Science.gov

Sample records for advanced space optics

  1. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  2. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  3. Advancement of photonics for space and other platforms: open optical interconnect architecture (OOIA)

    NASA Astrophysics Data System (ADS)

    Gaydeski, Michael S.

    1997-07-01

    Continuous investigation of new technologies for avionics and space processing has led to the improvement of applications capabilities and processing for tactical platforms (commercial and government satellites, tactical asset such as the USN Reconnaissance Fighter F/A-18R, USAF Fighter F-16, various helicopters, etc.,) and surveillance platforms (commercial and government satellites, Joint Surveillance Target Attack Radar System, Advanced Warning and Control System). This paper focuses on the potential benefits of inserting optical interconnect technology into these platforms while subscribing an Open Optical Interconnect Architecture concept and a methodology for systems development and integration.

  4. Recent developments of advanced structures for space optics at Astrium, Germany

    NASA Astrophysics Data System (ADS)

    Stute, Thomas; Wulz, Georg; Scheulen, Dietmar

    2003-12-01

    The mechanical division of EADS Astrium GmbH, Friedrichshafen Germany, the former Dornier Satellitensystem GmbH is currently engaged with the development, manufacturing and testing of three different advanced dimensionally stable composite and ceramic material structures for satellite borne optics: -CFRP Camera Structure -Planck Telescope Reflectors -NIRSpec Optical Bench Breadboard for James Web Space Telescope The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  5. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  6. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  7. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  8. Advanced Fiber-optic Monitoring System for Space-flight Applications

    NASA Technical Reports Server (NTRS)

    Hull, M. S.; VanTassell, R. L.; Pennington, C. D.; Roman, M.

    2005-01-01

    Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration s Marshall Space Flight Center (NASA MSFC) have developed an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies with atomic force microscopy (AFM) and long-period grating (LPG) technology to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.

  9. The European SILEX project and other advanced concepts for optical space communications

    NASA Astrophysics Data System (ADS)

    Oppenhaeuser, G.; Wittig, M.; Popescu, A.

    1991-05-01

    The European Space Agency (ESA) is developing an optical inter-orbit communication system enabling a link between a low earth orbiting (LEO) and a geostationary (GEO) spacecraft. The link allows the transmission of 50 Mbps between LEO and GEO in an experimental and pre-operational mode. The system uses laser diodes of typically 100 mW optical power at a wavelength of 830 nanometer. Direct intensity modulation is applied. Telescopes of 25 cm diameter are used on both terminals. The breadboard phase has been completed and the launch of both terminals is scheduled for 1994. Other concepts for optical space communication links using Nd:YAG lasers and heterodyne receive systems are outlined.

  10. Optical communication in free space

    NASA Astrophysics Data System (ADS)

    Wilfert, Otakar; Henniger, Hennes; Kolka, Zdenek

    2008-12-01

    The success of free-space optical links operating indoors or in the atmosphere or deep space shows a good perspective of the technology. There is no doubt that free-space technology is ready for wide practical application. Optical links have several advantages in comparison with radio links, namely high transmission rates and high security. Advance in systems for the detection and tracking of moving objects allowed the development of mobile optical wireless links. This paper is focused on satellite and mobile optical links. Included are basic characteristics of such links and current results of international research projects.

  11. Design and Specification of Optical Bandpass Filters for Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Tsevetanov, Zlatan; Woodruff, Bob; Mooney, Thomas A.

    1998-01-01

    Advanced optical bandpass filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) have been developed on a filter-by-filter basis through detailed studies which take into account the instrument's science goals, available optical filter fabrication technology, and developments in ACS's charge-coupled-device (CCD) detector technology. These filters include a subset of filters for the Sloan Digital Sky Survey (SDSS) which are optimized for astronomical photometry using today's charge-coupled-devices (CCD's). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements for these filters include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, a high degree of parfocality, and immunity to environmental degradation. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The highly successful paradigm in which final specifications for flight filters were derived through interaction amongst the ACS Science Team, the instrument designer, the lead optical engineer, and the filter designer and vendor is described. Examples of iterative design trade studies carried out in the context of science needs and budgetary and schedule constraints are presented. An overview of the final design specifications for the ACS bandpass and ramp filters is also presented.

  12. Optical Metrology for the Filter Set for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Boucarut, Rene A.; Content, David A.; Keski-Kuha, Ritva A.; Krebs, Carolyn A.; Miner, Linda A.; Norton, Todd A.; Mehalick, Kimberly; Petrone, Peter; Bush, Frank D.; Puc, Bernard; Standley, Clive; Tsvetanov, Zlatan; Kral, Catherine

    1998-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) will employ a wide variety of spectral filtration components including narrow band, medium band, wide band, and far ultraviolet (FUV) long pass filters, spatially- variable filters (ramp filters), VIS/IR polarizers, NUV polarizers, FUV prisms, and a grism. These components are spread across ACS's Wide Field, High Resolution, and Solar Blind channels which provide diffraction-limited imaging of astronomical targets using aberration-correcting optics which remove most aberrations from HST's Optical Telescope Assembly (OTA). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements which these filters must meet include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, and a high degree of parfocality. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The development of optical metrology stations used to demonstrate that each ACS filter will meet its design specifications is discussed. Of particular note are specially-designed spectral transmissometers and interferometers.

  13. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  14. Advanced techniques for free-space optical quantum cryptography over water

    NASA Astrophysics Data System (ADS)

    Hill, Alexander D.; Christensen, Bradley; Kwiat, Paul G.

    2016-03-01

    Free-space quantum key distribution (QKD) over water (e.g., ship to ship) may be limited by ship motion and atmospheric effects, such as mode distortion and beam wander due to turbulence. We report on a technique which reduces noise by excluding spatial modes which are less likely to contain QKD signal photons and experimentally demonstrate an improvement in QKD key generation rates in various noise and turbulence regimes.

  15. Advanced Optical Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Michael, Xuejun

    The following article describes an advanced dense wavelength division multiplexing (DWDM) Optical Network developed by L-3 Photonics. The network, configured as an amplified optical bus, carries traffic simultaneously in both directions, using multiple wavelengths. As a result, data distribution is of the form peer-to-multi-peer, it is protocol independent, and it is scalable. The network leverages the rapid growth in commercial optical technologies, including wavelength division multiplexing (WDM), and when applied to military and commercial platforms such as aircraft, ships, unmanned and other vehicles, provides a cost-effective, low-weight, high-speed, and high noise-immune data distribution system.

  16. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  17. Optical coating in space

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1983-01-01

    A technological appraisal of the steps required to approach the goal of in-situ optical coating, cleaning and re-coating the optical elements of a remote telescope in space is reported. Emphasis is placed on the high ultraviolet throughput that a telescope using bare aluminum mirrors would offer. A preliminary design is suggested for an Orbital Coating Laboratory to answer basic technical questions.

  18. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  19. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  20. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  1. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  2. Evaluation of two fiber optic-based solar collection and distribution systems for advanced space life support

    NASA Technical Reports Server (NTRS)

    Jack, D. A.; Nakamura, T.; Sadler, P.; Cuello, J. L.

    2002-01-01

    Growing plants in an enclosed controlled environment is crucial in developing bioregenerative life-support systems (BLSS) for space applications. The major challenge currently facing a BLSS is the extensive use of highly energy-intensive electric light sources, which leads to substantial energy wastes through heat dissipations by these lamps. An alternative lighting strategy is the use of a solar irradiance collection, transmission, and distribution system (SICTDS). Two types of fiber optic-based SICTDS, a Fresnel-lens Himawari and a parabolic-mirror optical waveguide (OW) lighting system, were evaluated. The overall efficiency for the OW SICTDS of 40.5% exceeded by 75% that for the Himawari of 23.2%. The spectral distributions of the light delivered by the Himawari and the OW SICTDS were almost identical and had practically no difference from that of terrestrial solar radiation. The ratios of photosynthetically active radiation (PAR) to total emitted radiation (k) of 0.39 +/- 0.02 for the Himawari and 0.41 +/- 0.04 for the OW SICTDS were statistically indistinguishable, were not significantly different from that of 0.042 +/- 0.01 for terrestrial solar radiation, and were comparable to that of 0.35 for a high-pressure sodium (HPS) lamp. The coefficients of variation (CV) of 0.34 and 0.39 for PPF distributions, both at 50 mm X 50 mm square grid arrays, corresponding to the Himawari and the OW SICTDS, respectively, were comparable with each other but were both significantly greater than the CV of 0.08 corresponding to the HPS lamp. The average fresh weight or dry weight of lettuce grown in the solar chamber with either the Himawari or the OW SICTDS showed no statistical difference from the average fresh weight or dry weight of lettuce grown in the reference chamber with the HPS lamp. The results of this study suggest that an SICTDS could help reduce the electric power demand in a BLSS.

  3. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  4. Advances in space robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio

    1989-01-01

    The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.

  5. Optical Computers and Space Technology

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  6. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  7. Advanced automation for space missions

    SciTech Connect

    Freitas, R.A., Jr.; Healy, T.J.; Long, J.E.

    1982-01-01

    A NASA/ASEE summer study conducted at the University of Santa Clara in 1980 examined the feasibility of using advanced artificial intelligence and automation technologies in future NASA space missions. Four candidate applications missions were considered: an intelligent earth-sensing information system; an autonomous space exploration system; an automated space manufacturing facility; and a self-replicating, growing lunar factory. The study assessed the various artificial intelligence and machine technologies which must be developed if such sophisticated missions are to become feasible by the century's end. 18 references.

  8. Advanced electro-optical imaging techniques. [conference papers on sensor technology applicable to Large Space Telescope program

    NASA Technical Reports Server (NTRS)

    Sobieski, S. (Editor); Wampler, E. J. (Editor)

    1973-01-01

    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes.

  9. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  10. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  11. Optical Asymmetry of Space.

    ERIC Educational Resources Information Center

    Liebscher, Kurt; And Others

    1984-01-01

    Repetition of a historical experiment in a school project threw new light on the question of absolute rest. The student experiment investigated whether a particular direction in space could be singled out by a purely terrestrial procedure, while the original experiment investigated the drag coefficient of a solid medium. (JN)

  12. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  13. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  14. Space to Space Advanced EMU Radio

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic

  15. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  16. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss.

  17. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss. PMID:15130010

  18. The advanced LIGO input optics.

    PubMed

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design. PMID:26827334

  19. The advanced LIGO input optics.

    PubMed

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  20. Optical Amplifier for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Cole, Spencer T.; Gamble, Lisa J.; Diffey, William M.; Keys, Andrew S.

    1999-01-01

    We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.

  1. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  2. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  3. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  4. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  5. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  6. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  7. Space optics: an introduction by the editors.

    PubMed

    Breckinridge, J B; Wood, H J

    1993-04-01

    This feature of Applied Optics consists of papers on the Hubble Space Telescope and its instruments as well as other new instruments and other new optics technology for space science. Many of the papers are an outgrowth of the papers presented at the Second Space Optics Topical Meeting, October 1991, in Williamsburg, Va. This introduction provides an overview for the papers related to the Hubble Space Telescope: measurement of the error and approaches to correct for the error.

  8. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  9. State-space models for optical imaging.

    PubMed

    Myers, Kary L; Brockwell, Anthony E; Eddy, William F

    2007-09-20

    Measurement of stimulus-induced changes in activity in the brain is critical to the advancement of neuroscience. Scientists use a range of methods, including electrode implantation, surface (scalp) electrode placement, and optical imaging of intrinsic signals, to gather data capturing underlying signals of interest in the brain. These data are usually corrupted by artifacts, complicating interpretation of the signal; in the context of optical imaging, two primary sources of corruption are the heartbeat and respiration cycles. We introduce a new linear state-space framework that uses the Kalman filter to remove these artifacts from optical imaging data. The method relies on a likelihood-based analysis under the specification of a formal statistical model, and allows for corrections to the signal based on auxiliary measurements of quantities closely related to the sources of contamination, such as physiological processes. Furthermore, the likelihood-based modeling framework allows us to perform both goodness-of-fit testing and formal hypothesis testing on parameters of interest. Working with data collected by our collaborators, we demonstrate the method of data collection in an optical imaging study of a cat's brain.

  10. Advanced acousto-optic signal processors

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1983-01-01

    The basic acousto-optic signal processing architectures (spectrum analyzer, space-integrating, time-integrating, and triple product processor) systems and algorithms such as the chirp-Z transform are reviewed. New acousto-optic data processing systems and applications that utilze these basic architectures and new ones are described. These include a matched spatial filter acousto-optic processor, two new hybrid time and space-integrating systems, a triple product processor, and four new matrix-vector iterative feedback systems.

  11. SiC for Space Optics

    NASA Astrophysics Data System (ADS)

    Wellman, John

    2012-01-01

    This paper describes SiC mirrors that are large, ultra-lightweight, and actively controlled, for use in space telescopes. "Advanced Hybrid Mirrors” (AHMs) utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. They use replication techniques for high optical quality as well as rapid, low cost manufacturing. AHMs up to 1.35m in size have been made and tested, demonstrating wavefront error to better than the visible diffraction limit. AHMs can be fabricated at production rates after the first unit delivery as fast as 48 day intervals. "Superpolished Si/SiC Active Mirrors” (SSAMs) are similar to AHMs but the SiC mirror substrates have a layer of Si deposited on them to enable direct superpolishing. SSAMs can be much larger, can operate over a wider temperature range, and are better suited to UV astronomy. To make SSAMs larger than 1.8 m, multiple substrates can be joined together, using brazing techniques. Using wavefront sensing and control technology to command the embedded solid-state actuators, final mirror figure will be set after launch. This gives the active SiC mirror the ability to correct nearly any optical error, occurring anywhere in the optical system. As a result, active SiC mirrors can be made to relaxed figure requirements, enabling optical replication, or speeding up polishing, while assuring excellent final performance. Active SiC mirrors will reduce cost, risk and schedule for future astrophysics missions. Their high control authority allows relaxation of fabrication and assembly tolerances from optical to mechanical levels, speeding I & T. They enable rapid system testing to within required performance levels, even in 1 G, lowering mission risk. They are lighter weight and more durable than glass mirrors.

  12. Mounting small optics for cryogenic space missions

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Holmes, Howard C.; Jacoby, Mike S.; Kvamme, E. Todd

    2011-09-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) includes numerous optical assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the optical assemblies for the NIRCam instrument. With using examples from NIRCam, this paper covers techniques for mounting small mirrors and lenses for cryogenic space missions.

  13. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  14. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  15. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  16. Contamination of optical surfaces. [Space Station

    NASA Technical Reports Server (NTRS)

    Arnold, Graham S.; Hall, David F.

    1988-01-01

    The effect of molecular contamination on Space Station optical surfaces is examined. In particular, contamination of solar voltaic power sources and optical solar reflectors for thermal control or solar dynamic power generation is addressed. The published Space Station requirements for molecular contamination accretion and for the monitoring of such accretion is discussed in the context of the historical performance of space systems. Specific reference is made to the results from the Spacecraft Charging at High Altitudes (SCATHA) ML12 experiment.

  17. Optical Observations of Space Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira; Rodriquez, Heather; Barker, Edwin S.; Kelecy, Thomas

    2008-01-01

    This viewgraph presentation reviews the use of optical telescopes to observe space debris. .It will present a brief review of how the survey is conducted, and what some of the significant results encompass. The goal is to characterize the population of debris objects at GEO, with emphasis on the faint object population. Because the survey observations extend over a very short arc (5 minutes), a full six parameter orbit can not be determined. Recently we have begun to use a second telescope, the 0.9-m at CTIO, as a chase telescope to do follow-up observations of potential GEO debris candidates found by MODEST. With a long enough sequence of observations, a full six-parameter orbit including eccentricity can be determined. The project has used STK since inception for planning observing sessions based on the distribution of bright cataloged objects and the anti-solar point (to avoid eclipse). Recently, AGI's Orbit Determination Tool Kit (ODTK) has been used to determine orbits, including the effects of solar radiation pressure. Since an unknown fraction of the faint debris at GEO has a high area-to-mass ratio (A/M), the orbits are perturbed significantly by solar radiation. The ODTK analysis results indicate that temporal variations in the solar perturbations, possibly due to debris orientation dynamics, can be estimated in the OD process. Additionally, the best results appear to be achieved when solar forces orthogonal to the object-Sun line are considered. Determining the A/M of individual objects and the distribution of A/M values of a large sample of debris is important to understanding the total population of debris at GEO

  18. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  19. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  20. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  1. Advanced centering of mounted optics

    NASA Astrophysics Data System (ADS)

    Wenzel, Christian; Winkelmann, Ralf; Klar, Rainer; Philippen, Peter; Garden, Ron; Pearlman, Sasha; Pearlman, Guy

    2016-03-01

    Camera objectives or laser focusing units consist of complex lens systems with multiple lenses. The optical performance of such complex lens systems is dependent on the correct positioning of lenses in the system. Deviations in location or angle within the system directly affect the achievable image quality. To optimize the achievable performance of lens systems, these errors can be corrected by machining the mount of the lens with respect to the optical axis. The Innolite GmbH and Opto Alignment Technology have developed a novel machine for such center turning operation. A confocal laser reflection measurement sensor determines the absolute position of the optical axis with reference to the spindle axis. As a strong advantage compared to autocollimator measurements the utilized Opto Alignment sensor is capable of performing centration and tilt measurements without changing objectives on any radius surface from 2 mm to infinity and lens diameters from 0.5 mm to 300 mm, including cylinder, aspheric, and parabolic surfaces. In addition, it performs significantly better on coated lenses. The optical axis is skewed and offset in reference to the spindle axis as determined by the measurement. Using the information about the mount and all reference surfaces, a machine program for an untrue turning process is calculated from this data in a fully automated manner. Since the optical axis is not collinear with the spindle axis, the diamond tool compensates for these linear and tilt deviations with small correction movements. This results in a simple machine setup where the control system works as an electronic alignment chuck. Remaining eccentricity of <1 μm and angular errors of < 10 sec are typical alignment results.

  2. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  3. Modeling the Laser Interferometer Space Antenna Optics

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Trace R.; McNamara, Paul

    2005-01-01

    Creating an optical model of the Laser Interferometer Space antenna which can be used to predict optical sensitivities and set tolerances sufficiently well such that picometer level displacements can be reliably seen poses certain challenges. In part, because the distances between key optical elements, the proof masses, are constantly changing, at speeds of meters/second, the separation between them is about 5 million kilometers and a contributing factor to optical jitter is the self-gravity of the spacecraft. A discussion of the current state and future approach(s) to the creation of such an optical model will be presented.

  4. A portable free space optical system

    NASA Astrophysics Data System (ADS)

    Ai, Yong; Lu, Xingguang; Yang, Jinglin; Chen, Jing; Hao, Zhonggang

    2005-08-01

    A portable protocol independent free space optical communication terminal was developed, which enables customer to quickly deploy optical bandwidth services for applications such as fiber extension, wild field point to point communication and wireless backhaul while avoiding costly and time-consuming fiber installation. By using specially designed optical components and optical-mechanical structure, the system is very compact and effective, can establish optical link within a few minutes, with total weight 4kg, size 160 x 360 x 155 mm, effective transmitting/receiving aperture 40mm, data rate 100Mbps, maximum communication distance 1500m. The system and experiments are presented in the paper.

  5. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  6. SSG SiC Optical Systems in Space

    NASA Technical Reports Server (NTRS)

    Robichaud, Joseph; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    Silicon Carbide (SiC) materials provide a number of benefits for space based optical systems. SSG Precision Optronics has extensive experience in the areas of design, fabrication, integration, and test of SiC optical systems. This expertise has been applied to produce a number of SiC-based instruments, including the Miniature Infrared Camera and Spectrometer (MICAS) and Advanced Land Imager (ALI) optical systems which have flown as part of NASA's New Millennium program. Our presentation will provide an overview of SSG's experience in the development of these SiC flight systems.

  7. Applied physics: Optical trapping for space mirrors.

    PubMed

    McGloin, David

    2014-02-27

    Might it be possible to create mirrors for space telescopes, using nothing but microscopic particles held in place by light? A study that exploits a technique called optical binding provides a step towards this goal.

  8. Advanced rotorcraft helmet display sighting system optics

    NASA Astrophysics Data System (ADS)

    Raynal, Francois; Chen, Muh-Fa

    2002-08-01

    Kaiser Electronics' Advanced Rotorcraft Helmet Display Sighting System is a Biocular Helmet Mounted Display (HMD) for Rotary Wing Aviators. Advanced Rotorcraft HMDs requires low head supported weight, low center of mass offsets, low peripheral obstructions of the visual field, large exit pupils, large eye relief, wide field of view (FOV), high resolution, low luning, sun light readability with high contrast and low prismatic deviations. Compliance with these safety, user acceptance and optical performance requirements is challenging. The optical design presented in this paper provides an excellent balance of these different and conflicting requirements. The Advanced Rotorcraft HMD optical design is a pupil forming off axis catadioptric system that incorporates a transmissive SXGA Active Matrix liquid Crystal Display (AMLCD), an LED array backlight and a diopter adjustment mechanism.

  9. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  10. Advanced NDE research in electromagnetic, thermal, and coherent optics

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1992-01-01

    A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).

  11. Optics at marshall space flight center.

    PubMed

    Johnson, W G

    1970-02-01

    The aim and direction of the Marshall Space Flight Center's (MSFC) programs of research in optics has been to produce the technology base and to gain the knowledge prerequisite to the support of launch vehicle development. MSFC conducts and sponsors in industry research leading to the development of new orimproved optical system components, including lenses, filters, laser sources, detectors, modulators, imaging devices, and beam scanners. Much of this effort is directed primarily toward assuring that such components will survive and perform adequately in the hostile environment created by a large space booster. This research involves the development techniques for the effective utilization of optical instrumentation in measuring systems, and the extension of fundamental principles and processes developed in the field of optics to other areas of research. The current direction of the MSFC program in optics is toward development of optical systems for use in space and integrating such systems into space vehicles as principal payloads. The Apollo Telescope Mount (ATM) is our major program in this area, but efforts are already under way to establish the base technology to support larger, more versatile, more universal optical facilities for flight-borne space science research. PMID:20076196

  12. Optics at marshall space flight center.

    PubMed

    Johnson, W G

    1970-02-01

    The aim and direction of the Marshall Space Flight Center's (MSFC) programs of research in optics has been to produce the technology base and to gain the knowledge prerequisite to the support of launch vehicle development. MSFC conducts and sponsors in industry research leading to the development of new orimproved optical system components, including lenses, filters, laser sources, detectors, modulators, imaging devices, and beam scanners. Much of this effort is directed primarily toward assuring that such components will survive and perform adequately in the hostile environment created by a large space booster. This research involves the development techniques for the effective utilization of optical instrumentation in measuring systems, and the extension of fundamental principles and processes developed in the field of optics to other areas of research. The current direction of the MSFC program in optics is toward development of optical systems for use in space and integrating such systems into space vehicles as principal payloads. The Apollo Telescope Mount (ATM) is our major program in this area, but efforts are already under way to establish the base technology to support larger, more versatile, more universal optical facilities for flight-borne space science research.

  13. Advanced micromoulding of optical components

    NASA Astrophysics Data System (ADS)

    Bauer, Hans-Dieter; Ehrfeld, Wolfgang; Paatzsch, Thomas; Smaglinski, Ingo; Weber, Lutz

    1999-09-01

    There is a growing need for micro-optical components in the field of tele- and datacom applications. Such components have to be very precise and should be available in reasonable numbers. Microtechnology provides manufacturing techniques that fulfill both requirements. Using micro electro discharge machining, laser micromachining, ultra precision milling and deep lithography with subsequent electroforming methods, complex tools for the replication of highly precise plastic parts have been manufactured. In many cases a combination of methods enumerated above gives a tool which shows both functionality and cost-efficiency. As examples we present the realization of integrated-optical components with passive fiber-waveguide coupling used as components in optical networks and as velocity sensors for two-phase flows, like liquids containing small gas bubbles or particles. In the first case multimode 4 X 4 star couplers have been manufactured in a pilot series that show excess loss values below 3 dB and a uniformity better than 3 dB at 830 nm. This performance becomes possible by using a compression molding process. By stamping the microstructured mold into a semifinished PMMA plate exact replication of the molds as well as very low surface roughness of the waveguide side walls could be observed. In the second case the waveguide channels of the flow sensors show dimensions of between 20 micrometer and 100 micrometer and an aspect ratio of about 20. These structures have been replicated by injection molding of PMMA using variotherm process treatment with a cycle time of about 2 - 3 min.

  14. Advanced space program studies, overall executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Multidisciplined advanced planning studies were conducted that involve space operations and the associated system elements, identification of potential low cost system techniques, vehicle design, cost synthesis techniques, DoD technology forecasting, and the development of near and far term space initiatives with emphasis on domestic and military use commonality. Specific areas studied include: (1) manned systems utilization; (2) STS users; (3) vehicle cost/performance; (4) space vehicle applications to future national needs; (5) STS spin stabilized upper stage; and (6) technology assessment and forecast.

  15. Advanced transponders for deep space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Kayalar, Selahattin; Yeh, Hen-Geul; Kyriacou, Charles

    1993-01-01

    Three architectures for advanced deep space transponders are proposed. The architectures possess various digital techniques such as fast Fourier transform (FFT), digital phase-locked loop (PLL), and digital sideband aided carrier detection with analog or digital turn-around ranging. Preliminary results on the design and conceptual implementation are presented. Modifications to the command detector unit (CDU) are also presented.

  16. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  17. Advanced fiber-optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Teixeira, João G. V.; Leite, Ivo T.; Silva, Susana; Frazão, Orlando

    2014-09-01

    Acoustic sensing is nowadays a very demanding field which plays an important role in modern society, with applications spanning from structural health monitoring to medical imaging. Fiber-optics can bring many advantages to this field, and fiber-optic acoustic sensors show already performance levels capable of competing with the standard sensors based on piezoelectric transducers. This review presents the recent advances in the field of fiber-optic dynamic strain sensing, particularly for acoustic detection. Three dominant technologies are identified — fiber Bragg gratings, interferometric Mach-Zehnder, and Fabry-Pérot configurations — and their recent developments are summarized.

  18. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  19. Silicon carbide optics for space and ground based astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  20. Advanced Geothermal Optical Transducer (AGOT)

    SciTech Connect

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full scale. Employing a pair of identical, low

  1. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  2. Optical protocols for advanced spacecraft networks

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.

    1991-01-01

    Most present day fiber optic networks are in fact extensions of copper wire networks. As a result, their speed is still limited by electronics even though optics is capable of running three orders of magnitude faster. Also, the fact that photons do not interact with one another (as electrons do) provides optical communication systems with some unique properties or new functionality that is not readily taken advantage of with conventional approaches. Some of the motivation for implementing network protocols in the optical domain, a few possible approaches including optical code-division multiple-access (CDMA), and how this class of networks can extend the technology life cycle of the Space Station Freedom (SSF) with increased performance and functionality are described.

  3. Advanced optics in an interdisciplinary graduate program

    NASA Astrophysics Data System (ADS)

    Nic Chormaic, S.

    2014-07-01

    The Okinawa Institute of Science and Technology Graduate University, established in November 2011, provides a 5- year interdisciplinary PhD program, through English, within Japan. International and Japanese students entering the program undertake coursework and laboratory rotations across a range of topics, including neuroscience, molecular science, physics, chemistry, marine science and mathematics, regardless of previous educational background. To facilitate interdisciplinarity, the university has no departments, ensuring seamless interactions between researchers from all sectors. As part of the PhD program a course in Advanced Optics has been developed to provide PhD students with the practical and theoretical skills to enable them to use optics tools in any research environment. The theoretical aspect of the course introduces students to procedures for complex beam generation (e.g. Laguerre-Gaussian), optical trapping, beam analysis and photon optics, and is supported through a practical program covering introductory interference/diffraction experiments through to more applied fiber optics. It is hoped that, through early exposure to optics handling and measurement techniques, students will be able to develop and utilize optics tools regardless of research field. In addition to the formal course in Advanced Optics, a selection of students also undertakes 13 week laboratory rotations in the Light-Matter Interactions research laboratory, where they work side-by-side with physicists in developing optics tools for laser cooling, photonics or bio-applications. While currently in the first year, conclusive results about the success of such an interdisciplinary PhD training are speculative. However, initial observations indicate a rich cross-fertilization of ideas stemming from the diverse backgrounds of all participants.

  4. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  5. Advanced science and applications space platform

    NASA Technical Reports Server (NTRS)

    White, J.; Runge, F. C.

    1981-01-01

    Requirements for and descriptions of the mission equipment, subsystems, configuration, utilities, and interfaces for an Advanced Science and Applications Space Platform (ASASP) are developed using large space structure technology. Structural requirements and attitude control system concepts are emphasized. To support the development of ASASP requirements, a mission was described that would satisfy the requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. Platform subsystems are defined which support the payload requirements and a physical platform concept is developed. Structural system requirements which include utilities accommodation, interface requirements, and platform strength and stiffness requirements are developed. An attitude control system concept is also described. The resultant ASASP is analyzed and technological developments deemed necessary in the area of large space systems are recommended.

  6. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  7. Advances in optical imaging for pharmacological studies

    PubMed Central

    Arranz, Alicia; Ripoll, Jorge

    2015-01-01

    Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering. PMID:26441646

  8. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  9. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  10. Chemical Approaches for Advanced Optical Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhixing

    Advances in optical microscopy have been constantly expanding our knowledge of biological systems. The achievements therein are a result of close collaborations between physicists/engineers who build the imaging instruments and chemists/biochemists who design the corresponding probe molecules. In this work I present a number of chemical approaches for the development of advanced optical imaging methods. Chapter 1 provides an overview of the recent advances of novel imaging approaches taking advantage of chemical tag technologies. Chapter 2 describes the second-generation covalent trimethoprim-tag as a viable tool for live cell protein-specific labeling and imaging. In Chapter 3 we present a fluorescence lifetime imaging approach to map protein-specific micro-environment in live cells using TMP-Cy3 as a chemical probe. In Chapter 4, we present a method harnessing photo-activatable fluorophores to extend the fundamental depth limit in multi-photon microscopy. Chapter 5 describes the development of isotopically edited alkyne palette for multi-color live cell vibrational imaging of cellular small molecules. These studies exemplify the impact of modern chemical approaches in the development of advanced optical microscopies.

  11. Optical deep space communication via relay satellite

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Vilnrotter, V. A.; Dolinar, S. J., Jr.

    1981-01-01

    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed.

  12. Optical Amplifier Based Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to design a safe optical power beaming system for use in space. Research was focused on identification of strategies and structures that would enable achievement near diffraction limited optical beam quality, highly efficient electrical to optical conversion, and high average power in combination in a single system. Efforts centered on producing high efficiency, low mass of the overall system, low operating temperature, precision pointing and tracking capability, compatibility with useful satellite orbits, component and system reliability, and long component and system life in space. A system based on increasing the power handled by each individual module to an optimum and the number of modules in the complete structure was planned. We were concerned with identifying the most economical and rapid path to commercially viable safe space solar power.

  13. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  14. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  15. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  16. Advanced space power PEM fuel cell systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.

    1989-01-01

    A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.

  17. UV-optical from space

    NASA Technical Reports Server (NTRS)

    Illingworth, Garth; Savage, Blair; Angel, J. Roger; Blandford, Roger D.; Boggess, Albert; Bowyer, C. Stuart; Carruthers, George R.; Cowie, Lennox L.; Doschek, George A.; Dupree, Andrea K.

    1991-01-01

    The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST; LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments.

  18. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  19. Advance lightpath provisioning in interdomain optical networks

    NASA Astrophysics Data System (ADS)

    Hafid, A.; Maach, A.; Khair, M. G.; Drissi, J.

    2005-11-01

    In interconnected optical networks, users submit lightpath requests at the time they wish to establish the lightpath. The service provider consults the information gathered by the interdomain routing protocols for available resources. For each request, the network must decide immediately whether to accept or reject the request. In this model, there is always the uncertainty of whether the user will be able to establish the desired lightpath at the desired time or not. Furthermore, in the context of a number of applications, e.g., grid applications, users need to set up lightpaths in advance to perform their activities that are planned in advance. We propose a new interdomain routing protocol called Advance Optical Routing Border Gateway Protocol (AORBGP) and a scheme that allows the setup of interdomain lightpaths in advance. AORBGP allows gathering information about interdomain paths and availability of wavelengths in the future. The proposed advance lightpath setup scheme makes use of AORBGP to get information about available resources (i.e., wavelengths) required to process lightpath setup requests. One of the key innovations of the scheme is that it provides the user with alternatives, carefully selected, when his or her request cannot be accommodated because of resource shortages. Indeed, the scheme provides the user with options to set up a lightpath later than the requested start time or with shorter duration than the requested duration. We performed a set of simulations to evaluate the benefits of the proposed scheme and the effect of a number of parameters on the performance of AORBGP.

  20. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  1. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  2. Advanced materials for space nuclear power systems

    SciTech Connect

    Titran, R.H.; Grobstein, T.L. . Lewis Research Center); Ellis, D.L. )

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  3. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  4. Advancements in metro optical network architectures

    NASA Astrophysics Data System (ADS)

    Paraschis, Loukas

    2005-02-01

    This paper discusses the innovation in network architectures, and optical transport, that enables metropolitan networks to cost-effectively scale to hundreds Gb/s of capacity, and to hundreds km of reach, and to also meet the diverse service needs of enterprise and residential applications. A converged metro network, where Ethernet/IP services, and traditional TDM traffic operate over an intelligent WDM transport layer is increasingly becoming the most attractive architecture addressing the primary need of network operators for significantly improved capital and operational network cost. At the same time, this converged network has to leverage advanced technology, and introduce intelligence in order to significantly improve the deployment and manageability of WDM transport. The most important system advancements and the associated technology innovations that enhance the cost-effectiveness of metropolitan optical networks are being reviewed.

  5. Recent advances in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ding, Zhihua; Wang, Chuan; Shen, Yi; Huang, Liangming; Wu, Lan; Du, Chixin

    2012-12-01

    This paper reports recent advances in spectral domain Doppler optical coherence tomography (SD-DOCT) in our group. A high speed SD-DOCT system is developed and applied to animal study and microchip evaluation. Further improvements concerning SD-DOCT are presented, those including higher-order cross-correlation for phase retrieval, transit-time analysis for velocity quantification, and orthogonal dispersive SD-OCT for depth extension.

  6. Asymmetry of free-space optical links

    NASA Astrophysics Data System (ADS)

    Boucouvalas, Anthony C.

    1995-12-01

    The concept of asymmetry in free space optical links is discussed. Simple equations describing the minimum carrier sense distance, the minimum and maximum distance of reliable link, and maximum interference distance are derived. Examples from the recently drafted IRDA specification for IR links are given. A solution is presented to the parity variation problem by controlling the field of view of such transceivers.

  7. Free Space Optical Communications Utilizing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Kartz, M W; Flath, L M; Wilks, S C; Young, R A; Johnson, G W; Ruggiero, A J

    2002-07-09

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives specifically aimed at corporate intranet and sporting event video applications. These solutions are geared toward solving the ''last mile'' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method to improve signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors, as well as improved communication and computational components.

  8. Deep-Space Optical Communications: Visions, Trends, and Prospects

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.; Abraham, D. S.; Shambayati, S.; Rush, J.

    2011-01-01

    Current key initiatives in deep-space optical communications are treated in terms of historical context, contemporary trends, and prospects for the future. An architectural perspective focusing on high-level drivers, systems, and related operations concepts is provided. Detailed subsystem and component topics are not addressed. A brief overview of past ideas and architectural concepts sets the stage for current developments. Current requirements that might drive a transition from radio frequencies to optical communications are examined. These drivers include mission demand for data rates and/or data volumes; spectrum to accommodate such data rates; and desired power, mass, and cost benefits. As is typical, benefits come with associated challenges. For optical communications, these include atmospheric effects, link availability, pointing, and background light. The paper describes how NASA's Space Communication and Navigation Office will respond to the drivers, achieve the benefits, and mitigate the challenges, as documented in its Optical Communications Roadmap. Some nontraditional architectures and operations concepts are advanced in an effort to realize benefits and mitigate challenges as quickly as possible. Radio frequency communications is considered as both a competitor to and a partner with optical communications. The paper concludes with some suggestions for two affordable first steps that can yet evolve into capable architectures that will fulfill the vision inherent in optical communications.

  9. Advanced energy storage for space applications: A follow-up

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1994-01-01

    Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.

  10. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  11. Design and fabrication of space variant micro optical elements

    NASA Astrophysics Data System (ADS)

    Srinivasan, Pradeep

    A wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed optical functionalities have become feasible. As a result, it has become possible to engineer the device response in the near and far field by controlling the phase, polarization or spectral response at the micro scale. One of the methods that have been explored to realize unique optical functionalities is by varying the structural properties of the device as a function of spatial location at the sub-micron scale across the device aperture. Spatially varying the structural parameters of these devices is analogous to local modifications of the material properties. In this dissertation, the optical response of interference transmission filters, guided mode resonance reflection filters, and diffraction gratings operated in Littrow condition with strategically introduced spatial variation have been investigated. Spatial variations in optical interference filters were used to demonstrate wavelength tunable spatial filters. The effect was realized by integrating diffractive and continuous phase functions on the defect layer of a one-dimensional photonic crystal structure. Guided mode resonance filters are free space optical filters that provide narrow spectral reflection by combining grating and waveguide dispersion effects. Frequency dependent spatial reflection profiles were achieved by spatially varying the grating fill fraction in designed contours. Diffraction gratings with space variant fill fractions operating in Littrow condition were used to provide graded feedback profiles

  12. RUBIN Microsatellites for Advanced Space Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    The first new space technology demonstration payload BIRD-RUBIN was developed by OHB- System in co-operation with students from the University of Applied Sciences, Bremen, and was successfully launched July 15th, 2000 together with the scientific satellites CHAMP and MITA onboard a COSMOS 3M launcher. The BIRD-RUBIN mission has tested the telematics technology in space via ORBCOMM network. Small data packages were sent by the hatbox sized system to the ORBCOMM satellite net, then transmitted further on to the ground stations and from that point entered into the internet. The payload user could retrieve the data direct via email account and was able to send commands back to payload in orbit. The next micro satellite RUBIN-2 for advanced space technology demonstration will be launched at the end of 2002 as "secondary" payload on the Russian launcher DNEPR. The RUBIN-2 micro satellite platform will use again the inter-satellite communication mode via Orbcomm network and offers an orbital testbed with low cost, bi-directional and near real-time Internet access. In parallel to the further inter satellite link experiments using Orbcomm, several additional leading edge technology experiments will be done onboard Rubin-2 (electrical propulsion, two loop miniaturized thermal control system, GPS navigation, LI-Ion Battery, etc.). This paper provides an overview of RUBIN micro satellites for advanced space technology demonstrations. The main results of the first BIRD-RUBIN experiment and the goals of the second Rubin-2 mission are described. The potential of low cost technology demonstration missions using Internet and inter satellite communication technology via commercial satellite systems and the piggyback flight opportunities on Russian launchers are discussed.

  13. Virtual k -Space Modulation Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Zheng, Guoan; Fang, Yue; Xu, Yingke; Liu, Xu; So, Peter T. C.

    2016-07-01

    We report a novel superresolution microscopy approach for imaging fluorescence samples. The reported approach, termed virtual k -space modulation optical microscopy (VIKMOM), is able to improve the lateral resolution by a factor of 2, reduce the background level, improve the optical sectioning effect and correct for unknown optical aberrations. In the acquisition process of VIKMOM, we used a scanning confocal microscope setup with a 2D detector array to capture sample information at each scanned x -y position. In the recovery process of VIKMOM, we first modulated the captured data by virtual k -space coding and then employed a ptychography-inspired procedure to recover the sample information and correct for unknown optical aberrations. We demonstrated the performance of the reported approach by imaging fluorescent beads, fixed bovine pulmonary artery endothelial (BPAE) cells, and living human astrocytes (HA). As the VIKMOM approach is fully compatible with conventional confocal microscope setups, it may provide a turn-key solution for imaging biological samples with ˜100 nm lateral resolution, in two or three dimensions, with improved optical sectioning capabilities and aberration correcting.

  14. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  15. Commercial Optics for Space Surveillance and Astronomy

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Kopit, E.; McGraw, J.; Zimmer, P.

    Since the first days of the space program, there have been both amateur and government satellite watchers. Large, expensive government systems with custom optics are still the most capable, but with modern sensors and high speed computers, amateur trackers are easily pushing the limits of what government systems achieved only a decade ago. A very recent trend in the space world is the emergence of commercial space operations centers. Once the exclusive purview of governments, corporations are now providing orbital environment awareness services to the operators of commercial satellites. The requirement for synoptic satellite observations has led to corporations developing world-wide observing networks. A problem facing both amateur and corporate observers is the limited availability of suitable optical systems. Most observing efforts rely on long focus (f/8 or greater) optical systems with focal reducers, and a somewhat limited field of view. Often, the cameras in use are not ideally matched to the optical system. While there are a few exceptions, the choices are not many. Celestron recently introduced the C-11 RASA optical system, with an 11-inch aperture and an f/2.2 focal ratio. This optical system is designed for dedicated imaging and is ideally suited for both wide-field astronomy and the detection and tracking of satellites. The larger C-14 RASA, to be introduced later this year, was specifically designed for wide-field imaging with large commercial CCDs. It offers greater sensitivity and a wider field of view than the smaller C-11 RASA and should prove to be the instrument of choice for both amateur and corporate satellite observers. We present data from satellite observations with a production model C-11 RASA and estimated performance for the new C-14 RASA.

  16. Optical image encryption in phase space

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Xu, Xiaobin; Situ, Guohai; Wu, Quanying

    2014-11-01

    In the field of optical information security, the research of double random phase encoding is becoming deeper with each passing day, however the encryption system is linear, and the dependencies between plaintext and ciphertext is not complicated, with leaving a great hidden danger to the security of the encryption system. In this paper, we encrypted the higher dimensional Wigner distribution function of low dimensional plaintext by using the bilinear property of Wigner distribution function. Computer simulation results show that this method can not only enlarge the key space, but also break through the linear characteristic of the traditional optical encryption technology. So it can significantly improve the safety of the encryption system.

  17. MSFC's Advanced Space Propulsion Formulation Task

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Gerrish, Harold P.; Robinson, Joel W.; Taylor, Terry L.

    2012-01-01

    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible.

  18. The input optics of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Tanner, D. B.; Arain, M. A.; Ciani, G.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Heintze, M.; Martin, R. M.; Mueller, C. L.; Williams, L. F.; Mueller, G.; Quetschke, V.; Korth, W. Z.; Reitze, D. H.; Derosa, R. T.; Effler, A.; Kokeyama, K.; Frolov, V. V.; Mullavey, A.; Poeld, J.

    2016-03-01

    The Input Optics (IO) of advanced LIGO will be described. The IO consists of all the optics between the laser and the power recycling mirror. The scope of the IO includes the following hardware: phase modulators, power control, input mode cleaner, an in-vacuum Faraday isolator, and mode matching telescopes. The IO group has developed and characterized RTP-based phase modulators capable of operation at 180 W cw input power. In addition, the Faraday isolator is compensated for depolarization and thermal lensing effects up to the same power and is capable of achieving greater than 40 dB isolation. This research has been supported by the NSF through Grants PHY-1205512 and PHY-1505598. LIGO-G1600067.

  19. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  20. Development of a strontium optical lattice clock for space applications

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and

  1. Global optical free-space smart interconnects

    NASA Astrophysics Data System (ADS)

    Guilfoyle, Peter S.; Hessenbruch, John M.; Zeise, Frederick F.

    1993-07-01

    High fan-in/fan-out, low power (1 fJ per gate), high performance computing (HPC) modules are being developed that integrate global (multidimensional) free space `smart' optical interconnects with GaAs DANE technology. This new architecture implements N4 global free space optical interconnects coupled with 2-D arrays of N-bit Boolean multiplications by DeMorgan's theorem on wide word fan-ins. `Smart' interconnects provide a high speed inter- module alternative without the power requirements and cross-talk limitations of GaAs circuitry. Selected algorithms such as 64-bit addition can operate at lower power and higher speeds using global technology and GaAs logic. Thus, faster processing can be fully realized which allows for a reduction in pipeline delays.

  2. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  3. Optical sensors for aeronautics and space

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.; Alexander, J.; Katz, R.; Terry, J.

    1980-01-01

    A review of some NASA and DOD programs to develop optical sensors with fiberoptics for instrumentation and control is presented. Fiberoptic systems offer some distinct advantages. Noise immunity is one important asset. Fiberoptic systems do not conduct electricity and therefore can be used in and near areas that contain explosive or flammable materials. One objective of these programs is to produce more reliable sensors and to improve the safety and operating economy of future aircraft and space vehicles.

  4. Adaptive optics for space debris tracking

    NASA Astrophysics Data System (ADS)

    Bennet, Francis; D'Orgeville, Celine; Gao, Yue; Gardhouse, William; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian T.; Smith, Craig H.; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A

  5. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  6. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  7. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  8. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  9. Recent Advances in Miniaturized Optical Gyroscopes

    NASA Astrophysics Data System (ADS)

    Dell'Olio, F.; Tatoli, T.; Ciminelli, C.; Armenise, M. N.

    2014-03-01

    Low-cost chip-scale optoelectronic gyroscopes having a resolution ≤ 10 °/h and a good reliability also in harsh environments could have a strong impact on the medium/high performance gyro market, which is currently dominated by well-established bulk optical angular velocity sensors. The R&D activity aiming at the demonstration of those miniaturized sensors is crucial for aerospace/defense industry, and thus it is attracting an increasing research effort and notably funds. In this paper the recent technological advances on the compact optoelectronic gyroscopes with low weight and high energy saving are reviewed. Attention is paid to both the so-called gyroscope-on-a-chip, which is a novel sensor, at the infantile stage, whose optical components are monolithically integrated on a single indium phosphide chip, and to a new ultra-high Q ring resonator for gyro applications with a configuration including a 1D photonic crystal in the resonant path. The emerging field of the gyros based on passive ring cavities, which have already shown performance comparable with that of optical fiber gyros, is also discussed.

  10. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  11. Optical spectroscopic techniques and instrumentation for atmospheric and space research

    SciTech Connect

    Wang, J.; Hays, P.B.

    1994-12-31

    The objective of this conference was to bring together scientists and engineers involved in atmospheric science, space physics, aeronomy, remote sensing, and optical instrumentation to exchange ideas and discuss recent developments in spectroscopic techniques and instrumentation in atmospheric and space research. There is growing concern about the human environment: the atmosphere, ocean, and space. To address those concerns and understand their changing environment, increasingly complex computer models have been developed with the advent of more powerful computers. Therefore, the validation of those models against direct measurements with advanced techniques and instruments is becoming increasingly more difficult and important. Optical spectroscopic techniques and instrumentation have contributed greatly to the validation of those models and their understanding of the earth`s atmosphere and space environment. Improving techniques and instrumentation is becoming ever more important with more demanding requirements on the accuracy and resolution of atmospheric and space observations. This conference had sessions addressing current techniques and instrumentation from the ultraviolet to the infrared and microwave, and from ground-based facilities to satellite-borne missions. Separate abstracts were prepared for most of the papers in this volume.

  12. Space water electrolysis: Space Station through advance missions

    NASA Astrophysics Data System (ADS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-09-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  13. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  14. Advances in optics for biotechnology, medicine and surgery.

    PubMed

    Fitzmaurice, Maryann; Pogue, Brian W; Tearney, Guillermo J; Tunnell, James W; Yang, Changhuei

    2014-02-01

    The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII.

  15. Advances in optics for biotechnology, medicine and surgery.

    PubMed

    Fitzmaurice, Maryann; Pogue, Brian W; Tearney, Guillermo J; Tunnell, James W; Yang, Changhuei

    2014-02-01

    The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII. PMID:24575348

  16. Advances in optics for biotechnology, medicine and surgery

    PubMed Central

    Fitzmaurice, Maryann; Pogue, Brian W.; Tearney, Guillermo J.; Tunnell, James W.; Yang, Changhuei

    2014-01-01

    The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII. PMID:24575348

  17. Fiber-optic Sensors for Space Applications

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoli; Liang, liangsheng1981. Sheng; Huang, Xingli

    Fiber-optic sensors (FOSs) offer several advantages over conventional sensors, such as high sensitivity, intrinsic safety in hazardous environments, immunity to electromagnetic interference, geometric flexibility, light weight, small size and the compatibility to fiber-optic communication, capability to distributed sensing. Due to these specific advantages, FOSs have been considered as a potentially effective solution for applications in space. A historical overview of how this powerful framework has been exploited to develop aerospace instruments is presented in this paper. This paper provides a review on the concepts, principles, methodology of FOSs for space applications. Firstly, the current state of the art of FOSs is reviewed. As significant cases of developments in FOSs, the interferometric sensors, fiber Grating sensors, photo crystal fiber sensors and scattering based sensors are outlined, respectively. Furthermore, several potential applications, including oxygen and hydrogen detection, temperature measurement, structure health monitoring, are discussed. Furthermore, some important performances, such as resolution, precision and dynamic range, are analyzed for different applications. Then, some potential theoretical and technological opportunities to improve FOSs for space applications are presented and discussed.

  18. Space photovoltaic modules based on reflective optics

    NASA Technical Reports Server (NTRS)

    Andreev, V. M.; Larionov, V. R.; Rumyantsev, V. D.; Shvarts, M. Z.

    1995-01-01

    The conceptual design and experimental results for two types of space application concentrator photovoltaic modules, employing reflective optical elements, are presented. The first type is based on the use of compound parabolic concentrators, the second type is based on the use of line-focus parabolic troughs. Lightweight concentrators are formed with nickel foil coated silver with a diamond-like carbon layer protection. Secondary optical elements, including lenses and cones, are introduced for a better matching of concentrators and solar cells. Both types of modules are characterized by concentration ratios in the range 20x to 30x, depending on the chosen range of misorientation angles. The estimated specific parameters of these modules operating with single junction AlGaAs/GaAs solar cells are 240 W/sq m and 3 kg/sq m.

  19. Space Shuttle Main Engine: Advanced Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Singer, Chirs

    1999-01-01

    The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.

  20. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  1. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  2. Advanced electro-optical tracker/ranger

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Defoe, D. N.

    1980-06-01

    The preliminary engineering design study of an Advanced Electro-Optical Tracker/Ranger (AEOTR) to provide passive target tracking and rangefinding for air to air gun fire control is described. Area correlation processing is used in the comparison of stereo image pairs for stereometric ranging and in the comparison of successive images for tracking. The application of these techniques to the AEOTR, the limitations imposed by packaging, environmental and state-of-the-art sensor and processing hardware constraints, and the projected performance are evaluated. Principal emphasis is given to the use of AEOTR in the gun director engagement mode in which target track and range data is provided to a gun fire control computer. The feasibility of use of the AEOTR to provide target video as an aid to visual target identification, and to provide automatic airborne target detection, is also evaluated. The necessary functions and subsystems are defined and integrated into a preliminary design, whose performance is estimated and compared with the program goals. In addition, a preliminary mounting location study for the F-15, F-16 and F-18 advanced fighters is included. CAI-built hardware was used to successfully demonstrate the feasibility of the ranging and tracking concepts employed in the AEOTR.

  3. An optical space domain volume holographic correlator

    NASA Astrophysics Data System (ADS)

    Birch, Philip; Gardezi, Akber; Mitra, Bhargav; Young, Rupert; Chatwin, Chris

    2009-04-01

    We propose a novel space domain volume holographic correlator system. One of the limitations of conventional correlators is the bandwidth limits imposed by updating the filter and the readout speed of the CCD. The volume holographic correlator overcomes these by storing a large number of filters that can be interrogated simultaneously. By using angle multiplexing, the match can be read out onto a high speed linear array of sensors. A scanning window can be used to implement shift invariance, thus, making the system operate like a space domain correlator. The space domain correlation method offers an advantage over the frequency domain correlator in that the correlation filter no longer has shift invariance imposed on it since the kernel can be modified depending on its position. This maybe used for normalising the kernel or imposing some non-linearity in an attempt to improve performance. However, one of the key advantages of the frequency domain method is lost using this technique, namely the speed of the computation. A large kernel space-domain correlation, performed on a computer, will be very slow compared to what is achievable using a 4f optical correlator. We propose a method of implementing this using the scanning holographic memory based correlator.

  4. Advanced space transportation systems, BARGOUZIN booster

    NASA Astrophysics Data System (ADS)

    Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, André; Couteau, Jean-Noël

    2008-07-01

    In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

  5. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  6. Advanced planar array development for space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of the Advanced Planar Array Development for the Space Station contract are presented. The original objectives of the contract were: (1) to develop a process for manufacturing superstrate assemblies, (2) to demonstrate superstrate technology through fabrication and test, (3) to develop and analyze a preliminary solar array wing design, and (4) to fabricate a wing segment based on wing design. The primary tasks completed were designing test modules, fabricating, and testing them. LMSC performed three tasks which included thermal cycle testing for 2000 thermal cycles, thermal balance testing at the Boeing Environmental Test Lab in Kent, Washington, and acceptance testing a 15 ft x 50 in panel segment for 100 thermal cycles. The surperstrate modules performed well during both thermal cycle testing and thermal balance testing. The successful completion of these tests demonstrate the technical feasibility of a solar array power system utilizing superstrate technology. This final report describes the major elements of this contract including the manufacturing process used to fabricate modules, the tests performed, and the results and conclusions of the tests.

  7. Space optics: Imaging X-ray optics workshop; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979

    NASA Technical Reports Server (NTRS)

    Weisskopf, M.

    1979-01-01

    The papers in this volume are broadly based and represent a comprehensive summary of past achievements, new designs, techniques and future plans in space optics. The design, construction, testing and use of grazing incidence optics have played an integral role in the advance of X-ray astronomy. Topics of interest include a cosmic X-ray telescope for ARIES rocket observations, quest for ultrahigh resolution in X-ray optics, optical coating techniques for Wolter-type substrates, astronomical applications of grazing incidence telescopes with polynomial surfaces, and a paraboloidal X-ray telescope mirror for solar coronal spectroscopy.

  8. Space optical materials and space qualification of optics; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Hale, Robert R. (Editor)

    1989-01-01

    The present conference on space optical materials discusses current metals and nonmetals-related processing R&D efforts, investigations of space optical effects, and the spaceborne qualification of optical components and systems. Attention is given to CVD SiC for optical applications, optical materials for space-based lasers, the high-efficiency acoustooptic and optoelectronic crystalline material Tl3AsSe3, HIPed Be for low-scatter cryogenic optics, durable solar-reflective surfacing for Be optics, thermal effects on Be mirrors, contamination effects on optical surfaces in the monolayer regime, and IR background signature survey experiment results. Also discussed are the contamination-control program for the EUE instrument, an optical multipass radiation system for the heating of levitated samples, optical sample-position sensing for electrostatic levitation, and the qualification of space lighting systems.

  9. Space optical materials and space qualification of optics; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Astrophysics Data System (ADS)

    Hale, Robert R.

    1989-10-01

    The present conference on space optical materials discusses current metals and nonmetals-related processing R&D efforts, investigations of space optical effects, and the spaceborne qualification of optical components and systems. Attention is given to CVD SiC for optical applications, optical materials for space-based lasers, the high-efficiency acoustooptic and optoelectronic crystalline material Tl3AsSe3, HIPed Be for low-scatter cryogenic optics, durable solar-reflective surfacing for Be optics, thermal effects on Be mirrors, contamination effects on optical surfaces in the monolayer regime, and IR background signature survey experiment results. Also discussed are the contamination-control program for the EUE instrument, an optical multipass radiation system for the heating of levitated samples, optical sample-position sensing for electrostatic levitation, and the qualification of space lighting systems.

  10. Rugged spinel optics for space based imaging systems

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Villalobos, Guillermo; Hunt, Michael; Kim, Woohong; Plunkett, Simon; Sanghera, Jasbinder

    2016-05-01

    Space environment is very harsh for optical systems. Currently available optical materials for space applications are susceptible to surface and bulk damage due to high-speed impacts from dust and debris found in the space environment. Impacts lead to surface pitting and fracturing that may compromise structural integrity and degrade the optical performance of imaging systems. We are developing polycrystalline spinel as a rugged optics material. With its 3x hardness and 5x strength, as compared to BK7 glass, spinel is a very promising optical material for space imaging applications. Spinel's broad transmission from 160 nm to 5000 nm will also enable multispectral imaging from ultraviolet to midwave infrared.

  11. Systems and methods for free space optical communication

    DOEpatents

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  12. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  13. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  14. Alignment of the James Webb Space Telescope optical telescope element

    NASA Astrophysics Data System (ADS)

    Glassman, Tiffany; Levi, Joshua; Liepmann, Till; Hahn, Walter; Bisson, Gary; Porpora, Dan; Hadjimichael, Theo

    2016-07-01

    The optical telescope element (OTE) of the James Webb Space Telescope has now been integrated and aligned. The OTE comprises the flight mirrors and the structure that supports them - 18 primary mirror segments, the secondary mirror, and the tertiary and fine steering mirrors (both housed in the aft optics subsystem). The primary mirror segments and the secondary mirror have actuators to actively control their positions during operations. This allows the requirements for aligning the OTE subsystems to be in the range of microns rather than nanometers. During OTE integration, the alignment of the major subsystems of the OTE structure and optics were controlled to ensure that, when the telescope is on orbit and at cryogenic temperatures, the active mirrors will be within the adjustment range of the actuators. Though the alignment of this flagship mission was complex and intricate, the key to a successful integration process turned out to be very basic: a clear, concise series of steps employing advanced planning, backup measurements, and cross checks that this multi-organizational team executed with a careful and methodical approach. This approach was not only critical to our own success but has implications for future space observatories.

  15. Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.; Roberts, William T.

    2014-01-01

    The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.

  16. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  17. Software design of segment optical transmitter for indoor free-space optical networks

    NASA Astrophysics Data System (ADS)

    Latal, Jan; Vitasek, Jan; Koudelka, Petr; Siska, Petr; Liner, Andrej; Hajek, Lukas; Vanderka, Ales; Vasinek, Vladimir; Lucki, Michal

    2015-01-01

    During recent years, there has been rapid development in optical networks. This includes not only fiber optical networks but also free space optical networks. The free space optical networks can be divided into indoor and outdoor ones. The indoor free space optical networks have been experiencing dramatic progress in the last years, allowed by the newest IEEE norm 802.15.7, which enabled development of different types of transmitter receivers, modulation formats, etc. The team of authors is dealing with software design of segment optical transmitters for an indoor free space optical network based on the multi-mode optical 50/125 or 62.5/125 μm fiber. Simulated data are then evaluated from the point of view of optical intensity uniform distribution and space spot light size radiating from segment optical transmitter.

  18. Free space optical communications: coming of age

    NASA Astrophysics Data System (ADS)

    Stotts, Larry B.; Stadler, Brian; Lee, Gary

    2008-04-01

    Information superiority, where for the military or business, is the decisive advantage of the 21st Century. While business enjoys the information advantage of robust, high-bandwidth fiber optic connectivity that heavily leverages installed commercial infrastructure and service providers, mobile military forces need the wireless equivalent to leverage that advantage. In other words, an ability to deploy anywhere on the globe and maintain a robust, reliable communications and connectivity infrastructure, equivalent to that enjoyed by a CONUS commercial user, will provide US forces with information superiority. Assured high-data-rate connectivity to the tactical user is the biggest gap in developing and truly exploiting the potential of the information superiority weapon. Though information superiority is much discussed and its potential is well understood, a robust communications network available to the lowest military echelons is not yet an integral part of the force structure, although high data rate RF communications relays, e.g., Tactical Common Data Link, and low data SATCOM, e.g, Ku Spread Spectrum, are deployed and used by the military. This may change with recent advances in laser communications technologies created by the fiber optic communications revolution. This paper will provide a high level overview of the various laser communications programs conducted over the last 30 plus years, and proposed efforts to get these systems finally deployed.

  19. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.

  20. Advances of optical coherence tomography in myopia and pathologic myopia.

    PubMed

    Ng, D S C; Cheung, C Y L; Luk, F O; Mohamed, S; Brelen, M E; Yam, J C S; Tsang, C W; Lai, T Y Y

    2016-07-01

    The natural course of high-axial myopia is variable and the development of pathologic myopia is not fully understood. Advancements in optical coherence tomography (OCT) technology have revealed peculiar intraocular structures in highly myopic eyes and unprecedented pathologies that cause visual impairment. New OCT findings include posterior precortical vitreous pocket and precursor stages of posterior vitreous detachment; peripapillary intrachoroidal cavitation; morphological patterns of scleral inner curvature and dome-shaped macula. Swept source OCT is capable of imaging deeper layers in the posterior pole for investigation of optic nerve pits, stretched and thinned lamina cribrosa, elongated dural attachment at posterior scleral canal, and enlargement of retrobulbar subarachnoid spaces. This has therefore enabled further evaluation of various visual field defects in high myopia and the pathogenesis of glaucomatous optic neuropathy. OCT has many potential clinical uses in managing visual impairing conditions in pathologic myopia. Understanding how retinal nerve fibers are redistributed in axial elongation will allow the development of auto-segmentation software for diagnosis and monitoring progression of glaucoma. OCT is indispensable in the diagnosis of various conditions associated with myopic traction maculopathy and monitoring of post-surgical outcomes. In addition, OCT is commonly used in the multimodal imaging assessment of myopic choroidal neovascularization. Biometry and topography of the retinal layers and choroid will soon be validated for the classification of myopic maculopathy for utilization in epidemiological studies as well as clinical trials. PMID:27055674

  1. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  2. Constrained coding for the deep-space optical channel

    NASA Technical Reports Server (NTRS)

    Moision, B. E.; Hamkins, J.

    2002-01-01

    We investigate methods of coding for a channel subject to a large dead-time constraint, i.e. a constraint on the minimum spacing between transmitted pulses, with the deep-space optical channel as the motivating example.

  3. Scalable Track Initiation for Optical Space Surveillance

    NASA Astrophysics Data System (ADS)

    Schumacher, P.; Wilkins, M. P.

    2012-09-01

    The advent of high-sensitivity, high-capacity optical sensors for space surveillance presents us with interesting and challenging tracking problems. Accounting for the origin of every detection made by such systems is generally agreed to belong to the "most difficult" category of tracking problems. Especially in the early phases of the tracking scenario, when a catalog of targets is being compiled, or when many new objects appear in space because of on-orbit explosion or collision, one faces a combinatorially large number of orbit (data association) hypotheses to evaluate. The number of hypotheses is reduced to a more feasible number if observations close together in time can, with high confidence, be associated by the sensor into extended tracks on single objects. Most current space surveillance techniques are predicated on the sensor systems' ability to form such tracks reliably. However, the required operational tempo of space surveillance, the very large number of objects in Earth orbit and the difficulties of detecting dim, fast-moving targets at long ranges means that individual sensor track reports are often inadequate for computing initial orbit hypotheses. In fact, this situation can occur with optical sensors even when the probability of detection is high. For example, the arc of orbit that has been observed may be too short or may have been sampled too sparsely to allow well-conditioned, usable orbit estimates from single tracks. In that case, one has no choice but to solve a data association problem involving an unknown number of targets and many widely spaced observations of uncertain origin. In the present paper, we are motivated by this more difficult aspect of the satellite cataloging problem. However, the results of this analysis may find use in a variety of less stressing tracking applications. The computational complexity of track initiation using only angle measurements is polynomial in time. However, the polynomial degree can be high, always at

  4. Polyhedral integrated and free space optical interconnection

    DOEpatents

    Erteza, I.A.

    1998-01-06

    An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment. 7 figs.

  5. Polyhedral integrated and free space optical interconnection

    DOEpatents

    Erteza, Ireena A.

    1998-01-01

    An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment.

  6. Advanced Mating System Development for Space Applications

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2004-01-01

    This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.

  7. Optical Telescope Assembly Concept for Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Wallace, N.; Krim, M.; Horner, G.

    1996-12-01

    A recent study by a TRW/HDOS/GSFC/LaRC/Swales team produced a conceptual design for an eight-meter diameter Next Generation Space Telescope (NGST). This space telescope would have a deployed primary mirror with active figure control of the mirror petals to give diffraction limited performance at one micron wavelength. The High Accuracy Reflector Development (HARD) scheme, utilizing special translation-rotation mechanisms and precision latches, would deploy and lock the primary mirror segments into place. Thin mirror faceplates on stiff, lightweight backing structure would allow the extremely low weight at moderate cost. The telescope would produce images and spectra from radiation in the 0.5 micron to 10 micron spectral interval, have a 10 arc-minute circular field of view, weigh about 1000 kg, and fit within the shroud of an Atlas II AS launch vehicle. A deployable sunshield and an L2 Lissajous orbit would give passive cooling to 30 K. This paper describes the baseline optics, structures, and control systems of the Optical Telescope Assembly design produced in the study. The associated technologies are discussed, with emphasis on the optics and mechanisms for the primary mirror. For the optics, different mirror materials, fabrication processes, structural configurations, controls configurations, and verification techniques were studied, and a preliminary wavefront error budget was produced. For mechanisms, concepts were produced for high resolution actuators with a large operating range and for active vibration suppression. The state-of-the-art of all these technologies is presented, the technological advances needed, and some preliminary plans for their development.

  8. Contamination effects of oil paint on the space optical system

    NASA Astrophysics Data System (ADS)

    Lu, Chun-lian; Zhou, Yan-ping; Sang, Yi

    2008-03-01

    Space environment in which the space optical system exposed includes space vacuum, cryogenics, and energetic particles and etc. The contamination effects on the space optical system, so the optical damage occurs. And the image quality of the system will be affected. In this paper, the effects of contamination to optical system were discussed, and the contamination source and its space distribution were analyzed. An experiment was designed to determine the effect value. Numeral fitting method was used to analyze the relationship of the optical damage factor (Transmissivity decay factor) and the contamination degree of the optical system. In the experiment, the contamination degree was expressed by mass thickness with the unit μg/mm2. Oil paint was used as the contamination source. Comparison between previous and present researches was given.

  9. Research on Optical Observation for Space Debris

    NASA Astrophysics Data System (ADS)

    Sun, R. Y.

    2015-01-01

    stars and the smear noise, two operators of the mathematic morphology are presented to resolve this problem. Tests carried out indicate that the smear noise can be removed effectively, and the detection rates of the objects and stars are improved distinctly. Due to the relative movement between space debris and background stars, the blending of objects and stars is ineluctable. In view of the geometric differences between the stars and the objects, a technique for separating the blended objects based on the mathematical morphology is presented. It's sufficiently flexible to be applied, and the blended images can be separated effectively with a high degree of centroid precision. Here we present an automatic technique which optimally detects and measures the sources from the images of optical space debris observations. Tests demonstrate that the technique performs well from the point of view of the fast and accurate detection. An automatic image reconstruction method is also presented, the variable structural elements along multiple directions are adopted for the image convolution, and then all the corresponding convolved images are stacked. With this method, the position accuracies of background stars are improved distinctly. A technique based on the Lucas-Kanade algorithm is presented to detect the GEO objects between two short exposure time frames automatically. The experiments demonstrate that this method works effectively and robustly, the displacement precision of object images is about 10^{-3}, and the computing time is less than 0.1 s.

  10. Advances in food systems for space flight.

    PubMed

    Bourland, C T

    1998-01-01

    Food for space has evolved from cubes and tubes to normal Earth-like food consumed with common utensils. U.S. space food systems have traditionally been based upon the water supply. When on-board water was abundant (e.g., Apollo and Shuttle fuel cells produced water) then dehydrated food was used extensively. The International Space Station will have limited water available for food rehydration so there is little advantage for using dehydrated foods. Experience from Skylab and the Russian Mir space station emphasizes that food variety and quality are important elements in the design of food for closed systems. The evolution of space food has accentuated Earth-like foods, which should be a model for closed environment food systems.

  11. Advances in food systems for space flight.

    PubMed

    Bourland, C T

    1998-01-01

    Food for space has evolved from cubes and tubes to normal Earth-like food consumed with common utensils. U.S. space food systems have traditionally been based upon the water supply. When on-board water was abundant (e.g., Apollo and Shuttle fuel cells produced water) then dehydrated food was used extensively. The International Space Station will have limited water available for food rehydration so there is little advantage for using dehydrated foods. Experience from Skylab and the Russian Mir space station emphasizes that food variety and quality are important elements in the design of food for closed systems. The evolution of space food has accentuated Earth-like foods, which should be a model for closed environment food systems. PMID:11540467

  12. Space transfer vehicle avionics advanced development needs

    NASA Technical Reports Server (NTRS)

    Huffaker, C. F.

    1990-01-01

    The assessment of preliminary transportation program options for the exploration initiative is underway. The exploration initiative for the Moon and Mars is outlined by mission phases. A typical lunar/Mars outpost technology/advanced development schedule is provided. An aggressive and focused technology development program is needed as early as possible to successfully support these new initiatives. The avionics advanced development needs, plans, laboratory facilities, and benefits from an early start are described.

  13. Recent progress on silica-based optical switches and free-space optical switches

    NASA Astrophysics Data System (ADS)

    Himeno, Akira; Yamaguchi, Masayasu

    1996-03-01

    Space-division optical switches will be indispensable for future fiber-optic communication systems such as fiber-optic subscriber-line concentrators, photonic inter-module connectors, and protection switches. This paper reports recent progress on both silica-based thermo-optic optical switches with drive electronics. Two types of free-space switch modules are also reviewed; analog free-space switching modules which use liquid crystal beam shifters and digital free-space switching modules which incorporate semiconductor photonic switch array devices.

  14. Advances in high energy astronomy from space

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1972-01-01

    Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.

  15. Optical spectrum evolution induced by altering input light wavelength spacing

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Ma, Caiwen

    2016-11-01

    This study explored the optical spectrum evolution process using a pump-modulated light and a continuous-wave probe, launched simultaneously into a 1 km highly nonlinear fiber. A total of 70 optical spectra were obtained by each changing the wavelength spacing (0.4 nm) between the probe and pump lights. Simulation results indicated that wavelength spacing between the two beams caused a cyclical optical spectrum evolution process induced by cross-phase modulation. As input light wavelength spacing increased, the coupling between the two optical fields showed obvious attenuation in each neat, multi-peak cycle.

  16. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  17. Applications of advanced diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Welch, W. Hudson; Morris, James E.; Feldman, Michael R.

    1993-01-01

    Digital Optics Corporation is a UNC-Charlotte spin-off company, established to transfer technology developed at UNC-Charlotte for the design and manufacture Computer Generated Holograms (CGH's) and to market products based on CGH technology. DOC acquired core technologies from UNC-Charlotte including: (1) a CGH encoding process that can provide holograms with extremely high diffraction efficiency; (2) a low cost, high precision CGH manufacturing process; and (3) extensive holographic and refractive element design capabilities for design and evaluation of complex optical systems. These technologies have been used to design and/or manufacture optical components for a variety of applications including: (1) generation of Spot arrays; (2) fiber optic coupling elements; (3) optical interconnects between VLSI chips within and between multichip modules; and (4) imaging systems for head-mounted displays (HMD's).

  18. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  19. Advanced technology for America's future in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.

  20. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  1. Application of advanced technology to space automation

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  2. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  3. Advances in GaAs bistable optical devices

    NASA Astrophysics Data System (ADS)

    Jewell, J. L.; Tarng, S. S.; Gibbs, H. M.; Tai, K.; Weinberger, D. A.; Gossard, A. C.; McCall, S. L.; Passner, A.; Venkatesan, T. N. C.; Weigmann, W.

    1984-01-01

    Bistable optical devices (BOD's) using GaAs as the nonlinear medium are viable candidators for the achievement of fast ( ns), room temperature, low-power (mw), externally controllable optical switches which are easily fabricated and operated. Advances were made in all of these areas and efforts are in progress to improve performances in ways that are simultaneously compatible.

  4. Optical Testing of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.

    2014-01-01

    The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror, working to a 2018 launch date. Ground testing for the JWST will occur in two test campaigns, at NASAs Goddard Space Flight Center and Johnson Space Center. The talk describes the JWST and its optical ground testing, highlighting the roles of many of the University of Rochester Institute of Optics' alumni as well as current faculty and students.

  5. Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, volume 3

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A. (Editor)

    1992-01-01

    A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.

  6. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  7. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  8. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  9. Space data systems: Advanced flight computers

    NASA Technical Reports Server (NTRS)

    Benz, Harry F.

    1991-01-01

    The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: technology challenges; state-of-the-art assessment; program description; relationship to external programs; and cooperation and coordination effort.

  10. Recent advances in digital camera optics

    NASA Astrophysics Data System (ADS)

    Ishiguro, Keizo

    2012-10-01

    The digital camera market has extremely expanded in the last ten years. The zoom lens for digital camera is especially the key determining factor of the camera body size and image quality. Its technologies have been based on several analog technological progresses including the method of aspherical lens manufacturing and the mechanism of image stabilization. Panasonic is one of the pioneers of both technologies. I will introduce the previous trend in optics of zoom lens as well as original optical technologies of Panasonic digital camera "LUMIX", and in addition optics in 3D camera system. Besides, I would like to suppose the future trend in digital cameras.

  11. Advanced space storable propellants for outer planet exploration

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.

    2004-01-01

    An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.

  12. Advanced Learning Space as an Asset for Students with Disabilities

    ERIC Educational Resources Information Center

    Císarová, Klára; Lamr, Marián; Vitvarová, Jana

    2015-01-01

    The paper describes an e-learning system called Advanced Learning Space that was developed at the Technical University of Liberec. The system provides a personalized virtual work space and promotes communication among students and their teachers. The core of the system is a module that can be used to automatically record, store and playback…

  13. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  14. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-01

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed. PMID:27505793

  15. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  16. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  17. Advances in Pharmacotherapeutics of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi

    2006-01-01

    Space Motion Sickness (SMS) is common occurrence in the U.S. manned space flight program and nearly 2/3 of Shuttle crewmembers experience SMS. Several drugs have been prescribed for therapeutic management of SMS. Typically, orally-administered SMS medications (scopolamine, promethazine) have poor bioavailability and often have detrimental neurocognitive side effects at recommended doses. Intramuscularly administered promethazine (PMZ) is perceived to have optimal efficacy with minimal side effects in space. However, intramuscular injections are painful and the sedating neurocognitive side effects of promethazine, significant in controlled ground testing, may be masked in orbit because injections are usually given prior to crew sleep. Currently, EVAs cannot be performed by symptomatic crew or prior to flight day three due to the lack of a consistently efficacious drug, concern about neurocognitive side effects, and because an in-suit vomiting episode is potentially fatal. NASA has long sought a fast acting, consistently effective anti-motion sickness medication which has only minor neurocognitive side effects. Development of intranasal formulations of scopolamine and promethazine, the two commonly used SMS drugs at NASA for both space and reduced gravity environment medical operations, appears to be a logical alternative to current treatment modalities for SMS. The advantages are expected to be fast absorption, reliable and high bioavailability, and probably reduced neurocognitive side effects owing to dose reduction. Results from clinical trials with intranasal scopolamine gel formulation and pre-clinical testing of a prototype microcapsule intranasal gel dosage form of PMZ (INPMZ) will be discussed. These formulations are expected to offer a dependable and effective noninvasive treatment option for SMS.

  18. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  19. Advances in space radiation shielding codes.

    PubMed

    Wilson, John W; Tripathi, Ram K; Qualls, Garry D; Cucinotta, Francis A; Prael, Richard E; Norbury, John W; Heinbockel, John H; Tweed, John; De Angelis, Giovanni

    2002-12-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  20. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  1. Advanced Fire Detector for Space Applications

    NASA Technical Reports Server (NTRS)

    Kutzner, Joerg

    2012-01-01

    A document discusses an optical carbon monoxide sensor for early fire detection. During the sensor development, a concept was implemented to allow reliable carbon monoxide detection in the presence of interfering absorption signals. Methane interference is present in the operating wavelength range of the developed prototype sensor for carbon monoxide detection. The operating parameters of the prototype sensor have been optimized so that interference with methane is minimized. In addition, simultaneous measurement of methane is implemented, and the instrument automatically corrects the carbon monoxide signal at high methane concentrations. This is possible because VCSELs (vertical cavity surface emitting lasers) with extended current tuning capabilities are implemented in the optical device. The tuning capabilities of these new laser sources are sufficient to cover the wavelength range of several absorption lines. The delivered carbon monoxide sensor (COMA 1) reliably measures low carbon monoxide levels even in the presence of high methane signals. The signal bleed-over is determined during system calibration and is then accounted for in the system parameters. The sensor reports carbon monoxide concentrations reliably for (interfering) methane concentrations up to several thousand parts per million.

  2. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  3. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  4. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  5. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  6. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  7. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  8. Inspirations from biological optics for advanced photonic systems.

    PubMed

    Lee, Luke P; Szema, Robert

    2005-11-18

    Observing systems in nature has inspired humans to create technological tools that allow us to better understand and imitate biology. Biomimetics, in particular, owes much of its current development to advances in materials science and creative optical system designs. New investigational tools, such as those for microscopic imaging and chemical analyses, have added to our understanding of biological optics. Biologically inspired optical science has become the emerging topic among researchers and scientists. This is in part due to the availability of polymers with customizable optical properties and the ability to rapidly fabricate complex designs using soft lithography and three-dimensional microscale processing techniques.

  9. Advanced space transportation system support contract

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The general focus is on a phase 2 lunar base, or a lunar base during the period after the first return of a crew to the Moon, but before permanent occupancy. The software effort produced a series of trajectory programs covering low earth orbit (LEO) to various node locations, the node locations to the lunar surface, and then back to LEO. The surface operations study took a lunar scenario in the civil needs data base (CNDB) and attempted to estimate the amount of space-suit work or extravehicular activity (EVA) required to set up the base. The maintenance and supply options study was a first look at the problems of supplying and maintaining the base. A lunar surface launch and landing facility was conceptually designed. The lunar storm shelter study examined the problems of radiation protection. The lunar surface construction and equipment assembly study defined twenty surface construction and assembly tasks in detail.

  10. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  11. Characterization of a space orbited incoherent fiber optic bundle

    NASA Technical Reports Server (NTRS)

    Dewalt, Stephen A.; Taylor, Edward W.

    1993-01-01

    The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.

  12. Preventing Technique of Metal Deposition on Optical Devices in Space Diode Laser Welding for Space Applications

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Tanaka, Kenji; Ohtani, Masato; Shobako, Shinichiro; Terajima, Noboru; Hiraoka, Nobuaki

    In future space developments, the welding in space may be required for the repairs of the ISS and the constructions of lunar base and space structures. The authors have studied the space Gas Hollow Tungsten Arc (GHTA) welding process since 1993. This paper describes the results for space applying the space Diode Laser (DL) welding process which the authors proposed in 2002. It is necessary to prevent the metal deposition on optical devices in order to utilize the space DL welding process in space. The authors studied the preventing technique of metal deposition which covered optical devices with the nozzle and blew the shielding gas out from nozzle outlet. The metal deposition can be reduced by supplying the nozzle with inert gas and blowing the gas out from nozzle outlet. The shielding gas argon perfectly prevents the metal deposition on optical devices when argon pressurizes the nozzle to over 19.9 Pa and spouts out from the nozzle outlet.

  13. Advanced Metal Foam Structures for Outer Space

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Johnson, William; Peker, Atakan

    2005-01-01

    A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

  14. Fiber optic bundle array wide field-of-view optical receiver for free space optical communications.

    PubMed

    Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Sluz, Joseph E; Venkat, Radha

    2010-11-01

    We propose a design for a free space optical communications (FSOC) receiver terminal that offers an improved field of view (FOV) in comparison to conventional FSOC receivers. The design utilizes a microlens to couple the incident optical signal into an individual fiber in a bundle routed to remote optical detectors. Each fiber in the bundle collects power from a solid angle of space; utilizing multiple fibers enhances the total FOV of the receiver over typical single-fiber designs. The microlens-to-fiber-bundle design is scalable and modular and can be replicated in an array to increase aperture size. The microlens is moved laterally with a piezoelectric transducer to optimize power coupling into a given fiber core in the bundle as the source appears to move due to relative motion between the transmitter and receiver. The optimum position of the lens array is determined via a feedback loop whose input is derived from a position sensing detector behind another lens. Light coupled into like fibers in each array cell is optically combined (in fiber) before illuminating discrete detectors.

  15. Fiber-Optic Sensing for In-Space Inspection

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  16. Sub-microradian pointing for deep space optical telecommunications network

    NASA Technical Reports Server (NTRS)

    Ortiz, G.; Lee, S.; Alexander, J.

    2001-01-01

    This presentation will cover innovative hardware, algorithms, architectures, techniques and recent laboratory results that are applicable to all deep space optical communication links, such as the Mars Telecommunication Network to future interstellar missions.

  17. Reflective and refractive optical materials for earth and space applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    NASA Technical Reports Server (NTRS)

    Riedl, Max J. (Editor); Hale, Robert R. (Editor); Parsonage, Thomas B. (Editor)

    1991-01-01

    The present conference discusses beryllium mirror design and fabrication, production of aspheric beryllium optical surfaces by HIP consolidation, the control of thermally induced porosity for the fabrication of beryllium optics, fine-grained beryllium optical coatings, light-absorbing beryllium baffle materials, and advanced broadband baffle materials. Also discussed are radiation-resistant optical glasses, a catalog of IR and cryooptical properties of selected materials, durable metal-dielectric mirror coatings, the optical stability of diffuse reflectance materials, and optical filters for space applications.

  18. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  19. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  20. Advanced fiber optic seismic sensors (geophone) research

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    The systematical research on the fiber optic seismic sensors based on optical Fiber Bragg Grating (FBG) sensing technology is presented in this thesis. Optical fiber sensors using fiber Bragg gratings have a number of advantages such as immunity to electromagnetic interference, lightweight, low power consumption. The FBG sensor is intrinsically sensitive to dynamic strain signals and the strain sensitivity can approach sub micro-strain. Furthermore, FBG sensors are inherently suited for multiplexing, which makes possible networked/arrayed deployment on a large scale. The basic principle of the FBG geophone is that it transforms the acceleration of ground motion into the strain signal of the FBG sensor through mechanical design, and after the optical demodulation generates the analog voltage output proportional to the strain changes. The customized eight-channel FBG seismic sensor prototype is described here which consists of FBG sensor/demodulation grating pairs attached on the spring-mass mechanical system. The sensor performance is evaluated systematically in the laboratory using the conventional accelerometer and geophone as the benchmark, Two major applications of FBG seismic sensor are demonstrated. One is in the battlefield remote monitoring system to detect the presence of personnel, wheeled vehicles, and tracked vehicles. The other application is in the seismic reflection survey of oilfield exploration to collect the seismic waves from the earth. The field tests were carried out in the air force base and the oilfield respectively. It is shown that the FBG geophone has higher frequency response bandwidth and sensitivity than conventional moving-coil electromagnetic geophone and the military Rembass-II S/A sensor. Our objective is to develop a distributed FBG seismic sensor network to recognize and locate the presence of seismic sources with high inherent detection capability and a low false alarm rate in an integrated system.

  1. Recent advances in optical measurement methods in physics and chemistry

    SciTech Connect

    Gerardo, J.B.

    1985-01-01

    Progress being made in the development of new scientific measurement tools based on optics and the scientific advances made possible by these new tools is impressive. In some instances, new optical-based measurement methods have made new scientific studies possible, while in other instances they have offered an improved method for performing these studies, e.g., better signal-to-noise ratio, increased data acquisition rate, remote analysis, reduced perturbation to the physical or chemical system being studied, etc. Many of these advances were made possible by advances in laser technology - spectral purity, spectral brightness, tunability, ultrashort pulse width, amplitude stability, etc. - while others were made possible by improved optical components - single-made fibers, modulators, detectors, wavelength multiplexes, etc. Attention is limited to just a few of many such accomplishments made recently at Sandia. 17 references, 16 figures.

  2. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  3. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  4. The Role and Challenges of Free-space Optical Systems

    NASA Astrophysics Data System (ADS)

    Chaudhary, Sushank; Amphawan, Angela

    2014-12-01

    Complementing wireless radio networks with free-space optics (FSO) achieves high data rates by modulating radio subcarriers over an optical carrier without expensive optical fiber cabling, enabling a pervasive platform for reaching underserved areas. In this paper, we review the main features of FSO for terrestrial and inter-satellite communications. Simulations of 1 Gbps data transmission through FSO links in both terrestrial and inter-satellite communications have been investigated to highlight potential atmospheric challenges in FSO.

  5. Experimental free-space optical network for massively parallel computers

    NASA Astrophysics Data System (ADS)

    Araki, S.; Kajita, M.; Kasahara, K.; Kubota, K.; Kurihara, K.; Redmond, I.; Schenfeld, E.; Suzaki, T.

    1996-03-01

    A free-space optical interconnection scheme is described for massively parallel processors based on the interconnection-cached network architecture. The optical network operates in a circuit-switching mode. Combined with a packet-switching operation among the circuit-switched optical channels, a high-bandwidth, low-latency network for massively parallel processing results. The design and assembly of a 64-channel experimental prototype is discussed, and operational results are presented.

  6. Advanced Solid State Lighting for AES Deep Space Hab Project

    NASA Technical Reports Server (NTRS)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  7. The study of optical fiber communication technology for space optical remote sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yu, Sheng-quan; Zhang, Xiao-hong; Zhang, Rong-hui; Ma, Jian-hua

    2012-11-01

    The latest trends of Space Optical Remote Sensing are high-resolution, multispectral, and wide swath detecting. High-speed digital image data transmission will be more important for remote sensing. At present, the data output interface of Space Optical Remote Sensing, after performing the image data compression and formatting, transfers the image data to data storage unit of the Spacecraft through LVDS circuit cables. But this method is not recommended for high-speed digital image data transmission. This type of image data transmission, called source synchronization, has the low performance for high-speed digital signal. Besides, it is difficult for cable installing and system testing in limited space of vehicle. To resolve these issues as above, this paper describes a high-speed interconnection device for Space Optical Remote Sensing with Spacecraft. To meet its objectives, this device is comprised of Virtex-5 FPGA with embedded high-speed series and power-efficient transceiver, fiber-optic transceiver module, the unit of fiber-optic connection and single mode optical fiber. The special communication protocol is performed for image data transferring system. The unit of fiber-optic connection with high reliability and flexibility is provided for transferring high-speed serial data with optical fiber. It is evident that this method provides many advantages for Space Optical Remote Sensing: 1. Improving the speed of image data transferring of Space Optical Remote Sensing; 2. Enhancing the reliability and safety of image data transferring; 3. Space Optical Remote Sensing will be reduced significantly in size and in weight; 4. System installing and system testing for Space Optical Remote Sensing will become easier.

  8. Tunable Optical Filters for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crandall, Charles; Clark, Natalie; Davis, Patricia P.

    2007-01-01

    Spectrally tunable liquid crystal filters provide numerous advantages and several challenges in space applications. We discuss the tradeoffs in design elements for tunable liquid crystal birefringent filters with special consideration required for space exploration applications. In this paper we present a summary of our development of tunable filters for NASA space exploration. In particular we discuss the application of tunable liquid crystals in guidance navigation and control in space exploration programs. We present a summary of design considerations for improving speed, field of view, transmission of liquid crystal tunable filters for space exploration. In conclusion, the current state of the art of several NASA LaRC assembled filters is presented and their performance compared to the predicted spectra using our PolarTools modeling software.

  9. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  10. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  11. Advanced Engineering Environments for Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  12. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  13. Adaptive Optics and NICMOS Uniqueness Space

    SciTech Connect

    Max, C.

    1999-03-22

    As part of the HST Second Decade Study a subgroup consisting of Claire Max, James Beletic, Donald McCarthy, and Keith Noll has analyzed the expected performance of near-infra-red adaptive optics systems on the new generation of 8-10 meter ground-based telescopes, for comparison with HST. In addition the subgroup has polled the adaptive optics community regarding expected adaptive optics performance over the coming five years. Responses have been received from representatives of most of the major telescopes: Gemini, VLT, Keck, LBT, and the MMT, as well as of several operational 3-4 meter telescope AO systems. The present document outlines the conclusions to date, with emphasis on aspects relevant to the NICMOS cryocooler Independent Science Review. In general the near-infra-red capabilities of the new ground-based adaptive optics systems will be complementary to the capabilities of NICMOS. For example NICMOS will have greater H-band sensitivity, broader wavelength coverage, and higher point-spread-function stability, whereas ground-based adaptive optics instruments will have higher spatial and spectral resolution. Section 2 of this report outlines the operational constraints faced by the first generation of adaptive optics (AO) systems on new 8-10 meter telescopes. Section 3 describes the areas of relative strength of near-infra-red observing from the ground via adaptive optics, compared with NICMOS. A Table gives an overview of the main strengths and weaknesses of these current-generation systems. Section 4 gives an indication of ground-based capabilities anticipated in the near future and in five to ten years. Section 5 contains a summary and conclusions.

  14. Linear semiconductor optical amplifiers for amplification of advanced modulation formats.

    PubMed

    Bonk, R; Huber, G; Vallaitis, T; Koenig, S; Schmogrow, R; Hillerkuss, D; Brenot, R; Lelarge, F; Duan, G-H; Sygletos, S; Koos, C; Freude, W; Leuthold, J

    2012-04-23

    The capability of semiconductor optical amplifiers (SOA) to amplify advanced optical modulation format signals is investigated. The input power dynamic range is studied and especially the impact of the SOA alpha factor is addressed. Our results show that the advantage of a lower alpha-factor SOA decreases for higher-order modulation formats. Experiments at 20 GBd BPSK, QPSK and 16QAM with two SOAs with different alpha factors are performed. Simulations for various modulation formats support the experimental findings.

  15. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  16. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  17. Recent advances in optically pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Chilla, Juan; Shu, Qi-Ze; Zhou, Hailong; Weiss, Eli; Reed, Murray; Spinelli, Luis

    2007-02-01

    Optically pumped semiconductor lasers offer significant advantages with respect to all traditional diode-pumped solid state lasers (including fiber lasers) in regards to wavelength flexibility, broad pump tolerance, efficient spectral and spatial brightness conversion and high power scaling. In this talk we will describe our recent progress in the lab and applying this technology to commercial systems. Results include diversified wavelengths from 460 to 570nm, power scaling to >60W of CW 532nm, and the launch of a low cost 5W CW visible source for forensic applications.

  18. Advanced technology for space communications, tracking, and robotic sensors

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1989-01-01

    Technological advancements in tracking, communications, and robotic vision sensors are reviewed. The development of communications systems for multiple access, broadband, high data rate, and efficient operation is discussed. Consideration is given to the Tracking and Data Relay Satellite systems, GPS, and communications and tracking systems for the Space Shuttle and the Space Station. The use of television, laser, and microwave sensors for robotics and technology for autonomous rendezvous and docking operations are examined.

  19. Nanomaterials for Advanced Life Support in Advanced Life Support in Space systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Moloney, Padraig; Yowell, Leonard

    2006-01-01

    A viewgraph presentation describing nanomaterial research at NASA Johnson Space Center with a focus on advanced life support in space systems is shown. The topics include: 1) Introduction; 2) Research and accomplishments in Carbon Dioxide Removal; 3) Research and Accomplishments in Water Purification; and 4) Next Steps

  20. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  1. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  2. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  3. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  4. Recent advances in ALON optical ceramic

    NASA Astrophysics Data System (ADS)

    Wahl, Joseph M.; Hartnett, Thomas M.; Goldman, Lee M.; Twedt, Richard; Warner, Charles

    2005-05-01

    Aluminum Oxynitride (ALONTM Optical Ceramic) is a transparent ceramic material which combines transparency from the UV to the MWIR with excellent mechanical properties. ALON"s optical and mechanical properties are isotropic by virtue of its cubic crystalline structure. Consequently, ALON is transparent in its polycrystalline form and can be made by conventional powder processing techniques. This combination of properties and manufacturability make ALON suitable for a range of applications from IR windows, domes and lenses to transparent armor. The technology for producing transparent ALON was developed at Raytheon and has been transferred to Surmet Corporation where it is currently in production. Surmet is currently selling ALON into a number of military (e.g., windows and domes) and commercial (e.g., supermarket scanner windows) applications. The capability to manufacture large ALON windows for both sensor window and armor applications is in place. ALON windows up to 20x30 inches have been fabricated. In addition, the capability to shape and polish these large and curved windows is being developed and demonstrated at Surmet. Complex shapes, both hyper-hemispherical and conformal, are also under development and will be described.

  5. Degradation of optical components in space

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed.

  6. Qualification and Lessons Learned with Space Flight Fiber Optic Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie

    2007-01-01

    This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.

  7. Three-dimensional planar-integrated optics: a comparative view with free-space optics

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Song, Seok Ho

    2000-04-01

    This paper reports on the viability, effectiveness, versatility, and the utility of the concept of the planar integrated optical interconnection scheme with respect to the concept of the free-space interconnection scheme in realizing multiple integration of various micro/nano- photonic devices and components for applications in optical interconnection, optical circuits, optical switching, optical communication and information processing. Several planar optics schemes to detect parallel optical packet addresses in WDM switching networks, to perform a space- variant processing such as fractional correlation, and to construct multistage interconnection networks, have been successfully demonstrated in the 3D glass blocks. Using a gradient-index (GRIN) substrate as a signal propagation medium in the planar optics is a unique advantage, when compared to the free-space optics. We have demonstrated the GRIN-substrate concept by using six 1/4-pitch GRIN rod lenses and a vertical cavity surface emitting laser (VCSEL). The GRIN planar optics can be further extended to the use of 2D array of VCSEL microlasers and modulators in making massively parallel interconnects. A critical comparison between the planar integrated optics scheme and the free- space integrated scheme is given in terms of physics, engineering and technological concept.

  8. Background Noise Mitigation in Deep-Space Optical Communications Using Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Lee, S.; Wilson, K. E.; Troy, M.

    2005-05-01

    Over the last decade, adaptive optics technology has moved from the purview of a Department of Defense laboratory to astronomical telescopes around the world, and recently to industry, where adaptive optics systems have been developed to correct atmospheric-induced signal fades on high-bandwidth horizontal-path optical links. As JPL develops optical communications technology for high-bandwidth optical links from its deep-space probes, we are exploring the application of adaptive optics to the optical deep-space receiver to improve the quality of the link under turbulent atmospheric and high-background conditions. To provide maximum communications support, the operational deep-space optical communications receiver will need to point close to the Sun or to a bright Sun-illuminated planet. Under these conditions, the background noise from the sky degrades the quality of the optical link, especially when the atmospheric seeing is poor. In this work, we analyze how adaptive optics could be used to mitigate the effects of sky and planetary background noise on the deep-space optical communications receiver's performance in poor seeing conditions. Our results show that, under nominal background sky conditions, gains of 4 dB can be achieved for the uncoded bit-error rate of 0.01.

  9. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  10. Contamination monitoring approaches for EUV space optics

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Malina, Roger F.; Welsh, Barry J.; Battel, Steven J.

    1989-01-01

    Data from contaminant-induced UV optics degradation studies and particulate models are used here to develop end-of-service-life instrument contamination requirements which are very stringent but achievable. The budget is divided into allocations for each phase of hardware processing. Optical and nonoptical hardware are monitored for particulate and molecular contamination during initial cleaning and baking, assembly, test, and calibration phases. The measured contamination levels are compared to the requirements developed for each phase to provide confidence that the required end-of-life levels will be met.

  11. OAM-labeled free-space optical flow routing.

    PubMed

    Gao, Shecheng; Lei, Ting; Li, Yangjin; Yuan, Yangsheng; Xie, Zhenwei; Li, Zhaohui; Yuan, Xiaocong

    2016-09-19

    Space-division multiplexing allows unprecedented scaling of bandwidth density for optical communication. Routing spatial channels among transmission ports is critical for future scalable optical network, however, there is still no characteristic parameter to label the overlapped optical carriers. Here we propose a free-space optical flow routing (OFR) scheme by using optical orbital angular moment (OAM) states to label optical flows and simultaneously steer each flow according to their OAM states. With an OAM multiplexer and a reconfigurable OAM demultiplexer, massive individual optical flows can be routed to the demanded optical ports. In the routing process, the OAM beams act as data carriers at the same time their topological charges act as each carrier's labels. Using this scheme, we experimentally demonstrate switching, multicasting and filtering network functions by simultaneously steer 10 input optical flows on demand to 10 output ports. The demonstration of data-carrying OFR with nonreturn-to-zero signals shows that this process enables synchronous processing of massive spatial channels and flexible optical network. PMID:27661902

  12. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  13. Highlights of twenty years of optical space research.

    PubMed

    Tousey, R

    1967-12-01

    The most important first discoveries in optical space research are reviewed for the twenty years since the beginning in 1946. Only research conducted from space vehicles is included: rockets, earth orbiting vehicles, both unmanned and manned, space probes, and lunar landings. The optical fields involved are: measurements of extreme uv and x rays from the sun, including spectra, spectroheliograms, and monitoring; the white light solar corona; x-rays and extreme uv from stars and nebulae; the airglow; photography of the moon, Mars, and the earth; the technical breakthroughs that made the work possible. An extensive bibliography is included. PMID:20062361

  14. Highlights of twenty years of optical space research.

    PubMed

    Tousey, R

    1967-12-01

    The most important first discoveries in optical space research are reviewed for the twenty years since the beginning in 1946. Only research conducted from space vehicles is included: rockets, earth orbiting vehicles, both unmanned and manned, space probes, and lunar landings. The optical fields involved are: measurements of extreme uv and x rays from the sun, including spectra, spectroheliograms, and monitoring; the white light solar corona; x-rays and extreme uv from stars and nebulae; the airglow; photography of the moon, Mars, and the earth; the technical breakthroughs that made the work possible. An extensive bibliography is included.

  15. Optical diagnosis of mammary ductal carcinoma using advanced optical technology

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, Shuangmu; Wang, Chuan; Chen, Jianxin

    2015-02-01

    Clinical imaging techniques for diagnosing breast cancer mainly include X-ray mammography, ultrasound, and magnetic resonance imaging (MRI), which have respective drawbacks. Multiphoton microscopy (MPM) has become a potentially attractive optical technique to bridge the current gap in clinical utility. In this paper, MPM was used to image normal and ductal cancerous breast tissues, based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our results showed that MPM has the ability to exhibit the microstructure of normal breast tissue, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) lesions at the molecular level comparable to histopathology. These findings indicate that, with integration of MPM into currently accepted clinical imaging system, it has the potential to make a real-time histological diagnosis of mammary ductal carcinoma in vivo.

  16. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  17. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam. PMID:18364951

  18. Radon optical processing in radon space

    NASA Astrophysics Data System (ADS)

    Barrett, H. H.

    1986-06-01

    The stated goals of the Radon program were: (1) Theoretical investigation of the role of the Radon transform in signal processing, including enumeration of the operations achievable in Radon space. (2) Construction of a practical system for two dimensional spectral analysis and image filtering. (3) Proof-of-principle experiments for other processing operations, such as bandwidth compression and calculation of the Wigner distribution function. (4) Determination of the feasibility of Radon-space processing of three dimensional data, emphasizing not only system architecture but also storage media capable of saving rapidly retrieving the requisite data arrays. Several 2D signal-processing operations are discovered susceptible to solution in Radon space. These include the Hartley transform, certain joint coordinate-frequency representations (e.g., the Wigner distribution function and Woodward ambiguity functions), certain algorithms for spectrum estimation (e.g., the periodogram and the Yule Walker autoregressive model), and the cepstrum. Most of these Radon space operations have been demonstrated in computer simulations and some have been performed by means of analog hardware in the hybrid Radon space signal processing system. This system can perform a family of processing operations at about five frames per second, limited by the image-rotation rate. Processing is performed by surface acoustic wave (SAW) filters, and the 2D processed signal is displayed on a CRT.

  19. The Economics of Advanced In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  20. Materials and light thermal structures research for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Starke, Edgar A., Jr.; Herakovich, Carl T.

    1991-01-01

    The Light Thermal Structures Center at the University of Virginia sponsors educational and research programs focused on the development of reliable, lightweight structures to function in hostile thermal environments. Technology advances in materials and design methodology for light thermal structures will contribute to improved space vehicle design concepts with attendant weight savings. This paper highlights current research activities in three areas relevant to space exploration: low density, high temperature aluminum alloys, composite materials, and structures with thermal gradients. Advances in the development of new aluminum-lithium alloys and mechanically alloyed aluminum alloys are described. Material properties and design features of advanced composites are highlighted. Research studies in thermal structures with temperature gradients include inelastic panel buckling and thermally induced unstable oscillations. Current and future research is focused on the integration of new materials with applications to structural components with thermal gradients.

  1. Advanced optical interference filters based on metal and dielectric layers.

    PubMed

    Begou, Thomas; Lemarchand, Fabien; Lumeau, Julien

    2016-09-01

    In this paper, we investigate the design and the fabrication of an advanced optical interference filter based on metal and dielectric layers. This filter respects the specifications of the 2016 OIC manufacturing problem contest. We study and present all the challenges and solutions that allowed achieving a low deviation between the fabricated prototype and the target. PMID:27607695

  2. Design and performance evaluation of sensors and actuators for advanced optical systems

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2011-04-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA's next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers.

  3. 8-Meter UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This slide presentation proposes using the unprecedented capability of the planned Ares V launch vehicle, to place a 8 meter monolithic space telescope at the Earth-Sun L2 point. This new capability enables a new design pardigm -- simplicity. The six to eight meter class telescope with a massive high Technical Readiness Level ground observatory class monolithic primary mirror has been determined feasible. The proposed design, structural analysis, spacecraft design and shroud integration, thermal analysis, propulsion system, guidance navigation and pointing control assumptions about the avionics, and power systems, operational lifetime, and the idea of in-space servicing are reviewed.

  4. Space environmental effects on coated optics

    NASA Technical Reports Server (NTRS)

    Donovan, T. M.; Bennett, J. M.; Gyetvay, S. R.

    1991-01-01

    Several multilayer coated mirror designs developed for potential space applications were tested on the Long Duration Exposure Facility (LDEF) along with single layer witness coatings deposited on fused silica and a coated CaF2 window. Performance requirements included high mirror reflectivity, low absorption, low scatter, environmental durability, and radiation hardness. The designs were selected in screening tests using combined electron, proton, and simulated solar UV radiation. The purpose of the space test was to validate the above test results and determine the effects of atomic oxygen and contamination on mirror performance.

  5. Extreme Universe Space Observatory (EUSO) Optics Module

    NASA Technical Reports Server (NTRS)

    Young, Roy; Christl, Mark

    2008-01-01

    A demonstration part will be manufactured in Japan on one of the large Toshiba machines with a diameter of 2.5 meters. This will be a flat PMMA disk that is cut between 0.5 and 1.25 meters radius. The cut should demonstrate manufacturing the most difficult parts of the 2.5 meter Fresnel pattern and the blazed grating on the diffractive surface. Optical simulations, validated with the subscale prototype, will be used to determine the limits on manufacturing errors (tolerances) that will result in optics that meet EUSO s requirements. There will be limits on surface roughness (or errors at high spatial frequency); radial and azimuthal slope errors (at lower spatial frequencies) and plunge cut depth errors in the blazed grating. The demonstration part will be measured to determine whether it was made within the allowable tolerances.

  6. Phase space analysis in anisotropic optical systems

    NASA Technical Reports Server (NTRS)

    Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.

  7. Simulating atmospheric free-space optical propagation: rainfall attenuation

    NASA Astrophysics Data System (ADS)

    Achour, Maha

    2002-04-01

    With recent advances and interest in Free-Space Optics (FSO) for commercial deployments, more attention has been placed on FSO weather effects and the availability of global weather databases. The Meteorological Visual Range (Visibility) is considered one of the main weather parameters necessary to estimate FSO attenuation due to haze, fog and low clouds. Proper understanding of visibility measurements conducted throughout the years is essential. Unfortunately, such information is missing from most of the databases, leaving FSO players no choice but to use the standard visibility equation based on 2% contrast and other assumptions on the source luminance and its background. Another challenge is that visibility is measured using the visual wavelength of 550 nm. Extrapolating the measured attenuations to longer infrared wavelengths is not trivial and involves extensive experimentations. Scattering of electromagnetic waves by spherical droplets of different sizes is considered to simulate FSO scattering effects. This paper serves as an introduction to a series of publications regarding simulation of FSO atmospheric propagation. This first part focuses on attenuation due to rainfall. Additional weather parameters, such as rainfall rate, temperature and relative humidity are considered to effectively build the rain model. Comparison with already published experimental measurement is performed to validate the model. The scattering cross section due to rain is derived from the density of different raindrop sizes and the raindrops fall velocity is derived from the overall rainfall rate. Absorption due the presence of water vapor is computed using the temperature and relative humidity measurements.

  8. Effect analysis of oil paint on the space optical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Chun-lian; Lv, He; Han, Chun-xu; Wei, Hai-Bin

    2013-08-01

    The space contamination of spacecraft surface is a hot topic in the spacecraft environment project and environment safeguard for spacecraft. Since the 20th century, many American satellites have had malfunction for space contamination. The space optical systems are usually exposed to the external space environment. The particulate contamination of optical systems will degrade the detection ability. We call the optical damage. It also has a bad influence on the spectral imaging quality of the whole system. In this paper, effects of contamination on spectral imaging were discussed. The experiment was designed to observe the effect value. We used numeral curve fitting to analyze the relationship between the optical damage factor (Transmittance decay factor) and the contamination degree of the optical system. We gave the results of six specific wavelengths from 450 to 700nm and obtained the function of between the optical damage factor and contamination degree. We chose three colors of oil paint to be compared. Through the numeral curve fitting and processing data, we could get the mass thickness for different colors of oil paint when transmittance decreased to 50% and 30%. Some comparisons and research conclusions were given. From the comparisons and researches, we could draw the conclusions about contamination effects of oil paint on the spectral imaging system.

  9. Research and development optical deep space antenna sizing study

    NASA Technical Reports Server (NTRS)

    Wonica, D.

    1994-01-01

    Results from this study provide a basis for the selection of an aperture size appropriate for a research and development ground-based receiver for deep space optical communications. Currently achievable or near-term realizable hardware performance capabilities for both a spacecraft optical terminal and a ground terminal were used as input parameters to the analysis. Links were analyzed using OPTI, our optical link analysis program. Near-term planned and current missions were surveyed and categorized by data rate and telecommunications-subsystems prime power consumption. The spacecraft optical-terminal transmitter power was selected by matching these (RF) data rates and prime power requirements and by applying power efficiencies suitable to an optical communications subsystem. The study was baselined on a Mars mission. Results are displayed as required ground aperture size for given spacecraft transmitter aperture size, parametrized by data rate, transmit optical power, and wavelength.

  10. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  11. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  12. Optical materials for space based laser systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  13. Optically multiplexed imaging with superposition space tracking.

    PubMed

    Uttam, Shikhar; Goodman, Nathan A; Neifeld, Mark A; Kim, Changsoon; John, Renu; Kim, Jungsang; Brady, David

    2009-02-01

    We describe a novel method to track targets in a large field of view. This method simultaneously images multiple, encoded sub-fields of view onto a common focal plane. Sub-field encoding enables target tracking by creating a unique connection between target characteristics in superposition space and the target's true position in real space. This is accomplished without reconstructing a conventional image of the large field of view. Potential encoding schemes include spatial shift, rotation, and magnification. We discuss each of these encoding schemes, but the main emphasis of the paper and all examples are based on one-dimensional spatial shift encoding. System performance is evaluated in terms of two criteria: average decoding time and probability of decoding error. We study these performance criteria as a function of resolution in the encoding scheme and signal-to-noise ratio. Finally, we include simulation and experimental results demonstrating our novel tracking method. PMID:19189000

  14. Advanced magneto-optical materials and devices

    NASA Astrophysics Data System (ADS)

    Kang, Shaoying

    The magneto-optical materials with both high Faraday rotation and high transmittance capabilities are greatly desired in high speed switches, isolators, and visible imaging systems. In this thesis work, new magneto-optical materials that possess both high Faraday effect and high transmittance in the visible range of the spectrum were studied and synthesized. New Bismuth iron gallium garnet thin-films (Bi3Fe4Ga 1O12, BIGG) have been successfully deposited on gadolinium gallium garnet substrates with a pulsed laser deposition technique in our lab. X-ray diffraction analyses have proven that the BIGG films are of good epitaxial quality with a lattice constant close to 12.61+/-0.01Á. The bandwidth of BIGG's transmittance spectrum has been extended and its left edge has been shifted about 50nm towards the shorter wavelengths relative to those of Bi3Fe5O12 (BIG) films. The BIGG film is more transparent than a BIG film although BIGG's Faraday rotation angle is slightly less than that of a BIG film. The figure of merit of the BIGG garnet film has reached 16.5°, which is about 1.8 times that of a typical BIG film. Currently, the switches using BIGG films were tested and a 2.4 ns response time had been reached with a phi1 mm circular aperture at the wavelength of 532 nm. Iron Borate (FeBO3) is another material that is far superior in terms of the transmittance in the visible spectrum at room temperature to most garnet materials. The FeBO3 is one of the orthoferrites with a large natural birefringence for the light propagated along the magnetization direction. The effect of birefringence on Faraday rotation reduced the maximum obtainable rotation. In order to eliminate the birefringence and further improve the transmittance, a high energy ball-milling technique was used to synthesize FeBO3 nanoparticles. Our numerical simulation shows the nanoparticles could eliminate the birefringence, and concurrently keep the intrinsic Faraday rotation. After milling and centrifuging

  15. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  16. Engineering novel infrared glass ceramics for advanced optical solutions

    NASA Astrophysics Data System (ADS)

    Richardson, K.; Buff, A.; Smith, C.; Sisken, L.; Musgraves, J. David; Wachtel, P.; Mayer, T.; Swisher, A.; Pogrebnyakov, A.; Kang, M.; Pantano, C.; Werner, D.; Kirk, A.; Aiken, S.; Rivero-Baleine, C.

    2016-05-01

    Advanced photonic devices require novel optical materials that serve specified optical function but also possess attributes which can be tailored to accommodate specific optical design, manufacturing or component/device integration constraints. Multi-component chalcogenide glass (ChG) materials have been developed which exhibit broad spectral transparency with a range of physical properties that can be tuned to vary with composition, material microstructure and form. Specific tradeoffs that highlight the impact of material morphology and optical properties including transmission, loss and refractive index, are presented. This paper reports property evolution in a representative 20 GeSe2-60 As2Se3-20 PbSe glass material including a demonstration of a 1D GRIN profile through the use of controlled crystallization.

  17. Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation

    NASA Technical Reports Server (NTRS)

    Birnbaum, Kevin; Farr, William

    2013-01-01

    A common problem in optical detection is determining the arrival time of a weak optical pulse that may comprise only one to a few photons. Currently, this problem is solved by using a photodetector to convert the optical signal to an electronic signal. The timing of the electrical signal is used to infer the timing of the optical pulse, but error is introduced by random delay between the absorption of the optical pulse and the creation of the electrical one. To eliminate this error, a time-to-space converter separates a sequence of optical pulses and sends them to different photodetectors, depending on their arrival time. The random delay, called jitter, is at least 20 picoseconds for the best detectors capable of detecting the weakest optical pulses, a single photon, and can be as great as 500 picoseconds. This limits the resolution with which the timing of the optical pulse can be measured. The time-to-space converter overcomes this limitation. Generally, the time-to-space converter imparts a time-dependent momentum shift to the incoming optical pulses, followed by an optical system that separates photons of different momenta. As an example, an electro-optic phase modulator can be used to apply longitudinal momentum changes (frequency changes) that vary in time, followed by an optical spectrometer (such as a diffraction grating), which separates photons with different momenta into different paths and directs them to impinge upon an array of photodetectors. The pulse arrival time is then inferred by measuring which photodetector receives the pulse. The use of a time-to-space converter mitigates detector jitter and improves the resolution with which the timing of an optical pulse is determined. Also, the application of the converter enables the demodulation of a pulse position modulated signal (PPM) at higher bandwidths than using previous photodetector technology. This allows the creation of a receiver for a communication system with high bandwidth and high bits

  18. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  19. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  20. Expert systems and advanced automation for space missions operations

    NASA Technical Reports Server (NTRS)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  1. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy. PMID:25362364

  2. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  3. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  4. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  5. Advanced Fuels Can Reduce the Cost of Getting Into Space

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1998-01-01

    Rocket propellant and propulsion technology improvements can reduce the development time and operational costs of new space vehicle programs, and advanced propellant technologies can make space vehicles safer and easier to operate, and can improve their performance. Five major areas have been identified for fruitful research: monopropellants, alternative hydrocarbons, gelled hydrogen, metallized gelled propellants, and high-energy-density propellants. During the development of the NASA Advanced Space Transportation Plan, these technologies were identified as those most likely to be effective for new NASA vehicles. Several NASA research programs had fostered work in fuels under the topic Fuels and Space Propellants for Reusable Launch Vehicles in 1996 to 1997. One component of this topic was to promote the development and commercialization of monopropellant rocket fuels, hypersonic fuels, and high-energy-density propellants. This research resulted in the teaming of small business with large industries, universities, and Government laboratories. This work is ongoing with seven contractors. The commercial products from these contracts will bolster advanced propellant research. Work also is continuing under other programs, which were recently realigned under the "Three Pillars" of NASA: Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. One of the five areas is described below, and its applications and effect on future missions is discussed. This work is being conducted at the NASA Lewis Research Center with the assistance of the NASA Marshall Space Flight Center. The regenerative cooling of spacecraft engines and other components can improve overall vehicle performance. Endothermic fuels can absorb energy from an engine nozzle and chamber and help to vaporize high-density fuel before it enters the combustion chamber. For supersonic and hypersonic aircraft, endothermic fuels can absorb the high heat fluxes created on the wing leading edges and

  6. Cost Modeling for Space Optical Telescope Assemblies

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.

  7. Optical design of an astrometric space telescope

    NASA Astrophysics Data System (ADS)

    Richardson, E. H.; Morbey, C. L.

    1986-01-01

    A three-mirror telescope derived from the Paul corrector is described. It differs from the original Paul design in several respects. (1) The third mirror is located behind the primary mirror instead of in front of it. (2) The telescope is made off-axis so that there is no central obstruction, thus avoiding the extension and asymmetry of the diffraction pattern caused by the spiders holding an on-axis secondary mirror. (3) Baffling is not a problem as it is with the usual Paul design. The focal surface is flat where a moving ronchi grating is located. This is the first element in the astrometric analyzer. A real image of the pupil is produced behind the focus. This is helpful in the design of relay optics (not described) which reimage the grating onto a CCD.

  8. Free space optical communication link using a silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2015-03-01

    Many components for free space optical communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Non-mechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. In this paper a small-scale silicon photonic optical phased array is demonstrated for both the transmitter and receiver functions in a free space optical link. The device using an array of thermo-optically controlled waveguide phase shifters and demonstrates one-dimensional steering with a single control electrode. Transmission of a digitized video data stream over the link is shown.

  9. Phase space analysis of metamaterial-based optical systems

    NASA Astrophysics Data System (ADS)

    Mihaescu, T.; Dragoman, D.

    2014-06-01

    Phase space analysis of light refraction in optical systems consisting of slabs or thin lenses from either metamaterials with negative refractive indices or common materials is performed with the aim of finding the conditions of perfect imaging for metamaterial-based optical systems. The analysis in the paraxial approximation uses ABCD matrices, whereas full ray tracing is employed in the non-paraxial case. The phase space analysis reveals that the ideality of planar metamaterial lenses only occurs when the absolute value of the refractive index in metamaterials is the same as in the surrounding medium.

  10. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  11. Optical design and characterization of an advanced computational imaging system

    NASA Astrophysics Data System (ADS)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  12. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  13. An 8 Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing and at least 55,600 kg capacity to Earth Sun L2 enables entirely new classes of space telescopes. A consortium from NASA, Space Telescope Science Institute, and aerospace industry are studying an 8-meter monolithic primary mirror UV/optical/NIR space telescope to enable new astrophysical research that is not feasible with existing or near-term missions, either space or ground. This paper briefly reviews the science case for such a mission and presents the results of an on-going technical feasibility study, including: optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations & servicing; mass budget and cost.

  14. Advanced actuators for the control of large space structures

    NASA Technical Reports Server (NTRS)

    Downer, James; Hockney, Richard; Johnson, Bruce; Misovec, Kathleen

    1993-01-01

    The objective of this research was to develop advanced six-degree-of-freedom actuators employing magnetic suspensions suitable for the control of structural vibrations in large space structures. The advanced actuators consist of a magnetically suspended mass that has three-degrees-of-freedom in both translation and rotation. The most promising of these actuators featured a rotating suspended mass providing structural control torques in a manner similar to a control moment gyro (CMG). These actuators employ large-angle-magnetic suspensions that allow gimballing of the suspended mass without mechanical gimbals. Design definitions and sizing algorithms for these CMG type as well as angular reaction mass actuators based on multi-degree-of-freedom magnetic suspensions were developed. The performance of these actuators was analytically compared with conventional reaction mass actuators for a simple space structure model.

  15. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  16. OPSys: optical payload systems facility for testing space coronagraphs

    NASA Astrophysics Data System (ADS)

    Fineschi, S.; Crescenzio, G.; Massone, G.; Capobianco, G.; Zangrilli, L.; Antonucci, E.; Anselmi, F.

    2011-10-01

    The Turin Astronomical Observatory, Italy, has implemented in ALTEC, Turin, a new Optical Payload Systems (OPSys) facility for testing of contamination sensitive optical space flight instrumentation. The facility is specially tailored for tests on solar instruments like coronagraphs. OPSys comprises an ISO 7 clean room for instrument assembly and a relatively large (4.4 m3) optical test and calibration vacuum chamber: the Space Optics Calibration Chamber (SPOCC). SPOCC consists of a test section with a vacuum-compatible motorized optical bench, and of a pipeline section with a sun simulator at the opposite end of the optical bench hosting the instrumentation under tests. The solar simulator is an off-axis parabolic mirror collimating the light from the source with the solar angular divergence. After vacuum conditioning, the chamber will operate at an ultimate pressure of 10-6 mbar. This work describes the SPOCC's vacuum system and optical design, and the post-flight stray-light tests to be carried out on the Sounding-rocket Experiment (SCORE). This sub-orbital solar coronagraph is the prototype of the METIS coronagraph for the ESA Solar Orbital mission whose closest perihelion is one-third of the Sun-Earth distance. The plans are outlined for testing METIS in the SPOCC simulating the observing conditions from the Solar Orbiter perihelion.

  17. Corrective optics space telescope axial replacement alignment system

    NASA Astrophysics Data System (ADS)

    Slusher, Robert B.; Satter, Michael J.; Kaplan, Michael L.; Martella, Mark A.; Freymiller, Ed D.; Buzzetta, Victor

    1993-10-01

    To facilitate the accurate placement and alignment of the corrective optics space telescope axial replacement (COSTAR) structure, mechanisms, and optics, the COSTAR Alignment System (CAS) has been designed and assembled. It consists of a 20-foot optical bench, support structures for holding and aligning the COSTAR instrument at various stages of assembly, a focal plane target fixture (FPTF) providing an accurate reference to the as-built Hubble Space Telescope (HST) focal plane, two alignment translation stages with interchangeable alignment telescopes and alignment lasers, and a Zygo Mark IV interferometer with a reference sphere custom designed to allow accurate double-pass operation of the COSTAR correction optics. The system is used to align the fixed optical bench (FOB), the track, the deployable optical bench (DOB), the mechanisms, and the optics to ensure that the correction mirrors are all located in the required positions and orientations on-orbit after deployment. In this paper, the layout of the CAS is presented and the various alignment operations are listed along with the relevant alignment requirements. In addition, calibration of the necessary support structure elements and alignment aids is described, including the two-axis translation stages, the latch positions, the FPTF, and the COSTAR-mounted alignment cubes.

  18. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  19. Modeling the Laser Interferometer Space Antenna Optics

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul

    2005-01-01

    The Laser Interferometer Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, use Michelson interferometers with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.

  20. Recent advances in reaction bonded silicon carbide optics and optical systems

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Schwartz, Jay; Landry, David; Glenn, William; Rider, Brian; Chung, Michael

    2005-08-01

    SSG Precision Optronics, Inc. (SSG) has recently developed a number of Reaction Bonded (RB) Silicon Carbide (SiC) optical systems for space-based remote sensing and astronomical observing applications. RB SiC's superior material properties make it uniquely well suited to meet the image quality and long term dimensional stability requirements associated with these applications. An overview of the RB SiC manufacturing process is presented, along with a summary description of recently delivered RB SiC flight hardware. This hardware includes an RB SiC telescope and Pointing Mirror Assembly (PMA) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) mission and an imaging telescope for the Long-Range Reconnaissance Imager (LORRI) mission. SSG continues to advance the state-of-the-technology with SiC materials and systems. A summary of development activities related to a low-cost, fracture tough, fiber reinforced RB SiC material formulation, novel tooling to produce monolithic, partially closed back mirror geometries, and extension of the technology to large aspheric mirrors is also provided.

  1. Advanced regenerative-cooling techniques for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Shoji, J. M.

    1975-01-01

    A review of regenerative-cooling techniques applicable to advanced planned engine designs for space booster and orbit transportation systems has developed the status of the key elements of this cooling mode. This work is presented in terms of gas side, coolant side, wall conduction heat transfer, and chamber life fatigue margin considerations. Described are preliminary heat transfer and trade analyses performed using developed techniques combining channel wall construction with advanced, high-strength, high-thermal-conductivity materials (NARloy-Z or Zr-Cu alloys) in high heat flux regions, combined with lightweight steel tubular nozzle wall construction. Advanced cooling techniques such as oxygen cooling and dual-mode hydrocarbon/hydrogen fuel operation and their limitations are indicated for the regenerative cooling approach.

  2. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  3. Spectral model of optical scintillation for terrestrial free-space optical communication link design

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Hwan; Higashino, Takeshi; Tsukamoto, Katsutoshi; Komaki, Shozo; Kazaura, Kamugisha; Matsumoto, Mitsuji

    2011-03-01

    Since a deep and long-term fading in optical intensity results in considerable burst errors in the data, a terrestrial free-space optical (FSO) system has to be designed with consideration of a frequency characteristic of optical scintillation to achieve high quality wireless services over the link. In designing a terrestrial FSO link, we had better design the system considering variations caused by some slow time-varying parameters. This paper proposes a Butterworth-type spectral model of optical scintillation to design a terrestrial FSO link, which enables us to estimate the power spectral density of optical scintillation in a current optical wireless channel when time zone and weather parameters, such as temperature and rainfall intensity, are given. The spectral parameters of optical scintillation, cut-off frequency, and spectral slope are estimated from the data obtained in the experiment, and then their dependencies on time zone, temperature, and rainfall intensity are examined.

  4. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  5. Advanced-to-Revolutionary Space Technology Options - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2013-01-01

    Paper summarizes a spectrum of low TRL, high risk technologies and systems approaches which could massively change the cost and safety of space exploration/exploitation/industrialization. These technologies and approaches could be studied in a triage fashion, the method of evaluation wherein several prospective solutions are investigated in parallel to address the innate risk of each, with resources concentrated on the more successful as more is learned. Technology areas addressed include Fabrication, Materials, Energetics, Communications, Propulsion, Radiation Protection, ISRU and LEO access. Overall and conceptually it should be possible with serious research to enable human space exploration beyond LEO both safe and affordable with a design process having sizable positive margins. Revolutionary goals require, generally, revolutionary technologies. By far, Revolutionary Energetics is the most important, has the most leverage, of any advanced technology for space exploration applications.

  6. Advanced Microbial Check Valve development. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.; Sauer, R. L.

    1981-01-01

    The Microbial Check Valve (MCV) is a flight qualified assembly that provides bacteriologically safe drinking water for the Space Shuttle. The 1-lb unit is basically a canister packed with an iodinated ion-exchange resin. The device is used to destroy organisms in a water stream as the water passes through it. It is equally effective for fluid flow in either direction and its primary method of disinfection is killing rather than filtering. The MCV was developed to disinfect the fuel cell water and to prevent back contamination of stored potable water on the Space Shuttle. This paper reports its potential for space applications beyond the basic Shuttle mission. Data are presented that indicate the MCV is suitable for use in advanced systems that NASA has under development for the reclamation of humidity condensate, wash water and human urine.

  7. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  8. Advances in space technology: the NSBRI Technology Development Team

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  9. Advancing Space Weather Modeling Capabilities at the CCMC

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Kuznetsova, Maria; Boblitt, Justin; Chulaki, Anna; MacNeice, Peter; Mendoza, Michelle; Mullinix, Richard; Pembroke, Asher; Pulkkinen, Antti; Rastaetter, Lutz; Shim, Ja Soon; Taktakishvili, Aleksandre; Wiegand, Chiu; Zheng, Yihua

    2016-04-01

    The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) serves as a community access point to an expanding collection of state-of-the-art space environment models and as a hub for collaborative development on next generation of space weather forecasting systems. In partnership with model developers and the international research and operational communities, the CCMC integrates new data streams and models from diverse sources into end-to-end space weather predictive systems, identifies weak links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will focus on the latest model installations at the CCMC and advances in CCMC-led community-wide model validation projects.

  10. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  11. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... COMMISSION Advanced Optics Electronics, Inc.; Order of Suspension of Trading March 2, 2011. It appears to the... securities of Advanced Optics Electronics, Inc. because it has not filed any periodic reports since the... of investors require a suspension of trading in Advanced Optics Electronics, Inc. Therefore, it...

  12. Overview of fiber optics in the natural space environment

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Dorsky, L.; Johnston, A.; Bergman, L.; Stassinopoulos, E.

    1991-01-01

    The potential applications of fiber-optic (FO) systems in spacecraft which will be exposed to the space radiation environment are discussed in view of tests conducted aboard the Long-Duration Exposure Facility and the Comet Rendezvous and Asteroid Flyby spacecraft. Attention is given to anticipated trends in the use of FO in spacecraft communications systems. The natural space radiation environment is noted to be far more benign than the military space environment, which encompasses displacement-damage effects due to significant neutron influences.

  13. Advanced simulations of optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Aumeyr, T.; Billing, M. G.; Bobb, L. M.; Bolzon, B.; Bravin, E.; Karataev, P.; Kruchinin, K.; Lefevre, T.; Mazzoni, S.

    2015-04-01

    Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the "eyes" of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR) are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP) mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  14. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  15. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  16. [Spectral calibration for space-borne differential optical absorption spectrometer].

    PubMed

    Zhou, Hai-Jin; Liu, Wen-Qing; Si, Fu-Qi; Zhao, Min-Jie; Jiang, Yu; Xue, Hui

    2012-11-01

    Space-borne differential optical absorption spectrometer is used for remote sensing of atmospheric trace gas global distribution. This instrument acquires high accuracy UV/Vis radiation scattered or reflected by air or earth surface, and can monitor distribution and variation of trace gases based on differential optical absorption spectrum algorithm. Spectral calibration is the premise and base of quantification of remote sensing data of the instrument, and the precision of calibration directly decides the level of development and application of the instrument. Considering the characteristic of large field, wide wavelength range, high spatial and spectral resolution of the space-borne differential optical absorption spectrometer, a spectral calibration method is presented, a calibration device was built, the equation of spectral calibration was calculated through peak searching and regression analysis, and finally the full field spectral calibration of the instrument was realized. The precision of spectral calibration was verified with Fraunhofer lines of solar light.

  17. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  18. Formation metrology and control for large separated optics space telescopes

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenridge, W.

    2002-01-01

    In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.

  19. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  20. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  1. Aspects of laser optics qualification for space applications

    NASA Astrophysics Data System (ADS)

    Riede, Wolfgang; Allenspacher, Paul; Schröder, Helmut; Mahnke, Peter; Paunescu, Gabriela; Wernham, Denny

    2009-10-01

    As a consequence of the ongoing interest for deployment of laser systems into space, suitable optical components have to be developed and must be extensively space qualified to ensure reliable, continuous, and autonomous operation. The exposure to space environment can adversely affect the longevity of optics, mainly coatings, and lead to system degradation. An increased operational risk is due to the air-vacuum effect, which can strongly reduce the laser damage resistance of optical coatings. For this purpose, a vacuum laser damage test bench has been developed and is operated at DLR. In extensive test campaigns, all damage-prone optics of the ALADIN laser system (being the laser source of the upcoming ESA ADM Aeolus mission) were tested under operative conditions at the fundamental and at the harmonic wavelengths of Nd:YAG. Further operational risks are due directly to operation under high vacuum. In the past, several space-based laser missions have suffered from anomalous performance loss or even failure after short operation times. This degradation is due to selective contamination of laser-exposed optical surfaces fed by outgassing constituents. These volatile components are omnipresent in vacuum vessels. Various organic and inorganic species were tested at our facilities for their criticality on deposit built-up. Finally, active optical components like Q-switch crystals or frequency converter crystals can also suffer from bulk absorption induced by high-energy radiation (gray tracking) and dehydration. To analyze these effects, an ultrahigh vacuum phase matching unit was set up to test various combinations of SHG and THG frequency converters.

  2. Degradation of optical components in a space environment

    NASA Technical Reports Server (NTRS)

    Dehainaut, Linda L.; Kenemuth, John; Tidler, Cynthia E.; Seegmiller, David W.

    1992-01-01

    The objective of the Phillips Laboratory (PL) Long Duration Exposure Facility (LDEF) experiment is to determine the adverse effects of the natural space environment on laser optical component and coating materials. The LDEF experiment provides a unique opportunity for the study of optical material response to an extended low earth orbit space exposure. The PL samples consist of 10 sets of the six materials each. The materials are uncoated fused silica, magnesium fluoride coated fused silica, uncoated molybdenum, molybdenum coated with chromium, silver and thorium fluoride, diamond turned copper, and diamond turned nickel plated copper. Performance degradation will be correlated to establish trends between sample location, duration of exposure, atomic oxygen exposure and other space environmental conditions. This paper discusses the results of the tests thus far performed on the LDEF samples and the plans for the future.

  3. Optical gyrotropy from axion electrodynamics in momentum space.

    PubMed

    Zhong, Shudan; Orenstein, Joseph; Moore, Joel E

    2015-09-11

    Several emergent phenomena and phases in solids arise from configurations of the electronic Berry phase in momentum space that are similar to gauge field configurations in real space such as magnetic monopoles. We show that the momentum-space analogue of the "axion electrodynamics" term E·B plays a fundamental role in a unified theory of Berry-phase contributions to optical gyrotropy in time-reversal invariant materials and the chiral magnetic effect. The Berry-phase mechanism predicts that the rotatory power along the optic axes of a crystal must sum to zero, a constraint beyond that stipulated by point-group symmetry, but observed to high accuracy in classic experimental observations on alpha quartz. Furthermore, the Berry mechanism provides a microscopic basis for the surface conductance at the interface between gyrotropic and nongyrotropic media.

  4. Feasibility study of an optically coherent telescope array in space

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1983-01-01

    Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.

  5. Optical gyrotropy from axion electrodynamics in momentum space.

    PubMed

    Zhong, Shudan; Orenstein, Joseph; Moore, Joel E

    2015-09-11

    Several emergent phenomena and phases in solids arise from configurations of the electronic Berry phase in momentum space that are similar to gauge field configurations in real space such as magnetic monopoles. We show that the momentum-space analogue of the "axion electrodynamics" term E·B plays a fundamental role in a unified theory of Berry-phase contributions to optical gyrotropy in time-reversal invariant materials and the chiral magnetic effect. The Berry-phase mechanism predicts that the rotatory power along the optic axes of a crystal must sum to zero, a constraint beyond that stipulated by point-group symmetry, but observed to high accuracy in classic experimental observations on alpha quartz. Furthermore, the Berry mechanism provides a microscopic basis for the surface conductance at the interface between gyrotropic and nongyrotropic media. PMID:26406854

  6. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  7. Indoor Free Space Optic: a new prototype, realization and evaluation

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian

    2008-08-01

    The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.

  8. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  9. Free-space optical wireless links with topology control

    NASA Astrophysics Data System (ADS)

    Milner, Stuart D.; Ho, Tzung-Hsien; Smolyaninov, Igor I.; Trisno, Sugianto; Davis, Christopher C.

    2002-12-01

    The worldwide demand for broadband communications is being met in many places through the use of installed single-mode fiber networks. However, there is still a significant 'first-mile' problem, which seriously limits the availability of broadband Internet access. Free-space optical wireless communication has emerged as a technique of choice for bridging gaps in the existing high data rate communication networks, and as a backbone for rapidly deployable mobile wireless communication infrastructure. Because free space laser communication links can be easily and rapidly redirected, optical wireless networks can be autonomously reconfigured in a multiple-connected topology to provide improved network performance. In this paper we describe research designed to improve the performance of such networks. Using topology control algorithms, we have demonstrated that multiply-connected, rapidly reconfigurable optical wireless networks can provide robust performance, and a high quality of service at high data rates (up to and beyond 1 Gbps). These systems are also very cost-effective. We have designed and tested on the University of Maryland campus a prototype four-node optical wireless network, where each node could be connected to the others via steerable optical wireless links. The design and performance of this network and the topology control is discussed.

  10. Adhesive Bonding for Optical Metrology Systems in Space Applications

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2015-05-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.

  11. Laser Beam Steering/shaping for Free Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.

  12. Nanostructure arrays in free-space: optical properties and applications.

    PubMed

    Collin, Stéphane

    2014-12-01

    Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light-matter interactions in sub-wavelength nanostructure arrays. We emphasize the role of symmetries and free-space coupling of resonant structures. We present the different scenarios for perfect optical absorption, transmission or reflection of plane waves in resonant nanostructures. We discuss the fabrication issues, experimental achievements and emerging applications of resonant nanostructure arrays.

  13. The Platform Design of Space-based Optical Observations of Space Debris

    NASA Astrophysics Data System (ADS)

    Chen, B. R.; Xiong, J. N.

    2016-03-01

    The basic design method of the platform for the space-based optical observations of space debris is introduced. The observation schemes of GEO (geosynchronous equatorial orbit) and LEO (low Earth orbit) debris are given respectively, including orbital parameters of platforms and pointing of telescopes, etc. Debris studied here is all from foreign catalog. According to the real orbit of space debris, the observational results of different schemes are simulated. By studying single platform, the optimal observing altitude for GEO debris and the optimal telescope's deflection angles at different altitudes for LEO debris are given. According to these, multi-platforms observation networks are designed. By analyzing the advantages and disadvantages of each scheme, it can provide reference for the application of space-based optical debris observation.

  14. Preparing the way to space borne Fresnel imagers. Space scenarios optical layouts

    NASA Astrophysics Data System (ADS)

    Deba, Paul; Etcheto, Pierre; Duchon, Paul

    2011-06-01

    The Fresnel Diffractive Array Imager (FDAI) relies on diffraction focusing to potentially ouput very high wavefront quality particularly in the Ultraviolet. After Chesnokov (Russ Space Bull 1(2), 1993) or Barton (Appl Opt 40(4):447-451, 2001), we intend to develop tangible optical designs for space missions at the horizon 2025. This paper refers to the phase 0 study completed at CNES. We canvass here different optical scenarios adapted to space formation flying, discussing the technologies involved, their level of maturity and criticity. Large spectral domains were investigated from Lyman- α to Infra-Red, with competitive aperture size and ambitious objectives. We conclude by a 4-m class UV space mission scenario that could be the first launched imager of this kind.

  15. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  16. Development of Advanced Robotic Hand System for space application

    NASA Technical Reports Server (NTRS)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  17. An Array of Optical Receivers for Deep-Space Communications

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  18. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  19. Environmental impact statement Space Shuttle advanced solid rocket motor program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.

  20. Atmospheric transmission at ~1.55 μm for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Zeller, John; Manzur, Tariq

    2010-04-01

    Free-space optics (FSO) holds the potential for high bandwidth communication, but atmospheric conditions can significantly affect the capability of a communication system to transfer information successfully. The effects of atmosphere on FSO communication and consequent optimal wavelength range for transmission are investigated through MODTRAN-based modeling of 1.55 μm transmission for multiple elevation angles in atmospheric conditions including clear maritime, desert extinction, and various levels of rain and fog. Beam transmission was also simulated for different relevant elevations for surface-to-surface and surface-to-air free-space optical communication networks. The atmospheric, free-space, and scintillation losses are investigated for optical path lengths of 2 km to determine transmit power required for successful data reception. In addition, FSO transmitter and receiver circuits were designed to optically relay an analog video signal and tested at path distances of up to 130 m. Using advanced tunable laser sources to provide illumination across wavelength ranges, particularly around the eye-safe 1.55 μm wavelength, it should be possible to overcome transmission limitations associated with adverse weather and atmospheric conditions.

  1. How the optic nerve allocates space, energy capacity, and information.

    PubMed

    Perge, János A; Koch, Kristin; Miller, Robert; Sterling, Peter; Balasubramanian, Vijay

    2009-06-17

    Fiber tracts should use space and energy efficiently, because both resources constrain neural computation. We found for a myelinated tract (optic nerve) that astrocytes use nearly 30% of the space and >70% of the mitochondria, establishing the significance of astrocytes for the brain's space and energy budgets. Axons are mostly thin with a skewed distribution peaking at 0.7 microm, near the lower limit set by channel noise. This distribution is matched closely by the distribution of mean firing rates measured under naturalistic conditions, suggesting that firing rate increases proportionally with axon diameter. In axons thicker than 0.7 microm, mitochondria occupy a constant fraction of axonal volume--thus, mitochondrial volumes rise as the diameter squared. These results imply a law of diminishing returns: twice the information rate requires more than twice the space and energy capacity. We conclude that the optic nerve conserves space and energy by sending most information at low rates over fine axons with small terminal arbors and sending some information at higher rates over thicker axons with larger terminal arbors but only where more bits per second are needed for a specific purpose. Thicker axons seem to be needed, not for their greater conduction velocity (nor other intrinsic electrophysiological purpose), but instead to support larger terminal arbors and more active zones that transfer information synaptically at higher rates. PMID:19535603

  2. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    NASA Astrophysics Data System (ADS)

    Park, Won Hyun; Kim, Seonghui; Lee, Hanshin; Yi, Hyun-Su; Lee, Jae-Min; Ham, Sun-Jung; Yoon, Jeeyeon; Kim, Sug-Whan; Yang, Ho Soon; Choi, Ki-Hyuk; Kim, Zeen Chul; Lockwood, Mike; Morris, Nigel; Tosh, Ian

    2007-03-01

    The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm) in wavefront error, the ensquared energy of 61.7%(in 14 μ m) and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1}) at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  3. Aposition multiaperture optical systems operating in signature and pseudo space

    SciTech Connect

    Walters, R.A.; Mathews, B.E.

    1983-01-01

    Multiaperture optical systems are compared to the highly efficient insect eye, both providing wide fields of view with excellent resolution, fast parallel processing and no moving parts. A nomenclature useful in describing multiaperture systems is introduced. Superposition and aposition devices are discussed with respect to system characteristics and limits. A detection system was developed based on random aposition techniques. Point resolution of 2.5percent in a 59-degree field of view was obtained in pseudo space mapping. An extremely high resolution robotic vision system operating in signature space was developed. Characteristics of this device are cataloged. 5 references.

  4. Advanced MEMS systems for optical communication and imaging

    NASA Astrophysics Data System (ADS)

    Horenstein, M. N.; Stewart, J. B.; Cornelissen, S.; Sumner, R.; Freedman, D. S.; Datta, M.; Kani, N.; Miller, P.

    2011-06-01

    Optical communication and adaptive optics have emerged as two important uses of micro-electromechanical (MEMS) devices based on electrostatic actuation. Each application uses a mirror whose surface is altered by applying voltages of up to 300 V. Previous generations of adaptive-optic mirrors were large (~1 m) and required the use of piezoelectric transducers. Beginning in the mid-1990s, a new class of small MEMS mirrors (~1 cm) were developed. These mirrors are now a commercially available, mature technology. This paper describes three advanced applications of MEMS mirrors. The first is a mirror used for corona-graphic imaging, whereby an interferometric telescope blocks the direct light from a distant star so that nearby objects such as planets can be seen. We have developed a key component of the system: a 144-channel, fully-scalable, high-voltage multiplexer that reduces power consumption to only a few hundred milliwatts. In a second application, a MEMS mirror comprises part of a two-way optical communication system in which only one node emits a laser beam. The other node is passive, incorporating a retro-reflective, electrostatic MEMS mirror that digitally encodes the reflected beam. In a third application, the short (~100-ns) pulses of a commercially-available laser rangefinder are returned by the MEMS mirror as a digital data stream. Suitable low-power drive systems comprise part of the system design.

  5. Feature space optical coherence tomography based micro-angiography

    PubMed Central

    Zhang, Anqi; Wang, Ruikang K.

    2015-01-01

    Current optical coherence tomography (OCT) based micro-angiography is prone to noise that arises from static background. This work presents a novel feature space based optical micro-angiography (OMAG) method (fsOMAG) that can effectively differentiate flow signal from static background in the feature space. fsOMAG consists of two steps. In the first step a classification map is generated that provides criterion for classification in the second step to extract functional blood flow from experimental data set. The performance of fsOMAG is examined through phantom experiments and in-vivo human retinal imaging, and compared with the existing OMAG. The results indicate its potential for clinical applications. PMID:26137391

  6. A space-qualified transmitter system for heterodyne optical communications

    NASA Astrophysics Data System (ADS)

    McDonough, D. F.; Taylor, J. A.; Pillsbury, A. D.; Verly, D. P.; Kintzer, E. S.

    A space-based optical communications system requires the development of high-precision yet rugged electrooptical hardware. As part of a program to develop this technology, Lincoln Laboratory has designed and constructed a laser transmitter and a companion diagnostics module that have passed a rigorous space-qualification test program. The transmitter and diagnostics module are critical components of a satellite-to-satellite, 220 Mb/sec heterodyne communications experiment. The transmitter includes four redundant 30-mW diode lasers in a compact, lightweight package. The diagnostics module enables precise and autonomous setting of the transmitter laser power, wavelength, and modulation characteristics. The successful qualification of these components is a first, and a major milestone in the development of spaceborne optical communications systems.

  7. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    NASA Astrophysics Data System (ADS)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  8. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats.

    PubMed

    Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping

    2015-05-01

    Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

  9. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  10. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  11. Free-space optical communications link budget estimation.

    PubMed

    Stotts, Larry B; Kolodzy, Paul; Pike, Alan; Graves, Buzz; Dougherty, Dave; Douglass, Jeff

    2010-10-01

    This paper describes a new methodology of estimating free-space optical communications link budgets to be expected in conditions of severe turbulence. The approach is derived from observing that the ability of an adaptive optics (AO) system to compensate turbulence along a path is limited by the transmitter and receiver Rayleigh range, proportional to the diameter of the optics squared and inverse of the wavelength of light utilized. The method uses the Fried parameter computed over the range outside of the transmitter and receiver Rayleigh ranges, to calculate the Strehl ratios that yield a reasonable prediction of the light impinging on the receiving telescope aperture and the power coupling into the fiber. Comparisons will be given between theory and field measurements. These comparisons show that AO is most effective within the Rayleigh ranges, or when an atmospheric gradient is present, and lesser so when the total range is much greater than the sum of the Rayleigh ranges.

  12. Design Reference Missions for Deep-Space Optical Communication

    NASA Astrophysics Data System (ADS)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  13. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  14. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  15. Tolerancing of board-level-free-space optical interconnects

    NASA Astrophysics Data System (ADS)

    Zaleta, David; Patra, Susant; Ozguz, Volkan; Ma, Jian; Lee, Sing H.

    1996-03-01

    For optical interconnects to become a mature technology they must be amenable to electronic packaging technology. Two main obstacles to including free-space optical interconnects are alignment and heat-dissipation issues. Here we study the issues of alignment tolerancing that are due to assembly and manufacturing variations (passive-element tolerancing) over long board-level distances ( greater than 10 cm) for free-space optical interconnects. We also combine these variations with active optoelectronic device variations (active-element tolerancing). We demonstrate a computer-aided analysis procedure that permits one to determine both active-and passive-element tolerances needed to achieve some system-level specification, such as yield or cost. The procedure that we employ relies on developing a detailed design of the system to be studied in a standard optical design program, such as code v. Using information from this model, we can determine the integrated power falling on the detector, which we term optical throughput, by performing Gaussian propagation or general Fresnel propagation (if significant vignetting occurs). This optical throughput can be used to determine system-level performance criteria, such as bit-error rate. With this computer-aided analysis technique, a sensitivity analysis of all the variations under study is made on a system with realistic board-level interconnect distances to find each perturbation's relative effects (with other perturbations set to 0) on the power falling on the detector. This information is used to set initial tolerances for subsequent tolerancing analysis and design runs. A tolerancing analysis by Monte Carlo techniques is applied to determine if the yield or cost (yield is defined as the percentage of systems that have acceptable system performance) is acceptable. With a technique called parametric sampling, a subsequent tolerancing design run can be applied to optimize this yield or cost with little increase in

  16. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    SciTech Connect

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-06

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as {approx} 16 We/kg and {approx} 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is {approx} 640 m2 and {approx} 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is {approx} 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is {approx} 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  17. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ˜ 16 We/kg and ˜ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ˜ 640 m2 and ˜ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ˜ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ˜ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  18. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2

  19. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  20. Free space optics: a viable last-mile alternative

    NASA Astrophysics Data System (ADS)

    Willebrand, Heinz A.; Clark, Gerald R.

    2001-10-01

    This paper explores Free Space Optics (FSO) as an access technology in the last mile of metropolitan area networks (MANs). These networks are based in part on fiber-optic telecommunications infrastructure, including network architectures of Synchronous Optical Network (commonly referred to as SONET), the North American standard for synchronous data transmission; and Synchronous Digital Hierarchy (commonly referred to as SDH), the international standard and equivalent of SONET. Several converging forces have moved FSO beyond a niche technology for use only in local area networks (LANs) as a bridge connecting two facilities. FSO now allows service providers to cost effectively provide optical bandwidth for access networks and accelerate the extension of metro optical networks bridging what has been termed by industry experts as the optical dead zone. The optical dead zone refers to both the slowdown in capital investment in the short-term future and the actual connectivity gap that exists today between core metro optical networks and the access optical networks. Service providers have built extensive core and minimal metro networks but have not yet provided optical bandwidth to the access market largely due to the non-compelling economics to bridge the dead zone with fiber. Historically, such infrastructure build-out slowdowns have been blamed on a combination of economics, time-to-market constraints and limited technology options. However, new technology developments and market acceptance of FSO give service providers a new cost-effective alternative to provide high-bandwidth services with optical bandwidth in the access networks. Merrill Lynch predicts FSO will grow into a $2 billion market by 2005. The drivers for this market are a mere 5%- 6% penetration of fiber to business buildings; cost effective solution versus RF or fiber; and significant capacity which can only be matched by a physical fiber link, Merrill Lynch reports. This paper will describe FSO

  1. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  2. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  3. Advances in optical property measurements of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Dever, Joyce A.; Jaworske, Donald A.

    1997-01-01

    Some of the instruments and experimental approaches, used for measuring the optical properties of thermal control systems, are presented. The instruments' use in studies concerning the effects of combined contaminants and space environment on these materials, and in the qualification of hardware for spacecraft, are described. Instruments for measuring the solar absorptance and infrared emittance offer improved speed, accuracy and data handling. A transient method for directly measuring material infrared emittance is described. It is shown that oxygen exposure before measuring the solar absorptance should be avoided.

  4. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  5. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively. PMID:12224780

  6. Quantifying Atmospheric Impacts on Space Optical Imaging and Communications

    NASA Astrophysics Data System (ADS)

    Alliss, R.; Felton, B.

    2011-09-01

    Clouds and optical turbulence are key drivers in the performance of optical imaging and communication systems. Clouds are composed of liquid water and/or ice crystals and depending on the physical thickness can produce atmospheric fades easily exceeding 10 dB. In these more common cases, impacts on optical imaging and communication systems may be severe. On the other hand, there are times when cloud fades may be as low as 1 or 2 dB as a result of thin, ice crystal based cirrus clouds. In these cases, the impacts on imaging and communication collectors may be limited. Atmospheric optical turbulence acts to distort light in the atmosphere, degrading imagery from telescopes. The quality of service of a free space optical communications link may also be impacted. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon distributions of turbulence at the location of interest. Large variations in the Fried Coherence Length (ro) are common as a function of time of day and by location and can range from just a few centimeters to tens of centimeters. The ability to characterize the distribution and frequency of clouds and optical turbulence are critical in order to understand and predict atmospheric impacts. A state-of-the-art cloud detection system has been developed, validated and applied to produce high resolution climatologies in order to investigate these impacts. The cloud detection system uses global in coverage, geostationary, multi-spectral satellite imagery at horizontal resolutions up to one kilometer and temporal resolutions up to fifteen minutes. Multi-spectral imagery from the visible wavelengths (0.6 μm) through the longwave infrared (15 μm) are used to produce individual cloud tests which are combined to produce a composite cloud analysis. The basis for the detection algorithm relies on accurate modeling of the clear sky

  7. Applications of all optical signal processing for advanced optical modulation formats

    NASA Astrophysics Data System (ADS)

    Nuccio, Scott R.

    Increased data traffic demands, along with a continual push to minimize cost per bit, have recently motivated a paradigm shift away from traditional on-off keying (OOK) fiber transmission links towards systems utilizing more advanced modulation formats. In particular, modulation formats that utilize the phase of the optical signal, including differential phase shift keying (DPSK) and differential quadrature phase shift keying (DQPSK) along with polarization multiplexing (Pol-MUX), have recently emerged as the most popular means for transmitting information over long-haul and ultra-long haul fiber transmission systems. DPSK is motivated by an increase in receiver sensitivity compared to traditional OOK. DQPSK is motivated by a doubling of the spectral efficiency, along with increased tolerance to dispersion and nonlinear distortions. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency (bits/sec/Hz) of the optical channel, including quadrature amplitude modulation (QAM). Polarization multiplexing of channels is a straight forward method to allow two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX (D)QPSK has grown in interest as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters may be possible. In addition to advanced modulation formats, it is expected that optical

  8. Free-space carpet cloak using transformation optics and graphene.

    PubMed

    Zhang, Runren; Lin, Xiao; Shen, Lian; Wang, Zuojia; Zheng, Bin; Lin, Shisheng; Chen, Hongsheng

    2014-12-01

    Free-space carpet cloak designed with transformation optics requires materials exhibiting simultaneously anisotropic properties and plasma-like behaviors, but materials that simultaneously meet these requirements are rarely found in nature. The recently discovered graphene has shown unique anisotropic plasma-like behavior benefitting from its natural two-dimensional structure and in-plane ultrahigh electron mobility, and therefore, can be a good candidate for the free-space carpet cloak design. In this Letter, we theoretically propose a novel free-space carpet cloak by using periodically stacking layered graphene for the first time. Simulation results show an object under the graphene-based carpet cloak becomes invisible in the THz frequencies. By exploiting the large tunability of graphene's conductivity, we also demonstrate the working frequency of the designed cloak is continuously tunable in a wide spectrum. PMID:25490666

  9. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NASA Astrophysics Data System (ADS)

    Akca, B. I.; Považay, B.; Chang, L.; Alex, A.; Wörhoff, K.; de Ridder, R. M.; Drexler, W.; Pollnau, M.

    2013-06-01

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, the central components of a spectral-domain OCT (SD-OCT) system can be integrated on a chip. Arrayed-waveguide grating (AWG) spectrometers with their high spectral resolution and compactness are excellent candidates for on-chip SD-OCT systems. However, specific design-related issues of AWG spectrometers limit the performance of on-chip SD-OCT systems. Here we present advanced AWG designs which could overcome the limitations arising from free spectral range, polarization dependency, and curved focal plane of the AWG spectrometers. Using these advanced AWG designs in an SD-OCT system can provide not only better overall performance but also some unique aspects that a commercial system does not have. Additionally, a partially integrated OCT system comprising an AWG spectrometer and an integrated beam splitter, as well as the in vivo imaging using this system are demonstrated.

  10. Advances in optics in the medieval Islamic world

    NASA Astrophysics Data System (ADS)

    Al-Khalili, Jim

    2015-04-01

    This paper reviews the state of knowledge in the field of optics, mainly in catoptrics and dioptrics, before the birth of modern science and the well-documented contributions of men such as Kepler and Newton. The paper is not intended to be a comprehensive survey of the subject such as one might find in history of science journals; instead, it is aimed at the curious physicist who has probably been taught that nothing much of note was understood about the behaviour of light, beyond outdated philosophical musings, prior to the seventeenth century. The paper will focus on advances during the medieval period between the ninth and fourteenth centuries, in both the east and the west, when the theories of the Ancient Greeks were tested, advanced, corrected and mathematised. In particular, it concentrates on a multivolume treatise on optics written one thousand years ago by the Arab scholar, Ibn al-Haytham, and examines how it influenced our understanding of the nature of reflection and refraction of light. Even the well-informed physicist should find a few surprises here, which will alter his or her view of the debt we owe to these forgotten scholars.

  11. Containerless preparation of advanced optical glasses: Experiment 77F095

    NASA Technical Reports Server (NTRS)

    Happe, R. A.; Kim, K. S.

    1982-01-01

    Containerless processing of optical glasses was studied in preparation for space shuttle MEA flight experiments. Ground based investigation, experiment/hardware coordination activities and development of flight experiment and sample characterization plans were investigated. In the ground based investigation over 100 candidate glass materials for space processing were screened and promising compositions were identified. The system of Nb2O5-TiO2-CaO was found to be very rich with containerless glass compositions and as extensive number of the oxides combinations were tried resulting in a glass formation ternary phase diagram. The frequent occurrence of glass formation by containerless processing among the compositions for which no glass formations were previously reported indicated the possibility and an advantage of containerless processing in a terrestrial environment.

  12. Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.

    1989-01-01

    An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.

  13. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  14. The NASA New Millennium Program: Space Flight Validation of Advanced Technologies for Future Science Missions.

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Raymond, C.

    1999-09-01

    A broad range of advanced technologies are needed to support NASA's ambitious plans for planetary exploration during the next decade. To address these needs, the NASA New Millennium Program (NMP) identifies breakthrough spacecraft and instrument technologies and validates them in space to reduce their cost and risk. The first NMP Deep Space mission, DS1, was launched on October 24, 1998. Since then, it has successfully validated a solar-powered ion propulsion system, a miniaturized deep space transponder, autonomous operations and navigation software, multifunctional structures, low-power microelectronics and 2 instruments: the Miniature Integrated Camera and Spectrometer (MICAS), and the Plasma Experiment for Planetary Exploration (PEPE). To validate these technologies in a realistic environment, DS1's trajectory includes a close (<10km) flyby of asteroid 1992KD. An extended mission will allow encounters with comets Wilson-Harrington and Borrelly. The second NMP mission, DS2, consists of a pair of micro penetrators that are targeted near the Martian South Pole (71 to 76 S). DS2 was launched on January 3, 1999 as a piggyback payload on the Mars Surveyor '98 Lander cruise stage. After crashing into the Martian surface at greater than 200 m/s on December 3, 1999, these probes will validate technologies that will enable future Mars penetrator networks. These technologies include a single-stage, passive atmospheric entry system and a high-impact landing system designed to deliver a payload up to 1 meter below the Martian surface. This mission will also validate a miniaturized telecom system, low-temperature batteries, a suite of miniaturized in-situ scientific instruments, and other innovative packaging technologies. The next 2 NMP space science missions are currently being planned. If approved, Space Technology 3 (ST3) will validate technologies for separated spacecraft optical interferometry, to enable the ambitious Terrestrial Planet Finder (TPF) mission. The ST5

  15. Configurable adaptive optics for the correction of space-based optical systems

    NASA Astrophysics Data System (ADS)

    McComas, Brian Keith

    Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. This new error function, which is a new extension of conventional adaptive optics, leads to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance are determined and analyzed. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system's performance requirements. Experimental results demonstrate the wide field adaptive optics theory. Finally, it will be shown that a synthetic guide star stimulated from above the atmosphere can be used as a beacon for the wavefront sensors of space-based systems. These wavefront sensors must be optimized such that error in the reconstructed wavefront is minimized. The key equations that

  16. Advanced optical fiber communication simulations in electrotechnical engineering education

    NASA Astrophysics Data System (ADS)

    Vervaeke, Michael; Nguyen Thi, Cac; Thienpont, Hugo

    2004-10-01

    We present our efforts in education to apply advanced optical communication simulation software into our Electrical Engineering curriculum by implementing examples from theoretical courses with commercially available simulation software. Photonic design software is an interesting tool for the education of Engineers: these tools are able to simulate a huge variety of photonic components without major investments in student lab hardware. Moreover: some exotic phenomena ,which would usually involve specialty hardware, can be taught. We chose to implement VPItransmissionMaker from VPIsystems in the lab exercises for graduating Electrotechnical Engineers with majors in Photonics. The guideline we develop starts with basic examples provided by VPIsystems. The simplified simulation schemes serve as an introduction to the simulation techniques. Next, we highlight examples from the theoretical courses on Optical Telecommunications. A last part is an assignment where students have to design and simulate a system using real life component datasheets. The aim is to train them to interpret datasheets, to make design choices for their optical fiber system and to enhance their management skills. We detail our approach, highlight the educational aspects, the insight gained by the students, and illustrate our method with different examples.

  17. Advanced end-to-end fiber optic sensing systems for demanding environments

    NASA Astrophysics Data System (ADS)

    Black, Richard J.; Moslehi, Behzad

    2010-09-01

    Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.

  18. Overview of Advanced Space Propulsion Activities in the Space Environmental Effects Team at MSFC

    NASA Technical Reports Server (NTRS)

    Edwards, David; Carruth, Ralph; Vaughn, Jason; Schneider, Todd; Kamenetzky, Rachel; Gray, Perry

    2000-01-01

    Exploration of our solar system, and beyond, requires spacecraft velocities beyond our current technological level. Technologies addressing this limitation are numerous. The Space Environmental Effects (SEE) Team at the Marshall Space Flight Center (MSFC) is focused on three discipline areas of advanced propulsion; Tethers, Beamed Energy, and Plasma. This presentation will give an overview of advanced propulsion related activities in the Space Environmental Effects Team at MSFC. Advancements in the application of tethers for spacecraft propulsion were made while developing the Propulsive Small Expendable Deployer System (ProSEDS). New tether materials were developed to meet the specifications of the ProSEDS mission and new techniques had to be developed to test and characterize these tethers. Plasma contactors were developed, tested and modified to meet new requirements. Follow-on activities in tether propulsion include the Air-SEDS activity. Beamed energy activities initiated with an experimental investigation to quantify the momentum transfer subsequent to high power, 5J, ablative laser interaction with materials. The next step with this experimental investigation is to quantify non-ablative photon momentum transfer. This step was started last year and will be used to characterize the efficiency of solar sail materials before and after exposure to Space Environmental Effects (SEE). Our focus with plasma, for propulsion, concentrates on optimizing energy deposition into a magnetically confined plasma and integration of measurement techniques for determining plasma parameters. Plasma confinement is accomplished with the Marshall Magnetic Mirror (M3) device. Initial energy coupling experiments will consist of injecting a 50 amp electron beam into a target plasma. Measurements of plasma temperature and density will be used to determine the effect of changes in magnetic field structure, beam current, and gas species. Experimental observations will be compared to

  19. Advanced Embedded Active Assemblies for Extreme Space Applications

    NASA Technical Reports Server (NTRS)

    DelCastillo, Linda; Moussessian, Alina; Mojarradi, Mohammad; Kolawa, Elizabeth

    2009-01-01

    This work describes the development and evaluation of advanced technologies for the integration of electronic die within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible liquid crystal polymer (LCP), using gold thermo-compression flip chip bonding, and embedding them within the material. Daisy chain LCP assemblies were thermal cycled from -135 to +85degC (Mars surface conditions for motor control electronics). The LCP assembly method was further utilized to embed an operational amplifier designed for operation within the Mars surface ambient. The embedded op-amp assembly was evaluated with respect to the influence of temperature on the operational characteristics of the device. Applications for this technology range from multifunctional, large area, flexible membrane structures to small-scale, flexible circuits that can be fit into tight spaces for flex to fit applications.

  20. Thermal blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Pusch, Richard H.

    1985-01-01

    The feasibility of weaving Nextel ceramic and Nicalon silicon carbide yarns into integrally woven, three dimensional fluted core fabrics was demonstrated. Parallel face fabrics joined with woven fabric ribs to form triangular cross section flutes between the faces were woven into three single and one double layer configuration. High warp yarn density in the double layer configuration caused considerable yarn breakage during weaving. The flutes of all four fabrics were filled with mandrels made from Q-Fiber Felt and FRCI-20-12 to form candidate insulation panels for advanced Space Transportation Systems. Procedures for preparing and inserting the mandrels were developed. Recommendations are made on investigating alternate methods for filling the flutes with insulation, and for improving the weaving of these types of fabrics.

  1. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  2. Enhanced link availability for free space optical time-frequency transfer using adaptive optic terminals

    NASA Astrophysics Data System (ADS)

    Petrillo, Keith G.; Dennis, Michael L.; Juarez, Juan C.; Souza, Katherine T.; Baumann, Esther; Bergeron, Hugo; Coddington, Ian; Deschenes, Jean-Daniel; Giorgetta, Fabrizio R.; Newbury, Nathan R.; Sinclair, Laura C.; Swann, William C.

    2016-05-01

    Optical time and frequency transfer offers extremely high precision wireless synchronization across multiple platforms for untethered distributed systems. While large apertures provide antenna gain for wireless systems which leads to robust link budgets and operation over increased distance, turbulence disrupts the beam and limits the full realization of the antenna gain. Adaptive optics can correct for phase distortions due to turbulence which potentially increases the total gain of the aperture to that for diffraction-limited operation. Here, we explore the use of adaptive optics terminals for free-space time and frequency transfer. We find that the requirement of reciprocity in a two-way time and frequency transfer link is maintained during the phase compensation of adaptive optics, and that the enhanced link budget due to aperture gain allows for potential system operation over ranges of at least tens of kilometers.

  3. Fiber optic cryogenic liquid level detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Yang, Chengning; Chen, Shiping

    2009-05-01

    Liquid hydrogen and oxygen are widely used as fuels in space vehicles. Because both are highly dangerous materials prone to explosion, detection of the liquid level in fuel tank becomes a critical element for the safety and efficiency in space operations. Two liquid level sensing techniques are presented in this paper. The first technique is based on optical fiber long period gratings. In this technique, the full length of a specially fabricated fiber is the body of the probe becomes the length of the sensing fiber that is submerged in the liquid can be detected by the interrogation system. The second system uses optical fibers to guide light to and from an array of point probes. These probes are specially fabricated, miniature optical components which reflects a substantial amount of light back into the lead fiber when the probe is gas but almost no light when it is in liquid. A detailed theoretical study by computer simulation was carried out on these two techniques in order to determine which technique was more suitable for experimental investigation. The study revealed that although the first technique may provide more potential benefits in terms of weight and easy installation; a number of technical challenges make it not suitable for a short term solution. The second, probe array based technique, on the other hand, is more mature technically. The rest of the research program was therefore focused on the experimental investigation of the probe array detection technique and the test results are presented in this paper.

  4. An ATP System for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Lee, Shinhak; Irtuzm Gerardi; Alexander, James

    2008-01-01

    An acquisition, tracking, and pointing (ATP) system is proposed for aiming an optical-communications downlink laser beam from deep space. In providing for a direction reference, the concept exploits the mature technology of star trackers to eliminate the need for a costly and potentially hazardous laser beacon. The system would include one optical and two inertial sensors, each contributing primarily to a different portion of the frequency spectrum of the pointing signal: a star tracker (<10 Hz), a gyroscope (<50 Hz), and a precise fluid-rotor inertial angular-displacement sensor (sometimes called, simply, "angle sensor") for the frequency range >50 Hz. The outputs of these sensors would be combined in an iterative averaging process to obtain high-bandwidth, high-accuracy pointing knowledge. The accuracy of pointing knowledge obtainable by use of the system was estimated on the basis of an 8-cm-diameter telescope and known parameters of commercially available star trackers and inertial sensors: The single-axis pointing-knowledge error was found to be characterized by a standard deviation of 150 nanoradians - below the maximum value (between 200 and 300 nanoradians) likely to be tolerable in deep-space optical communications.

  5. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  6. Small electromagnetically clean satellite platform and advanced space instruments

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Makarov, Oleksander; Belyayev, Serhiy; Lukenyuk, Adolf; Marusenkov, Andriy

    The Ukrainian space program in the branch of space scientific research is based on recent achievements in the development of small microsatellite platforms and advanced onboard instrumentation. The present state of both these activities is outlined in the report. First, the design and composition peculiarities of a new microsatellite platform dedicated to carry the high sensitive electromagnetic sensors and mass-spectrometers are presented. An open nonhermetic construction gives possibilities to divide efficiently service and scientific payload. This feature as well as special measures foreseen by the solar panels and cable harness layout allows electromagnetic interference decreasing and easy introducing of shielding and compensating facilities. Up to 4 booms deployment is foreseen by the platform construction to move away far enough the electromagnetic sensors from the satellite body allow realizing the ultimate sensors sensitivity up to highest international standards. An onboard data collection and processing unit is organized in such a way that it controls efficiently both service and scientific systems. Second, some recent advances are reported in the branch of onboard electromagnetic instrumentation creation. New combined sensor - wave probe - is developed and experimentally tested in laboratory plasma chamber and in spatial experiment. This is a unique device which permits measuring simultaneously in one point three physical values - spatial current density, magnetic field fluctuations and electric potential. Other recent versions of super-light flux-gate and induction coil sensors are described. The performances of both microsatellite platform and mentioned electromagnetic sensors are discussed and the results of experimental verification of their parameters are presented. This works were supported by NSAU contract No 1-02/03 and STCU grant 3165.

  7. OPALS: An optical communications technology demonstration from the International Space Station

    NASA Astrophysics Data System (ADS)

    Oaida, B. V.; Abrahamson, M. J.; Witoff, R. J.; Martinez, J. N. B.; Zayas, D. A.

    Optical communication using space borne lasers has long promised to increase the amount of science data transmitted down to Earth. A first step in achieving operational capability is demonstrating the fundamentals of the optical link in an equivalent environment. The International Space Station, with its vast capability, is well suited to accommodate payloads aimed at advancing the readiness of such technologies. The Optical PAyload for Lasercomm Science (OPALS), to be launched to and operated on the ISS in late 2013, will attempt to downlink a short video to an optical ground station in California using a 1550 nanometer, 2.5 watt laser, over the course of a 90 day mission. To achieve this, in addition to designing and building the ISS payload, the OPALS team has increased the capability of the existing ground station, as well as developed the interface to the ISS infrastructure that will allow operators to command it. This paper will discuss the drivers and constraints created by designing to existing interfaces (ISS flight, ISS operational, ground system) while following a Class D payload implementation (NASA NPR 8705.4). The paper will also provide some specific examples of programmatic and technical areas that have been shaped by these drivers and constraints.

  8. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-01-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  9. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  10. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  11. The use of advanced materials in space structure applications

    NASA Astrophysics Data System (ADS)

    Eaton, D. C. G.; Slachmuylders, E. J.

    The last decade has seen the Space applications of composite materials become almost commonplace in the construction of configurations requiring high stiffness and/or dimensional stability, particularly in the field of antennas. As experience has been accumulated, applications for load carrying structures utilizing the inherent high specific strength/stiffness of carbon fibres have become more frequent. Some typical examples of these and their design development criteria are reviewed. As these structures and the use of new plastic matrices emerge, considerable attention has to be given to establishing essential integrity control requirements from both safety and cost aspects. The advent of manned European space flight places greater emphasis on such requirements. Attention is given to developments in the fields of metallic structures with discussion of the advantages and disadvantages of their application. The design and development of hot structures, thermal protection systems and air-breathing engines for future launch vehicles necessitates the use of the emerging metal/matrix and other advanced materials. Some of their important features are outlined. Means of achieving such objectives by greater harmonization within Europe are emphasized. Typical examples of on-going activities to promote such collaboration are described.

  12. New advanced radio diagnostics tools for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Krankowski, A.; Rothkaehl, H.; Atamaniuk, B.; Morawski, M.; Zakharenkova, I.; Cherniak, I.; Otmianowska-Mazur, K.

    2013-12-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities.

  13. Free space optical communication links in a marine environment

    NASA Astrophysics Data System (ADS)

    Gadwal, Veena; Hammel, Stephen

    2006-08-01

    We present an analysis of Free Space Optical (FSO) signal attenuation experienced in a marine environment. This work is in support of the Communication Link Assessment in Marine Environments program (CLAIME), for the Navy's investment in a network infrastructure for high altitude tactical layer connectivity to the Global Information Grid. The expanded bandwidth requirement can be realized using FSO networking capabilities. The performance of the link needs to be evaluated for different platforms such as ship-to-ship, airborne-to-ship, as well as airborne-to-airborne links. Near surface horizontal links required for ship-to-ship communications will be described in detail. The challenges faced in this environment include determining the attenuation due to aerosol scattering as well as optical turbulence. Determining the attenuation due to fog, haze, rain and snow will be addressed as well.

  14. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  15. Free space optical communications through clouds: analysis of signal characteristics.

    PubMed

    Wu, Binbin; Hajjarian, Zeinab; Kavehrad, Mohsen

    2008-06-10

    Free space optical communications (FSOC) is a method by which one transmits a modulated beam of light through the atmosphere for broadband applications. Fundamental limitations of FSOC arise from the environment through which light propagates. This work addresses transmitted light beam dispersion (spatial, angular, and temporal dispersion) in FSOC operating as a ground-to-air link when clouds exist along the communications channel. Light signals (photons) transmitted through clouds will interact with the cloud particles. Photon-particle interaction causes dispersion of light signals, which has significant effects on signal attenuation and pulse spread. The correlation between spatial and angular dispersion is investigated as well, which plays an important role on the receiver design. Moreover, the paper indicates that temporal dispersion (pulse spread) and energy loss strongly depend on the aperture size of the receiver, the field-of-view (FOV), and the position of the receiver relative to the optical axis of the transmitter.

  16. Intelligent Optical Polarimetry Development for Space Surveillance Missions

    NASA Astrophysics Data System (ADS)

    McMakin, Lenore; Zetocha, Paul; Sparkman, Clint; McIntire, Harold; Fetrow, Matthew

    1999-01-01

    The rapidly increasing numbers and complexity of earth-orbiting satellites in recent decades has placed heavy demands upon telemetry and ground support equipment and personnel to maintain and control the systems. A major thrust of current space program developments is the reduction of dependence upon ground control for normal satellite operations. This paper describes one such experiment currently under development at the Air Force Research Laboratory (AFRL), which addresses these needs. The experiment combines an optical polarimeter for measurement of multi-spectral polarization signals of orbiting objects and a system of intelligent software agents, which will provide automated payload and bus control. We discuss the development of the optical system hardware, software agent development, and aspects of the processing and control of information from on-board data.

  17. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  18. Advanced Optics for a Full Quasi-Optical Front Steering ECRH Upper Launcher for ITER

    SciTech Connect

    Moro, A.; Alessi, E.; Bruschi, A.; Platania, P.; Sozzi, C.; Chavan, R.; Collazos, A.; Goodman, T. P.; Udintsev, V. S.; Henderson, M. A.

    2009-11-26

    A full quasi-optical setup for the internal optics of the Front Steering Electron Cyclotron Resonance Heating (ECRH) Upper Launcher for ITER was designed, proving to be feasible and favorable in terms of additional flexibility and cost reduction with respect to the former design. This full quasi-optical solution foresees the replacement of the mitre-bends in the final section of the launcher with dedicated free-space mirrors to realize the last changes of directions in the launcher. A description of the launcher is given and its advantages presented. The parameters of the expected output beams as well as preliminary evaluations of truncation effects with the physical optics GRASP code are shown. Moreover, a study of mitre-bends replacement with single mirrors for multiple beams is described. In principle it could allow the beams to be larger at the mirror locations (with a further decrease of the peak power density due to partial overlapping) and has the additional advantage to get a larger opening with compressed beams to avoid conflicts with side-walls port. Constraints on the setup, arising both from the resulting beam characteristics in the space of free parameters and from mechanical requirements are taken into account in the analysis.

  19. Development Towards a Space Qualified Laser Stabilization System in Support of Space-Based Optical Interferometers

    NASA Technical Reports Server (NTRS)

    Seidel, David J.; Dubovitsky, Serge

    2000-01-01

    We report on the development, functional performance and space-qualification status of a laser stabilization system supporting a space-based metrology source used to measure changes in optical path lengths in space-based stellar interferometers. The Space Interferometry Mission (SIM) and Deep Space 3 (DS-3) are two missions currently funded by the National Aeronautics and Space Administration (NASA) that are space-based optical interferometers. In order to properly recombine the starlight received at each telescope of the interferometer it is necessary to perform high resolution laser metrology to stabilize the interferometer. A potentially significant error source in performing high resolution metrology length measurements is the potential for fluctuations in the laser gauge itself. If the laser frequency or wavelength is changing over time it will be misinterpreted as a length change in one of the legs of the interferometer. An analysis of the frequency stability requirement for SIM resulted in a fractional frequency stability requirement of square root (S(sub y)(f)) = <2 x 10(exp -12)/square root(Hz) at Fourier frequencies between 10 Hz and 1000 Hz. The DS-3 mission stability requirement is further increased to square root (S(sub y)(f)) = <5 x 10(exp -14)/Square root(Hz) at Fourier frequencies between 0.2 Hz and 10 kHz with a goal of extending the low frequency range to 0.05 Hz. The free running performance of the Lightwave Electronics NPRO lasers, which are the baseline laser for both SIM and DS-3 vary in stability and we have measured them to perform as follows (9 x l0(exp -11)/ f(Hz))(Hz)/square root(Hz)) = <( square root (S(sub y)(f)) = <(1.3 x l0(exp -8)/ f(Hz))/Square root(Hz). In order to improve the frequency stability of the laser we stabilize the laser to a high finesse optical cavity by locking the optical frequency of the laser to one of the transmission modes of the cavity. At JPL we have built a prototype space-qualifiable system meeting the

  20. The performance of space shift keying for free-space optical communications over turbulent channels

    NASA Astrophysics Data System (ADS)

    Abaza, Mohamed; Mesleh, Raed; Mansour, Ali; Aggoune, El-Hadi M.

    2015-01-01

    This paper evaluates the performance of space shift keying (SSK) free-space optical communication (FSO) over moderate and strong turbulent channels. It has been shown previously that repetition codes (RCs) using intensity modulation with direct detection techniques are superior to SSK system for a spectral efficiency of 1 bit/s/Hz. It is shown in this study that SSK outperforms RCs using M-ary pulse amplitude modulation for spectral efficiencies of 3 bits/s/Hz or larger. Analytical expressions for the bit error rate for the SSK system under study are derived and extensive simulation results corroborate the correctness of the conducted analysis.

  1. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  2. Application analysis of enhanced video tracker in space optical communication

    NASA Astrophysics Data System (ADS)

    Zhai, Xuhua; Zhang, Hongtao; Zhao, Haishan; Zhang, Zhiping

    2011-06-01

    Relay mirror is used to track ground-based beacon accurately in space optical communication. It is unreliable to track the beam by the ordinary quadrant. DBA video tracker applies avalanche photo diode quadrant to enhance, which can improve the performance of the relay mirror tracking system. However, the sight line disturbance followed is unacceptable. By the continuous designs we present the scheme of enhanced video tracker with high-passed high bandwidth quadrant, and it is proved that it is successful for the relay mirror experiment.

  3. Track Initiation for Electro-Optical Tracking of Space Objects

    NASA Astrophysics Data System (ADS)

    Xu, Z. W.; Wang, X.

    2016-03-01

    Aimed at the track initiation for the electro-optical tracking of space objects, and based on modified Hough transformation, a track initiation algorithm without prior information is proposed to realize the fully robotic identification and tracking of moving objects. The method is valid for the tracking of multi-target as well as with a non-continuous sequence. Simulation shows that the method is effective and applicable for operational usage, and is especially good for the search and discovery of new objects.

  4. Planets as background noise sources in free space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1986-01-01

    Background noise generated by planets is the dominant noise source in most deep space direct detection optical communications systems. Earlier approximate analyses of this problem are based on simplified blackbody calculations and can yield results that may be inaccurate by up to an order of magnitude. Various other factors that need to be taken into consideration, such as the phase angle and the actual spectral dependence of the planet albedo, in order to obtain a more accurate estimate of the noise magnitude are examined.

  5. Fusion of radar and optical sensors for space robotic vision

    NASA Technical Reports Server (NTRS)

    Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar

    1988-01-01

    Returned radar power estimates are used in an iterative procedure which generates successive approximations to the target shape in order to determine the shape of a 3-D surface. A simulation is shown which involves the reconstruction of an edge of a flat plate. Although this is a somewhat artificial example, it addresses the real problem of recovering edges of space objects lost in shadow or against a dark background. The results indicate that a microwave/optical sensor fusion system is possible, given sufficient computing power and accurate radar cross section measuring systems.

  6. Fiber optic multiplexed optical transmission systems for space vehicle launch facilities

    NASA Technical Reports Server (NTRS)

    Bell, C. H.

    1975-01-01

    Low loss Fiber Optic Cable is being evaluated as a potential future replacement for Kennedy Space Center's 13,000 mile Wideband cable system. In order to make economical use of the wide bandwidth characteristic of glass fibers, a Frequency Division Multiplexing (FDM) scheme has been devised to stack many analog and digital data channels on a single fiber. The Multiplexed Optical Transmission System (MOTS) will offer a unique flexibility of plug-in modularity to meet changing data and bandwidth requirements in addition to the standard 'goodies' of immunity to lightning and other EMI, RFI type interferences, and of smaller size and lighter weight.

  7. Affordable Options for Ground-Based, Large-Aperture Optical Space Surveillance Systems

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Beason, J. D.; Kiziah, R.; Spillar, E.; Vestrand, W. T.; Cox, D.; McGraw, J.; Zimmer, P.; Holland, C.

    2013-09-01

    The Space Surveillance Telescope (SST) developed by the Defense Advanced Research Projects Agency (DARPA) - has demonstrated significant capability improvements over legacy ground-based optical space surveillance systems. To fulfill better the current and future space situational awareness (SSA) requirements, the Air Force would benefit from a global network of such telescopes, but the high cost to replicate the SST makes such an acquisition decision difficult, particularly in an era of fiscal austerity. Ideally, the Air Force needs the capabilities provided by the SST, but at a more affordable price. To address this issue, an informal study considered a total of 67 alternative optical designs, with each being evaluated for cost, complexity and SSA performance. One promising approach identified in the study uses a single mirror at prime focus with a small number of corrective lenses. This approach results in telescopes that are less complex and estimated to be less expensive than replicated SSTs. They should also be acquirable on shorter time scales. Another approach would use a modest network of smaller telescopes for space surveillance. This approach provides significant cost advantages but faces some challenges with very dim objects. In this paper, we examine the cost and SSA utility for each of the 67 designs considered.

  8. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  9. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  10. Beam Optics Analysis — An Advanced 3D Trajectory Code

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-01

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  11. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Astrophysics Data System (ADS)

    Lafleur, S.

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  12. Advances in measuring ocean salinity with an optical sensor

    NASA Astrophysics Data System (ADS)

    Le Menn, M.; de Bougrenet de la Tocnaye, J. L.; Grosso, P.; Delauney, L.; Podeur, C.; Brault, P.; Guillerme, O.

    2011-11-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep.

  13. Space optics; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.

    1979-01-01

    The seminar focused on infrared systems, the space telescope, new design for space astronomy, future earth resources systems, and planetary systems. Papers were presented on infrared astronomy satellite, infrared telescope on Spacelab 2, design alternatives for the Shuttle Infrared Telescope Facility, Spacelab 2 infrared telescope cryogenic system, geometrical theory of diffraction and telescope stray-light analysis, Space Telescope scientific instruments, faint-object spectrograph for the Space Telescope, light scattering from multilayer optics, bidirectional reflectance distribution function measurements of stray light suppression coatings for the Space Telescope, optical fabrication of a 60-in. mirror, interferogram analysis for space optics, nuclear-pumped lasers for space application, geophysical fluid flow experiment, coherent rays for optical astronomy in space, optical system with fiber-optical elements, and Pioneer-Venus solar flux radiometer.

  14. Inflationary perturbation theory is geometrical optics in phase space

    SciTech Connect

    Seery, David; Frazer, Jonathan; Mulryne, David J.; Ribeiro, Raquel H. E-mail: D.Mulryne@qmul.ac.uk E-mail: R.Ribeiro@damtp.cam.ac.uk

    2012-09-01

    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ({sup t}ransport equations{sup )}, analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar 'δN' Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of f{sub NL} in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.

  15. Path to meter class single crystal silicon (SCSi) space optics

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.

    2012-03-01

    With the global financial crisis affecting funding for space systems development, customers are calling for lower cost systems. Yet, at the same time, these lower cost systems must have increased thermal response to operational environments and load survivability. We submit that single crystal silicon (SCSi) meets both of these requirements. This paper will highlight some key SCSi material properties, discuss the opportunities that led to the development of McCarter processing methods, and present the latest steps in the manufacturing path of McCarter Mirrors using SCSi, GFB (glass frit bonding) and MSF (McCarter super finish), including the concept drawing of a one meter SCSi lightweight mirror, which together sets up the last step toward a lower cost, high performing one meter SCSi space optic.

  16. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  17. Slitless Grism Spectroscopy with the Hubble Space Telescope Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Pasquali, A.; Pirzkal, N.; Larsen, S.; Walsh, J. R.; Kümmel, M.

    2006-02-01

    The Advanced Camera for Surveys on board the Hubble Space Telescope is equipped with one grism and three prisms for low-resolution, slitless spectroscopy in the range 1150-10500 Å. The G800L grism provides optical spectroscopy between 5500 Å and >1 μm, with a mean dispersion of 39 and 24 Å pixel-1 (in the first spectral order) when coupled with the Wide Field and the High Resolution Channels, respectively. Given the lack of any on-board calibration lamps for wavelength and narrowband flat-fielding, the G800L grism can only be calibrated using astronomical targets. In this paper, we describe the strategy used to calibrate the grism in orbit, with special attention given to the treatment of the field dependence of the grism flat field, wavelength solution, and sensitivity in both channels. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. Receiver front end for optical free space communications

    NASA Astrophysics Data System (ADS)

    Hildebrand, Ulrich

    1994-09-01

    The Receiver Front End (RFE) is the optical receiver of ESA's Semiconductor Laser Intersatellite Link Experiment (SILEX). Optical free space communication between satellites is characterized by narrow beams and therefore by demanding requirements for pointing accuracy. This applies for the steering of the laser beam in transmission, for the pointing of the receiver's field of view (FOV), and for the alignment between transmitted and received beams. The RFE housing, the optical system, the lens and detector's mounting have to be designed to meet the stringent requirements for angular stability. This paper concentrates on the mechanical and thermal aspects which strongly influence the performance. Thermal expansion effects are of major concern when keeping the optical axis stable. All materials have been matched to the thermal expansion characteristics of the hybrid circuit which contains the detector. Assuming only homogeneous temperature changes during life, no stress or angular deviations have to be expected. The relative changes of dimensions in any direction stays equal at different temperatures. The verification of opto-mechanical performance requires sophisticated measurement tools. Measurements have to be performed in order to determine the lateral stability of lens and detector. A dedicated autocollimator was developed which measures the angular stability of the optical axis after vibration, thermo-vacuum test and under temperature changes. It also serves as a test transmitter. Measurement accuracies of 5 (mu) rad have been achieved. For the measurements the RFE is mounted onto a test fixture. A reference mirror on the fixture is the stable reference which has to be more stable than the equipment itself.

  19. InAlAs/InGaAs avalanche photodiode arrays for free space optical communication.

    PubMed

    Ferraro, Mike S; Clark, William R; Rabinovich, William S; Mahon, Rita; Murphy, James L; Goetz, Peter G; Thomas, Linda M; Burris, Harris R; Moore, Christopher I; Waters, William D; Vaccaro, Kenneth; Krejca, Brian D

    2015-11-01

    In free space optical communication, photodetectors serve not only as communications receivers but also as position sensitive detectors (PSDs) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks, but recent advances in the fabrication and development of large-area, low-noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as communications receivers. This combined functionality allows for more flexibility and simplicity in optical system design without sacrificing the sensitivity and bandwidth performance of smaller, single-element data receivers. This work presents the development of APD arrays rated for bandwidths beyond 1 GHz with measured carrier ionization ratios of approximately 0.2 at moderate APD gains. We discuss the fabrication and characterization of three types of APD arrays along with their performance as high-speed photodetectors.

  20. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 2, Part 2; Space Station Freedom Advanced Development Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.

  1. Development of tailorable advanced blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Calamito, Dominic P.

    1987-01-01

    Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented.

  2. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented. PMID:16926876

  3. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.

  4. Computerized design and generation of space-variant holographic filters. II - Applications of space-variant filters to optical computing

    NASA Technical Reports Server (NTRS)

    Ambs, P.; Fainman, Y.; Esener, S.; Lee, S. H.

    1988-01-01

    Holographic optical elements (HOEs) of space-variant impulse response have been designed and generated using a computerized optical system. HOEs made of dichromated gelatin have been produced and used for spatial light modulator defect removal and optical interconnects. Experimental performance and characteristics are presented.

  5. Improvement of matrix condition of Hybrid, space variant optics by the means of parallel optics design.

    PubMed

    Klapp, Iftach; Mendlovic, David

    2009-07-01

    The problem of image restoration of space variant blur is common and important. One of the most useful descriptions of this problem is in its algebraic form I=H*O, where O is the object represented as a column vector, I is the blur image represented as a column vector and H is the PSF matrix that represents the optical system. When inverting the problem to restore the geometric object from the blurred image and the known system matrix, restoration is limited in speed and quality by the system condition. Current optical design methods focus on image quality, therefore if additional image processing is needed the matrix condition is taken "as is". In this paper we would like to present a new optical approach which aims to improve the system condition by proper optical design. In this new method we use Singular Value Decomposition (SVD) to define the weak parts of the matrix condition. We design a second optical system based on those weak SVD parts and then we add the second system parallel to the first one. The original and second systems together work as an improved parallel optics system. Following that, we present a method for designing such a "parallel filter" for systems with a spread SVD pattern. Finally we present a study case in which by using our new method we improve a space variant image system with an initial condition number of 8.76e4, down to a condition number of 2.29e3. We use matrix inversion to simulate image restoration. Results show that the new parallel optics immunity to Additive White Gaussian Noise (AWGN) is much better then that of the original simple lens. Comparing the original and the parallel optics systems, the parallel optics system crosses the MSEIF=0 [db] limit in SNR value which is more than 50db lower then the SNR value in the case of the original simple lens. The new parallel optics system performance is also compared to another method based on the MTF approach.

  6. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  7. ASTROD I - Astrodynamical Space Test of Relativity using Optical Devices

    NASA Astrophysics Data System (ADS)

    Selig, Hanns; Ni, Wei-Tou; Laemmerzahl, Claus

    2012-07-01

    In 2011 ASTROD I has been selected as one of the final 14 candidates for the Cosmic Vision M3 mission. ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and probing dark matter and dark energy gravitationally. It is an international project, and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, twowavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. Finally the mission was not selected for the final 4 candidates for CV M3 in 2011. Nevertheless, ASTROD is a very promising concept for a fundamental physics space mission and shares some key technologies with other popular space missions like LISA and Jason 2 (T2L2). The contribution gives an overview about the mission concept and the experimental setup.

  8. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  9. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Astrophysics Data System (ADS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  10. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  11. Optical interferometers for tests of relativistic gravity in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.

    1989-01-01

    A space-based astrometric interferometer with a large optical bandwidth is considered. POINTS (Precision Optical INTerferometry in Space) would measure the angular separation of two stars separated by about 90 deg on the sky with a nominal measurement error of 5 microarcseconds (mas). For a pair of mag 10 stars, the observation would require about 10 minutes. It is estimated that the instrument would measure daily the separation of two stars for each of about 60 pairs of stars; a random sequence of such measurements, if suitably redundant, contains the closure information necessary to detect and correct time dependent measurement biases to well below the nominal measurement accuracy. The 90 deg target separation permits absolute parallax measurements in all directions. A redundant observing schedule for 300 stars and 5 quasars would provide extra redundancy to compensate for the quasars' higher magnitude. If a nominal 30-day observation sequence were repeated 4 times per year for 10 years, stellar parameter uncertainties would be obtained of: 0.6 mas, position; 0.4 mas/y, proper motion; and 0.4 mas, parallax. This set of well-observed stars and quasars would form a rigid frame and the stars would serve as reference objects for measurements of all additional targets, as well as being targets of direct scientific interest. The instrument global data analysis since objectives are considered including a relativity test and technology.

  12. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  13. High-Performance Optical Frequency References for Space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  14. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  15. The Hubble Space Telescope optical systems failure report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The findings of the Hubble Space Telescope Optical Systems Board of Investigation are reported. The Board was formed to determine the cause of the flaw in the telescope, how it occurred, and why it was not detected before launch. The Board conducted its investigation to include interviews with personnel involved in the fabrication and test of the telescope, review of documentation, and analysis and test of the equipment used in the fabrication of the telescope's mirrors. The investigation proved that the primary mirror was made in the wrong shape (a 0.4-wave rms wavefront error at 632.8 nm). The primary mirror was manufactured by the Perkin-Elmer Corporation (Hughes Danbury Optical Systems, Inc.). The critical optics used as a template in shaping the mirror, the reflective null corrector (RNC), consisted of two small mirrors and a lens. This unit had been preserved by the manufacturer exactly as it was during the manufacture of the mirror. When the Board measured the RNC, the lens was incorrectly spaced from the mirrors. Calculations of the effect of such displacement on the primary mirror show that the measured amount, 1.3 mm, accounts in detail for the amount and character of the observed image blurring. No verification of the reflective null corrector's dimensions was carried out by Perkin-Elmer after the original assembly. There were, however, clear indications of the problem from auxiliary optical tests made at the time. A special optical unit called an inverse null corrector, designed to mimic the reflection from a perfect primary mirror, was built and used to align the apparatus; when so used, it clearly showed the error in the reflective null corrector. A second null corrector was used to measure the vertex radius of the finished primary mirror. It, too, clearly showed the error in the primary mirror. Both indicators of error were discounted at the time as being themselves flawed. The Perkin-Elmer plan for fabricating the primary mirror placed complete

  16. Analysis of orbit determination for space based optical space surveillance system

    NASA Astrophysics Data System (ADS)

    Sciré, Gioacchino; Santoni, Fabio; Piergentili, Fabrizio

    2015-08-01

    The detection capability and orbit determination performance of a space based optical observation system exploiting the visible band is analyzed. The sensor characteristics, in terms of sensitivity and resolution are those typical of present state of the art star trackers. A mathematical model of the system has been built and the system performance assessed by numerical simulation. The selection of the observer satellite's has been done in order to maximize the number of observed objects in LEO, based on a statistical analysis of the space debris population in this region. The space objects' observability condition is analyzed and two batch estimator based on the Levenberg-Marquardt and on the Powell dog-leg algorithms have been implemented and their performance compared. Both the algorithms are sensitive to the initial guess. Its influence on the algorithms' convergence is assessed, showing that the Powell dog-leg, which is a trust region method, performs better.

  17. Fiber optic data bus space experiment on board the microlectronics and photonics test bed (MPTB)

    NASA Astrophysics Data System (ADS)

    Dale, Cheryl J.; Marshall, Paul W.; de la Chapelle, Michael; Fritz, Martin E.; LaBel, Kenneth A.

    1995-05-01

    The Microelectronics and Photonics Test Bed (MPTB) is a space experiment which will evaluate the performance of components and sybsystems of important new technologies is advance of their deployment of future spacecraft. Devices aboard MPTB will monitor the environment, and the radiation effects data obtained on components will be compared to ground tests and predictions. We present a description of the proposed high performance fiber optic data bus (FODB) experiment for MPTB which will feature the newly available 200 Mbps Boeing STAR-FODB hardware which is designed for space applications. This bus uses a passive star architecture and implements a Linear Token Passing Bus (LTPB) standard. The existence of extensive ground radiation test results for the STAR-FODB will enable high confidence predicition of its on-orbit performance to be made prior to launch.

  18. Experimental implementation of fiber optic bundle array wide FOV free space optical communications receiver.

    PubMed

    Brown, Andrea M; Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Bair, Chun-Huei; Sluz, Joseph E

    2012-06-20

    A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver's ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.

  19. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  20. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  1. UniSat-5: a space-based optical system for space debris monitoring

    NASA Astrophysics Data System (ADS)

    Di Roberto, Riccardo; Cappelletti, Chantal

    2012-07-01

    Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for

  2. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  3. Advanced Technology Lunar Telescopes I. Overview and Progress Report On Ultra-Lightweight Optics

    NASA Astrophysics Data System (ADS)

    Chen, P. C.; Pitts, R. E.; Oliversen, R. J.; Stolarik, J. D.; Segal, K.; Wilson, T. L.; Lin, E. I.; Hull, J. R.; Romeo, R.; Hojaji, H.; Ma, K. B.; Chen, Q. Y.; Chu, W. K.; Chu, C. W.

    1993-12-01

    The materials and technology already exist to build fully functional steerable telescopes for use on the moon, telescopes that are cost effective, that can be deployed using existing launchers, and that can function for extended periods without human maintenance. We describe our concept of advanced technology telescopes (ATT) which combines the elements of i) ultra-lightweight precision optics and structures, ii) non-contact, electronically controlled superconductor bearings and drive mechanisms, and iii) high dynamic range radiation resistant sensors. Unlike previous transit telescope designs, the ATTs can point and track objects anywhere in the sky over the entire lunar night (or day), can be deployed in multiple unit arrays, and can be equipped with standard astronomical instruments including spectrographs, imagers, or even interferometers. We first describe the optics. Lightweight optics are crucial because they minimize the mass of the telescope assembly and its support structure and ultimately the entire payload. By using materials and fabrication technology similar to that already refined by ESA and proven for space applications, we show that it is possible to produce precision optical elements of very low areal density (< 2 kg per sq. m). The process also has much lower per unit cost compared to traditional mirror fabrication techniques. By supporting the optical elements with a class of very lightweight but stiff material already developed by NASA, a telescope assembly can be made that has essentially the minimum possible mass. Such ultra-lightweight construction makes possible astronomical payloads that can be sent to the moon using existing small and medium size rockets. The very low per unit cost permits the production and deployment of multiple units, thereby increasing the versatility and productivity of a lunar observatory while providing good redundancy. We demonstrate a proof-of-concept optical telescope assembly that has a 31 cm diameter primary

  4. Pointing Reference Scheme for Free-Space Optical Communications Systems

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm; Ortiz, Gerardo; Jeganathan, Muthu

    2006-01-01

    A scheme is proposed for referencing the propagation direction of the transmit laser signal in pointing a free-space optical communications terminal. This recently developed scheme enables the use of low-cost, commercial silicon-based sensors for tracking the direction of the transmit laser, regardless of the transmit wavelength. Compared with previous methods, the scheme offers some advantages of less mechanical and optical complexity and avoids expensive and exotic sensor technologies. In free-space optical communications, the transmit beam must be accurately pointed toward the receiver in order to maintain the communication link. The current approaches to achieve this function call for part of the transmit beam to be split off and projected onto an optical sensor used to infer the pointed direction. This requires that the optical sensor be sensitive to the wavelength of the transmit laser. If a different transmit wavelength is desired, for example to obtain a source capable of higher data rates, this can become quite impractical because of the unavailability or inefficiency of sensors at these wavelengths. The innovation proposed here decouples this requirement by allowing any transmit wavelength to be used with any sensor. We have applied this idea to a particular system that transmits at the standard telecommunication wavelength of 1,550 nm and uses a silicon-based sensor, sensitive from 0.5 to 1.0 micrometers, to determine the pointing direction. The scheme shown in the figure involves integrating a low-power 980-nm reference or boresight laser beam coupled to the 1,550-nm transmit beam via a wavelength-division-multiplexed fiber coupler. Both of these signals propagate through the optical fiber where they achieve an extremely high level of co-alignment before they are launched into the telescope. The telescope uses a dichroic beam splitter to reflect the 980- nm beam onto the silicon image sensor (a quad detector, charge-coupled device, or active

  5. Effects of atmosphere on free-space optical transmission at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Zeller, John; Manzur, Tariq

    2010-10-01

    Free-space optics (FSO) holds the potential for high bandwidth communication, but atmospheric conditions can significantly affect the capability of this type of communication system to transfer information consistently and operate effectively. The effects of atmosphere on FSO communication and consequent optimal wavelength range for transmission are investigated through MODTRAN-based modeling of 1.55 μm transmission for multiple elevation angles in atmospheric weather conditions including clear maritime, desert extinction, and various levels of rain and fog, to simulate surface-to-surface and surface-to-air FSO communication networks. Furthermore, atmospheric, free-space, and scintillation losses are analyzed for optical path lengths of 2 km to determine minimum transmit power required for successful data reception. In addition, FSO transmitter and receiver circuits were designed to optically relay analog video signals and their operation verified at path distances of up to 130 m. Using advanced laser sources to provide illumination at infrared wavelengths, particularly around the eye-safe 1.55 μm wavelength, it should be possible to overcome many transmission limitations associated with atmospheric conditions such as adverse weather and turbulence.

  6. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  7. The Hubble Space Telescope Advanced Spectral Library Project

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    2015-08-01

    Advanced Spectral Library (ASTRAL) is a Hubble Large Treasury Project, whose aim is to collect high-quality ultraviolet (1150-3100 Å) spectra of bright stars, utilizing the echelle modes of powerful Space Telescope Imaging Spectrograph; with resolution and signal-to-noise rivaling the best that can be achieved at ground-based observatories in the visible. During HST Cycle 18 (2010-2011), ASTRAL was allocated 146 orbits to record eight representative late-type ("cool") stars, including well-known cosmic denizens like Procyon and Betelgeuse. In Cycle 21 (2013-2014), ASTRAL was awarded an additional 230 orbits to extend the project to the hot side of the H-R diagram: 21 targets covering the O-A spectral types, including household favorites Vega and Sirius. The second part of the program was completed in January 2015. I describe the scientific motivations for observing hot and cool stars in the UV; the unique instrumental characteristics of STIS that enabled a broad survey like ASTRAL; progress in the program to date; and prospects for the future.

  8. International Space Station (ISS) Advanced Recycle Filter Tank Assembly (ARFTA)

    NASA Technical Reports Server (NTRS)

    Nasrullah, Mohammed K.

    2013-01-01

    The International Space Station (ISS) Recycle Filter Tank Assembly (RFTA) provides the following three primary functions for the Urine Processor Assembly (UPA): volume for concentrating/filtering pretreated urine, filtration of product distillate, and filtration of the Pressure Control and Pump Assembly (PCPA) effluent. The RFTAs, under nominal operations, are to be replaced every 30 days. This poses a significant logistical resupply problem, as well as cost in upmass and new tanks purchase. In addition, it requires significant amount of crew time. To address and resolve these challenges, NASA required Boeing to develop a design which eliminated the logistics and upmass issues and minimize recurring costs. Boeing developed the Advanced Recycle Filter Tank Assembly (ARFTA) that allowed the tanks to be emptied on-orbit into disposable tanks that eliminated the need for bringing the fully loaded tanks to earth for refurbishment and relaunch, thereby eliminating several hundred pounds of upmass and its associated costs. The ARFTA will replace the RFTA by providing the same functionality, but with reduced resupply requirements

  9. Precision-Deployable, Stable, Optical Benches for Cost-Effective Space Telescopes

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Pellegrino, S.; Dailey, D.; Marks, G.; Bookbinder, J.

    2012-05-01

    To explore the universe at the arcsecond resolution of Chandra, while increasing collecting area by at least an order of magnitude and maintaining affordability, we will need to make creative use of existing and new technology. Precision-deployable, stable, optical benches that fit inside smaller, lower-cost launch vehicles are a prime example of a technology well within current reach that will yield breakthrough benefits for future astrophysics missions. Deployable optical benches for astrophysical applications have a reputation for complexity; however, we are offering an approach, based on techniques used in space for decades, that reduces overall mission cost. Currently, deployable structures are implemented on JAXA’s Astro-H and NASA’s NuStar high-energy astrophysics missions. We believe it is now time to evolve these structures into precision, stable optical benches that are stiff, lightweight, and suitable for space telescopes with focal lengths of 20 meters or more. Such optical benches are required for advanced observatory class missions and can be scaled to Explorer and medium-class missions. To this end, we have formed a partnership between Space Structures Laboratory (SSL) at the California Institute of Technology, Northrop Grumman Aerospace Systems (NGAS), Northrop Grumman Astro Aerospace (Astro), and Smithsonian Astrophysical Observatory (SAO). Combining the expertise and tools from academia and industry is the most effective approach to take this concept to Technology Readiness Level (TRL) 6. We plan to perform small sub-scale demonstrations, functional tests, and analytical modeling in the academic environment. Using results from SSL, larger prototypes will be developed at facilities at NGAS in Redondo Beach and Carpinteria, CA.

  10. Adaptive Optics for Satellite Imaging and Space Debris Ranging

    NASA Astrophysics Data System (ADS)

    Bennet, F.; D'Orgeville, C.; Price, I.; Rigaut, F.; Ritchie, I.; Smith, C.

    Earth's space environment is becoming crowded and at risk of a Kessler syndrome, and will require careful management for the future. Modern low noise high speed detectors allow for wavefront sensing and adaptive optics (AO) in extreme circumstances such as imaging small orbiting bodies in Low Earth Orbit (LEO). The Research School of Astronomy and Astrophysics (RSAA) at the Australian National University have been developing AO systems for telescopes between 1 and 2.5m diameter to image and range orbiting satellites and space debris. Strehl ratios in excess of 30% can be achieved for targets in LEO with an AO loop running at 2kHz, allowing the resolution of small features (<30cm) and the capability to determine object shape and spin characteristics. The AO system developed at RSAA consists of a high speed EMCCD Shack-Hartmann wavefront sensor, a deformable mirror (DM), and realtime computer (RTC), and an imaging camera. The system works best as a laser guide star system but will also function as a natural guide star AO system, with the target itself being the guide star. In both circumstances tip-tilt is provided by the target on the imaging camera. The fast tip-tilt modes are not corrected optically, and are instead removed by taking images at a moderate speed (>30Hz) and using a shift and add algorithm. This algorithm can also incorporate lucky imaging to further improve the final image quality. A similar AO system for space debris ranging is also in development in collaboration with Electro Optic Systems (EOS) and the Space Environment Management Cooperative Research Centre (SERC), at the Mount Stromlo Observatory in Canberra, Australia. The system is designed for an AO corrected upward propagated 1064nm pulsed laser beam, from which time of flight information is used to precisely range the target. A 1.8m telescope is used for both propagation and collection of laser light. A laser guide star, Shack-Hartmann wavefront sensor, and DM are used for high order

  11. A space fiber-optic x-ray burst detector

    SciTech Connect

    Moss, C.E.; Casperson, D.E.; Echave, M.A.; Edwards, B.C.; Miller, J.R.; Saylor, W.W.; Sweet, M.R.; Valencia, J.E.

    1993-10-01

    We describe a novel, lightweight x-ray burst detector that can be embedded in a satellite structure, thus forming a ``smart skin,`` which has minimal impact on the host satellite. The design is based on two types of optical fibers coupled to photodiodes. The first is a scintillating fiber, which gives a fast signal for timing. The second is a germanium-doped silica fiber, which darkens for a few milliseconds when irradiated with a burst of x rays. The resulting slow signal is used to discriminate against electrostatic discharges. The coincidence of a fast signal from the scintillating fiber with a slow signal from the darkening fiber is the signature of an x-ray burst. The response is linear at low doses and becomes nonlinear at high doses. We have two techniques to test the instrument in a space experiment scheduled for 1994. First, a small, space-qualified flash x-ray unit can illuminate the fibers. Second, we can detect space background radiation. The cumulative dose will be monitored by RADFET dosimeters. Future work on embedding the fibers and the electronics as Application Specific Integrated Circuits (ASICs) in the spacecraft skin could lead to use of these detectors on many satellites.

  12. Manufacturing and performance test of a 800 mm space optic

    NASA Astrophysics Data System (ADS)

    Krödel, Matthias R.; Ozaki, Tsuyoshi; Kume, Masami; Yui, Yukari Y.; Imai, Hiroko; Katayama, Haruyoshi; Tange, Yoshio; Nakagawa, Takao

    2009-08-01

    Next generation space telescopes, which are currently being developed in the US and Europe, require large-scale lightweight reflectors with high specific strength, high specific stiffness, low CTE, and high thermal conductivity. To meet budget constraints, they also require materials that produce surfaces suitable for polishing without expensive overcoatings. HB-Cesic® - a European and Japanese trademark of ECM - is a Hybrid Carbon-Fiber Reinforced SiC composite developed jointly by ECM and MELCO to meet these challenges. The material's mechanical performance, such as stiffness, bending strength, and fracture toughness are significantly improved compared to the classic ECM Cesic® material (type MF). Thermal expansion and thermal conductivity of HB-Cesic® at cryogenic temperatures are now partly established; and excellent performance for large future space mirrors and structures are expected. This paper will present the whole manufacturing process of such a space mirror starting from the raw material preparation until the polishing of the optic including cryo testing . The letters "HB" in HB-Cesic® stand for "hybrid" to indicate that the C/C raw material is composed of a mixture of different types of chopped, short carbon-fibers.

  13. Passive and active optical fibers for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Alam, Mansoor; Abramczyk, Jaroslaw; Farroni, Julia; Manyam, Upendra; Guertin, Douglas

    2006-08-01

    Being the new frontier of science and technology, as the near earth space begins to attract attention, low cost and rapidly deployable earth observation satellites are becoming more important. Among other things these satellites are expected to carry out missions in the general areas of science and technology, remote sensing, national defense and telecommunications. Except for critical missions, constraints of time and money practically mandate the use of commercial-off-the-shelf (COTS) components as the only viable option. The near earth space environment (~50-50000 miles) is relatively hostile and among other things components/devices/systems are exposed to ionizing radiation. Photonic devices/systems are and will continue to be an integral part of satellites and their payloads. The ability of such devices/systems to withstand ionizing radiation is of extreme importance. Qualification of such devices/systems is time consuming and very expensive. As a result, manufacturers of satellites and their payloads have started to ask for radiation performance data on components from the individual vendors. As an independent manufacturer of both passive and active specialty silica optical fibers, Nufern is beginning to address this issue. Over the years, Nufern has developed fiber designs, compositions and processes to make radiation hard fibers. Radiation performance data (both gamma and proton) of a variety of singlemode (SM), multimode (MM), polarization maintaining (PM) and rare-earth doped (RED) fibers that find applications in space environment are presented.

  14. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M.; Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A.

    2008-09-01

    Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they

  15. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  16. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  17. Advanced Propulsion Systems for Low-Cost Access to Space

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2004-01-01

    NASA's Space Access Goal Ensure the provision of space access and improve it by increasing safety, reliability, and affordability. (1) The launch phase continues to be the highest risk period of any space mission. (2) Launch costs remain an obstacle to the complete utilization of space for research, exploration, and commercial purposes (3) Improving the Nation's access to space through the application of new technology is one of NASA's primary roles.

  18. Advances in Space Transportation Technology Toward the NASA Goals

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    2000-01-01

    disassembly and inspections required for the Space Shuttle's subsystems, the next generation vehicle's on-board health monitoring systems will could tell the ground crews which systems need replacement before landing. In twenty-five years, vehicles will be re-flown within one with crews numbering less than one hundred. Fully automated ground processing systems must require only a handful of personnel to launch the vehicle. Due to the increased intelligence of on-board systems, only cursory walk-around inspections would be required between flights An assessment of the progress in breakthrough technologies toward these goals by the NASA Advanced Space Transportation Program is presented. These breakthrough technologies include combined rocket and air breathing propulsion, high strength lightweight structures, high temperature materials, vehicle health management, and flight operations.

  19. An ultrafast optics undergraduate advanced laboratory with a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Schaffer, Andrew; Fredrick, Connor; Hoyt, Chad; Jones, Jason

    2015-05-01

    We describe an ultrafast optics undergraduate advanced laboratory comprising a mode-locked erbium fiber laser, auto-correlation measurements, and an external, free-space parallel grating dispersion compensation apparatus. The simple design of the stretched pulse laser uses nonlinear polarization rotation mode-locking to produce pulses at a repetition rate of 55 MHz and average power of 5.5 mW. Interferometric and intensity auto-correlation measurements are made using a Michelson interferometer that takes advantage of the two-photon nonlinear response of a common silicon photodiode for the second order correlation between 1550 nm laser pulses. After a pre-amplifier and compression, pulse widths as narrow as 108 fs are measured at 17 mW average power. A detailed parts list includes previously owned and common components used by the telecommunications industry, which may decrease the cost of the lab to within reach of many undergraduate and graduate departments. We also describe progress toward a relatively low-cost optical frequency comb advanced laboratory. NSF EIR #1208930.

  20. Compact optical transmitters for CubeSat free-space optical communications

    NASA Astrophysics Data System (ADS)

    Kingsbury, R. W.; Caplan, D. O.; Cahoy, K. L.

    2015-03-01

    We present the results of an architectural trade study and prototype implementation of an optical transmitter suitable for resource-constrained CubeSats. Recent advances in CubeSat attitude determination and control systems have made it possible to achieve three-axis stabilization. This is essential for laser communications systems, which have challenging pointing and stability requirements. Our downlink terminal design fits in a 10 cm x 10 cm x 5 cm volume, uses < 10W of power, weighs < 1 kg, and supports data rates up to 50 Mbps. The terminal incorporates pointing, tracking and acquisition optics, an optical fine-steering mechanism, and a compact transmitter. This work focuses on the development of the transmitter for the Nanosatellite Optical Downlink Experiment (NODE). Two transmitter architectures were considered initially: direct modulation of a high-power laser diode and a master oscillator power amplifier (MOPA). The MOPA-based approach was selected and a prototype "breadboard" was built from commercially available components. The prototype transmitter produces high fidelity (extinction ratio, ER < 33 dB) pulse position modulation (PPM) waveforms at 1550nm with 200mW average output power while consuming 6:5W of electrical power.

  1. Free-space optical channel estimation for physical layer security.

    PubMed

    Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Toyoshima, Morio; Takayama, Yoshihisa; Takenaka, Hideki; Shimizu, Ryosuke; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo; Aoki, Takao; Sasaki, Masahide

    2016-04-18

    We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security. PMID:27137325

  2. Free-space optical channel estimation for physical layer security

    NASA Astrophysics Data System (ADS)

    Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Toyoshima, Morio; Takayama, Yoshihisa; Takenaka, Hideki; Shimizu, Ryosuke; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo; Aoki, Takao; Sasaki, Masahide

    2016-04-01

    We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.

  3. Fracture Probability of MEMS Optical Devices for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon

    1999-01-01

    A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.

  4. Capture into resonance and phase space dynamics in optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  5. Free-space optical channel estimation for physical layer security.

    PubMed

    Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Toyoshima, Morio; Takayama, Yoshihisa; Takenaka, Hideki; Shimizu, Ryosuke; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo; Aoki, Takao; Sasaki, Masahide

    2016-04-18

    We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.

  6. ASTROD I - Astrodynamical Space Test of Relativity using Optical Devices

    NASA Astrophysics Data System (ADS)

    Selig, Hanns; Ni, Wei-Tou; Laemmerzahl, Claus

    In 2011 ASTROD I has been selected as one of the final 14 candidates for the Cosmic Vision M3 mission. ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and probing dark matter and dark energy gravitationally. It is an international project, and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. Finally the mission was not selected for the final 4 candidates for CV M3 in 2011. Nevertheless, ASTROD is a very promising concept for a fundamental physics space mission and shares some key technologies with other popular space missions like LISA and Jason 2 (T2L2). We have also considered possibilities (i) to add an ASTROD I laser ranging package to other fundamental missions for testing the dynamics of relativistic gravity; (ii) to fully combine ASTROD I with another fundamental mission using basic technology of the LISA Pathfiner (this could also be good for a LISA-type mission scheduled to launch 20 years later). In this paper, we present various possibilities of our study.

  7. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  8. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    NASA Astrophysics Data System (ADS)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    a single spine, with two-photon uncaging) and in rapid, flexible spatial-temporal patterns [10-14]. Nevertheless, current technology generally requires damaging doses of UV or violet illumination and the continuous re-introduction of the caged compound, which, despite interest, makes for a difficult transition beyond in vitro preparations. Thus, the tremendous progress in the in vivo application of photo-stimulation tools over the past five years has been largely facilitated by two 'exciting' new photo-stimulation technologies: photo-biological stimulation of a rapidly increasing arsenal of light-sensitive ion channels and pumps ('optogenetic' probes[15-18]) and direct photo-thermal stimulation of neural tissue with an IR laser [19-21]. The Journal of Neural Engineering has dedicated a special section in this issue to highlight advances in optical stimulation technology, which includes original peer-reviewed contributions dealing with the design of modern optical systems for spatial-temporal control of optical excitation patterns and with the biophysics of neural-thermal interaction mediated by electromagnetic waves. The paper by Nikolenko, Peterka and Yuste [22] presents a compact design of a microscope-photo-stimulator based on a transmissive phase-modulating spatial-light modulator (SLM). Computer-generated holographic photo-stimulation using SLMs [12-14, 23] allows the efficient parallel projection of intense sparse patterns of light, and the welcome development of compact, user-friendly systems will likely reduce the barrier to its widespread adoption. The paper by Losavio et al [24] presents the design and functional characteristics of their acousto-optical deflector (AOD) systems for studying spatial-temporal dendritic integration in single neurons in vitro. Both single-photon (UV) and two-photon (femtosecond pulsed IR) AOD uncaging systems are described in detail. The paper presents an excellent overview of the current state of the art and limitations of

  9. Inside Single Cells: Quantitative Analysis with Advanced Optics and Nanomaterials

    PubMed Central

    Cui, Yi; Irudayaraj, Joseph

    2014-01-01

    Single cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single cell activity. In order to obtain quantitative information (e.g. molecular quantity, kinetics and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single cell studies both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live cell analysis. Although a considerable proportion of single cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single cell analysis. PMID:25430077

  10. DSA hole defectivity analysis using advanced optical inspection tool

    NASA Astrophysics Data System (ADS)

    Harukawa, Ryota; Aoki, Masami; Cross, Andrew; Nagaswami, Venkat; Tomita, Tadatoshi; Nagahara, Seiji; Muramatsu, Makoto; Kawakami, Shinichiro; Kosugi, Hitoshi; Rathsack, Benjamen; Kitano, Takahiro; Sweis, Jason; Mokhberi, Ali

    2013-04-01

    This paper discusses the defect density detection and analysis methodology using advanced optical wafer inspection capability to enable accelerated development of a DSA process/process tools and the required inspection capability to monitor such a process. The defectivity inspection methodologies are optimized for grapho epitaxy directed self-assembly (DSA) contact holes with 25 nm sizes. A defect test reticle with programmed defects on guide patterns is designed for improved optimization of defectivity monitoring. Using this reticle, resist guide holes with a variety of sizes and shapes are patterned using an ArF immersion scanner. The negative tone development (NTD) type thermally stable resist guide is used for DSA of a polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer (BCP). Using a variety of defects intentionally made by changing guide pattern sizes, the detection rates of each specific defectivity type has been analyzed. It is found in this work that to maximize sensitivity, a two pass scan with bright field (BF) and dark field (DF) modes provides the best overall defect type coverage and sensitivity. The performance of the two pass scan with BF and DF modes is also revealed by defect analysis for baseline defectivity on a wafer processed with nominal process conditions.

  11. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Swartz, Douglas A.; Tennant, Allyn F.; Weisskopf, Martin C.; Zavlin, Vyacheslav E.

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  12. Free-space optical communication through a forest canopy

    NASA Astrophysics Data System (ADS)

    Edwards, Clinton L.; Davis, Christopher C.

    2006-01-01

    We model the effects of the leaves of mature broadleaf (deciduous) trees on air-to-ground free-space optical communication systems operating through the leaf canopy. The concept of leaf area index (LAI) is reviewed and related to a probabilistic model of foliage consisting of obscuring leaves randomly distributed throughout a treetop layer. Individual leaves are opaque. The expected fractional unobscured area statistic is derived as well as the variance around the expected value. Monte Carlo simulation results confirm the predictions of this probabilistic model. To verify the predictions of the statistical model experimentally, a passive optical technique has been used to make measurements of observed sky illumination in a mature broadleaf environment. The results of the measurements, as a function of zenith angle, provide strong evidence for the applicability of the model, and a single parameter fit to the data reinforces a natural connection to LAI. Specific simulations of signal-to-noise ratio degradation as a function of zenith angle in a specific ground-to-unmanned aerial vehicle communication situation have demonstrated the effect of obscuration on performance.

  13. Free-space optical communication through a forest canopy.

    PubMed

    Edwards, Clinton L; Davis, Christopher C

    2006-01-01

    We model the effects of the leaves of mature broadleaf (deciduous) trees on air-to-ground free-space optical communication systems operating through the leaf canopy. The concept of leaf area index (LAI) is reviewed and related to a probabilistic model of foliage consisting of obscuring leaves randomly distributed throughout a treetop layer. Individual leaves are opaque. The expected fractional unobscured area statistic is derived as well as the variance around the expected value. Monte Carlo simulation results confirm the predictions of this probabilistic model. To verify the predictions of the statistical model experimentally, a passive optical technique has been used to make measurements of observed sky illumination in a mature broadleaf environment. The results of the measurements, as a function of zenith angle, provide strong evidence for the applicability of the model, and a single parameter fit to the data reinforces a natural connection to LAI. Specific simulations of signal-to-noise ratio degradation as a function of zenith angle in a specific ground-to-unmanned aerial vehicle communication situation have demonstrated the effect of obscuration on performance.

  14. X-ray optics at NASA Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Swartz, Douglas A.; Tennant, Allyn F.; Weisskopf, Martin C.; Zavlin, Vyacheslav E.

    2015-05-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce highstrength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications—namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  15. Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hua; Mahajan, Milind; Taber, Donald; Wen, Bing; Winker, Bruce

    2005-08-01

    There is a critical need for high bandwidth, high availability free-space optical communication links between the battlefield and the global information grid. Compact large aperture transceivers with low size, weight and power (SWaP) are needed to initiate and maintain communication links involving airborne platforms. The transceiver optical beam director typically contains fine and coarse steering stages. Existing beam director technology is based on electro-mechanical gimbaled mirrors with large SWaP that hinders deployment on many airborne platforms. To address the need for compact beam directors, we designed, fabricated, and tested an optical phased array (OPA) based on electro-optic dual frequency liquid crystal technology. This OPA has a transmissive architecture that enables a lower system SWaP, as compared to conventional reflective OPA. It has an 8 μm pixel pitch and steers over a 2.5° field of regard in one dimension at 1.55 μm. Two such OPAs can be stacked to steer in two dimensions. It has four independently addressable 1 cm x 4 cm regions arranged in a linear array to produce a continuous 4 cm x 4 cm aperture. The device incorporates novel addressing schemes to reduce the number of control channels by over an order of magnitude compared to conventional OPA addressing methods. It also utilizes proprietary low-loss transparent conductive TransconTM film for low optical absorption in the infrared. The OPA uses a custom multi-channel controller circuit operating at a 500 Hz frame rate. We present results on OPA design, fabrication, and optical performance on steering.

  16. Thermal analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8-meter primary mirror

    NASA Astrophysics Data System (ADS)

    Hornsby, Linda; Hopkins, Randall C.; Stahl, H. Philip

    2010-07-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 point and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The objective is to maintain the primary mirror at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop®1. A detailed model of the primary mirror was required in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew and a 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the solar environment that influences the thermal performance. All assumptions that were used in the analysis are also documented. Estimates of mirror heater power requirements are reported. The thermal model is used to predict gradients across and through the primary mirror using an idealized boundary temperature on the back and sides of the mirror of 280 K.

  17. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  18. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1992-01-01

    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  19. Segmented X-Ray Optics for Future Space Telescopes

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2013-01-01

    Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of approx.17 sq cm/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.

  20. Segmented X-ray optics for future space telescopes

    NASA Astrophysics Data System (ADS)

    McClelland, R. S.

    Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of ~17 cm2/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.

  1. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  2. Interfacing Issues in Microcooling of Optical Detectors in Space Applications

    NASA Astrophysics Data System (ADS)

    Derking, J. H.; ter Brake, H. J. M.; Linder, M.; Rogalla, H.

    2010-04-01

    Miniature Joule-Thomson coolers were developed at the University of Twente and are able to cool to 100 K with a typical cooling power of 10 to 20 mW. These coolers have a high potential for space applications in cooling small optical detectors for future earth observation and science missions. Under contract of the European Space Agency, we investigate on-chip detector cooling for the temperature range 70 K-250 K. To identify the detectors that can be cooled by a JT microcooler, a literature survey was performed. Following this survey, we selected a micro digital CMOS image sensor. A conceptual design of this cooler-sensor system is made. Among various techniques, indium soldering and silver paint are chosen for the bonding of the silicon sensor to the glass microcooler. Electrical connections from the sensor to the outside will be realized by structuring them in a thin layer of gold that is sputtered on the outside of the cooler to minimize the radiative heat load. For the electrical connections between the sensor and the structured leads, aluminum or gold bond wires will be used.

  3. Programmable generation of ultrafast optical waveforms: Recent advances in theory and technology

    SciTech Connect

    Wefers, M.M.; Nelson, K.A.

    1995-11-01

    Recent advances in the shaping of ultrafast optical waveforms using liquid crystal (LC) spatial light modulators (SLM) are presented. Two LC SLMs are used in a novel arrangement to produce programmable waveforms with specified time-dependent amplitude and temporal phase profiles with the greatest fidelity and complexity to date. The apparatus is also used to demonstrate the generation of an ultrafast waveform with a programmable time-dependent polarization profile. A general theoretical result that describes the space-time electric field profile of waveforms shaped by the spectral filtering of spatially separated frequency components is also presented. The main result is that diffraction gives rise to a translational spatial shift in the electric field profile that varies linearly with time along the shaped waveform.

  4. Photonic muscle active optics for space telescopes (active optics with 1023 actuators)

    NASA Astrophysics Data System (ADS)

    Ritter, Joe

    2009-08-01

    Presented is a novel optical system using Cis-Trans photoisomerization where nearly every molecule of a mirror substrate is itself an optically powered actuator. Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Areal density can be reduced by increasing actuation density. Making every molecule of a substrate an actuator approaches the limit of the areal density vs actuation design trade space. Cis-Trans photoisomerization, a reversible reorganization of molecular structure induced by light, causes a change in the shape and volume of azobenzene based molecules. Induced strain in these "photonic muscles" can be over 40%. Forces are pico-newtons/molecule. Although this molecular limit is not typically multiplied in aggregate materials we have made, considering the large number of molecules in a mole, future optimized systems may approach this limit In some π-π* mixed valence azo-polymer membranes we have made photoisomerization causes a highly controllable change in macroscopic dimension with application of light. Using different wavelengths and polarizations provides the capability to actively reversibly and remotely control membrane mirror shape and dynamics using low power lasers, instead of bulky actuators and wires, thus allowing the substitution of optically induced control for rigidity and mass. Areal densities of our photonic muscle mirrors are approximately 100 g/m2. This includes the substrate and actuators (which are of course the same). These materials are thin and flexible (similar to saran wrap) so high packing ratios are possible, suggesting the possibility of deployable JWST size mirrors weighing 6 kilograms, and the possibility of ultralightweight space telescopes the size of a football field. Photons weigh nothing

  5. Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization.

  6. Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1998-01-01

    Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.

  7. Novel space-time trellis codes for free-space optical communications using transmit laser selection.

    PubMed

    García-Zambrana, Antonio; Boluda-Ruiz, Rubén; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2015-09-21

    In this paper, the deployment of novel space-time trellis codes (STTCs) with transmit laser selection (TLS) for free-space optical (FSO) communication systems using intensity modulation and direct detection (IM/DD) over atmospheric turbulence and misalignment fading channels is presented. Combining TLS and STTC with rate 1 bit/(s · Hz), a new code design criterion based on the use of the largest order statistics is here proposed for multiple-input/single-output (MISO) FSO systems in order to improve the diversity order gain by properly chosing the transmit lasers out of the available L lasers. Based on a pairwise error probability (PEP) analysis, closed-form asymptotic bit error-rate (BER) expressions in the range from low to high signal-to-noise ratio (SNR) are derived when the irradiance of the transmitted optical beam is susceptible to moderate-to-strong turbulence conditions, following a gamma-gamma (GG) distribution, and pointing error effects, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results show diversity orders of 2L and 3L when simple two-state and four-state STTCs are considered, respectively. Simulation results are further demonstrated to confirm the analytical results.

  8. Highly reliable optical system for a rubidium space cold atom clock.

    PubMed

    Ren, Wei; Sun, Yanguang; Wang, Bin; Xia, Wenbing; Qu, Qiuzhi; Xiang, Jingfeng; Dong, Zuoren; Lü, Desheng; Liu, Liang

    2016-05-01

    We describe a highly reliable optical system designed for a rubidium space cold atom clock (SCAC), presenting its design, key technologies, and optical components. All of the optical and electronic components are integrated onto an optimized two-sided 300  mm×290  mm×30  mm optical bench. The compact optical structure and special thermal design ensure that the optical system can pass all of the space environmental qualification tests including both thermal vacuum and mechanical tests. To verify its performance, the optical system is carefully checked before and after each test. The results indicate that this optical system is suitably robust for the space applications for which the rubidium SCAC was built. PMID:27140378

  9. Effect of atmosphere on free-space optical communication networks for border patrol

    NASA Astrophysics Data System (ADS)

    Zeller, John; Manzur, Tariq

    2010-04-01

    Free-space optics (FSO) communication links for relaying video from cameras are investigated in relation to atmospheric attenuation. Through MODTRAN-based modeling of transmission bands across the NIR to MWIR (1.5-4.2 μm) portion of the infrared spectrum in atmospheric conditions including clear maritime, desert extinction, and various levels of rain and fog, we seek to identify which wavelength ranges are the most practical for minimizing transmission losses in both ideal and unfavorable conditions. Atmospheric, free-space, and scintillation losses are investigated for various FSO configurations and atmospheric conditions to determine incident beam power required for successful data transmission in view of a 2 km FSO link at various path elevation angles from the horizon. In addition, FSO transmitter and receiver circuits were designed to optically relay an analog video signal at IR wavelengths. Using advanced tunable laser sources to provide illumination across wavelength ranges from visible to mid-wave infrared, it should be possible to overcome transmission limitations associated with adverse weather and atmospheric conditions for communication networks to benefit border protection.

  10. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1985, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). The progress made by Levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology are described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 9, the Flight Telerobotic Servicer, the Advanced Development Program, and the Data Management System. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  11. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    NASA Astrophysics Data System (ADS)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  12. Advanced technology for America's future in space. Executive summary

    NASA Astrophysics Data System (ADS)

    1990-12-01

    This report summarizes the results of a review by a select external technology advisory committee of NASA's recently developed Integrated Technology Plan for the Civil Space Program. This document is the Summary Report from the review by the Space Systems and Technology Advisory Committee (SSTAC), a subcommittee of the NASA Advisory Committee with the assistance of the Space Science and Applications Advisory Committee and the Aerospace Medicine Advisory Committee, and the Aeronautics and Space Engineering Board and Space Studies Board of the National Research Council. The report asks the question 'Why should space technology be a national priority?' The report describes the benefits to the nation as Improving National Competitiveness, Stimulating Quality Science and Engineering Education, Developing Broadly Applicable New Technologies. Specific Benefits for future space endeavors include Improving the Quality for Future U.S. Flight Programs, Reducing the Cost of Access to Space, Increasing Safety and Reliability, Enabling New Space Missions, and Sustaining NASA Expertise. Other improvements and the value of the Integrated Technology Plan are emphasized. Almost uniformly, the review team found that the quality of individual research projects was very high and well integrated with other national efforts.

  13. Investigations on fracture curves in strain and stress space for advanced high strength steel forming

    NASA Astrophysics Data System (ADS)

    Panich, S.; Drotleff, K.; Liewald, M.; Uthaisangsuk, V.

    2016-08-01

    Conventional forming limit curves (FLCs) are inappropriate for describing formability for advanced high strength (AHS) steel sheets, since such steel grades experience fracture without localized necking occurrence. The aim of this work was to develop a fracture curve (FC) for the AHS steel grade DP980. The FC was determined by means of the Nakajima stretch forming test and tensile tests of various sample geometries, by which shear fracture governed. An optical strain measurement system was used to capture strain histories of deformed samples up to failure. From these results, fracture strains were gathered and plotted in a strain space. Subsequently, the strain based curve was transformed to space between stress triaxiality and plastic strain. Hereby, effects of anisotropic yield function, namely, the Hill’48 model on obtained stress fracture loci were investigated. In order to verify applicability of the determined limit curves, a Mini-tunnel part was pressed and simulated. It was found that the stress based FC do predict failure of the DP980 steel sheet more accurately than the strain based F C.

  14. Advancing automation and robotics technology for the space station and the US economy

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  15. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  16. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  17. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have been conducted with a grid-less three-dimensional space-charge algorithm.

  18. Reliability and qualification of advanced microelectronics for space applications

    NASA Technical Reports Server (NTRS)

    Kayali, S.

    2003-01-01

    This paper provides a discussion of the subject and an approach to establish a reliability and qualification methodology to facilitate the utilization of state-of-the-art advanced microelectronic devices and structures in high reliability applications.

  19. Research Studies on Advanced Optical Module/Head Designs for Optical Data Storage

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Preprints are presented from the recent 1992 Optical Data Storage meeting in San Jose. The papers are divided into the following topical areas: Magneto-optical media (Modeling/design and fabrication/characterization/testing); Optical heads (holographic optical elements); and Optical heads (integrated optics). Some representative titles are as follow: Diffraction analysis and evaluation of several focus and track error detection schemes for magneto-optical disk systems; Proposal for massively parallel data storage system; Transfer function characteristics of super resolving systems; Modeling and measurement of a micro-optic beam deflector; Oxidation processes in magneto-optic and related materials; and A modal analysis of lamellar diffraction gratings in conical mountings.

  20. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,