accordance with the goals of this pillar, NASA's primary space transportation technology role is to develop and demonstrate next-generation technologies to enable the commercial launch industry to develop full-scale, low cost, highly reliable space launchers. The approach involves both ground-based technology demonstrations and flight demonstrators, including the X-33, X-34, Bantam, Reusable Launch Vehicle (RLV), and future experimental vehicles. Next generation space transportation vehicles and propulsion systems will require the development and implementation of advanced materials and processes. This presentation will provide an overview of advanced materials efforts which are focused on the needs of next generation space transportation systems. Applications described will include ceramic matrix composite (CMC) integrally bladed turbine disk (blisk); actively cooled CMC nozzle ramp for the aerospike engine; ablative thrust chamber/nozzle; and metal matrix composite turbomachinery housings.

  2. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  3. Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh

    1991-01-01

    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments.

  4. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  5. Fading testbed for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Shrestha, Amita; Giggenbach, Dirk; Mustafa, Ahmad; Pacheco-Labrador, Jorge; Ramirez, Julio; Rein, Fabian

    2016-10-01

    Free-space optical (FSO) communication is a very attractive technology offering very high throughput without spectral regulation constraints, yet allowing small antennas (telescopes) and tap-proof communication. However, the transmitted signal has to travel through the atmosphere where it gets influenced by atmospheric turbulence, causing scintillation of the received signal. In addition, climatic effects like fogs, clouds and rain also affect the signal significantly. Moreover, FSO being a line of sight communication requires precise pointing and tracking of the telescopes, which otherwise also causes fading. To achieve error-free transmission, various mitigation techniques like aperture averaging, adaptive optics, transmitter diversity, sophisticated coding and modulation schemes are being investigated and implemented. Evaluating the performance of such systems under controlled conditions is very difficult in field trials since the atmospheric situation constantly changes, and the target scenario (e.g. on aircraft or satellites) is not easily accessible for test purposes. Therefore, with the motivation to be able to test and verify a system under laboratory conditions, DLR has developed a fading testbed that can emulate most realistic channel conditions. The main principle of the fading testbed is to control the input current of a variable optical attenuator such that it attenuates the incoming signal according to the loaded power vector. The sampling frequency and mean power of the vector can be optionally changed according to requirements. This paper provides a brief introduction to software and hardware development of the fading testbed and measurement results showing its accuracy and application scenarios.

  6. Future applications of millimeter waves for space communications

    NASA Astrophysics Data System (ADS)

    Rusch, Roger J.

    1996-12-01

    The past 30 years have witnessed the introduction and phenomenal improvement of digital communications services. Several characteristics emerge when looking at the trends. First, capacity and capability of communications networks are growing rapidly. Next, local and personal access to digital services is expanding. Finally, ordinary 4 kHz analog voice lines are now providing 28.8 kbps digital services in the home. Only 15 years ago, this data rate was 300 bps, a growth factor of 96 in 15 years or 36 percent per year. In addition, clever data compression techniques have reduced the data rates required for speech and video, and we now have the ability to provide video conferencing on computers using existing terrestrial networks. As the world makes greater use of wireless communications, hundreds of satellites are orbiting in space to provide fixed and mobile services. Because of the large number of satellites, the geostationary orbit is heavily used. More sophisticated satellites could be designed, but a simpler solution is to move to higher frequencies offered by millimeter wave bands. Dozens of US companies are currently developing systems that will provide high data services to the world.

  7. HgCdTe APDs for free space optical communications

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Lasfargues, G.; Abergel, J.

    2015-10-01

    HgCdTe avalanche photodiode single element detectors have been developed for a large scope of photon starved applications. The present communication is dedicated to use of these detectors for free space optical communications. In this perspective we present and discuss the sensitivity and bandwidth that has been measured directly on HgCdTe APDs and on detector modules. In particular, we report on the performance of TEC cooled large area detectors with sensitive diameters ranging from 30- 200 μm, characterised by detector gains of 2- 20 V/μW and noise equivalent input power of 0.1-1 nW for bandwidths ranging from 20 to 400 MHz. One of these detectors has been used during the lunar laser communication demonstration (LLCD) and the results The perspectives for high data rate transmission is estimated from the results of impulse response measurements on HgCdTe APDs. These results indicate that bandwidths close to 10 GHz can be achieved in these devices. The associated sensitivity at an APD gain of 100 is estimated to be below 4 photons rms (NEP<10 nW) for APDs operated at 300 K.

  8. Quantum cryptography for secure free-space communications

    SciTech Connect

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.

    1999-03-01

    The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg`s uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of {approximately}1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD.

  9. An ATP System for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Lee, Shinhak; Irtuzm Gerardi; Alexander, James

    2008-01-01

    An acquisition, tracking, and pointing (ATP) system is proposed for aiming an optical-communications downlink laser beam from deep space. In providing for a direction reference, the concept exploits the mature technology of star trackers to eliminate the need for a costly and potentially hazardous laser beacon. The system would include one optical and two inertial sensors, each contributing primarily to a different portion of the frequency spectrum of the pointing signal: a star tracker (<10 Hz), a gyroscope (<50 Hz), and a precise fluid-rotor inertial angular-displacement sensor (sometimes called, simply, "angle sensor") for the frequency range >50 Hz. The outputs of these sensors would be combined in an iterative averaging process to obtain high-bandwidth, high-accuracy pointing knowledge. The accuracy of pointing knowledge obtainable by use of the system was estimated on the basis of an 8-cm-diameter telescope and known parameters of commercially available star trackers and inertial sensors: The single-axis pointing-knowledge error was found to be characterized by a standard deviation of 150 nanoradians - below the maximum value (between 200 and 300 nanoradians) likely to be tolerable in deep-space optical communications.

  10. Emerging, Photonic Based Technologies for NASA Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Lee, Richard; Levi, Anthony; Bos, Philip; Titus, Charles; Lavrentovich, Oleg

    2002-01-01

    An objective of NASA's Computing, Information, and Communications Technology program is to support the development of technologies that could potentially lower the cost of the Earth science and space exploration missions, and result in greater scientific returns. NASA-supported photonic activities which will impact space communications will be described. The objective of the RF microphotonic research is to develop a Ka-band receiver that will enable the microwaves detected by an antenna to modulate a 1.55- micron optical carrier. A key element is the high-Q, microphotonic modulator that employs a lithium niobate microdisk. The technical approach could lead to new receivers that utilize ultra-fast, photonic signal processing techniques, and are low cost, compact, low weight and power efficient. The progress in the liquid crystal (LC) beam steering research will also be reported. The predicted benefits of an LC-based device on board a spacecraft include non-mechanical, submicroradian laser-beam pointing, milliradian scanning ranges, and wave-front correction. The potential applications of these emerging technologies to the various NASA missions will be presented.

  11. Space Shuttle Orbiter audio subsystem. [to communication and tracking system

    NASA Technical Reports Server (NTRS)

    Stewart, C. H.

    1978-01-01

    The selection of the audio multiplex control configuration for the Space Shuttle Orbiter audio subsystem is discussed and special attention is given to the evaluation criteria of cost, weight and complexity. The specifications and design of the subsystem are described and detail is given to configurations of the audio terminal and audio central control unit (ATU, ACCU). The audio input from the ACCU, at a signal level of -12.2 to 14.8 dBV, nominal range, at 1 kHz, was found to have balanced source impedance and a balanced local impedance of 6000 + or - 600 ohms at 1 kHz, dc isolated. The Lyndon B. Johnson Space Center (JSC) electroacoustic test laboratory, an audio engineering facility consisting of a collection of acoustic test chambers, analyzed problems of speaker and headset performance, multiplexed control data coupled with audio channels, and the Orbiter cabin acoustic effects on the operational performance of voice communications. This system allows technical management and project engineering to address key constraining issues, such as identifying design deficiencies of the headset interface unit and the assessment of the Orbiter cabin performance of voice communications, which affect the subsystem development.

  12. The space shuttle payload planning working groups. Volume 6: Communications and navigation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Communications and Navigation working group of the space shuttle payload planning activity are presented. The basic goals to be accomplished are to increase the use of space systems and to develop new space capabilities for providing communication and navigation services to the user community in the 1980 time period. Specific experiments to be conducted for improving space communication and navigation capabilities are defined. The characteristics of the experimental equipment required to accomplish the mission are discussed.

  13. Distributed networks enable advances in US space weather operations

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Bouwer, S. Dave

    2011-06-01

    Space weather, the shorter-term variable impact of the Sun’s photons, solar wind particles, and interplanetary magnetic field upon the Earth’s environment, adversely affects our technological systems. These technological systems, including their space component, are increasingly being seen as a way to help solve 21st Century problems such as climate change, energy access, fresh water availability, and transportation coordination. Thus, the effects of space weather on space systems and assets must be mitigated and operational space weather using automated distributed networks has emerged as a common operations methodology. The evolution of space weather operations is described and the description of distributed network architectures is provided, including their use of tiers, data objects, redundancy, and time domain definitions. There are several existing distributed networks now providing space weather information and the lessons learned in developing those networks are discussed along with the details of examples for the Solar Irradiance Platform (SIP), Communication Alert and Prediction System (CAPS), GEO Alert and Prediction System (GAPS), LEO Alert and Prediction System (LAPS), Radiation Alert and Prediction System (RAPS), and Magnetosphere Alert and Prediction System (MAPS).

  14. A survey of advanced battery systems for space applications

    NASA Astrophysics Data System (ADS)

    Attia, Alan I.

    1989-12-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  15. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  16. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  17. Expert systems and advanced automation for space missions operations

    NASA Astrophysics Data System (ADS)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-10-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  18. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  19. Radio frequency interference protection of communications between the Deep Space Network and deep space flight projects

    NASA Technical Reports Server (NTRS)

    Johnston, D. W. H.

    1981-01-01

    The increasing density of electrical and electronic circuits in Deep Space Station systems for computation, control, and numerous related functions has combined with the extension of system performance requirements calling for higher speed circuitry along with broader bandwidths. This has progressively increased the number of potential sources of radio frequency interference inside the stations. Also, the extension of spectrum usage both in power and frequency as well as the greater density of usage at all frequencies for national and international satellite communications, space research, Earth resource operations and defense, and particularly the huge expansion of airborne electronic warfare and electronic countermeasures operations in the Mojave area have greatly increased the potential number and severity of radio frequency interference incidents. The various facets of this problem and the efforts to eliminate or minimize the impact of interference on Deep Space Network support of deep space flight projects are described.

  20. Optimum design of Cassegrain antenna for space laser communication

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Jiang, Lun; Wang, Chao; Li, Yingchao

    2016-10-01

    The divergence angle is very important index in space laser communication for energy transfer. Typically, the large aperture telescope as optical antenna is used for angle compression, and the divergence angle of communication beam is usually calculated by diffraction limit angle equation 1.22λ/D. This equation expresses the diffraction of a spherical wave through a circular aperture. However, the light source commonly used laser with a Gaussian distribution, and the optical antenna is central obscurations. The antenna parameters which is obscuration ratio and Gaussian beam apodization were significantly relative with the far field energy. In this study, we obtain the mathematic relation between the divergence angle, energy loss and the antenna parameters. From the relationship, we know that the divergence angle smaller as the increase of antenna obscuration ratio. It would tend to enhance the far-field energy density. But a larger obscuration ratio will increase the energy loss. At the same time, the increase of Gaussian beam apodization resulted in the energy of first diffraction ring was raised but the radius of first ring was increased. They were conflict. And then, the antenna parameters of trade-off was found from curves of obscuration ratio and curves of divergence angle. The parameters of a Cassegrain antenna was optimum designed for the energy maximization, and considerd the apodization from mechanical structure blocking. The long-distance laser communications were successful in these airborne tests. Stable communication was demonstrated. The energy gain is sufficient for SNR of high-bandwidth transmission in atmospheric channel.

  1. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  2. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  3. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  4. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  5. Advanced Fuels Can Reduce the Cost of Getting Into Space

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1998-01-01

    Rocket propellant and propulsion technology improvements can reduce the development time and operational costs of new space vehicle programs, and advanced propellant technologies can make space vehicles safer and easier to operate, and can improve their performance. Five major areas have been identified for fruitful research: monopropellants, alternative hydrocarbons, gelled hydrogen, metallized gelled propellants, and high-energy-density propellants. During the development of the NASA Advanced Space Transportation Plan, these technologies were identified as those most likely to be effective for new NASA vehicles. Several NASA research programs had fostered work in fuels under the topic Fuels and Space Propellants for Reusable Launch Vehicles in 1996 to 1997. One component of this topic was to promote the development and commercialization of monopropellant rocket fuels, hypersonic fuels, and high-energy-density propellants. This research resulted in the teaming of small business with large industries, universities, and Government laboratories. This work is ongoing with seven contractors. The commercial products from these contracts will bolster advanced propellant research. Work also is continuing under other programs, which were recently realigned under the "Three Pillars" of NASA: Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. One of the five areas is described below, and its applications and effect on future missions is discussed. This work is being conducted at the NASA Lewis Research Center with the assistance of the NASA Marshall Space Flight Center. The regenerative cooling of spacecraft engines and other components can improve overall vehicle performance. Endothermic fuels can absorb energy from an engine nozzle and chamber and help to vaporize high-density fuel before it enters the combustion chamber. For supersonic and hypersonic aircraft, endothermic fuels can absorb the high heat fluxes created on the wing leading edges and

  6. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  7. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    NASA Astrophysics Data System (ADS)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation |ψ>=(|x ,y >-|y ,x >) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to |ψ>=(|x ,y >-|y ,x >) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  8. A twenty-first century perspective. [NASA space communication infrastructure to support space missions

    NASA Technical Reports Server (NTRS)

    Aller, Robert O.; Miller, Albert

    1990-01-01

    The status of the NASA assets which are operated by the Office of Space Operations is briefly reviewed. These assets include the ground network, the space network, and communications and data handling facilities. The current plans for each element are examined, and a projection of each is made to meet the user needs in the 21st century. The following factors are noted: increasingly responsive support will be required by the users; operational support concepts must be cost-effective to serve future missions; and a high degree of system reliability and availability will be required to support manned exploration and increasingly complex missions.

  9. Advanced stellar compass deep space navigation, ground testing results

    NASA Astrophysics Data System (ADS)

    Betto, M.; Jørgensen, J. L.; Jørgensen, P. S.; Denver, T.

    2006-10-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks and the costs of the deep space missions. Navigation is the Achilles’ heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant. Nevertheless, up to now, ground navigation has been the only possible solution. The technological breakthrough of advanced star trackers, like the micro-advanced stellar compass (μASC) might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging.

  10. Advanced stellar compass deep space navigation, ground testing results

    NASA Astrophysics Data System (ADS)

    Betto, M.; Jørgensen, J. L.; Jørgensen, P. S.; Denver, T.

    2003-11-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant. Nevertheless, up to now, ground navigation has been the only possible solution. The technological breakthrough of advanced star trackers, like the micro-Advanced Stellar Compass (μASC) might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, on-board and without any a-priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging.

  11. Recent Efforts in Advanced High Frequency Communications at the Glenn Research Center in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  12. A Cooperative Communication System for the Advancement of Safe, Effective, and Efficient Patient Care

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-12-C-0126 TITLE: A Cooperative Communication System for the Advancement of Safe, Effective, and Efficient Patient Care...DATES COVERED 15Aug2014 – 14Aug2015 4. TITLE AND SUBTITLE A Cooperative Communication System for the Advancement of Safe, Effective, and Efficient ...J. (2015, January). Developing a Cooperative Communication System for Safe, Effective, and Efficient Patient Care. Society of Critical Care Medicine

  13. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  14. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  15. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  16. Advanced thermal management techniques for space power electronics

    NASA Astrophysics Data System (ADS)

    Reyes, Angel Samuel

    1992-01-01

    Modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Current thermal management techniques are not sufficient for the increasing waste heat dissipation of novel electronic technologies. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. The benefits and limitations of emerging cooling technologies are discussed. These technologies include: liquid pumped devices, mechanically pumped two-phase cooling, capillary pumped evaporative cooling, and thermoelectric devices. Currently, liquid pumped devices offer the most promising alternative for electronics thermal control.

  17. Quantifying Atmospheric Impacts on Space Optical Imaging and Communications

    NASA Astrophysics Data System (ADS)

    Alliss, R.; Felton, B.

    2011-09-01

    Clouds and optical turbulence are key drivers in the performance of optical imaging and communication systems. Clouds are composed of liquid water and/or ice crystals and depending on the physical thickness can produce atmospheric fades easily exceeding 10 dB. In these more common cases, impacts on optical imaging and communication systems may be severe. On the other hand, there are times when cloud fades may be as low as 1 or 2 dB as a result of thin, ice crystal based cirrus clouds. In these cases, the impacts on imaging and communication collectors may be limited. Atmospheric optical turbulence acts to distort light in the atmosphere, degrading imagery from telescopes. The quality of service of a free space optical communications link may also be impacted. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon distributions of turbulence at the location of interest. Large variations in the Fried Coherence Length (ro) are common as a function of time of day and by location and can range from just a few centimeters to tens of centimeters. The ability to characterize the distribution and frequency of clouds and optical turbulence are critical in order to understand and predict atmospheric impacts. A state-of-the-art cloud detection system has been developed, validated and applied to produce high resolution climatologies in order to investigate these impacts. The cloud detection system uses global in coverage, geostationary, multi-spectral satellite imagery at horizontal resolutions up to one kilometer and temporal resolutions up to fifteen minutes. Multi-spectral imagery from the visible wavelengths (0.6 μm) through the longwave infrared (15 μm) are used to produce individual cloud tests which are combined to produce a composite cloud analysis. The basis for the detection algorithm relies on accurate modeling of the clear sky

  18. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  19. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  20. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  1. Technology forecasting for space communication. [analysis of systems for application to Spacecraft Data and Tracking Network

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine techniques for application to space communication. The subjects considered are as follows: (1) optical communication systems, (2) laser communications for data acquisition networks, (3) spacecraft data rate requirements, (4) telemetry, command, and data handling, (5) spacecraft tracking and data network antenna and preamplifier cost tradeoff study, and (6) spacecraft communication terminal evaluation.

  2. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  3. Shielding considerations for advanced space nuclear reactor systems

    NASA Astrophysics Data System (ADS)

    Angelo, J. P., Jr.; Buden, D.

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO2) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The status of this advanced heat pipe reactor is reviewed and the radiation environments and shielding requirements for representative manned and unmanned applications are explored.

  4. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  5. Transceiving protocol design for a free space optical communication system

    NASA Astrophysics Data System (ADS)

    Wang, Hualong; Su, Wanxin; Xing, Zhongbao

    2008-12-01

    A new transceiving protocol is demonstrated for a Free Space Optical (FSO) communication system, and it's discussed in two parts: the transmitting protocol and the receiving protocol. During the discussion of these two parts, the cooperation of them is also discussed. Different from wired communication, an FSO system modulates the data on a narrow beam of laser transmitting through the free space or the atmosphere, and the protocol presented in this paper is mainly optimized for terrestrial Free Space Optical links, in which the signal channel of the system is mainly the atmosphere. Due to the complex composition and activity of the atmosphere, this signal channel brings in great influence on the transmitting laser in it, for example, the absorption and scattering of the atmosphere molecules and aerosols, the scintillation of received laser power caused by the turbulence of the atmosphere, all of which results in a much higher Bit Error Rate (BER) of the communication system. Thus in designing a protocol for an FSO system, more effort should be taken in the encoding of the data stream, the synchronization of the data stream, error checking and exception handling. The main function of the transmitting protocol includes interfacing the outer input data with a parallel port, buffering the input data, encoding the input data stream, serializing the parallel data and output the serialized data. It also has an output management unit to manage the activity of each part of the transmitting protocol. The main function of the receiving protocol includes filtering and synchronizing the input serial data stream, paralleling the serial data stream, decoding the input data, error checking, exception handling and interfacing the outer receiver with a parallel port. The entire transceiving protocol could be programmed into a single FPGA chip to improve system integrity and reduce the system cost. The presented protocol could be taken as "protocol transparent" for outer interfaces

  6. Satellite switched FDMA advanced communication technology satellite program

    NASA Technical Reports Server (NTRS)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  7. Creating new opportunities for communicating about space science

    NASA Technical Reports Server (NTRS)

    Treise, Debbie

    1996-01-01

    With the political and economic atmosphere changing so drastically, NASA has found it necessary to change its mission from one of exploration to that of accountability and application. These changes have made it difficult for NASA to access how its roles and constituency groups have changed in response. Specifically, at the MSFC Space Sciences Lab, management must now decide the most appropriate communication objectives, strategies and target market to direct messages reflecting these changes. Complicating the issue is that MSFC, must walk a fine line between looking as though it is spending too much money and 'marketing' themselves, which it is strictly prohibited from doing, and imparting the information in an exciting enough form to be picked up by the media.

  8. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  9. Free-space optical communications link budget estimation.

    PubMed

    Stotts, Larry B; Kolodzy, Paul; Pike, Alan; Graves, Buzz; Dougherty, Dave; Douglass, Jeff

    2010-10-01

    This paper describes a new methodology of estimating free-space optical communications link budgets to be expected in conditions of severe turbulence. The approach is derived from observing that the ability of an adaptive optics (AO) system to compensate turbulence along a path is limited by the transmitter and receiver Rayleigh range, proportional to the diameter of the optics squared and inverse of the wavelength of light utilized. The method uses the Fried parameter computed over the range outside of the transmitter and receiver Rayleigh ranges, to calculate the Strehl ratios that yield a reasonable prediction of the light impinging on the receiving telescope aperture and the power coupling into the fiber. Comparisons will be given between theory and field measurements. These comparisons show that AO is most effective within the Rayleigh ranges, or when an atmospheric gradient is present, and lesser so when the total range is much greater than the sum of the Rayleigh ranges.

  10. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  11. Advanced Microbial Check Valve development. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.; Sauer, R. L.

    1981-01-01

    The Microbial Check Valve (MCV) is a flight qualified assembly that provides bacteriologically safe drinking water for the Space Shuttle. The 1-lb unit is basically a canister packed with an iodinated ion-exchange resin. The device is used to destroy organisms in a water stream as the water passes through it. It is equally effective for fluid flow in either direction and its primary method of disinfection is killing rather than filtering. The MCV was developed to disinfect the fuel cell water and to prevent back contamination of stored potable water on the Space Shuttle. This paper reports its potential for space applications beyond the basic Shuttle mission. Data are presented that indicate the MCV is suitable for use in advanced systems that NASA has under development for the reclamation of humidity condensate, wash water and human urine.

  12. Advancing Space Weather Modeling Capabilities at the CCMC

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Kuznetsova, Maria; Boblitt, Justin; Chulaki, Anna; MacNeice, Peter; Mendoza, Michelle; Mullinix, Richard; Pembroke, Asher; Pulkkinen, Antti; Rastaetter, Lutz; Shim, Ja Soon; Taktakishvili, Aleksandre; Wiegand, Chiu; Zheng, Yihua

    2016-04-01

    The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) serves as a community access point to an expanding collection of state-of-the-art space environment models and as a hub for collaborative development on next generation of space weather forecasting systems. In partnership with model developers and the international research and operational communities, the CCMC integrates new data streams and models from diverse sources into end-to-end space weather predictive systems, identifies weak links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will focus on the latest model installations at the CCMC and advances in CCMC-led community-wide model validation projects.

  13. Advances in space technology: the NSBRI Technology Development Team.

    PubMed

    Maurer, R H; Charles, H K; Pisacane, V L

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  14. Advances in space technology: the NSBRI Technology Development Team

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  15. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  16. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  17. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  18. Space-Data Routers: Enhancing Deep Space communications for scientific data transmission and exploitation from Mars through Space Internetworking

    NASA Astrophysics Data System (ADS)

    Sykioti, Olga; Daglis, Ioannis; Rontogiannis, Athanasios; Tsaoussidis, Vassilis; Diamantopoulos, Sotirios

    2014-05-01

    Dissemination and exploitation of data from Deep Space missions, such as planetary missions, face two major impediments: limited access capabilities due to narrow connectivity window via satellites (thus, resulting to confined scientific capacity) and lack of sufficient communication and dissemination mechanisms between deep space missions such the current missions to Mars, space data receiving centers, space-data collection centers and the end-user community. Although large quantities of data have to be transferred from deep space to the operation centers and then to the academic foundations and research centers, due to the aforementioned impediments more and more stored space data volumes remain unexploited, until they become obsolete or useless and are consequently removed. In the near future, these constraints on space and ground segment resources will rapidly increase due to the launch of new missions. The Space-Data Routers (SDR) project aims into boosting collaboration and competitiveness between the European Space Agency, the European Space Industry and the European Academic Institutions towards meeting these new challenges through Space Internetworking. Space internetworking gradually replaces or assists traditional telecommunication protocols. Future deep space operations, such as those to Mars, are scheduled to be more dynamic and flexible; many of the procedures, which are now human-operated, will become automated, interoperable and collaborative. As a consequence, space internetworking will bring a revolution in space communications. For this purpose, one of the main scientific objectives of the project is, through the examination of a specific scenario, the enhanced transmission and dissemination of Deep Space data from Mars, through unified communication channels. Specifically, the scenario involves enhanced data transmission acquired by the OMEGA sensor on-board ESA's Mars Express satellite. We consider two separate issues considering the

  19. Optical-communication systems for deep-space applications

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Gagliardi, R. M.

    1980-01-01

    The feasibility of using optical communication systems for data telemetry from deep space vehicles to Earth based receivers is evaluated. Performance analysis shows that practical, photon counting optical systems can transmit data reliably at 30 to 40 dB high rates than existing RF systems, or can be used to extend the communication range by 15 to 20 dB. The advantages of pulse-position modulation (PPM) formats are discussed, and photon counting receiver structures designed for PPM decoding are described. The effects of background interference and weather on receiver performance are evaluated. Some consideration is given to tracking and beam pointing operations, since system performance ultimately depends on the accuracy to which these operations can be carried out. An example of a tracking and pointing system utilizing an optical uplink beacon is presented, and it is shown that microradian beam pointing is within the capabilities of state-of-the-art technology. Recommendations for future theoretical studies and component development programs are presented.

  20. Integrated approach to free space optical communications in strong turbulence

    NASA Astrophysics Data System (ADS)

    Tellez, Jason A.

    The propagation of a free space optical communication signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades which negatively impact the communications link performance. This research develops an analytical probability density function (PDF) to model the best case scenario of using multiple independent beams to reduce the intensity fluctuations. The PDF was further developed to account for partially correlated beams, such as would be experienced by beams having finite separation. The PDF was validated with results obtained from digital simulations as well as lab experiments. The research showed that as the number of transmitted beams increases the probability of fade decreases. While fade probability is reduced by adding more beams, using more than four transmitters does little to improve the overall performance. Additionally, the use of pulse position modulation (PPM) provided significant improvement over traditional fixed threshold on/off keying with the impact of signal fading reduced. Combining PPM with multiple transmitters produced the best overall bit error rate results.

  1. Advance directive communications practices:social worker's contributions to the interdisciplinary health care team.

    PubMed

    Black, Kathy

    2005-01-01

    This article presents a comparative study about social workers' interdisciplinary advance directive communication practices with patients at several hospitals located in upstate New York. The sample consisted of physicians (n=32), nurses (n=74), and social workers (n=29). The research surveyed advance directive communication practices by discipline utilizing a self-administered questionnaire. Advance directive communication was operationalized as a cumulative process incorporating the following phases that were measured as scales: initiation of the topic, disclosure of information, identification of a surrogate decision-maker, discussion of treatment options, elicitation of patient values, interaction with family members, and collaboration with other health care professionals. Results suggest that social workers offer distinct skills in their advance directive communication practices and discuss advance directives more frequently than either physicians or nurses.

  2. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    NASA Astrophysics Data System (ADS)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  3. The design of space optical communications terminal with high efficient

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoguo; Li, Gang; Jiang, Bo; Yang, Xiaoxu; Yan, Peipei

    2015-02-01

    In order to improve high-speed laser space optical communications terminal receive energy and emission energy, meet the demand of mini-type and light-type for space-based bear platform, based on multiple-reflect coaxial optical receiving antenna structure, while considering the installation difficulty, a high-efficient optical system had been designed, which aperture is off-axial, both signal-receiving sub-optical system and emission sub-optical system share a same primary optical path. By the separating light lens behind the primary optical path, the received light with little energy will be filtered and shaped and then transmitted to each detector, at the same time, by the coupling element, the high-power laser will be coupling into optical antenna, and then emitted to outside. Applied the power-detected optical system evaluate principle, the optimized off-axial optical system's efficiency had been compared with the coaxial optical system. While, analyzed the Gauss beam energy distribution by numerical theory, discussed that whether off-axis optical system can be an emission terminal, verify the feasibility of the theory of the design of the system.

  4. Probability as Possibility Spaces: Communicating Uncertainty to Policymakers

    NASA Astrophysics Data System (ADS)

    Stiso, C.

    2015-12-01

    One problem facing the sciences is communicating results and recommendations to policymakers. This is perhaps particularly difficult in the geosciences where results are often based on probabilistic models, as probability is often and unduly equated with a specific kind of uncertainty or unreliability in the results. This leads to a great deal of miscommunication and misguided policy decisions. It is, then, valid to ask how scientists should talk about probability, uncertainty, and models in a way that correctly conveys what the users of these models intend. What I propose is a new way to think and, importantly, talk about probability which will hopefully make this much more transparent to both users and policy makers. Rather than using a frequentist (prior percentages) or Bayesian (observer uncertainty) framework, we should talk about probability as a tool for defining a possibility space for measurements. This model is conceptually simple and makes probability a tool of refinement rather than a source of inaccuracy. A similar possibility-space model has proven useful in the climate sciences and there is good reason to believe it will have similar applications in hydrology.

  5. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  6. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN

  7. Bilingual toddlers have advanced abilities to repair communication failure.

    PubMed

    Wermelinger, Stephanie; Gampe, Anja; Daum, Moritz M

    2017-03-01

    Recent research has demonstrated enhanced communicative abilities in bilingual children compared with monolingual children throughout childhood and in a variety of domains. The processes underlying these advantages are, however, not well understood. It has been suggested that one aspect that particularly stimulates bilinguals' communication skills is their daily experience with challenging communication. In the current study, we investigated whether children's assumed experience with communication failures would increase their skills when it came to repairing communication failure. Non-German bilingual, German bilingual, and monolingual 2.5-year-old toddlers participated in a communication task in which a misunderstanding occurred. We hypothesized that monolingual and German bilingual children would have fewer daily communication failures-and, therefore, less well-trained repair skills-compared with non-German bilinguals. The results showed that non-German bilinguals were more likely to repair the misunderstanding compared with both monolingual children and German bilingual children. The current findings support the view that the communicative advantages of bilingual individuals develop based on their unique experience with interpersonal communication and its difficulties.

  8. Digital communication technology development for space applications at Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Fong, Wai; Yeh, Pen-Shu; Sank, Victor; Fisher, David; Hoy, Scott; Ekelman, Ernie

    2005-08-01

    At NASA's Goddard Space Flight Center (GSFC), space qualified integrated circuits for several key elements in space communication systems have been in development to increase data return in bandwidth constrained channels for future missions. Particularly in the area of digital communication, the development includes data compression, channel coding and modulation. In on-board data compression area, development focuses on a high-speed compression scheme that serves both push-broom and frame sensors. The compression ratio can be easily adjusted for different applications from lossless to visually lossless. The algorithm conforms to the Consultative Committee on Space Data Systems (CCSDS) new compression recommendation to be released 2005. The radiation-tolerant (RT) hardware will afford 20 Msamples/sec processing on sensor data. For bandwidth efficient channel coding, newly developed low density paritycheck codes (LDPCC) will double channel utilization as compared to previously used concatenated convolutional/Reed- Solomon (CC/RS) coding scheme. An RT implementation of the encoder is expected to work up to 1 Gbps serving both low-rate and high-rate missions. In modulation, a versatile multi-function base-band modulator allows missions the flexibility to choose from 2 bits/symbol/Hertz quadrature phase shift keying (QPSK)-type schemes, to 2.0, 2.25, 2.5, and 2.75 bits/symbol/Hertz 8 phase shift keying trellis-coded modulation (8-PSK TCM) schemes--all CCSDS recommendations. Along with 8PSK, 16-quadrature amplitude modulation (16-QAM), 16-ampliture phase shift keying (16-APSK), all modulations are implemented in a single RT chip with expected throughput of over 300 Mbps. This paper describes the development of these three technology areas and gives an update on their availability for space missions.

  9. NASA Goddard’s 48 Exploration and Space Communications Interns Describe their Projects

    NASA Video Gallery

    In summer 2016, the Exploration and Space Communications division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, hosted 48 interns from across the country. Their many projects made a...

  10. Advances in Mechanical Architectures of Large Precision Space Apertures

    NASA Astrophysics Data System (ADS)

    Datashvili, Leri; Maghaldadze, Nikoloz; Endler, Stephan; Pauw, Julian; He, Peng; Baier, Horst; Ihle, Alexander; Santiago Prowlad, Julian

    2014-06-01

    Recent advances in development of mechanical architectures of large deployable reflectors (LDRs) through the projects of the European Space Agency are addressed in this paper. Two different directions of LDR architectures are being investigated and developed at LSS and LLB. These are LDRs with knitted metal mesh and with flexible shell-membrane reflecting surfaces. The first direction is matured and required advancing of the novel architecture of the supporting structure that provides deployment and final shape accuracy of the metal mesh is underway. The second direction is rather new and its current development stage is focused on investigations of dimensional stability of the flexible shell-membrane reflecting surface. In both directions 5 m diameter functional models will be built to demonstrate achieved performances, which shall prepare the basis for further improvement of their technology readiness levels.

  11. The Female Professional: Communication Proficiencies as Predictors of Organizational Advancement.

    ERIC Educational Resources Information Center

    Shockley-Zalabak, Pamela; Staley, Constance Courtney

    Based on the assumption that communication skills are a critical component of organizational effectiveness and "promotability," a study was conducted to investigate the perceptions supervisors have of their female employees' communication proficiency. In particular, comparisons were made between evaluations of supervisors on a variety of…

  12. Plan of advanced satellite communication experiments using ETS-6

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi

    1989-01-01

    In 1992, an Engineering Test Satellite 6 is scheduled to be launched by an H-2 rocket. The missions of ETS-6 are to establish basic technologies of inter-satellite communications using S-band, millimeter waves and optical beams and of fixed and mobile satellite communications using multibeam antenna on board the satellite. A plan of the experiments is introduced.

  13. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  14. Development of Advanced Robotic Hand System for space application

    NASA Technical Reports Server (NTRS)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  15. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  16. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  17. Environmental impact statement Space Shuttle advanced solid rocket motor program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.

  18. Overview of Ka-band communications technology requirements for the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Miller, Edward F.

    1991-12-01

    In the Space Exploration Initiative, Ka-band frequencies are likely to carry the bulk of the communications traffic both in the vicinity of and on the return links from the moon and Mars. The four exploration architectures identified by the Synthesis Group are examined and Ka-band technology requirements to meet the data traffic needs and schedule are identified. Specific Ka-band technology requirements identified are: transmitters - 0.5 to 200 W with high efficiency; antennas - 5m and 9m diameter, with multiple beams and/or scanning beams; and spacecraft receivers - noise figure of 2 dB. For each component, the current state of technology is assessed and needed technology development programs are identified. It is concluded that to meet the schedules of lunar and Mars precursor missions beginning in approximately the year 2000, aggressive technology development and advanced development programs are required immediately for Ka-band communications systems components. Additionally, the greater data transmission rates for the cargo and piloted phases of the exploration program require further Ka-band communications technology developments targeted for operations beginning in about 2010.

  19. Overview of Ka-band communications technology requirements for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Miller, Edward F.

    1991-01-01

    In the Space Exploration Initiative, Ka-band frequencies are likely to carry the bulk of the communications traffic both in the vicinity of and on the return links from the moon and Mars. The four exploration architectures identified by the Synthesis Group are examined and Ka-band technology requirements to meet the data traffic needs and schedule are identified. Specific Ka-band technology requirements identified are: transmitters - 0.5 to 200 W with high efficiency; antennas - 5m and 9m diameter, with multiple beams and/or scanning beams; and spacecraft receivers - noise figure of 2 dB. For each component, the current state of technology is assessed and needed technology development programs are identified. It is concluded that to meet the schedules of lunar and Mars precursor missions beginning in approximately the year 2000, aggressive technology development and advanced development programs are required immediately for Ka-band communications systems components. Additionally, the greater data transmission rates for the cargo and piloted phases of the exploration program require further Ka-band communications technology developments targeted for operations beginning in about 2010.

  20. Development of an End-to-End Model for Free-Space Optical Communications

    NASA Astrophysics Data System (ADS)

    Hemmati, H.

    2005-05-01

    Through funding by NASA's Exploration Systems Research and Technology (ESR&T) Program and the Advanced Space Technology Program (ASTP), a team, including JPL, Boeing, NASA-Glenn, and the Georgia Institute of Technology, will develop an end-to-end modeling tool for rapid architecture trade-offs of high-data-rate laser communications from lunar, martian, and outer planetary ranges. An objective of the modeling tool is to reduce the inefficient reliance on modeling of discrete subsystems or sequential development of multiple expensive and time-consuming hardware units, thereby saving significant cost and time. This dynamic, time-domain modeling tool will accept measured component and subsystem data inputs and generate "difficult to measure" characteristics required for the performance evaluation of different designs and architectural choices. The planned modeling tool will incorporate actual subsystem performance data to reduce the develop-build-evaluate-refine production cycle. The list of high-level objectives of the program includes (1) development of a bidirectional global link analysis backbone software encompassing all optical communication subsystem parameters; (2) development of a bidirectional global link simulation model encompassing all optical communication parameters; (3) interoperability of the link analysis tool with all relevant detailed subsystem design models; and (4) a validated model that is validated against known experimental data at the subsystem and system levels.

  1. Advanced Multiple In-Multiple Out (MIMO) Antenna Communications for Airborne Networks

    DTIC Science & Technology

    2015-03-01

    ADVANCED MULTIPLE IN-MULTIPLE OUT (MIMO) ANTENNA COMMUNICATIONS FOR AIRBORNE NETWORKS SYRACUSE UNIVERSITY MARCH 2015 FINAL TECHNICAL REPORT...TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2011 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED MULTIPLE IN-MULTIPLE OUT (MIMO) ANTENNA ...MIMO system with over the air transmission. 15. SUBJECT TERMS Multiple In-Multiple Out (MIMO Antenna Communications, Airborne Networks, D-BLAST

  2. Taking the Politics Out of Satellite and Space-Based Communications Protocols

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2006-01-01

    After many years of studies, experimentation, and deployment, large amounts of misinformation and misconceptions remain regarding applicability of various communications protocols for use in satellite and space-based networks. This paper attempts to remove much of the politics, misconceptions, and misinformation that have plagued spacebased communications protocol development and deployment. This paper provides a common vocabulary for communications; a general discussion of the requirements for various communication environments; an evaluation of tradeoffs between circuit and packet-switching technologies, and the pros and cons of various link, network, transport, application, and security protocols. Included is the applicability of protocol enhancing proxies to NASA, Department of Defense (DOD), and commercial space communication systems.

  3. Cermet-fueled reactors for advanced space applications

    SciTech Connect

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.; Vaidyanathan, S.; Bhattacharyya, S.K.; Barner, J.O.

    1987-12-01

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.

  4. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  5. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  6. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  7. Advanced information processing system: Authentication protocols for network communication

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Adams, Stuart J.; Babikyan, Carol A.; Butler, Bryan P.; Clark, Anne L.; Lala, Jaynarayan H.

    1994-01-01

    In safety critical I/O and intercomputer communication networks, reliable message transmission is an important concern. Difficulties of communication and fault identification in networks arise primarily because the sender of a transmission cannot be identified with certainty, an intermediate node can corrupt a message without certainty of detection, and a babbling node cannot be identified and silenced without lengthy diagnosis and reconfiguration . Authentication protocols use digital signature techniques to verify the authenticity of messages with high probability. Such protocols appear to provide an efficient solution to many of these problems. The objective of this program is to develop, demonstrate, and evaluate intercomputer communication architectures which employ authentication. As a context for the evaluation, the authentication protocol-based communication concept was demonstrated under this program by hosting a real-time flight critical guidance, navigation and control algorithm on a distributed, heterogeneous, mixed redundancy system of workstations and embedded fault-tolerant computers.

  8. Globalization and advances in information and communication technologies: the impact on nursing and health.

    PubMed

    Abbott, Patricia A; Coenen, Amy

    2008-01-01

    Globalization and information and communication technology (ICT) continue to change us and the world we live in. Nursing stands at an opportunity intersection where challenging global health issues, an international workforce shortage, and massive growth of ICT combine to create a very unique space for nursing leadership and nursing intervention. Learning from prior successes in the field can assist nurse leaders in planning and advancing strategies for global health using ICT. Attention to lessons learned will assist in combating the technological apartheid that is already present in many areas of the globe and will highlight opportunities for innovative applications in health. ICT has opened new channels of communication, creating the beginnings of a global information society that will facilitate access to isolated areas where health needs are extreme and where nursing can contribute significantly to the achievement of "Health for All." The purpose of this article is to discuss the relationships between globalization, health, and ICT, and to illuminate opportunities for nursing in this flattening and increasingly interconnected world.

  9. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    SciTech Connect

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-06

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as {approx} 16 We/kg and {approx} 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is {approx} 640 m2 and {approx} 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is {approx} 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is {approx} 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  10. Advanced communications technology satellite high burst rate link evaluation terminal communication protocol software user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1993-01-01

    The Communication Protocol Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Communication Protocol Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Communication Protocol Software allows users to control and configure the Intermediate Frequency Switch Matrix (IFSM) on board the ACTS to yield a desired path through the spacecraft payload. Besides IFSM control, the C&PM Software System is also responsible for instrument control during HBR-LET experiments, uplink power control of the HBR-LET to demonstrate power augmentation during signal fade events, and data display. The Communication Protocol Software User's Guide, Version 1.0 (NASA CR-189162) outlines the commands and procedures to install and operate the Communication Protocol Software. Configuration files used to control the IFSM, operator commands, and error recovery procedures are discussed. The Communication Protocol Software Maintenance Manual, Version 1.0 (NASA CR-189163, to be published) is a programmer's guide to the Communication Protocol Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Communication Protocol Software, computer algorithms, format representations, and computer hardware configuration. The Communication Protocol Software Test Plan (NASA CR-189164, to be published) provides a step-by-step procedure to verify the operation of the software. Included in the Test Plan is command transmission, telemetry reception, error detection, and error recovery procedures.

  11. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  12. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  13. Long term orbital storage of cryogenic propellants for advanced space transportation missions

    NASA Technical Reports Server (NTRS)

    Schuster, John R.; Brown, Norman S.

    1987-01-01

    A comprehensive study has developed the major features of a large capacity orbital propellant depot for the space-based, cryogenic OTV. The study has treated both the Dual-Keel Space Station and co-orbiting platforms as the accommodations base for the propellant storage facilities, and trades have examined both tethered and hard-docked options. Five tank set concepts were developed for storing the propellants, and along with layout options for the station and platform, were evaluated from the standpoints of servicing, propellant delivery, boiloff, micrometeoroid/debris shielding, development requirements, and cost. These trades led to the recommendation that an all-passive storage concept be considered for the platform and an actively refrigerated concept providing for reliquefaction of all boiloff be considered for the Space Station. The tank sets are modular, each storing up to 45,400 kg of LO2/LH2, and employ many advanced features to provide for microgravity fluid management and to limit boiloff. The features include such technologies as zero-gravity mass gauging, total communication capillary liquid acquisition devices, autogenous pressurization, thermodynamic vent systems, thick multilayer insulation, vapor-cooled shields, solar-selective coatings, advanced micrometeoroid/debris protection systems, and long-lived cryogenic refrigeration systems.

  14. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  15. The investigation and prospect on optical principles of multiple space laser communication

    NASA Astrophysics Data System (ADS)

    Zhang, Yalin; An, Yan; Jiang, Huilin; Jiang, Lun; Wang, Chao; Zhan, Juntong; Han, Long

    2015-10-01

    Multiple laser communication is the key point of integrated space-ground network system, and it is the necessary prerequisite of realizing the network communication link between multiple satellites. In this paper, current situation and the development status of multiple laser communication are introduced, then optical principles and methods of multiple laser communication are discussed, and advantages and disadvantages are compared and analyzed with different multiple space laser communication system. The systems were classified according to different principles, including the simple principle type, exchange points type, RF and laser combined type, field expanding type and large field communication type. Then we look into the future of multiple laser communication systems, and the result shows that the paraboloid of revolution type has great potential in the future's laser communication space network ,for it's large communication range and high energy efficiency. It can be used to communicate between the aircraft platform, airship platforms and satellite platforms. Which laid the foundation for the future development of the laser communication space network.

  16. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space...

  17. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space...

  18. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space...

  19. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space...

  20. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  1. Development level of space optical transceiver and the design of network communication on optical transceiver

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Bo; Jiang, Huilin

    2015-08-01

    Compared with traditional communication technology, laser communication technology has great advantages and broad application prospects. And the optical transceiver is the main of the space laser communication system. This paper discusses achievements on the optical transceiver among developed countries in recent years, discussing the trend of optical transceiver. Under the background of laser communication for the future platform among more types network, optical transceiver on one-many communication of optical antenna has been reported, assessing the advantages and disadvantages of all kinds of design scheme from several aspects. Finally, some new thought and analysis of optical antenna of network communication technology have been put forward.

  2. Identifying Successful Advancement Approaches in Four Catholic Universities: The Effectiveness of the Four Advancement Models of Communication

    ERIC Educational Resources Information Center

    Bonglia, Jean-Pierre K.

    2010-01-01

    The current longitudinal study of the most successful Catholic universities in the United States identifies the prevalence of four advancement models of communication that have contributed to make those institutions successful in their philanthropic efforts. While research by Grunig and Kelly maintained that the two-way symmetrical model of…

  3. Design and Performance Analysis of Downlink in Space Communications System for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Lee, Wooju; Cho, Kyongkuk; Yoon, Dongweon

    2010-03-01

    Korean government made clear that it would make efforts to carry out full-fledged research into space exploration with the aim of developing a Lunar Orbiter (LO) from 2017 to 2020 in the detailed implement guidance of the space development project established in 2007 (Lee 2009). To make the plan realized, basic researches into a space communication link are essential (Kim et al. 2009). However, local researches in Korea were focused on the near-earth satellite communication links and the researches on the deep space communications were hardly founded. This paper designs and analyzes the downlink between a LO and an Earth Station (ES) in space communications system for lunar exploration, and suggests requirements for the communication link design with conforming to international recommendations. In general, among the losses in the calculation of a space communication link budget between the LO and the ES, the largest one is the free space loss comes from the distance between the earth and the moon. Furthermore, an accurate link model should be made up in order to analyze the performance in a more accurate way, with all the other elements influencing on signal quality. In this paper, we design the model of a space communications system considering almost all elements to affect the downlink performance of the space communications system between the LO and the ES, based on detailed requirements by CCSDS (the Consultative Committee for Space Data Systems, 2007), and verify the results with reference to the foreign operation cases of NASA (National Aeronautics and Space Administration) DSN (Deep Space Network) (Slobin 2006, Sniffin 2002, 2008). According to the CCSDS, we assume that the communication links have the line of sight path between the LO and the ES for S, X, Ku, and Ka bands, and an uncoded OQPSK signal is considered for a telemetry transmission. Also, a required target BER (Bit Error Rate) in the downlink space communications systems is assumed to be 10^5. We

  4. Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.

    1989-01-01

    An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.

  5. High-Capacity Ground Communications to Support Future Space Missions: A Forecast of Ground Communications Challenges in the 2010-2020 Period

    NASA Technical Reports Server (NTRS)

    Markley, Richard W.

    2003-01-01

    The purpose of this presentation is to identify major challenges involved in space ground communications networks to support space flight missions over the next 20 years. The presentation focus is on the Deep Space Network and its customers, but the forecast is applicable to all space ground communications networks.

  6. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  7. Preliminary Downlink Design and Performance Assessment for Advanced Radio Interferometry Between Space and Earth (ARISE)

    NASA Astrophysics Data System (ADS)

    Yan, T.-Y.; Wang, C. C.; Gray, A.; Hemmati, H.; Mittskus, A.; Golshan, N.; Noca, M.

    1998-10-01

    Advanced Radio Interferometry Between Space and Earth (ARISE) is a space very long baseline interferometry (VLBI) mission with a nominal launch date of 2008. It consists of an inflatable 25-m radio telescope circulating in a highly elliptical Earth orbit with a perigee of 5,000 km and an apogee of 40,000 km. The objective is to observe in conjunction with Earth-based telescopes to obtain high-resolution maps of quasars and active galactic nuclei for science investigations. ARISE requires an 8-Gb/s downlink of science data, which is a challenge using today's technology. In this article, 8-Gb/s systems using both traditional radio frequency (RF) and laser communication are proposed with the goal of minimizing both the cost and the risk of the design. Either option requires appropriate technology investments. The RF system requires the use of dual polarization, high-order modulations such as 32-quadrature amplitude modulation (QAM), and spectrally efficient square-root raised-cosine (SRRC) filters to meet the Federal Communications Commission (FCC) spectral allocation. If additional bandwidth is allocated by the FCC, constant-envelope modulations such as cross-correlated trellis-coded quadrature modulation (XTCQM) can be used in place of SRRC filters and QAM to reduce the power required on the spacecraft. The proposed laser communication system uses on-off keying (OOK) and wavelength division multiplexing (WDM). The wavelength of 1550 nm has the advantage of lower background light subtended at the ground receiver for downlink communications. The critical components of the system are based on mature fiber-optic technologies. The downlink transceiver terminal will be a modified Optical Communications Demonstrator (OCD) that has been in development at JPL over the past 3 years. This article includes a road map on how the 8-Gb/s RF and laser communication systems can be developed with a series of demonstrations between now and the launch date. The demonstrations are

  8. Classroom Communication and Instructional Processes: Advances through Meta-Analysis

    ERIC Educational Resources Information Center

    Gayle, Barbara Mae, Ed.; Preiss, Raymond W., Ed.; Burrell, Nancy, Ed.; Allen, Mike, Ed.

    2006-01-01

    This volume offers a systematic review of the literature on communication education and instruction. Making meta-analysis findings accessible and relevant, the editors of this volume approach the topic from the perspective that meta-analysis serves as a useful tool for summarizing experiments and for determining how and why specific teaching and…

  9. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  10. Development of high viscosity coatings for advanced Space Shuttle applications

    NASA Technical Reports Server (NTRS)

    Garofalini, S. H.; Banas, R.; Creedon, J.

    1979-01-01

    Laboratory studies for increasing the thermal resistance of high viscosity coatings for silica reusable surface insulation are presented. The coatings are intended for the reentry temperature associated with advanced Space Shuttle applications which will involve aerodynamic shear forces during entry from earth orbits. Coating viscosity was increased by (1) reduction in the concentration of the low viscosity additive B2O3; (2) reduction in the particle size of the constituent powders in coatings; and (3) addition of a high viscosity glass former (GeO2). A coating system was produced by combining the three methods which showed apparent higher viscosity than the current coating, while satisfying all the current Shuttle Orbiter coating requirements.

  11. Thermal blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Pusch, Richard H.

    1985-01-01

    The feasibility of weaving Nextel ceramic and Nicalon silicon carbide yarns into integrally woven, three dimensional fluted core fabrics was demonstrated. Parallel face fabrics joined with woven fabric ribs to form triangular cross section flutes between the faces were woven into three single and one double layer configuration. High warp yarn density in the double layer configuration caused considerable yarn breakage during weaving. The flutes of all four fabrics were filled with mandrels made from Q-Fiber Felt and FRCI-20-12 to form candidate insulation panels for advanced Space Transportation Systems. Procedures for preparing and inserting the mandrels were developed. Recommendations are made on investigating alternate methods for filling the flutes with insulation, and for improving the weaving of these types of fabrics.

  12. Advanced Embedded Active Assemblies for Extreme Space Applications

    NASA Technical Reports Server (NTRS)

    DelCastillo, Linda; Moussessian, Alina; Mojarradi, Mohammad; Kolawa, Elizabeth

    2009-01-01

    This work describes the development and evaluation of advanced technologies for the integration of electronic die within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible liquid crystal polymer (LCP), using gold thermo-compression flip chip bonding, and embedding them within the material. Daisy chain LCP assemblies were thermal cycled from -135 to +85degC (Mars surface conditions for motor control electronics). The LCP assembly method was further utilized to embed an operational amplifier designed for operation within the Mars surface ambient. The embedded op-amp assembly was evaluated with respect to the influence of temperature on the operational characteristics of the device. Applications for this technology range from multifunctional, large area, flexible membrane structures to small-scale, flexible circuits that can be fit into tight spaces for flex to fit applications.

  13. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-01-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  14. Alamouti-Type Space-Time Coding for Free-Space Optical Communication with Direct Detection

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Vilnrotter, V.

    2003-11-01

    In optical communication systems employing direct detection at the receiver, intensity modulations such as on-off keying (OOK) or pulse-position modulation (PPM) are commonly used to convey the information. Consider the possibility of applying space-time coding in such a scenario, using, for example, an Alamouti-type coding scheme [1]. Implicit in the Alamouti code is the fact that the modulation that defines the signal set is such that it is meaningful to transmit and detect both the signal and its negative. While modulations such as phase-shift keying (PSK) and quadrature amplitude modulation (QAM) naturally fall into this class, OOK and PPM do not since the signal polarity (phase) would not be detected at the receiver. We investigate a modification of the Alamouti code to be used with such modulations that has the same desirable properties as the conventional Alamouti code but does not rely on the necessity of transmitting the negative of a signal.

  15. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  16. LTE-advanced random access mechanism for M2M communication: A review

    NASA Astrophysics Data System (ADS)

    Mustafa, Rashid; Sarowa, Sandeep; Jaglan, Reena Rathee; Khan, Mohammad Junaid; Agrawal, Sunil

    2016-03-01

    Machine Type Communications (MTC) enables one or more self-sufficient machines to communicate directly with one another without human interference. MTC applications include smart grid, security, e-Health and intelligent automation system. To support huge numbers of MTC devices, one of the challenging issues is to provide a competent way for numerous access in the network and to minimize network overload. In this article, the different control mechanisms for overload random access are reviewed to avoid congestion caused by random access channel (RACH) of MTC devices. However, past and present wireless technologies have been engineered for Human-to-Human (H2H) communications, in particular, for transmission of voice. Consequently the Long Term Evolution (LTE) -Advanced is expected to play a central role in communicating Machine to Machine (M2M) and are very optimistic about H2H communications. Distinct and unique characteristics of M2M communications create new challenges from those in H2H communications. In this article, we investigate the impact of massive M2M terminals attempting random access to LTE-Advanced all at once. We discuss and review the solutions to alleviate the overload problem by Third Generation Partnership Project (3GPP). As a result, we evaluate and compare these solutions that can effectively eliminate the congestion on the random access channel for M2M communications without affecting H2H communications.

  17. Free Space Optical Communication in the Military Environment

    DTIC Science & Technology

    2014-09-01

    subject to unpredictable events such as fires and volcanic eruptions . This section outlines the design considerations for FSO systems and how designs...attenuation in poor atmospheric conditions limit its application. Several companies are developing and implementing FSO communication solutions ...analyzes its suitability as a military communication solution . The findings indicate further research, development, and link performance improvement is

  18. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    NASA Technical Reports Server (NTRS)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  19. SBIR Technology Applications to Space Communications and Navigation (SCaN)

    NASA Technical Reports Server (NTRS)

    Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene

    2010-01-01

    This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications

  20. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.