Science.gov

Sample records for advanced space vehicles

  1. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  2. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  3. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, Larry P.; Scheer, Dean D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  4. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  5. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  6. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  7. Advanced automation for in-space vehicle processing

    NASA Technical Reports Server (NTRS)

    Sklar, Michael; Wegerif, D.

    1990-01-01

    The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.

  8. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  9. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    High temperature control surface seals have been identified as a critical technology in the development of future space vehicles. These seals must withstand temperatures of up to 2600 F and protect underlying temperature-sensitive structures (such as actuators and sealing capability by remaining resilient during flight conditions. The current baseline seal, used on the Shuttle orbiters and the X-38 vehicle, consists of a Nextel 312 sheath, an internal Inconel X-750 knitted spring tube, and hand-stuffed Saffil batting. Unfortunately at high temperatures (> 1500 F), the seal resiliency significantly degrades due to yielding and creep of the spring tube element. The permanent set in the seals can result in flow passing over the seals and subsequent damage to temperature sensitive components downstream of the seals. Another shortcoming of the baseline seal is that instances have been reported on Shuttle flights where some of the hand-stuffed Saffil batting insulation has been extracted, thus potentially compromising the seal. In vehicles where the thermal protection systems are delicate (such as with Shuttle tiles), the control surface seals must also limit the amount of force applied to the opposing surfaces. Additionally, in many applications the seals are subjected to scrubbing as control surfaces are actuated. The seals must be able to withstand any damage resulting from this high temperature scrubbing and retain their heat/flow blocking abilities.

  10. Space vehicle

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1975-01-01

    A space vehicle having an improved ascent configuration for use in traveling in space is presented. Components of the vehicle are: (1) a winged orbiter having an elongater fuselage and rearwardly directed main engines fixed to the fuselage; (2) an elongated tank assembly of an improved configuration disposed forwardly of the fuselage and connected with the main engines of the vehicle for supplying liquid propellants; and (3) a booster stage comprising a pair of integrated solid rocket boosters connected with the orbiter immediately beneath the fuselage and extended in substantial parallelism.

  11. Guidelines for advanced manned space vehicle program, June 1960

    NASA Technical Reports Server (NTRS)

    Gilruth, R. R.; Piland, R. O.; Faget, M. A.; White, S. C.; Chilton, R. C.; Donlan, C. J.

    1976-01-01

    A very broad mission objective was established; i.e., manned circumlunar flight and return to earth. It is implicit that the Saturn will be the primary propulsion system for this mission. The following attempts to: (1) define the objective so as to achieve as much capability in the vehicle as possible; (2) draw on Mercury experience to provide broad guidelines for vehicle performance and safety; (3) provide flexibility in the vehicle capability in the event that the manned lunar mission is proved to be subject to unacceptable risk in the target time period; and (4) indicate problem areas where work appears to be particularly needed.

  12. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  13. Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Dogigli, Michael; Pradier, Alain; Tumino, Giorgio

    2002-01-01

    (1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle

  14. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.

    2000-01-01

    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  15. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  16. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  17. Advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Disher, J. H.; Hethcoat, J. P.; Page, M. A.

    1981-01-01

    Projected growth in space transportation capabilities beyond the initial Space Shuttle is discussed in terms of earth-to-low-orbit launch vehicles as well as transportation beyond low orbit (orbit transfer vehicles). Growth versions of the Shuttle and heavy-lift derivatives of the Shuttle are shown conceptually. More advanced launch vehicle concepts are also shown, based on rocket propulsion or combinations of rocket and air-breathing propulsion. Orbit transfer vehicle concepts for personnel transport and for cargo transport are discussed, including chemical rocket as well as electric propulsion. Finally, target levels of capability and efficiencies for later time periods are discussed and compared with the prospective vehicle concepts mentioned earlier.

  18. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  19. The aerobraking space transfer vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, Glen; Carpenter, Brian; Corns, Steve; Harris, Robert; Jun, Brian; Munro, Bruce; Pulling, Eric; Sekhon, Amrit; Welton, Walt; Jakubowski, A.

    1990-01-01

    With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate and aerobrake on the transfer vehicle to further reduce transport costs. The research and final design configuration of the aerospace senior design team from VPISU, working in conjunction with NASA, are presented. The topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV), is addressed.

  20. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  1. NASA/USRA advanced space design program: The laser powered interorbital vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A preliminary design is presented for a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an earth space station and a lunar base. The LPIV receives its power from two iodide laser stations, one orbiting the earth and the other located on the surface of the moon. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring 8 days for a lunar rendezvous and an additional 9 days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box beam truss, a payload module, and fuel tanks. The total mass of the vehicle fully loaded is 63300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables which allow the vehicle to thrust tangentially to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of the 23 m diameter primary mirror, a convex parabolic secondary mirror, a beam splitter and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18000 kg of cargo. The module is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35000 kg of liquid hydrogen are fastened to tracks which allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing and tracking system which can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. Additionally an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.

  2. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  3. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  4. Advanced Vehicle Testing and Evaluation

    SciTech Connect

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  5. Space vehicle concepts

    NASA Technical Reports Server (NTRS)

    Tucker, Michael; Meredith, Oliver; Brothers, Bobby

    1986-01-01

    Several concepts of chemical-propulsion Space Vehicles (SVs) for manned Mars landing missions are presented. For vehicle sizing purposes, several specific missions were chosen from opportunities in the late 1990's and early 2000's, and a vehicle system concept is then described which is applicable to the full range of missions and opportunities available. In general, missions utilizing planetary opposition alignments can be done with smaller vehicles than those utilizing planetary opposition alignments. The conjunction missions have a total mission time of about 3 years, including a required stay-time of about 60 days. Both types of missions might be desirable during a Mars program, the opposition type for early low-risk missions and/or for later unmanned cargo missions, and the conjunction type for more extensive science/exploration missions and/or for Mars base activities. Since the opposition missions appeared to drive the SV size more severely, there were probably more cases examined for them. Some of the concepts presented utilize all-propulsive braking, some utilize and all aerobraking approach, and some are hybrids. Weight statements are provided for various cases. Most of the work was done on 0-g vehicle concepts, but partial-g and 1-g concepts are also provided and discussed. Several options for habitable elements are shown, such as large-diameter modules and space station (SS) types of modules.

  6. Aeroacoustics of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2014-01-01

    While for airplanes the subject of aeroacoustics is associated with community noise, for space vehicles it is associated with vibro-acoustics and structural dynamics. Surface pressure fluctuations encountered during launch and travel through lower part of the atmosphere create intense vibro-acoustics environment for the payload, electronics, navigational equipment, and a large number of subsystems. All of these components have to be designed and tested for flight-certification. This presentation will cover all three major sources encountered in manned and unmanned space vehicles: launch acoustics, ascent acoustics and abort acoustics. Launch pads employ elaborate acoustic suppression systems to mitigate the ignition pressure waves and rocket plume generated noise during the early part of the liftoff. Recently we have used large microphone arrays to identify the noise sources during liftoff and found that the standard model by Eldred and Jones (NASA SP-8072) to be grossly inadequate. As the vehicle speeds up and reaches transonic speed in relatively denser part of the atmosphere, various shock waves and flow separation events create unsteady pressure fluctuations that can lead to high vibration environment, and occasional coupling with the structural modes, which may lead to buffet. Examples of wind tunnel tests and computational simulations to optimize the outer mold line to quantify and reduce the surface pressure fluctuations will be presented. Finally, a manned space vehicle needs to be designed for crew safety during malfunctioning of the primary rocket vehicle. This brings the subject of acoustic environment during abort. For NASAs Multi-Purpose Crew Vehicle (MPCV), abort will be performed by lighting rocket motors atop the crew module. The severe aeroacoustics environments during various abort scenarios were measured for the first time by using hot helium to simulate rocket plumes in the Ames unitary plan wind tunnels. Various considerations used for the

  7. Cost and Economics for Advanced Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Whitfield, Jeff

    1998-01-01

    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  8. Space Shuttle Vehicle Illustration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  9. Advanced Technology and Alternative Fuel Vehicles

    SciTech Connect

    Tuttle, J.

    2001-08-20

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains.

  10. Advanced space transportation technologies

    NASA Technical Reports Server (NTRS)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  11. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  12. Advanced small launch vehicle study

    NASA Technical Reports Server (NTRS)

    Reins, G. E.; Alvis, J. F.

    1972-01-01

    A conceptual design study was conducted to determine the most economical (lowest cost/launch) approach for the development of an advanced small launch vehicle (ASLV) for use over the next decade. The ASLV design objective was to place a 340 kg (750 lb) payload into a 556 km (300 n.mi.) circular orbit when launched due east from Wallops Island, Virginia. The investigation encompassed improvements to the current Scout launch vehicle; use of existing military and NASA launch vehicle stages; and new, optionally staged vehicles. Staging analyses included use of liquid, solid, and hybrid propellants. Improvements in guidance, controls, interstages, telemetry, and payload shroud were also considered. It was concluded that the most economical approach is to progressively improve the Scout launch vehicle in three phased steps which are discussed.

  13. Advanced Space-Based Detectors

    DTIC Science & Technology

    2014-07-17

    Research Laboratory 8. PERFORMING ORGANIZATION REPORT NUMBER Space Vehicles Directorate 3550 Aberdeen Ave., SE Kirtland AFB, NM 87117-5776 AFRL -RV...Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0010 TR-2014-0010 ADVANCED SPACE-BASED DETECTORS David Cardimona 17 Jul 2014 Final Report APPROVED FOR PUBLIC

  14. Advanced Models for Prediction of High Altitude Aero-Thermal Loads of a Space Re-entry Vehicle

    NASA Astrophysics Data System (ADS)

    Votta, R.; Schettino, A.; Bonfiglioli, A.

    2011-05-01

    The analysis of the rarefaction effects in predicting the main aero-thermal loads of a Space re-entry vehicle is presented. It is well known that the Navier-Stokes equations fail in rarefied regimes and other approaches must be used. In the present paper different configurations have been simulated by using the Direct Simulation Monte Carlo method. Moreover, slip flow boundary conditions have been implemented in a Navier-Stokes code in order to extend the validity of the continuum approach to the transitional flow regime. Finally, bridging formulas for high altitude aerodynamics of winged bodies have been used. Firstly, two simple geometries have been analysed, specifically designed to study the phenomenon of shock wave boundary layer interaction: a hollow cylinder flare, for which some experiments are available; and a blunt-nosed flat plate/flap model designed and tested at the Italian Aerospace Research Centre. The other configurations taken into account are, respectively, an experimental winged re-entry vehicle and a capsule, for which global aerodynamic coefficients and local wall heating have been determined with different approaches. The Navier-Stokes code with slip flow boundary conditions has shown good predicting capabilities compared with experiments in the hollow cylinder flare case; however, for the winged vehicle and capsule cases, the CFD results are not fully satisfactory and the Monte Carlo method remains the most reliable approach, together with the bridging formula, that provides good results for the aerodynamic coefficients.

  15. Advanced propulsion concepts for orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1982-01-01

    Studies of the United States Space Transportation System show that in the mid-to-late 1990s expanded capabilities for Orbital Transfer Vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possible men to geosynchronous orbit. NASA is conducting a technology program in support of an advanced propulsion system for future OTVs. This program is briefly described with results to date of the first program element, the Conceptual Design and Technology Definition studies.

  16. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    The space industry is based on an antiquated concept of disposable rockets, earth construction, and non-repairable satellites. Current space vehicle concepts hearken from a time of Cold War animosity and expeditiousness. Space systems are put together in small, single-purpose chunks that are launched with mighty, single-use rockets. Spacecraft need to change to a more versatile, capable, reusable, and mission efficient design. The Crew Exploration Vehicle (CEV) that President Bush put forward in his space initiative on Jan. 14, 2004 is a small first step. But like all first steps, the risk of eventual failure is great without a complementary set of steps, a reliable handhold, and a goal, which are outlined in this paper. The system for space access and development needs to be overhauled to allow for the access to space to complement the building in space, which promotes the production of goods in space, which enhances the exploitation of space resources… and the list goes on. Without supplemental and complementary infrastructure, all political, scientific, and idealistic endeavors to explore and exploit the near solar system will result in quagmires of failures and indecision. Renewed focus on fundamentals, integration, total-system consideration, and solid engineering can avoid catastrophe. Mission success, simple solutions, mission efficiency, and proper testing all seem to have been lost in the chase for the nickels and dimes. These items will increase capabilities available from a system or combination of systems. New propulsion options and materials will enable vehicles previously unachievable. Future spacecraft should exploit modular designs for repeatability and reduced cost. Space construction should use these modular systems on major components built in orbit. All vehicles should apply smart designs and monitoring systems for increased reliability and system awareness. Crew safety systems must use this awareness in alerting the crew, aiding collision

  17. Advanced space program studies, overall executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Multidisciplined advanced planning studies were conducted that involve space operations and the associated system elements, identification of potential low cost system techniques, vehicle design, cost synthesis techniques, DoD technology forecasting, and the development of near and far term space initiatives with emphasis on domestic and military use commonality. Specific areas studied include: (1) manned systems utilization; (2) STS users; (3) vehicle cost/performance; (4) space vehicle applications to future national needs; (5) STS spin stabilized upper stage; and (6) technology assessment and forecast.

  18. Mars Lander/Rover vehicle development: An advanced space design project for USRA and NASA/OAST

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of the studies on one particular part of the Mars Lander/Rover (MLR) system are contained: the Balloon Rover. This component vehicle was selected for further research and design because of the lack of technical literature on this subject, as compared to surface rover technology. Landing site selection; balloon system development and deployment; optics and communications; and the payload power supply are described.

  19. Leasecraft - An innovative space vehicle

    NASA Astrophysics Data System (ADS)

    Deskevich, J.

    1984-01-01

    The Leasecraft system has been developed by an American aerospace company with the objective to further the industrialization of space with its significant business potential. This system comprises a low orbit space platform, an operation control center, user accommodations, and services such as payload interfaces, documentation, and ground support equipment and procedures. Potential applications of Leasecraft considered are related to the processing of pharmaceuticals and materials, satellite-aided search and rescue, data collection, and support of NASA's astrophysics programs. The Leasecraft space vehicle will accommodate up to five modular power subsystems, including a communications and data handling module, a modular attitude control subsystem, a special function module, two alternative solar array assemblies, a tracking and data relay satellite system antenna assembly, a propulsion module, and optional primary and secondary payload modules.

  20. Unmanned space vehicle technology demonstrator

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Accardo, D.; Grassi, M.; Curreri, F.

    2007-02-01

    The unmanned space vehicle (USV) program has been undertaken by the Italian Center for Aerospace Research with the aim of developing flying test beds of next generation reentry launch vehicles. In this framework, the development of small demonstrators is also foreseen to validate technological and operational aspects of full-scale vehicles and missions. In this paper, a small-scale demonstrator of the sub-orbital re-entry test mission of the USV program is described. Both mission profile and objectives are very challenging in terms of demonstrator guidance, navigation and control. After a short description of the mission and demonstrator architectures, particular emphasis is given to the guidance and navigation analysis. To this end, mission objectives and reduced-scale system constaints are integrated and translated into innovative guidance solutions relying on optimization techniques. Then, performance of a commercial-off-the-shelf GPS-aided, miniature inertial navigation system over the proposed trajectories is evaluated by Monte Carlo analysis. Standalone inertial and GPS-aided inertial navigation performance is also compared considering GPS loss conditions due to antenna plasma effects.

  1. ISS Update: Powering the Space Exploration Vehicle

    NASA Video Gallery

    In the Space Vehicle Mock-Up Facility at Johnson Space Center in Houston, NASA Public Affairs Officer Brandi Dean talks with Abbie Ryan, lead engineer for the fuel cell of the Multi-Mission Space E...

  2. Planned development of the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

  3. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  4. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  5. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  6. Advanced APS Impacts on Vehicle Payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1989-01-01

    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.

  7. Space Vehicle Reliability Modeling in DIORAMA

    SciTech Connect

    Tornga, Shawn Robert

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  8. Design optimization for a space based, reusable orbit transfer vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Future NASA and DOD missions will benefit from high performance, reusable orbit transfer vehicles. With the advent of a space station, advanced engine technology, and various new vehicle concepts, reusable orbit transfer vehicles that provide significant economic benefits and mission capability improvements will be realized. Engine and vehicle design criteria previously have lacked definition with regard to issues such as space basing and servicing, man-rating and reliability, performance, mission flexibility, and life cycle cost for a reusable vehicle. The design study described here has resulted in the definition of a reusable orbit transfer vehicle concept and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine. These design criteria include number of engines per vehicle, nozzle design, etc. The major characteristics of the vehicle preliminary design include low lift to drag aerocapture capability, a main propulsion system failure criteria of fail operational/fail safe, and either two main engines with a high performance attitude control system for back-up or three main engines with which to meet this failure criteria. In addition, a maintenance approach has been established for the advanced vehicle concept.

  9. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  10. Space vehicle thermal rejection system

    NASA Technical Reports Server (NTRS)

    Tanzer, Herbert J. (Inventor)

    1989-01-01

    A space vehicle thermal heat rejection system 10 utilizing separate optimized heat pipe components for the functions of heat acquisition, heat transport, and heat rejection. A honeycomb panel heat pipe evaporator section 20 performs the function of heat acquisition, and forms a closed thermodynamic system with a dual channel heat pipe transport section 30, which performs the function of heat transport. A plurality of truss or channel core heat pipe rejection fins 41 form the condenser section 40, which performs the function of heat rejection. A common wall 32 separates the condenser section 40 from the transport section 30. Using the above heat pipe components and having efficient interfacing between them results in high performance factors for the overall system.

  11. Accelerating the Design of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Laufenberg, Larry (Editor)

    2003-01-01

    One of NASA's key goals is to increase the safety and reduce the cost of space transportation. Thus, a key element of NASA's new Integrated Space Transportation Plan is to develop new propulsion, structures, and operations for future generations of reusable launch vehicles (RLVs). As part of this effort to develop the next RLV, the ClCT Program's Computing, Networking, and Information Systems (CNIS) Project is developing and demonstrating collaborative software technologies that use the collective power of the NASA Grid to accelerate spacecraft design. One of these technologies, called AeroDB, automates the execution and monitoring of computational fluid dynamics (CFD) parameter studies on the NASA Grid. About the NASA Grid The NASA Grid, or Information Power Grid,. is being developed to leverage the distributed resources of NASA's many computers. instruments, simulators, and data storage systems. The goal is to use these combined resources to sdve difficult NASA challenges, such as iimulating the entire flight of a space vehicle from ascent to descent.To realize the vision of the NASA Grid, the CNIS Project is developing the software framework and protocols for building domain-specific environments and interfaces, new Grid services based on emerging industry standards, and advanced networking and computing testbeds to support new Grid-based applications such as AeroDB.

  12. Advanced space program studies. Overall executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1977-01-01

    NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.

  13. Lightning Protection for the Orion Space Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2015-01-01

    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  14. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  15. Electric Vehicles at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  16. Vehicle Engineering Development Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; Champion, Robert H., Jr.

    1999-01-01

    New initiatives in the Space Transportation Directorate at the Marshall Space Flight Center include an emphasis on Vehicle Engineering to enhance the strong commitment to the Directorate's projects in the development of flight hardware and flight demonstrators for the advancement of space transportation technology. This emphasis can be seen in the activities of a newly formed organization in the Transportation Directorate, The Vehicle Subsystems Engineering Group. The functions and type of activities that this group works on are described. The current projects of this group are outlined including a brief description of the status and type of work that the group is performing. A summary section is included to describe future activities.

  17. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2011-01-01

    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited

  18. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  19. Advanced Range Safety System for High Energy Vehicles

    NASA Technical Reports Server (NTRS)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  20. Advanced batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Paul A.

    1989-03-01

    Over the past twenty years, some of the most difficult problems have been solved in the development of long-lived lithium/sulfide secondary batteries having molten chloride electrolytes. Recent tests of Li-Al/FeS2 cells have demonstrated 1000 cycles of operation and the practicality of achieving a specific energy of 175 Wh/kg for prismatic cells. Bipolar cells now under study may achieve even higher specific energy. Also, bipolar cells make possible the use of low-cost coated current collectors for the positive electrode instead of the expensive molybdenum current collectors that have been required for prismatic cells. Very compact batteries to power an electric van have been conceptually designed with this approach. These batteries would provide a range for the loaded vehicle of more than 100 miles for a battery weighing 280 kg, only 15 percent of the loaded vehicle weight (1930 kg).

  1. Advanced Vehicle and Power Initiative

    DTIC Science & Technology

    2010-07-29

    vehicle charging and incremental grid electrical supply. Qualifying renewable energy technologies for this initiative are solar , wind, geothermal...2,591 Particulates 7 84 2,744 Mercury 0 0.007 0.016 Source: EIA - Natural Gas Issues and Trends 1998 Table 2 - Fossil Fuel Green House Gas...Turning off all computer equipment (including monitors and printers), ventilation fans, pumps, radios, battery chargers , power supplies

  2. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  3. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  4. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  5. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  6. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  7. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  8. Zack Crues on Space Exploration Vehicle Mockup

    NASA Video Gallery

    Zack Crues, the Space Exploration Vehicle modeling and simulation lead, talks to NASA Public Affairs Officer Brandi Dean about the importance of creating an immersive virtual reality environment fo...

  9. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  10. Skylab rescue space vehicle flight readiness test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A Skylab Rescue Space Vehicle flight readiness test is described which ensures that space vehicle systems are in a state of flight readiness and are compatible with associated ground support equipment. The functions of propellant loading, umbilical ejection, ignition, holddown arm release, liftoff, and service arm and tail service mast retraction are simulated. The test outline is presented along with a list of references, intercommunications information, operations interface control chart, and flight test.

  11. Test Results for Entry Guidance Methods for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2004-01-01

    There are a number of approaches to advanced guidance and control that have the potential for achieving the goals of significantly increasing reusable launch vehicle (or any space vehicle that enters an atmosphere) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future vehicle concepts.

  12. Method and Apparatus for Coupling Space Vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor)

    1998-01-01

    A first space vehicle is attached with a second space vehicle which includes a rocket propulsion nozzle having a combustion chamber upstream from the nozzle throat. Apparatus 10 includes an elongate grappling arm 12 extending from the first space vehicle, a pair of inflatable bladders 16, 18 positioned about the grappling arm for engaging an inner surface of the combustion chamber upon inflation. and a pair of rear bladders 20, 22 positioned about the grappling arm for engaging an inner surface of the nozzle downstream from the combustion chamber upon inflation for aligning the grappling arm and the rocket propulsion nozzle. A pressurized fluid source 24 is provided on the first space vehicle for supplying fluid pressure to the inflatable bladders. and a fluid control valve manifold 30 selectively controls the release of pressurized fluid to the bladders. According to the method of the invention. the grappling arm is inserted into the rocket propulsion nozzle. and the control valves are actuated to first inflate the front bladders and thereby interconnect the grappling arm and the rocket propulsion nozzle. The rear bladders are subsequently inflated to align a central axis of the grappling arm with a central axis of the rocket propulsion nozzle. Inflation of the rear bladders provides an axial reaction load to balance the axial load provided by the front bladders. Attaching the vehicles in space may be controlled from the earth by activating the control valves to inflate the bladders. The cost of attaching space vehicles is significantly reduced by attaching a grappling arm on one vehicle with the existing rocket propulsion nozzle of another vehicle.

  13. Advanced vehicle systems assessment. Volume 3: Systems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.

  14. Advanced materials for space

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Slemp, W. S.; Long, E. R., Jr.; Sykes, G. F.

    1980-01-01

    The principal thrust of the LSST program is to develop the materials technology required for confident design of large space systems such as antennas and platforms. Areas of research in the FY-79 program include evaluation of polysulfones, measurement of the coefficient of thermal expansion of low expansion composite laminates, thermal cycling effects, and cable technology. The development of new long thermal control coatings and adhesives for use in space is discussed. The determination of radiation damage mechanisms of resin matrix composites and the formulation of new polymer matrices that are inherently more stable in the space environment are examined.

  15. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  16. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  17. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  18. Advances in space robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio

    1989-01-01

    The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.

  19. Thermal conductivity of Rene 41 honeycomb panels. [space transportation vehicles

    NASA Technical Reports Server (NTRS)

    Deriugin, V.

    1980-01-01

    Effective thermal conductivities of Rene 41 panels suitable for advanced space transportation vehicle structures were determined analytically and experimentally for temperature ranges between 20.4K (423 F) and 1186K (1675 F). The cryogenic data were obtained using a cryostat whereas the high temperature data were measured using a heat flow meter and a comparative thermal conductivity instrument respectively. Comparisons were made between analysis and experimental data. Analytical methods appear to provide reasonable definition of the honeycomb panel effective thermal conductivities.

  20. Environmentally Responsible Aviation N plus 2 Advanced Vehicle Study

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Harris, Christopher A.; Komadina, Steven C.; Wang, Donny P.; Bender, Anne M.

    2013-01-01

    This is the Northrop Grumman final report for the Environmentally Responsible Aviation (ERA) N+2 Advanced Vehicle Study performed for the National Aeronautics and Space Administration (NASA). Northrop Grumman developed advanced vehicle concepts and associated enabling technologies with a high potential for simultaneously achieving significant reductions in emissions, airport area noise, and fuel consumption for transport aircraft entering service in 2025. A Preferred System Concept (PSC) conceptual design has been completed showing a 42% reduction in fuel burn compared to 1998 technology, and noise 75dB below Stage 4 for a 224- passenger, 8,000 nm cruise transport aircraft. Roadmaps have been developed for the necessary technology maturation to support the PSC. A conceptual design for a 55%-scale demonstrator aircraft to reduce development risk for the PSC has been completed.

  1. Ground Processing Affordability for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  2. ISRU Propellant Selection for Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Timothy T.

    2013-01-01

    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size

  3. Space vehicle acoustics prediction improvement for payloads. [space shuttle

    NASA Technical Reports Server (NTRS)

    Dandridge, R. E.

    1979-01-01

    The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.

  4. Advanced control design for hybrid turboelectric vehicle

    NASA Astrophysics Data System (ADS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-08-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  5. Advanced control design for hybrid turboelectric vehicle

    NASA Technical Reports Server (NTRS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-01-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  6. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  7. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  8. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  9. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  10. Space vehicle approach velocity judgments under simulated visual space conditions.

    PubMed

    Haines, R F

    1989-02-01

    There were 35 volunteers who responded when they first perceived an increase in apparent size of a collimated, two-dimensional perspective image of an Orbiter vehicle. The variables of interest included the presence (or absence) of a fixed reticle within the field of view (FOV), background starfield velocity, initial range to the vehicle and vehicle closure velocity. It was found that: 1) increasing vehicle approach velocity yielded a very small (but significant) effect of faster detection of vehicle movement, nevertheless, response variability was relatively large; 2) including the fixed reticle in the FOV produced significantly slower detection of vehicle radial movement, however this occurred only at the largest range and the magnitude of the effect was only about 15% of the one sigma value; and 3) increasing background star velocity during this judgment led to slower detection of vehicle movement. While statistically significant, this effect was small and occurred primarily at the largest range. A possible explanation for the last two findings is that other static and dynamic objects within the visual field may compete for available attention which otherwise would be available for judging image expansion; thus, the target's retinal image has to expand more than otherwise for its movement to be detected. This study also showed that the Proximity Operations Research Mockup at NASA/Ames can be used effectively to investigate a variety of visual judgment questions related to future space operations. These findings are discussed in relation to previous research and possible underlying mechanisms.

  11. Dynamics and Control of Flexible Space Vehicles

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1970-01-01

    The purpose of this report is twofold: (1) to survey the established analytic procedures for the simulation of controlled flexible space vehicles, and (2) to develop in detail methods that employ a combination of discrete and distributed ("modal") coordinates, i.e., the hybrid-coordinate methods. Analytic procedures are described in three categories: (1) discrete-coordinate methods, (2) hybrid-coordinate methods, and (3) vehicle normal-coordinate methods. Each of these approaches is described and analyzed for its advantages and disadvantages, and each is found to have an area of applicability. The hybrid-coordinate method combines the efficiency of the vehicle normal-coordinate method with the versatility of the discrete-coordinate method, and appears to have the widest range of practical application. The results in this report have practical utility in two areas: (1) complex digital computer simulation of flexible space vehicles of arbitrary configuration subject to realistic control laws, and (2) preliminary control system design based on transfer functions for linearized models of dynamics and control laws.

  12. Ares Launch Vehicles Overview: Space Access Society

    NASA Technical Reports Server (NTRS)

    Cook, Steve

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  13. Advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    Freitas, R. A., Jr.; Healy, T. J.; Long, J. E.

    1982-01-01

    A NASA/ASEE Summer Study conducted at the University of Santa Clara in 1980 examined the feasibility of using advanced artificial intelligence and automation technologies in future NASA space missions. Four candidate applications missions were considered: (1) An intelligent earth-sensing information system, (2) an autonomous space exploration system, (3) an automated space manufacturing facility, and (4) a self-replicating, growing lunar factory. The study assessed the various artificial intelligence and machine technologies which must be developed if such sophisticated missions are to become feasible by century's end.

  14. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Chris; Inman, Sharon K.; Tuttle, Loraine; Neeley, James R.; Jones, James V.

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk.

  15. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..

  16. Next Generation of Launcher & Space Vehicles Batteries

    NASA Astrophysics Data System (ADS)

    Laroye, J. F.; Brochard, P.; Grassien, J.-Y.; Masgrangeas, D.

    2008-09-01

    This paper presents several examples of Saft lithium batteries in use onboard launchers & space vehicles: ATV primary lithium manganese dioxide (LiMnO2) batteries and Rosetta primary lithium thionyl chloride (LiSOCl2) batteries as well as the VEGA rechargeable lithium-ion (Li-ion) avionics & thrust vector control (TVC) batteries.It gives an overview of possible chemistries and tradeoff to address these needs.

  17. Problems of design and development of advanced superheavy launch vehicles

    NASA Astrophysics Data System (ADS)

    Daniluk, A. Yu.; Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2016-12-01

    The article analyzes problems of design and development of advanced superheavy launch vehicles. Mass and energy characteristics and design layout of launch vehicles are substantiated. Delivery methods of bulky superheavy launch vehicle components to the spacecraft launch site are discussed. Methods of reduction of financial and technical risks of development and operation of superheavy launch vehicles are analyzed. The problem of environmental impacts of superheavy launch vehicle launches is posed.

  18. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  19. Launch Vehicle Assessment for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    A recently completed study at Georgia Tech examined various launch vehicle options for deploying a future constellation of Space Solar Power satellites of the Suntower configuration. One of the motivations of the study was to determine whether the aggressive $400/kg launch price goal established for SSP package delivery would result in an attractive economic scenario for a future RLV developer. That is, would the potential revenue and traffic to be derived from a large scale SSP project be enough of an economic "carrot" to attract an RLV company into developing a new, low cost launch vehicle to address this market. Preliminary results presented in the attached charts show that there is enough economic reward for RLV developers, specifically in the case of the latest large GEO-based Suntower constellations (over 15,500 MT per year delivery for 30 years). For that SSP model, internal rates of return for the 30 year economic scenario exceed 22%. However, up-front government assistance to the RLV developer in terms of ground facilities, operations technologies, guaranteed low-interest rate loans, and partial offsets of some vehicle development expenses is necessary to achieve these positive results. This white paper is meant to serve as a companion to the data supplied in the accompanying charts. It's purpose is to provide more detail on the vehicles and design processes used, to highlight key decisions and issues, and to emphasize key results from each phase of the Georgia Tech study.

  20. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  1. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  2. Biosafety in Space Vehicles and Habitats

    NASA Astrophysics Data System (ADS)

    Wong, Wing; Arneson, David; Pierson, Duane

    2010-09-01

    Biohazardous materials can be found in space vehicles and habitats include blood, body-waste, visible microbial contamination, and payload experiments containing bacteria, fungi, animals, plants, toxins, recombinant DNA, or mammalian cell lines. To mitigate the potential hazards that these biohazardous materials present to the crew and the space environments, sound biosafety principles and practices such as thorough risk assessment, sufficient level of containment, effective remedial actions, adequate system design, and the use of proper personal protective equipment are needed. The Biosafety Review Board(BRB) at Johnson Space Center plays a critical role in ensuring the proper biosafety principles and practices are applied. The BRB includes a team of microbiologists, cell biologists, physicians, industrial hygienists, and safety professionals to assess the wide range of biohazardous materials encountered.

  3. Autonomous Space Vehicles of the Future

    NASA Astrophysics Data System (ADS)

    Fesq, L. M.; Some, R. R.; Lay, N. E.; Castano, R.; Nesnas, I. A.; Castillo-Rogez, J. C.; Doyle, R. J.; Beauchamp, P. M.

    2017-02-01

    NASA’s vision to seek out life in the far reaches of and possibly beyond our solar system will demand technology advances in computing, communication, and on-board reasoning to achieve more physically and cognitively-capable robotic space explorers.

  4. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  5. Advanced vehicle systems assessment. Volume 4: Supporting analyses

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 4 (Supporting Analyses) is part of a five-volume report, Advanced Vehicle Systems Assessment. Thirty-nine individuals, knowledgeable in advanced technology, were interviewed to obtain their preferences. Rankings were calculated for the eight groups they represented, using multiplicative and additive utility models. The four topics for consideration were: (1) preferred range for various battery technologies; (2) preferred battery technology for each of a variety of travel ranges; (3) most promising battery technology, vehicle range combination; and (4) comparison of the most preferred electric vehicle with the methanol-fuled, spark-ignition engine vehicle and with the most preferred of the hybrid vehicles.

  6. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  7. Table of Space Vehicles: 1973-1977.

    DTIC Science & Technology

    1978-02-01

    IR AD—AOS6 692 ROYAL AIRCRA FT ESTABLISHMENT FARNBOROUGH (ENGLAND ) F~ G 22/2F TABLE OF SPACE VEHICLES: 1913—1977.(U)FEB 78 .J A PILKINSTON...73006. Copy ~’ight© Controller 111480 London 1978 * Consultant. Address: 72 Thornhill Street, Calver ley , Pudsey, Yorks. - 07 17 043 n- CONTENTS Pa... g ~~~a) ‘0 0 •t5 C~ ) ‘0 £ C’.) 3 4.. a) ‘0 0‘0 ‘0 a) 4.. -. c_S_I a) C~ C’.) ‘0 4) ~~ •.~ 4..a) C 9- 0 4 In 4$ — 4) 9

  8. Navigation simulator for the Space Tug vehicle

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III; Peters, E. G.

    1977-01-01

    A general simulation program (GSP) for state estimation of a nonlinear space vehicle flight navigation system is developed and used as a basis for evaluating the performance of a Space Tug navigation system. An explanation of the iterative guidance mode (IGM) guidance law, derivation of the dynamics, coordinate frames and state estimation routines are given in order to clarify the assumptions and approximations made. A number of simulation and analytical studies are used to demonstrate the operation of the Tug system. Included in the simulation studies are (1) initial offset vector parameter study; (2) propagation time vs accuracy; (3) measurement noise parametric study and (4) reduction in computational burden of an on-board implementable scheme. From the results of these studies, conclusions and recommendations concerning future areas of practical and theoretical work are presented.

  9. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  10. Space to Space Advanced EMU Radio

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic

  11. Advanced vehicle systems assessment. Volume 5: Appendices

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    An appendix to the systems assessment for the electric hybrid vehicle project is presented. Included are battery design, battery cost, aluminum vehicle construction, IBM PC computer programs and battery discharge models.

  12. Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Willsey, Mark; Bailey, Brad

    2011-01-01

    In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.

  13. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  14. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  15. Biconic cargo return vehicle with an advanced recovery system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current space exploration initiative is focused around the development of the Space Station Freedom (SSF). Regular resupply missions must support a full crew on the station. The present mission capability of the shuttle is insufficient, making it necessary to find an alternative. One alternative is a reusable Cargo Return Vehicle (CRV). The suggested design is a biconic shaped, dry land recovery CRV with an advance recovery system (ARC). A liquid rocket booster will insert the CRV into a low Earth orbit. Three onboard liquid hydrogen/liquid oxygen engines are used to reach the orbit of the station. The CRV will dock to the station and cargo exchange will take place. Within the command and control zone (CCZ), the CRV will be controlled by a gaseous nitrogen reaction control system (RCS). The CRV will have the capability to exchange the payload with the Orbital Maneuvering Vehicle (OMV). The bent biconic shape will give the CRV sufficient crossrange to reach Edwards Air Force Base and several alternative sites. Near the landing site, a parafoil-shaped ARS is deployed. The CRV is designed to carry a payload of 40 klb, and has an unloaded weight of 35 klb.

  16. Multilayer insulation materials for reusable space vehicles.

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.; Hyde, E. H.

    1971-01-01

    Results of an extensive study conducted to evaluate multilayer insulation (MLI) materials suitable for repeated space vehicle operation are presented. Materials studied were radiation shields, shield spacers, blanket face sheets, fasteners, and adhesives. The Superfloc MLI concept - Kapton shields goldized on both sides as the radiation barrier with Dacron flock tufts as the spacers - appeared to be an excellent MLI for reusable cryogenic tankage. Superfloc configurations consisting of various combinations of film, spacer, and adhesive materials were manufactured and tested. Tensile, flexing, expansion, and cycling tests were performed on goldized Kapton and Mylar Superfloc and Beta glass reinforced Pyre ML face sheet material. A face sheet material that retains its shape was developed. Polyphenylene oxide material was selected for fabricating lightweight twin and tri-pin fasteners, together with grommets, face sheets, and reinforcement slabs. Measured material thermal conductivity values are tabulated.

  17. Robust flight design for an advanced launch system vehicle

    NASA Technical Reports Server (NTRS)

    Dhand, Sanjeev K.; Wong, Kelvin K.

    1991-01-01

    Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.

  18. Advanced Fuels Can Reduce the Cost of Getting Into Space

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1998-01-01

    Rocket propellant and propulsion technology improvements can reduce the development time and operational costs of new space vehicle programs, and advanced propellant technologies can make space vehicles safer and easier to operate, and can improve their performance. Five major areas have been identified for fruitful research: monopropellants, alternative hydrocarbons, gelled hydrogen, metallized gelled propellants, and high-energy-density propellants. During the development of the NASA Advanced Space Transportation Plan, these technologies were identified as those most likely to be effective for new NASA vehicles. Several NASA research programs had fostered work in fuels under the topic Fuels and Space Propellants for Reusable Launch Vehicles in 1996 to 1997. One component of this topic was to promote the development and commercialization of monopropellant rocket fuels, hypersonic fuels, and high-energy-density propellants. This research resulted in the teaming of small business with large industries, universities, and Government laboratories. This work is ongoing with seven contractors. The commercial products from these contracts will bolster advanced propellant research. Work also is continuing under other programs, which were recently realigned under the "Three Pillars" of NASA: Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. One of the five areas is described below, and its applications and effect on future missions is discussed. This work is being conducted at the NASA Lewis Research Center with the assistance of the NASA Marshall Space Flight Center. The regenerative cooling of spacecraft engines and other components can improve overall vehicle performance. Endothermic fuels can absorb energy from an engine nozzle and chamber and help to vaporize high-density fuel before it enters the combustion chamber. For supersonic and hypersonic aircraft, endothermic fuels can absorb the high heat fluxes created on the wing leading edges and

  19. Advanced Crew Rescue Vehicle/Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Craig, Jerry W.

    1993-01-01

    The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.

  20. Advanced Crew Rescue Vehicle/Personnel Launch System

    NASA Astrophysics Data System (ADS)

    Craig, Jerry W.

    1993-02-01

    The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.

  1. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  2. An advanced unmanned vehicle for remote applications

    SciTech Connect

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  3. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  4. Conference Proceedings on Guidance and Control Techniques for Advanced Space Vehicles (37th) Held at Florence, Italy on 27-30 September 1983.

    DTIC Science & Technology

    1984-01-01

    8217 tIc C1x cr capteurs oU des diverses souirces d’inforination. enl vue tIe Idt prodUct 1011. pouir Liltloo COod 11Ll tLiC. tic svst~rncs efficaces et...so far heen tused for i space application but the tc’.+’hinlq tie, employed had been utilised on computers used by le I’S \\rmn. I lie paper AaN...1, UTILISATION ’ CE L’ INTFIAGiENCE. CE O tin entond par intol I l gonce tde herd, ott Intel I igence t’niirqii e, I bouill ’to tc le,; de co it rtl

  5. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    DTIC Science & Technology

    2015-06-22

    412TW-PA-15264 CURRENT HYPERSONIC AND SPACE VEHICLE FLIGHT TEST AND INSTRUMENTATION John J. Spravka* and Timothy R. Jorris† AIR FORCE TEST...DATES COVERED (From - To) 22 – 26 July 2015 4. TITLE AND SUBTITLE Current Hypersonic and Space Vehicle Flight Test and Instrumentation...utility can be leveraged by a wide range of flight test programs. 15. SUBJECT TERMS Hypersonic, flight test, instrumentation, space access, space

  6. Advanced vehicle systems assessment. Volume 2: Subsystems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).

  7. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    PubMed Central

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  8. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  9. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  10. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  11. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  12. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  13. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  14. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  15. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  16. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  17. Wooden Spaceships: Human-Centered Vehicle Design for Space

    NASA Technical Reports Server (NTRS)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  18. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  19. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  20. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  1. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  2. NASA's Advanced Space Transportation Program: A Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    1999-01-01

    The realization of low-cost assess to space is one of NASA's three principal goals or "pillars" under the Office of Aero-Space Technology. In accordance with the goals of this pillar, NASA's primary space transportation technology role is to develop and demonstrate next-generation technologies to enable the commercial launch industry to develop full-scale, low cost, highly reliable space launchers. The approach involves both ground-based technology demonstrations and flight demonstrators, including the X-33, X-34, Bantam, Reusable Launch Vehicle (RLV), and future experimental vehicles. Next generation space transportation vehicles and propulsion systems will require the development and implementation of advanced materials and processes. This presentation will provide an overview of advanced materials efforts which are focused on the needs of next generation space transportation systems. Applications described will include ceramic matrix composite (CMC) integrally bladed turbine disk (blisk); actively cooled CMC nozzle ramp for the aerospike engine; ablative thrust chamber/nozzle; and metal matrix composite turbomachinery housings.

  3. Advanced metallic thermal protection systems for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Blosser, Max Leon

    2000-10-01

    Metallic thermal protection systems are a key technology that may help achieve the goal of reducing the cost of space access. A study was performed to develop an understanding of the key factors that govern the performance of metallic thermal protection systems for reusable launch vehicles. Multi-disciplinary background information was assembled and reviewed critically to provide a basis for development of improved metallic thermal protection systems. The fundamentals of aerodynamic heating were reviewed and applied to the development of thermal protection systems. General approaches to thermal protection were categorized and critiqued. The high temperature materials used for thermal protection systems (TPS), including insulations, structural materials, and coatings were reviewed. The history of metallic TPS from early pre-Shuttle concepts to current concepts for a reusable launch vehicle was reviewed for the first time. A current advanced metallic TPS concept was presented and systematically analyzed to discover the most important factors governing the thermal performance of metallic TPS. A large number of relevant factors that influence the thermal analysis and thermal performance of metallic TPS were identified and quantified. Detailed finite element computational models were developed for predicting the thermal performance of variations of the advanced metallic TPS concept mounted on a simple, unstiffened structure. The computational models were also used, in an automated iterative procedure, for sizing the metallic TPS to maintain the structure below a specified temperature limit. A statistical sensitivity analysis method, based on orthogonal matrix techniques used in robust design, was used to quantify and rank the relative importance of the various modeling and design factors considered in this study. Results from this study identify factors that have the most potential to improve metallic TPS performance. The thermal properties of the underlying vehicle

  4. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  5. Advanced Engineering Environments for Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  6. Coupled Loads Analysis Accuracy from the Space Vehicle Perspective

    NASA Astrophysics Data System (ADS)

    Dickens, J. M.; Wittbrodt, M. J.; Gate, M. M.; Li, L. H.; Stroeve, A.

    2001-01-01

    Coupled loads analysis (CLA) consists of performing a structural response analysis, usually a time-history response analysis, with reduced dynamic models typically provided by two different companies to obtain the coupled response of a launch vehicle and space vehicle to the launching and staging events required to place the space vehicle into orbit. The CLA is performed by the launch vehicle contractor with a reduced dynamics mathematical model that is coupled to the launch vehicle, or booster, model to determine the coupled loads for each substructure. Recently, the booster and space vehicle contractors have been from different countries. Due to the language differences and governmental restrictions, the verification of the CLA is much more difficult than when working with launch vehicle and space vehicle contractors of the same country. This becomes exceedingly clear when the CLA analysis results do not seem to pass an intuitive judgement. Presented in the sequel are three checks that a space vehicle contractor can perform on the results of a coupled loads analysis to partially verify the analysis.

  7. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  8. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  9. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  10. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  11. Automation of vehicle processing at Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Vargo, Rick; Sklar, Mike; Wegerif, Dan

    1991-02-01

    A methodology for applying the Kennedy Space Center vehicle processing experience to similar operations at Space Station Freedom is described. First, the required on-orbit processing tasks are identified. These tasks are then evaluated for automation suitability, and robotic manipulator and artificial intelligence technologies are investigated to automate selected physical and cognitive tasks. Effects on processing times, extra-vehicular activity savings, and required resources for incorporating these automation enhancements are identified. Results of the following case studies are included: Phobos Gateway Vehicle On-Orbit Assembly and Launch, Lunar Evolution Vehicle On-Orbit Refurbishment, and Mars Mission Vehicle On-Orbit Assembly and Launch.

  12. TPS Sizing for Access-to-Space Vehicles

    NASA Technical Reports Server (NTRS)

    Henline, William; Olynick, David; Palmer, Grant; Chen, Y.-K.

    1996-01-01

    A study was carried out to identify, develop, and benchmark simulation techniques needed for optimum thermal protection system (TPS) material selection and sizing for reusable launch vehicles. Fully viscous, chemically reacting, Navier-Stokes flow solutions over the Langley wing-body single stage to orbit (SSTO) configuration were generated and coupled with an in-depth conduction code. Results from the study provide detailed TPS heat shield materials selection and thickness sizing for the wing-body SSTO. These results are the first ever achieved through the use of a complete, trajectory based hypersonic, Navier-Stokes solution database. TPS designs were obtained for both laminar and turbulent entry trajectories using the Access-to-Space baseline materials such as tailorable advanced blanket insulation. The TPS design effects (materials selection and thickness) of coupling material characteristics to the aerothermal environment are illustrated. Finally, a sample validation case using the shuttle flight database is included.

  13. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  14. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  15. RAMS approach for reusable launch vehicle advanced studies

    NASA Astrophysics Data System (ADS)

    Tatry, PH.; Deneu, F.; Simonotti, J. L.

    The emerging of reusable single stage to orbit concept as credible launchers in the turn of the century is changing some technical and technological approaches in the way of doing future launcher advanced studies. Among others (such as operations through the "aircraft-like operations" concept), the RAMS approach (reliability, availability, maintainability and safety) has to be implemented from the very beginning of a concept study, especially for the SSTOs ones in order to meet the "able" requirements (affordable, reusable, reliable, available and operable). Beyond the "traditional" considerations applied to expendable launchers and/or man rated space transportation systems, the RAMS involvement in reusable launcher advanced studies and concept trade-offs must allow to perform the best balance between costs, performance and related risks. For instance, in the framework of SSTOs key technologies identification studies performed at Aerospatiale, the RAMS have been involved from the beginning of the preliminary design task. This approach has shown that the assessment of the main propulsion failure risks and associated probabilities of occurrence have strongly affected the vehicle design within the mission management and technical aspects such as main propulsion specifications, ascent trajectory shaping and landing phase scenario (VTOVL configuration). This paper intends to describe this RAMS approach and addresses how it has been applied on trade-off on VTOVL concept.

  16. Advanced Materials and Multifunctional Structures for Aerospace Vehicles

    DTIC Science & Technology

    2006-10-01

    through covalent integration of functional nanotubes ”, Advanced Functional Materials, 14(7) (2004) 643-648. 185 R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and...on Advanced Materials for Multi Functional Structures in Aerospace Vehicles. The advanced synthesis, processing and the characterization techniques...when more than one primary function is performed either simultaneously or sequentially in time. These systems are based on metallic, ceramic and

  17. Skylab 2 space vehicle data evaluation guide

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Vehicle telemetry measurements for all stages of Skylab 2 are presented. The data sources for the launch vehicle and command service module are identified. The data evaluation guide format is described. The system for designating the components of the spacecraft is defined. A list of abbreviations for technical terms used in the reporting documents is included.

  18. Vehicle for Space Transfer and Recovery (VSTAR), volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). VSTAR will provide for economic use of high altitude spaceflight for both the public and private sector. VSTAR components will be built and tested using earth based facilities. These components will then be launched using the space shuttle, into low earth orbit (LEO) where it will be constructed on a U.S. built space station. Once in LEO the vehicle components will be assembled in modules which can then be arranged in various configurations to perform the required missions.

  19. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  20. Advanced continuously variable transmissions for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  1. Risk Considerations of Bird Strikes to Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hales, Christy; Ring, Robert

    2016-01-01

    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  2. Advanced batteries for electric vehicle applications

    SciTech Connect

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  3. Advanced control concepts. [for shuttle ascent vehicles

    NASA Technical Reports Server (NTRS)

    Sharp, J. B.; Coppey, J. M.

    1973-01-01

    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used.

  4. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    NASA Technical Reports Server (NTRS)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  5. Advanced vehicle concepts systems and design analysis studies

    NASA Technical Reports Server (NTRS)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  6. Second Generation RLV Space Vehicle Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Daniel, C. C.

    2002-01-01

    NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems

  7. The Advancement of Humans in Space

    NASA Technical Reports Server (NTRS)

    Graves, John A.

    2014-01-01

    The advancement of humans into space and potentially beyond started slow but has greatly increased in speed over the past 2 generations. NASA has been at the forefront of this development and coontinues to lead the way into space exploration. This presentation provides a brief historical overview of NASA's space exploration efforts and touches on the abilityof each new generation to greatly expand our presence in space.

  8. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  9. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  10. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  11. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  12. Development of Backscatter X-Ray Imaging Techniques for Space Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2009-01-01

    This slide presentation reviews the development of backscatter x ray (BSX) imaging techniques to perform inspection of spacecraft components. The techniques are currently being enhanced to advance Non-Destructive Testing (NDT) methods for future space vehicle applications. The presentation includes an overview of x ray techniques, a description of current BSX applications used on the space shuttle, the development for Constellation applications, and the use of the system for foam applications.

  13. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  14. Advanced space system for geostationary orbit surveillance

    NASA Astrophysics Data System (ADS)

    Klimenko, N. N.; Nazarov, A. E.

    2016-12-01

    The structure and orbital configuration of the advanced space system for geostationary orbit surveillance, as well as possible approaches to the development of the satellite bus and payload for the geostationary orbit surveillance, are considered.

  15. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; Reynolds, Tom; Waitz, Ian; Hileman, James; Arunachalam, Sarav; Hedrick, Matt; Vempati, Lakshmi; Laroza, Ryan; denBraven, Wim; Henderson, Jeff

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  16. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  17. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  18. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 4: Detailed data. Part 2: Program plans and common support needs (a study of the commonality of space vehicle applications to future national needs

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.

  19. Re-Entry Mission Analysis of the Advanced Re-entry Vehicle (ARV)

    NASA Astrophysics Data System (ADS)

    Bonetti, D.; Haya Ramos, R.; Strauch, H.; Bottacini, M.

    2011-08-01

    This paper presents the results of the DEIMOS Space S.L.U. Re-entry Mission Analysis activities obtained in the frame of the Phase A up to PRR milestone of the Advanced Re-entry Vehicle (ARV) ESA project leaded by ASTRIUM. Results presented show how the trajectory and the vehicle design are strictly related and how a feasible and robust solution can be efficiently obtained by considering since the beginning several constraints limiting the design. The process implemented combines the design of key vehicle and trajectory parameters. Once the vehicle design parameters and the conditions at the EIP are fixed, the Mission Analysis is completed by the definition of the optimal trajectory from the deorbiting to the EIP that allow the correct targeting of the EIP conditions but also a safe separation of the different modules and the correct targeting of the desired landing site.

  20. Re-Entry Mission Analysis Of The Advanced Re-Entry Vehicle (ARV)

    NASA Astrophysics Data System (ADS)

    Bonetti, Davide; Haya Ramos, Rodrigo; Strauch, Hans; Bottacini, Massimiliano

    2011-05-01

    This paper presents the results of the DEIMOS Space S.L.U. Re-entry Mission Analysis activities obtained in the frame of the Phase A up to PRR milestone of the Advanced Re-entry Vehicle (ARV) ESA project leaded by ASTRIUM. Results presented show how the trajectory and the vehicle design are strictly related and how a feasible and robust solution can be efficiently obtained by considering since the beginning several constraints limiting the design. The process implemented combines the design of key vehicle and trajectory parameters. Once the vehicle design parameters and the conditions at the EIP are fixed, the Mission Analysis is completed by the definition of the optimal trajectory from the de- orbiting to the EIP that allow the correct targeting of the EIP conditions but also a safe separation of the different modules and the correct targeting of the desired landing site.

  1. Artists drawing of partial cutaway view of Apollo/Saturn IB space vehicle

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Artists drawing of a partial cutaway view of an Apollo/Saturn IB space vehicle in a launch configuration. Arrow point to various features and components of the vehicle. This drawing is representative of the Apollo 7 space vehicle.

  2. Modeling Space Launch Process Delays to Improve Space Vehicle Acquisition Timelines

    DTIC Science & Technology

    2013-06-01

    evolution of the space launch process over the past 15 years is the Space Launch Vehicle Broad Area Review ( SLV BAR). The SLV BAR, led by Gen. Larry...to 9 in 51 launches, a 100% increase (US Air Force, 1999). The SLV BAR began a period of intense scrutiny related to launch vehicle mission

  3. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  4. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  5. Methods of assessing structural integrity for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Stuckenberg, F. H.

    1971-01-01

    A detailed description and evaluation of nondestructive evaluation (NDE) methods are given which have application to space shuttle vehicles. Appropriate NDE design data is presented in twelve specifications in an appendix. Recommendations for NDE development work for the space shuttle program are presented.

  6. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  7. Polymers Advance Heat Management Materials for Vehicles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  8. Advanced Imaging for Space Science

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Future NASA interferometric missions will realize high-resolution with less mass and volume compared to filled-apertures thus saving in cost over comparable filled-aperture systems. However, interferometeric aperture systems give reduced sensitivity requiring longer integration times to achieve a desired signal-to-noise ratio but is likely the only cost effective path forward for high-resolution space imaging.

  9. Advanced Battery Management Challenges for Military Vehicles

    DTIC Science & Technology

    2013-12-06

    NCA, NCM) 2.5-4.1 7.5-12.3 10-16.4 15-24.6 17.5-28.7 20-32.8 L F P Nominal Voltage(V) ( LiFePO4 ) 3.3 9.9 13.2 19.8 23.1 26.4 n x 3.3 Voltage range...V) ( LiFePO4 ) 2.0-3.7 6-11.1 8-14.8 12-22.2 14-25.9 16-29.6 15 12V 6T 24V 6T UNCLASSIFIED Advanced Chemistry BMS • Required for Li-ion

  10. Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.

    1989-01-01

    An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.

  11. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  12. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  13. ADVISOR: a systems analysis tool for advanced vehicle modeling

    NASA Astrophysics Data System (ADS)

    Markel, T.; Brooker, A.; Hendricks, T.; Johnson, V.; Kelly, K.; Kramer, B.; O'Keefe, M.; Sprik, S.; Wipke, K.

    This paper provides an overview of Advanced Vehicle Simulator (ADVISOR)—the US Department of Energy's (DOE's) ADVISOR written in the MATLAB/Simulink environment and developed by the National Renewable Energy Laboratory. ADVISOR provides the vehicle engineering community with an easy-to-use, flexible, yet robust and supported analysis package for advanced vehicle modeling. It is primarily used to quantify the fuel economy, the performance, and the emissions of vehicles that use alternative technologies including fuel cells, batteries, electric motors, and internal combustion engines in hybrid (i.e. multiple power sources) configurations. It excels at quantifying the relative change that can be expected due to the implementation of technology compared to a baseline scenario. ADVISOR's capabilities and limitations are presented and the power source models that are included in ADVISOR are discussed. Finally, several applications of the tool are presented to highlight ADVISOR's functionality. The content of this paper is based on a presentation made at the 'Development of Advanced Battery Engineering Models' workshop held in Crystal City, Virginia in August 2001.

  14. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  15. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  16. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  17. An economic study of an advanced technology supersonic cruise vehicle

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Williams, L. J.

    1975-01-01

    A description is given of the methods used and the results of an economic study of an advanced technology supersonic cruise vehicle. This vehicle was designed for a maximum range of 4000 n.mi. at a cruise speed of Mach 2.7 and carrying 292 passengers. The economic study includes the estimation of aircraft unit cost, operating cost, and idealized cash flow and discounted cash flow return on investment. In addition, it includes a sensitivity study on the effects of unit cost, manufacturing cost, production quantity, average trip length, fuel cost, load factor, and fare on the aircraft's economic feasibility.

  18. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes

  19. Advanced Mobility Testbed for Dynamic Semi-Autonomous Unmanned Ground Vehicles

    DTIC Science & Technology

    2015-04-24

    a collaborative project between US Army TARDEC and NASA Jet Propulsion Laboratory (JPL) to develop an advanced UGV mobility testbed using JPL’s ROAMS...based parametric studies. ROAMS has been successfully used at JPL in several space mission-critical scenarios for NASA across multiple domains (cruise...vehicle autonomy simulation needs. This simulation approach has been successfully used by analysts across multiple NASA centers for a variety of problems

  20. A cost engineered launch vehicle for space tourism

    NASA Astrophysics Data System (ADS)

    Koelle, -Ing. Dietrich E., , Dr.

    1999-09-01

    The paper starts with a set of major requirements for a space tourism vehicle and discusses major vehicle options proposed for this purpose. It seems that the requirements can be met best with a Ballistic SSTO Vehicle which has the additional advantage of lowest development cost compared to other launch vehicle options — important for a commercial development venture. The BETA Ballistic Reusable Vehicle Concept is characterized by the plug nozzle cluster engine configuration where the plug nozzle serves also as base plate and re-entry heat shield. In this case no athmospheric turn maneuver is required (as in case-of the front-entry Delta-Clipper DC-Y concept). In our specific case for space tourism this mode has the avantage that the forces at launch and reentry are in exactly the same direction, easing passenger seating arrangements. The second basic advantage is the large available volume on top of the vehicle providing ample space for passenger accomodation, visibility and volume for zero-g experience (free floating), one of the major passenger mission requirements. An adequate passenger cabin design for 100 passengers is presented, as well as the modern BETA-STV Concept with its mass allocations.

  1. Advanced Photodetectors for Space Lidar

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Krainak, Michael A.; Abshire, James B.

    2014-01-01

    The detector in a space lidar plays a key role in the instrument characteristics and performance, especially in direct detection lidar. The sensitivity of the detector is usually the limiting factor when determining the laser power and the receiver aperture size, which in turn determines the instrument complexity and cost. The availability of a suitable detector is often a deciding factor in the choice of lidar wavelengths. A direct detection lidar can achieve the highest receiver performance, or the quantum limit, when its detector can detect signals at the single photon

  2. Mission analysis and guidance, navigation, and control design for rendezvous and docking phase of advanced reentry vehicle mission

    NASA Astrophysics Data System (ADS)

    Strippoli, L.; Colmenarejo, P.; Strauch, H.

    2013-12-01

    Advanced Reentry Vehicle (ARV) belongs to the family of vehicles designed to perform rendezvous and docking (RvD) with the International space station (ISS) [1]. Differently from its predecessor ATV (Automated Transfer Vehicle), the ARV will transport a reentry capsule, equipped with a heatshield and able to bring back cargo, experiments, or, as a possible future development, even crew, being this latter scenario very attracting in view of the Space Shuttle retirement. GMV, as subcontractor of EADS-Astrium Germany, is in charge of the RvD and departure mission analysis and GNC (Guidance, Navigation, and Control) design of ARV mission. This paper will present the main outcomes of the study.

  3. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. A.

    1992-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  4. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1991-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  5. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  6. Electric power processing, distribution and control for advanced aerospace vehicles.

    NASA Technical Reports Server (NTRS)

    Krausz, A.; Felch, J. L.

    1972-01-01

    The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

  7. Multi-objective trajectory optimization for the space exploration vehicle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoli; Xiao, Zhen

    2016-07-01

    The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.

  8. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  9. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  10. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology...

  13. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology...

  14. Investigation of Vehicle Requirements and Options for Future Space Tourism

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    2001-01-01

    The research in support of this grant was performed by the PI, Dr. John Olds, and graduate students in the Space Systems Design Lab (SSDL) at Georgia Tech over the period December 1999 to December 2000. The work was sponsored by Dr. Ted Talay, branch chief of the Vehicle Analysis Branch at the NASA Langley Research Center. The objective of the project was to examine the characteristics of future space tourism markets and to identify the vehicle requirements that are necessary to enable this emerging new business segment.

  15. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  16. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  17. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    NASA Astrophysics Data System (ADS)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  18. Advanced traffic control strategies for intelligent vehicle highway systems

    NASA Astrophysics Data System (ADS)

    Gartner, Nathan H.; Stamatiadis, C.; Tarnoff, P. J.

    1995-01-01

    This paper discusses traffic signal control strategies that are suitable for advanced traffic management within IVHS (Intelligent Vehicle Highway Systems). The strategies consist of a multi-level design for the real-time, traffic-adaptive control of the urban signal network system. Each control level has different response characteristics, with the more advanced levels incorporating in a nested fashion the capabilities of the lower levels. A principal goal of the new multi-level design is to invoke a selected control strategy when it can provide the greatest benefit.

  19. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Rhodes, Brooke M.; Reynolds, David W.

    2015-01-01

    With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and

  20. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  1. Advanced transportation system studies. Technical area 2: Heavy lift launch vehicle development. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.

  2. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  3. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; Picetti, D. J.; Hassan, B.; Kniskern, M. W.

    2012-01-01

    NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch

  4. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    NASA Astrophysics Data System (ADS)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  5. Investigation of abort procedures for space shuttle-type vehicles

    NASA Technical Reports Server (NTRS)

    Powell, R. W.; Eide, D. G.

    1974-01-01

    An investigation has been made of abort procedures for space shuttle-type vehicles using a point mass trajectory optimization program known as POST. This study determined the minimum time gap between immediate and once-around safe return to the launch site from a baseline due-East launch trajectory for an alternate space shuttle concept which experiences an instantaneous loss of 25 percent of the total main engine thrust.

  6. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  7. Development of control systems for space shuttle vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Skelley, E. D.; Stein, G.; Ward, M. D.; Skelton, G. B.; Yore, E. E.; Rupert, J. G.; Phelps, R. K.

    1971-01-01

    Control of winged two-stage space shuttle vehicles was investigated. Control requirements were determined and systems capable of meeting these requirements were synthesized. Control requirements unique to shuttles were identified. It is shown that these requirements can be satisfied by conventional control logics. Linear gain schedule controllers predominate. Actuator saturations require nonlinear compensation in some of the control systems.

  8. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  9. A shadowgraph study of Space Transportation System (STS): The Space Shuttle Launch Vehicle (SSLV)

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1994-01-01

    A shadowgraph study of the space transportation system (STS), the space shuttle launch vehicle, is presented. The shadowgraphs presented in this study were obtained over the past 10 years from wind tunnel tests performed in the NASA Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during the space shuttle development program. Shadowgraphs of the STS at various angles-of-attack and roll angles are shown for the Mach range of 0.6 to 4.96. The major flow field phenomena over the mated vehicle configuration are shown in these shadowgraphs. Shadowgraphs are also presented for the orbiter without the lower stack (reentry configuration) and the lower stack without the orbiter. A short study of external tank nose geometry effects on the mated vehicles flow field is presented. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle encounters during the ascent stage of flight.

  10. Advanced transponders for deep space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Kayalar, Selahattin; Yeh, Hen-Geul; Kyriacou, Charles

    1993-01-01

    Three architectures for advanced deep space transponders are proposed. The architectures possess various digital techniques such as fast Fourier transform (FFT), digital phase-locked loop (PLL), and digital sideband aided carrier detection with analog or digital turn-around ranging. Preliminary results on the design and conceptual implementation are presented. Modifications to the command detector unit (CDU) are also presented.

  11. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  12. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  13. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan

    2013-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  14. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  15. Advanced technology for space communications and tracking systems

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    The communications needs for the Growth Space Station (GSS) are envisioned to drive NASA to seek unique concepts and capability to establish this permanent presence in space. Furthermore, it will provide a facility to assemble, test, and deploy rather large and unique communications systems/subsystems. GSS is envisioned to need or desire the capability to communicate with many more satellites and spacecraft than the initial operating capability (IOC). The increased interconnectivity will include links with numerous NASA and other U.S. Government satellites, commercial satellites, foreign spacecraft, and deep space missions. In parallel, the payloads/experiments on Space Station are expected to increase in numbers and in terms of data gathering capabilities. The use of automation and robotics will require high data rate and extremely reliable links. The GSS will need to accommodate continually evolving and largely unknown future requirements for coverage, data rates, number of users, etc. This requirement for flexibility over a long term will provide a unique challenge to develop systems which are user transparent and which are quickly reconfigurable. Deep space communications are driven by the relatively near-term envisioned missions to the Moon and Mars. In addition to these, projected NASA missions include Saturn, Uranus, Neptune, and comet/asteroid probes. These future deep space missions will require highly reliable, long life, and very efficient communications and tracking systems to ensure success. Additionally, for space proximity operations, systems capable of supporting rendezvous, station keeping, and soft docking between various vehicles, Shuttle, satellites, unknown objects, and Space Stations are needed. In this paper, technology advancements in the communications and tracking areas being pursued within NASA, as applicable to future missions and associated space operations, are presented. The relevance of optical-, laser-, and millimeter-wave based

  16. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  17. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  18. Cyber threat impact assessment and analysis for space vehicle architectures

    NASA Astrophysics Data System (ADS)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  19. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  20. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  1. Robust on-off pulse control of flexible space vehicles

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  2. Technology issues associated with using densified hydrogen for space vehicles

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized.

  3. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  4. Mathematical model of a flexible space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Harvey, C. A.

    1972-01-01

    The development of a mathematical model of the lateral motion of a flexible space shuttle vehicle during ascent is described. The model was developed to perform control system synthesis using stochastic constrained optimization techniques. The goals of the control system synthesis are to demonstrate the applicability of the techniques and to discover any problems peculiar to the flexible nature of a shuttle vehicle. The equations of motion are derived. A brief description of the generation of numerical data is given. Explicit definitions and numerical values of trajectory data and coefficients appearing in the equations of motion are included.

  5. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  6. Space transfer vehicle concepts and requirements. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objectives of the Space Transfer Vehicle (STV) Concepts and Requirements studies were to provide sensitivity data on usage, economics, and technology associated with new space transportation systems. The study was structured to utilize data on the emerging launch vehicles, the latest mission scenarios, and Space Exploration Initiative (SEI) payload manifesting and schedules, to define a flexible, high performance, cost effective, evolutionary space transportation system for NASA. Initial activities were to support the MSFC effort in the preparation of inputs to the 90 Day Report to the National Space Council (NSC). With the results of this study establishing a point-of-departure for continuing the STV studies in 1990, additional options and mission architectures were defined. The continuing studies will update and expand the parametrics, assess new cargo and manned ETO vehicles, determine impacts on the redefined Phase 0 Space Station Freedom, and to develop a design that encompasses adequate configuration flexibility to ensure compliance with on-going NASA study recommendations with major system disconnects. In terms of general requirements, the objectives of the STV system and its mission profiles will address crew safety and mission success through a failure-tolerant and forgiving design approach. These objectives were addressed through the following: engine-out capability for all mission phases; built-in-test for vehicle health monitoring to allow testing of all critical functions such as, verification of lunar landing and ascent engines before initiating the landing sequence; critical subsystems will have multiple strings for redundancy plus adequate supplies of onboard spares for removal and replacement of failed items; crew radiation protection; and trajectories that optimize lunar and Mars performance and flyby abort capabilities.

  7. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  8. Space and planetary environment criteria guidelines for use in space vehicle development. Volume 1: 1982 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Compiler); West, G. S. (Compiler)

    1983-01-01

    Guidelines on space and planetary environment criteria for use in space vehicle development are provided. Information is incorporated in the disciplinary areas of atmospheric and ionospheric properties, radiation, geomagnetic field, astrodynamic constants, and meteoroids for the Earth's atmosphere above 90 km, interplanetary space, and the atmosphere and surfaces (when available) of the Moon and the planets (other than Earth) of this solar system. The Sun, Terrestrial Space, the Moon, Mercury, Venus, and Mars are covered.

  9. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  10. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  11. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  12. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  13. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  14. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  15. Space vehicle with artificial gravity and earth-like environment

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A space vehicle adapted to provide an artificial gravity and earthlike atmospheric environment for occupants is disclosed. The vehicle comprises a cylindrically shaped, hollow pressure-tight body, one end of which is tapered from the largest diameter of the body, the other end is flat and transparent to sunlight. The vehicle is provided with thrust means which rotates the body about its longitudinal axis, generating an artificial gravity effect upon the interior walls of the body due to centrifugal forces. The walls of the tapered end of the body are maintained at a temperature below the dew point of water vapor in the body and lower than the temperature near the transparent end of the body. The controlled environment and sunlight permits an earth like environment to be maintained wherein the CO2/O2 is balanced, and food for the travelers is supplied through a natural system of plant life grown on spacecraft walls where soil is located.

  16. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  17. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  18. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    SciTech Connect

    Metzger, John D.

    1998-01-15

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented.

  19. Advanced LMMHD space power generation concept

    NASA Astrophysics Data System (ADS)

    Ho, Vincent; Wong, Albert; Kim, Kilyoo; Dhir, Vijay

    Magnetohydrodynamic (MHD) power generation concept has been proposed and studied worldwide as one of the future power generation sources. An advanced one fluid two phase liquid metal (LM) MHD power generation concept was developed for space nuclear power generation design. The concept employs a nozzle to accelerate the liquid metal coolant to an acceptable velocity with Mach number greater than unity. Such nozzle and the MHD power generator replace the turbogenerator of a high temperature Rankine turboelectric cycle concept. As a result, the power generation system contains no movable parts. This provides high reliability, which is a very important factor in space application.

  20. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  1. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for…

  2. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  3. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  4. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  5. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 2, Part 2; Space Station Freedom Advanced Development Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.

  6. New space vehicle archetypes for human planetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  7. Pointing control design for autonomous space vehicle applications

    SciTech Connect

    Young, K.D.

    1993-03-01

    This paper addresses the design of pointing control systems for autonomous space vehicles. The function of the pointing control system is to keep distant orbiting objects within the field-of-view of an on-board optical sensor. We outline the development of novel nonlinear control algorithms which exploit the availability of on- board sensors. Simulation results comparing the performance of the different pointing control implementations are presented.

  8. 77 FR 23463 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at Kodiak Launch Complex, Alaska... two species of pinnipeds incidental to space vehicle and missile launch operations at the Kodiak... vitulina) (adults by harassment and pups by injury or mortality), incidental to space vehicle and...

  9. Laser Fine-Adjustment Thruster For Space Vehicles

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yu. A.; Egorov, M. S.; Rebrov, S. G.; Repina, E. V.; Safronov, A. L.

    2010-05-01

    To the present time, a few laser propulsion engine devices have been developed by using dominant mechanisms of laser propulsion. Generally these mechanisms are laser ablation, laser breakdown of gases, and laser detonation waves that are induced due to extraction of the internal energy of polymer propellants. In the paper, we consider the Aero-Space Laser Propulsion Engine (ASLPE) developed earlier, in which all of these mechanisms are realized via interaction of laser radiation with polymers both in continuous wave (CW) and in repetitively pulsed modes of laser operation. The ASLPE is considered to be exploited as a unit of a laser propulsion device being arranged onboard space vehicles moving around the Earth or in interplanetary missions and intended to correct the vehicles orbits. To produce a thrust, a power of the solar pumped lasers designed to the present time is considered in the paper. The problem of increasing the efficiency of the laser propulsion device is analyzed as applied to space missions of vehicles by optimizing the laser propulsion propellant composition.

  10. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1992-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  11. Command and control displays for space vehicle operations

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Zetocha, Paul; Aleva, Denise

    2010-04-01

    This paper shall examine several command and control facility display architectures supporting space vehicle operations, to include TacSat 2, TacSat 3, STPSat 2, and Communications Navigation Outage Forecasting System (CNOFS), located within the Research Development Test & Evaluation Support Complex (RSC) Satellite Operations Center 97 (SOC-97) at Kirtland Air Force Base. A principal focus is to provide an understanding for the general design class of displays currently supporting space vehicle command and control, e.g., custom, commercial-off-the-shelf, or ruggedized commercial-off-the-shelf, and more specifically, what manner of display performance capabilities, e.g., active area, resolution, luminance, contrast ratio, frame/refresh rate, temperature range, shock/vibration, etc., are needed for particular aspects of space vehicle command and control. Another focus shall be to address the types of command and control functions performed for each of these systems, to include how operators interact with the displays, e.g., joystick, trackball, keyboard/mouse, as well as the kinds of information needed or displayed for each function. [Comparison with other known command and control facilities, such as Cheyenne Mountain and NORAD Operations Center, shall be made.] Future, anticipated display systems shall be discussed.

  12. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  13. Space Station Power System Advanced Development

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Baraona, C. R.; Valgora, M. E.

    1985-01-01

    The objectives of the Space Station Advanced Development Program are related to the development of a set of design options and/or new capabilities to support Space Station development and operation, taking into account also a quantification of the performance and risk of key state-of-the-art technologies, and a reduction of the cost and schedule risk in Space Station development. Attention is given to the photovoltaic power system, a solar dynamic system, and aspects of power management and distribution. A major issue will be the selection of the power generation system. In view of the advantages of the solar dynamic system, it is attempted to resolve issues associated with this system.

  14. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  15. Space Operations for a New Era of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human space exploration. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicles. The combined Ares I/Ares V architecture has been designed to reduce the complexity and labor intensity of ground operations for America's next journeys beyond low-Earth orbit (LEO). A deliberate effort is being made to ensure a high level of system operability to significantly increase safety and system availability as well as reduce recurring costs for this new launch vehicle. The Ares Projects goal is to instill operability as part of the vehicles requirements development, design, and operations. This simplicity will come from using simpler, proven engine designs, as in the case of the J-2X upper stage engine and RS-68 engine; improving existing hardware, as in the case of the Shuttle-heritage 5-segment solid rocket motor; and using common propulsion and instrument unit elements between Ares I and Ares V. Furthermore, lessons learned while developing Ares I will be applied directly to Ares V operations. In 2009, the Ares Projects plan to conduct the first flight test of Ares I, designated Ares I-X. Ares I-X preparations have already prompted changes to the vehicle stacking and launch infrastructure at Kennedy Space Center (KSC), including removing Shuttle-specific fixtures from the Vehicle Assembly Building (VAB) to accommodate Ares I-style stacking operations, new firing room computers and infrastructure in the VAB Launch Control Center, and new lightning protection system towers at Launch

  16. Applications of triggered lightning to space vehicle operations

    NASA Astrophysics Data System (ADS)

    Jafferis, William; Sanicandro, Rocco; Rompalla, John; Wohlman, Richard

    1992-11-01

    Kennedy Space Center (KSC) and the USAF Eastern Space Missile Center (ESMC) covering an area of 25 x 40 km are frequently called America's Spaceport. This title is earned through the integration, by labor and management, of many skills in a wide variety of engineering fields to solve many technical problems that occur during the launch processing of space vehicles. Weather is one of these problems, and although less frequent in time and duration when compared to engineering type problems, has caused costly and life threatening situations. This sensitivity to weather, especially lightning, was recognized in the very early pioneer days of space operations. The need to protect the many v\\facilities, space flight hardware, and personnel from electrified clouds capable of producing lightning was a critical element in improving launch operations. A KSC lightning committee was formed and directed to improve lightning protection, detection, and measuring systems and required that all theoretical studies be confirmed by KSC field data. Over the years, there have been several lightning incidents involving flight vehicles during ground processing as well as launch. Subsequent investigations revealed the need to improve these systems as well as the knowledge of the electrical atmosphere and its effects on operations in regard to cost and safety. Presented here is how, KSC Atmospheric Science Field Laboratory (AFSL), in particular Rocket Triggered Lightning, is being used to solve these problems.

  17. Some Problems of Rocket-Space Vehicles' Characteristics co- ordination

    NASA Astrophysics Data System (ADS)

    Sergienko, Alexander A.

    2002-01-01

    of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.

  18. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  19. Real-time vehicle detection and tracking based on perspective and non-perspective space cooperation

    NASA Astrophysics Data System (ADS)

    Arróspide, Jon; Salgado, Luis; Nieto, Marcos; Jaureguizar, Fernando

    2009-02-01

    In recent years advanced driver assistance systems (ADAS) have received increasing interest to confront car accidents. In particular, video processing based vehicle detection methods are emerging as an efficient way to address accident prevention. Many video-based approaches are proposed in the literature for vehicle detection, involving sophisticated and costly computer vision techniques. Most of these methods require ad hoc hardware implementations to attain real-time operation. Alternatively, other approaches perform a domain change --via transforms like FFT, inverse perspective mapping (IPM) or Hough transform-- that simplifies otherwise complex feature detection. In this work, a cooperative strategy between two domains, the original perspective space and the transformed non-perspective space computed trough IPM, is proposed in order to alleviate the processing load in each domain by maximizing the information exchange between the two domains. A system is designed upon this framework that computes the location and dimension of the vehicles in a video sequence. Additionally, the system is made scalable to the complexity imposed by the scenario. As a result, real-time vehicle detection and tracking is accomplished in a general purpose platform. The system has been tested for sequences comprising a wide variety of scenarios, showing robust and accurate performance.

  20. Human response to vibroacoustic environments of space vehicles

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1984-01-01

    To insure efficient utilization of the system, space station design and operations will require special habitability considerations for the occupants and crew because of the relatively long duration missions. Of particular concern is the environment in which the personnel will live and work, and how it affects both the performance and comfort of the occupants. Current criteria do not consider possible effects of reduced gravity, long duration, and confinement. Preliminary to developing space station vibroacoustic habitability criteria, the adequacy of criteria for other space vehicles has been reviewed. In this paper, responses to the noise and vibration environments of both Skylab and Shuttle are discussed. Some astronauts have reported sleep interference, communication interference, distraction, and general annoyance as noise related complaints. In addition, information from the Russian Salyut missions, as well as similar based situtations (e.g., submarines), is reviewed.

  1. Ariane Transfer Vehicle - Logistic support to Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Cougnet, C.; Ricaud, C.; Deutscher, N.

    The attractiveness of the Ariane 5 and Ariane transfer vehicle (ATV) is described: it avoids the one-sidedness of the National STS, it increases the lift capacity to meet the demands of the Space Station, and it offers a system independent of, but consistent with, the STS in providing backup contingency capability. The Ariane 5/ATV system is able to launch and transfer any cargo module to the Space Station Freedom (SSF) and dispose of it at the end of the mission. Consideration is given to Space Station and SSF logistic support, and ATV operations and design. Diagrams are provided to illustrate the ATV's requirements and capability; an ATV mission toward the SSF; ATV design and components; the ATV's attitude, layout, and the architecture of the main propulsion system and avionic; and the ATV's performance. It is demonstrated that the Ariane 5/ATV system would be an adequate complement to the NSTS for logistic support of the SSF.

  2. Human response to vibroacoustic environments of space vehicles

    NASA Astrophysics Data System (ADS)

    Willshire, K. F.

    1984-10-01

    To insure efficient utilization of the system, space station design and operations will require special habitability considerations for the occupants and crew because of the relatively long duration missions. Of particular concern is the environment in which the personnel will live and work, and how it affects both the performance and comfort of the occupants. Current criteria do not consider possible effects of reduced gravity, long duration, and confinement. Preliminary to developing space station vibroacoustic habitability criteria, the adequacy of criteria for other space vehicles has been reviewed. In this paper, responses to the noise and vibration environments of both Skylab and Shuttle are discussed. Some astronauts have reported sleep interference, communication interference, distraction, and general annoyance as noise related complaints. In addition, information from the Russian Salyut missions, as well as similar based situtations (e.g., submarines), is reviewed.

  3. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  4. The earth orbit shuttle as a space rescue vehicle.

    NASA Technical Reports Server (NTRS)

    Hinton, M. G., Jr.; Perchonok, E.

    1972-01-01

    According to present concepts starting with some future date all manned space missions beyond low-earth orbit are to originate in low-earth orbit and to return ultimately to low-earth orbit. The Earth-Orbit-Shuttle (EOS) is visualized as the only vehicle operating between earth and low-earth orbit. The ability of the EOS to provide rescue services in the case of emergency is evaluated. It is found that an employment of the EOS as rescue vehicle is basically feasible, although it has certain limitations. Complementary means of transportation are required for emergencies beyond low-earth orbit. Approaches to enhance the rescue mission utility of the EOS are discussed.

  5. Folding retractable protective dome for space vehicle equipment

    NASA Technical Reports Server (NTRS)

    Clark, Paul R. (Inventor); Messinger, Ross H. (Inventor)

    2008-01-01

    A folding, retractable dome for protecting a feature, such as a docking mechanism, a hatch or other equipment at an exterior surface of a space vehicle, includes a plurality of arcuate ribs, each having opposite ends respectively pinioned at opposite sides of the feature at the surface of the vehicle for rotational movement about an axis of rotation extending through the opposite ends and through an arcuate path of revolution extending over the feature, and a flexible cover attached to each of the ribs such that, in a deployed configuration of the dome, in which adjacent ribs are rotated apart from each other at a maximum relative angle therebetween, the cover is stretched generally tangentially between the adjacent ribs to form a generally arcuate shield over the feature, and in a retracted position of the dome, in which adjacent ribs are rotated together at a minimum relative angle therebetween, the cover is collapsed to define folded pleats between the adjacent ribs.

  6. Measurements of sonic-boom overpressures from Apollo space vehicles

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.

    1974-01-01

    This paper presents representative results of sonic-boom overpressure data recorded during the launch and reentry of the Apollo 15 and 16 space vehicle systems. Comparisons are made between measured overpressures and those predicted using available theory. The measurements were obtained along the vehicle ground track at 68, 87, 92, 129, and 970 km downrange from the launch site during ascent, and at 9, 13, 55, 185, and 500 km from the splash-down point during reentry. Also included are tracings of the sonic-boom signatures along with a brief description of the launch and recovery test areas in which the measurements were obtained, the sonic-boom instrumentation deployment, flight profiles and operating conditions, and high-altitude weather information for the general measurement areas.

  7. Performance evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.

    1990-01-01

    At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).

  8. Biconic cargo return vehicle with an advanced recovery system. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The conceptual design of the biconic Cargo Return Vehicle (CRV) is presented. The CRV will be able to meet all of the Space Station Freedom (SSF's) resupply needs. Worth note is the absence of a backup recovery chute in case of Advanced Recovery System (ARS) failure. The high reliability of ram-air parachutes does not warrant the penalty weight that such a system would create on successful missions. The CRV will launch vertically integrated with an Liquid Rocket Booster (LRB) vehicle and meets all NASA restrictions on fuel type for all phases of the mission. Because of the downscaled Orbital Maneuvering Vehicle (OMV) program, the CRV has been designed to be able to transfer cargo by docking directly to the Space Station Freedom as well as with OMV assistance. The CRV will cover enough crossrange to reach its primary landing site, Edwards Airforce Base, and all secondary landing sites with the exception of one orbit. Transportation back to KSC will be via the Boeing Super Guppy. Due to difficulties with man-rating the CRV, it will not be used in a CERV role. A brief summary of the CRV's specifications is given.

  9. MSFC's Advanced Space Propulsion Formulation Task

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Gerrish, Harold P.; Robinson, Joel W.; Taylor, Terry L.

    2012-01-01

    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible.

  10. A Vehicle for Science and Exploration: Bringing Offshore Industry Advances and Experience to the Oceanographic Community

    DTIC Science & Technology

    2007-01-01

    institutions, this vehicle system design represents a collaborative effort between the science community and a subsea industry technological leader to...develop an exploration vehicle employing the latest advances in subsea technology. II. SURVEY OF COMMERCIAL VEHICLES DEDICATED TO SCIENCE...Engineering work class system designed for subsea intervention and inspection duties. Since that time there has been a hiatus on the further

  11. Final report for the Advanced Natural Gas Vehicle Project

    SciTech Connect

    John Wozniak

    1999-02-16

    The project objective was to develop the technologies necessary to prototype a dedicated compressed natural gas (CNG) powered, mid-size automobile with operational capabilities comparable to gasoline automobiles. A system approach was used to design and develop the engine, gas storage system and vehicle packaging. The 2.4-liter DOHC engine was optimized for natural gas operation with high-compression pistons, hardened exhaust valves, a methane-specific catalytic converter and multi-point gaseous injection. The chassis was repackaging to increase space for fuel storage with a custom-designed, cast-aluminum, semi-trailing arm rear suspension system, a revised flat trunk sheet-metal floorpan and by equipping the car with run-flat tires. An Integrated Storage system (ISS) was developed using all-composite, small-diameter cylinders encapsulated within a high-strength fiberglass shell with impact-absorbing foam. The prototypes achieved the target goals of a city/highway driving range of 300 miles, ample trunk capacity, gasoline vehicle performance and ultra low exhaust emissions.

  12. Comparison of basic launch vehicles of leading space countries

    NASA Astrophysics Data System (ADS)

    Korotkiy, Y. G.

    1998-01-01

    The problem of analysis and optimization, which is offered for consideration, relates to the area of scientific research, development and statements of the perspective ideas. The electoral approach to substantiation of the new technical concepts and to evaluation of the technical projects is formulated and offered, taking into account the availability of competitors. The opportunity of the particular realization of the offerred approach for solution of the practical tasks is demonstrated on the example of comparison of the technical and economical virtues of the main space vehicles.

  13. Skylab Rescue Space Vehicle OAT No. 1 Plugs in Test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A test is described which demonstrates the compatibility of the Skylab Rescue Space Vehicle systems, the ground support equipment, and off-site support facilities by proceeding through a simulated launch countdown, liftoff, and flight. The functions of propellant loading, umbilical ejection, holddown arm release, service arm retraction, liftoff, and inflight separation are simulated. An external power source supplies transfer power to internal, and instrument unit commands are simulated by the digital command system. The test outline is presented along with a list of references, intercommunications information, radio frequency matrix, and interface control chart.

  14. Design Guidelines for Quiet Fans and Pumps for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Lovell, John S.; Magliozzi, Bernard

    2008-01-01

    This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).

  15. Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.

    2006-01-01

    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.

  16. Space shuttle: Structural integrity and assessment study. [development of nondestructive test procedures for space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1974-01-01

    A study program was conducted to determine the nondestructive evaluation (NDE) requirements and to develop a preliminary nondestructive evaluation manual for the entire space shuttle vehicle. The rationale and guidelines for structural analysis and NDE requirements development are discussed. Recommendations for development of NDE technology for the orbiter thermal protection system and certain structural components are included. Recommendations to accomplish additional goals toward space shuttle inspection are presented.

  17. Space and planetary environment criteria guidelines for use in space vehicle development, 1971 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Editor)

    1971-01-01

    A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.

  18. Classroom Analysis of Rotating Space Vehicles in 2001: A Space Odyssey.

    ERIC Educational Resources Information Center

    Borgwald, James M.; Schreiner, Serge

    1993-01-01

    This article describes the use of modern science fiction movies as a vehicle to teach scientific principles. The resulting artificial gravity from a spinning space station in movie "2001" is calculated from measurements taken off of the screen. A mathematical explanation is provided. (MVL)

  19. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  20. Development of a Refined Space Vehicle Rollout Forcing Function

    NASA Technical Reports Server (NTRS)

    James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan

    2016-01-01

    For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.

  1. Study of the commonality of space vehicle applications to future national needs (unclassified portion)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A midterm progress report was presented on the study of commonality of space vehicle applications to future national needs. Two of the four objectives in the entire study were discussed. The first one involved deriving functional requirements for space systems based on future needs and environments for the military and civilian communities. Possible space initiatives based on extrapolations of technology were compiled without regard as to need but only with respect to feasibility, given the advanced state of technology which could exist through the year 2,000. The second one involved matching the initiatives against the requirements, developing a methodology to match and select the initiatives with each of the separate plans based on the future environments, and deriving common features of the military and civilian support requirements for these programs.

  2. System for sterilizing objects. [cleaning space vehicle systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  3. Space vehicle pose estimation via optical correlation and nonlinear estimation

    NASA Astrophysics Data System (ADS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-03-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  4. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  5. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  6. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  7. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema

    None

    2016-07-12

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  8. Preliminary design of a cargo return vehicle for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Vano, Andrew

    1990-09-01

    The design of an unmanned, reusable cargo return vehicle (CRV) incorporated as a class project at the University of Minnesota under NASA auspices is presented. Two configurations are considered, a winged and a biconic with a parafoil advanced recovery system. Three inline liquid rocket boosters would propel the CRV into a low earth orbit with onboard orbital maneuvering system engines used to reach station orbit and dock to the station. The main objective of the courses was to develop the design skills of the students while allowing them to work together in teams with NASA and industry engineers on a specific NASA project. The final conclusion of the study was that the winged CRV was the best vehicle for space station resupply.

  9. Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers

    NASA Astrophysics Data System (ADS)

    The present conference on advanced marine vehicles discusses advancements in surface-effect ship (SES) technologies, small waterplane-area twin-hull (SWATH) ship operations, advanced marine vehicle concepts, ocean systems and subsurface vehicles, air-cushion vehicle (ACV) concepts, seaplane technologies, advanced hull hydrodynamics, wing-in-ground effect (WIGE) aircraft, competition-craft aerodynamics, and marine propulsion. Attention is given to military applications of the 'NES 200' SES platform, experiences over 16 years of SWATH ship operations, hydrofoil catamarans for military and civilian applications, SES passenger ferries for the N.Y.C. metropolitan area, advanced submarine concepts, parametric studies in SWATH ship design, ACV experience in Antarctica, the CL-215 seaplane, large-scale WIGE vehicles, an ocean spacecraft-launch facility, an ACV Arctic icebreaker, and 'marinizing' methods for gas turbine engines.

  10. Space Vehicle Power System Comprised of Battery/Capacitor Combinations

    NASA Technical Reports Server (NTRS)

    Camarotte, C.; Lancaster, G. S.; Eichenberg, D.; Butler, S. M.; Miller, J. R.

    2002-01-01

    Recent improvements in energy densities of batteries open the possibility of using electric rather that hydraulic actuators in space vehicle systems. However, the systems usually require short-duration, high-power pulses. This power profile requires the battery system to be sized to meet the power requirements rather than stored energy requirements, often resulting in a large and inefficient energy storage system. Similar transient power applications have used a combination of two or more disparate energy storage technologies. For instance, placing a capacitor and a battery side-by-side combines the high energy density of a battery with the high power performance of a capacitor and thus can create a lighter and more compact system. A parametric study was performed to identify favorable scenarios for using capacitors. System designs were then carried out using equivalent circuit models developed for five commercial electrochemical capacitor products. Capacitors were sized to satisfy peak power levels and consequently "leveled" the power requirement of the battery, which can then be sized to meet system energy requirements. Simulation results clearly differentiate the performance offered by available capacitor products for the space vehicle applications.

  11. Low thrust space vehicle trajectory optimization using regularized variables

    NASA Technical Reports Server (NTRS)

    Schwenzfeger, K. J.

    1974-01-01

    Optimizing the trajectory of a low thrust space vehicle usually means solving a nonlinear two point boundary value problem. In general, accuracy requirements necessitate extensive computation times. In celestial mechanics, regularizing transformations of the equations of motion are used to eliminate computational and analytical problems that occur during close approaches to gravitational force centers. It was shown in previous investigations that regularization in the formulation of the trajectory optimization problem may reduce the computation time. In this study, a set of regularized equations describing the optimal trajectory of a continuously thrusting space vehicle is derived. The computational characteristics of the set are investigated and compared to the classical Newtonian unregularized set of equations. The comparison is made for low thrust, minimum time, escape trajectories and numerical calculations of Keplerian orbits. The comparison indicates that in the cases investigated for bad initial guesses of the known boundary values a remarkable reduction in the computation time was achieved. Furthermore, the investigated set of regularized equations shows high numerical stability even for long duration flights and is less sensitive to errors in the guesses of the unknown boundary values.

  12. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Otte, Neil E.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  13. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of

  14. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  15. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  16. A study of the compatibility of science instruments with the solar electric propulsion space vehicle

    NASA Technical Reports Server (NTRS)

    Parker, R. H.; Ajello, J. M.; Bratenahl, A.; Clay, D. R.; Tsurutani, B.

    1973-01-01

    Electromagnetic interference and field-of-view constraints are identified as the areas of most concern to science on solar electric propulsion space vehicles. Several areas are indicated which more detailed data on the space vehicle environment are needed. In addition, possible means to attain or demonstrate science/space vehicle compatibility are recommended for further iteration between space vehicle design and science payload considerations. The space vehicle design developed by the solar electric propulsion system integration technology effort is used. Two payload sets for comet Encke missions (a slow flyby and a rendezvous), as well as several instruments which are not included in the two payload sets, are analyzed to determine requirements on the space vehicle imposed by the instruments in order to meet their objectives. Environmental requirements for the sets of instruments are developed and compared to both the SEPSIT design criteria and the environment as it is presently understood.

  17. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  18. Space water electrolysis: Space Station through advance missions

    NASA Astrophysics Data System (ADS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-09-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  19. Chemical characterization of emissions from advanced technology light-duty vehicles

    NASA Astrophysics Data System (ADS)

    Graham, Lisa

    Results of detailed emissions measurements of seven 2000 model year advanced technology vehicles are reported. Six of the seven vehicles were imported from Europe and Japan and are not yet available for sale in Canada. Three of the vehicles were with direct injection diesel (DDI) technology, three with gasoline direct injection (GDI) technology and one vehicle was a gasoline-electric hybrid. It is expected that vehicles with these technologies will be forming a larger fraction of the Canadian light-duty vehicle fleet in the coming years in response to requirements to reduce greenhouse gas emissions from the transportation sector in support of Canada's ratification of the Kyoto Protocol; and as a result of improving fuel quality (most notably reducing the sulphur content of both diesel and gasoline). It is therefore important to understand the potential impacts on air quality of such changes in the composition of the vehicle fleet. The emissions from these vehicles were characterized over four test cycles representing different driving conditions. Samples of the exhaust were collected for determining methane, non-methane hydrocarbons and carbonyl compounds for the purposes of comparing ozone-forming potential of the emissions. Although these vehicles were not certified to Canadian emissions standards as tested, all vehicles met the then current Tier 1 emission standards, except for one diesel vehicle which did not meet the particulate matter (PM) standard. The DDI vehicles had the highest NO X emissions, the highest specific reactivity and the highest ozone-forming potential of the vehicles tested. When compared to conventional gasoline vehicles, the ozone-forming potential was equivalent. The GDI vehicles had lower NO X emissions, lower specific reactivity and lower ozone-forming potential than the conventional gasoline vehicles. Both the diesel and GDI vehicles had higher PM emissions than the conventional gasoline vehicles. The gasoline-electric hybrid vehicle

  20. Advances in Space Transportation Technology Toward the NASA Goals

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    2000-01-01

    disassembly and inspections required for the Space Shuttle's subsystems, the next generation vehicle's on-board health monitoring systems will could tell the ground crews which systems need replacement before landing. In twenty-five years, vehicles will be re-flown within one with crews numbering less than one hundred. Fully automated ground processing systems must require only a handful of personnel to launch the vehicle. Due to the increased intelligence of on-board systems, only cursory walk-around inspections would be required between flights An assessment of the progress in breakthrough technologies toward these goals by the NASA Advanced Space Transportation Program is presented. These breakthrough technologies include combined rocket and air breathing propulsion, high strength lightweight structures, high temperature materials, vehicle health management, and flight operations.

  1. Advanced Mirror Technology Development for Very Large Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  2. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  3. Results of advanced battery technology evaluations for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1992-10-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  4. Results of advanced batter technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-01-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

  5. Advanced transportation system studies technical area 2(TA-2): Heavy lift launch vehicle development. volume 1; Executive summary

    NASA Technical Reports Server (NTRS)

    McCurry, J.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).

  6. Space transfer vehicle concepts and requirements study. Volume 2, book 1: STV concept definition and evaluation

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The topics covered include the following: mission analysis; initial and evolutionary space transfer vehicle (STV) concept definition; configuration and subsystem trade studies; and operations and logistics.

  7. The use of advanced materials in space structure applications

    NASA Astrophysics Data System (ADS)

    Eaton, D. C. G.; Slachmuylders, E. J.

    The last decade has seen the Space applications of composite materials become almost commonplace in the construction of configurations requiring high stiffness and/or dimensional stability, particularly in the field of antennas. As experience has been accumulated, applications for load carrying structures utilizing the inherent high specific strength/stiffness of carbon fibres have become more frequent. Some typical examples of these and their design development criteria are reviewed. As these structures and the use of new plastic matrices emerge, considerable attention has to be given to establishing essential integrity control requirements from both safety and cost aspects. The advent of manned European space flight places greater emphasis on such requirements. Attention is given to developments in the fields of metallic structures with discussion of the advantages and disadvantages of their application. The design and development of hot structures, thermal protection systems and air-breathing engines for future launch vehicles necessitates the use of the emerging metal/matrix and other advanced materials. Some of their important features are outlined. Means of achieving such objectives by greater harmonization within Europe are emphasized. Typical examples of on-going activities to promote such collaboration are described.

  8. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  9. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  10. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  11. Space transfer vehicle concepts and requirements study, phase 2

    NASA Technical Reports Server (NTRS)

    Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard

    1992-01-01

    This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.

  12. Optimizing electrostatic radiation shielding for manned space vehicles

    NASA Astrophysics Data System (ADS)

    Frisina, Warren

    The shield has three concentric grids having a net charge of zero. The voltage across the outer pair is chosen to repel electrons; and that across the inner pair is chosen to repel nucleons. The negative grid is coated to absorb ultraviolet light to prevent photoemission, and secondary emission is minimized by a grid/thin foil combination. Voltage is maximized and mass minimized by setting the ratio of the negative to the inner positive electrode radii to ≥ 2. The outer grid pair forms a space truss with rigid geodesic grid, from which catenary tensile members are suspended. For docking there is passage directly through the sparse gridwork of larger structures, or through a charge shifting vestibule on smaller. While efficiency increases indefinitely with size, favorable sizes for given voltages are indicated. Large modular habitats and small powered transport vehicles are protected with efficiencies several orders of magnitude over mass shielding against charged particle cosmic radiation.

  13. Innovative concepts for the Titan II space launch vehicle

    NASA Astrophysics Data System (ADS)

    French, Bruce M.

    1991-06-01

    A number of concepts that will enable Titan II to launch a greater spectrum of payloads is presented. The history of Titan development is outlined, and emphasis is placed on the development of the Titan II space launch vehicle (SLV) as well as on two types of missions contracted for the Titan II SLV. The current payload capabilities of the Titan II SLV are discussed, and attention is focused on a Titan II variant called the Titan IIS with a number of solid rocket motors added to the first stage, the Titan IIL employing liquid rocket boosters, and an enhanced attitude control system. A concept involving two small bipropellant engines on the aft end of stage II as well as a concept involving restarting of the stage-II main engine are considered.

  14. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  15. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  16. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  17. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...) Vehicles used to transport Class 1 (explosive) materials must conform to the requirements in §§ 177.834 and...) materials of different compatibility groups may not be stowed in the same vehicle except as allowed in §...

  18. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...) Vehicles used to transport Class 1 (explosive) materials must conform to the requirements in §§ 177.834 and...) materials of different compatibility groups may not be stowed in the same vehicle except as allowed in §...

  19. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...) Vehicles used to transport Class 1 (explosive) materials must conform to the requirements in §§ 177.834 and...) materials of different compatibility groups may not be stowed in the same vehicle except as allowed in §...

  20. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...) Vehicles used to transport Class 1 (explosive) materials must conform to the requirements in §§ 177.834 and...) materials of different compatibility groups may not be stowed in the same vehicle except as allowed in §...

  1. Practices in adequate structural design. [of space vehicles and space systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1989-01-01

    An account is given of the guidelines for safe and reliable space vehicle design, especially in the structural engineering area, which have been formulated by NASA in the aftermath of the Space Shuttle Challenger accident in 1986. Illustrative examples are presented from state-of-the-art, performance-driven hardware whose design ineluctably gives rise to a high sensitivity to small variations and uncertainties. It is recommended that such hardware be designed with a view to easy inspectability and manufacturability, with emphasis on the role played in system structures by fracture mechanics. Static and dynamic coupling effects must be precluded wherever possible.

  2. Backscatter x-ray development for space vehicle thermal protection systems

    SciTech Connect

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-23

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  3. Backscatter X-Ray Development for Space Vehicle Thermal Protection Systems

    NASA Astrophysics Data System (ADS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-01

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  4. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  5. Advanced space transportation systems, BARGOUZIN booster

    NASA Astrophysics Data System (ADS)

    Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, André; Couteau, Jean-Noël

    2008-07-01

    In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

  6. Advanced planar array development for space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of the Advanced Planar Array Development for the Space Station contract are presented. The original objectives of the contract were: (1) to develop a process for manufacturing superstrate assemblies, (2) to demonstrate superstrate technology through fabrication and test, (3) to develop and analyze a preliminary solar array wing design, and (4) to fabricate a wing segment based on wing design. The primary tasks completed were designing test modules, fabricating, and testing them. LMSC performed three tasks which included thermal cycle testing for 2000 thermal cycles, thermal balance testing at the Boeing Environmental Test Lab in Kent, Washington, and acceptance testing a 15 ft x 50 in panel segment for 100 thermal cycles. The surperstrate modules performed well during both thermal cycle testing and thermal balance testing. The successful completion of these tests demonstrate the technical feasibility of a solar array power system utilizing superstrate technology. This final report describes the major elements of this contract including the manufacturing process used to fabricate modules, the tests performed, and the results and conclusions of the tests.

  7. Survey of Advanced Booster Options for Potential Shuttle Derivative Vehicles

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Ryan, Richard; Threet, Ed; Kennedy, James W. (Technical Monitor)

    2001-01-01

    A never-ending major goal for the Space Shuttle program is to continually improve flight safety, as long as this launch system remains in operational service. One of the options to improve system safety and to enhance vehicle performance as well, that has been seriously studied over the past several decades, is to replace the existing strap-on four segment solid rocket boosters (SRB's) with more capable units. A number of booster upgrade options have been studied in some detail, ranging from five segment solids through hybrids and a wide variety of liquid strap-ons (both pressure and pump fed with various propellants); all the way to a completely reusable liquid fly back booster (complete with air breathing engines for controlled landing and return). All of these possibilities appear to offer improvements in varying degrees; and each has their strengths and weaknesses from both programmatic and technical points of view. The most beneficial booster upgrade/design, if the shuttle program were to continue long enough to justify the required investment, would be an approach that greatly increased both vehicle and crew safety. This would be accomplished by increasing the minimum range/minimum altitude envelope that would readily allow abort to orbit (ATO), possibly even to zero/zero, and possibly reduce or eliminate the Return to Launch Site (RTLS) and even the Trans Atlantic Landing (TAL) abort mode requirements. This paper will briefly survey and discuss all of the various booster'upgrade options studied previously, and compare their relative attributes. The survey will explicitly discuss, in summary comparative form, options that include: five segment solids; several hybrid possibilities; pressure and/or pump-fed liquids using either LO2/kerosene, H2O/kerosene and LO2/J2, any of which could be either fully expendable, partly or fully reusable; and finally a fully reusable liquid fly back booster system, with a number of propellant and propulsion system options

  8. ISS Update: SpaceX 2 Lead Visiting Vehicle Officer Dorrie Tomayko

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean conducts an interview with SpaceX 2 Lead Visiting Vehicle Officer Dorrie Tomayko about the second commercial resupply mission to the International Space Stat...

  9. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  10. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  11. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  12. O/S analysis of conceptual space vehicles. Part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1995-01-01

    The application of recently developed computer models in determining operational capabilities and support requirements during the conceptual design of proposed space systems is discussed. The models used are the reliability and maintainability (R&M) model, the maintenance simulation model, and the operations and support (O&S) cost model. In the process of applying these models, the R&M and O&S cost models were updated. The more significant enhancements include (1) improved R&M equations for the tank subsystems, (2) the ability to allocate schedule maintenance by subsystem, (3) redefined spares calculations, (4) computing a weighted average of the working days and mission days per month, (5) the use of a position manning factor, and (6) the incorporation into the O&S model of new formulas for computing depot and organizational recurring and nonrecurring training costs and documentation costs, and depot support equipment costs. The case study used is based upon a winged, single-stage, vertical-takeoff vehicle (SSV) designed to deliver to the Space Station Freedom (SSF) a 25,000 lb payload including passengers without a crew.

  13. Influence of vibration modes on control system stabilization for space shuttle type vehicles

    NASA Technical Reports Server (NTRS)

    Greiner, H. G.

    1972-01-01

    An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.

  14. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    SciTech Connect

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P.

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  15. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  16. Environmental Assessment for Air Force Research Laboratory Space Vehicles Integrated Experiments Division Office Space at Kirtland Air Force Base, Albuquerque, New Mexico

    DTIC Science & Technology

    2005-06-01

    AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland

  17. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  18. 78 FR 43861 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ...-range ballistic target missiles, and other smaller missile systems at the KLC. The AAC has complied with... Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at Kodiak Launch Complex, Alaska... two species of pinnipeds incidental to space vehicle and missile launch operations at the...

  19. Unmanned, space-based, reusable orbital transfer vehicle, DARVES. Volume 1: Trade analysis and design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The design of an unmanned, space-based, reusable Orbital Transfer Vehicle (OTV) is presented. This OTV will be utilized for the delivery and retrieval of satellites from geosynchronous Earth orbit (GEO) in conjunction with a space station assumed to be in existence in low Earth orbit (LEO). The trade analysis used to determine the vehicle design is presented, and from this study a vehicle definition is given.

  20. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  1. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0004: Advanced Sol-Gel Adhesion Processes

    DTIC Science & Technology

    2002-04-01

    AFRL-ML-WP-TR-2003-4173 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0004: Advanced Sol-Gel Adhesion Processes Kay Y...2001 – 03/31/2002 5a. CONTRACT NUMBER F33615-00-D-3052 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM

  2. Required Area for a Crew Person in a Space Vehicle

    NASA Technical Reports Server (NTRS)

    Mount, Frances E.

    1998-01-01

    This 176 page report was written in circa 1966 to examine the effects of confmement during space flight. One of the topics covered was the required size of a space vehicle for extended missions. Analysis was done using size of crew and length of time in a confmed space. The report was based on all information available at that time. The data collected and analyzed included both NASA and (when possible) Russian missions flown to date, analogs (such as submarines), and ground studies. Both psychological and physiological responses to confmement were examined. Factors evaluated in estimating the degree of impairment included the level of performance of intellectual, perceptual, manual and co-ordinated tasks, response to psychological testing, subjective comments of the participants, nature and extent of physiological change, and the nature and extent of behavioral change and the nature and extent of somatic complaints. Information was not included from studies where elements of perceptual isolation were more than mildly incidental - water immersion studies, studies in darkened and acoustically insulated rooms, studies with distorted environmental inputs - unpattemed light and white noise. Using the graph from the document, the upper line provides a threshold of minimum acceptable volumeall points above the line may be considered acceptable. The lower line provides a threshold of unacceptable volume - all points below the line are unacceptable. The area in between the two lines is the area of doubtful acceptability where impairment tends to increase with reduction in volume and increased duration of exposure. Reference is made of the Gemini VII, 14-day duration mission which had detectable impairment with a combination of 40 cubic feet per man for 14 days. In line with all other data this point should be in the 'marked impairment' zone. It is assumed that the state of fitness, dedication and experience influenced this outcome.

  3. An assessment of research and development leadership in advanced batteries for electric vehicles

    SciTech Connect

    Bruch, V.L.

    1994-02-01

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  4. Life cycle cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.

  5. Nonintrusive techniques of inspections during the pre-launch phase of space vehicle

    NASA Astrophysics Data System (ADS)

    Thirumalainambi, Rajkumar; Bardina, Jorge E.; Miyazawa, Osamu

    2005-05-01

    As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrometer with additional spectrometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. A team of micro flying robots with necessary sensors and photometers is required to internally and externally monitor the entire space vehicle. The micro flying robots should reach an altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robots have an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a `Supervisor' to fix the problems. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. Each robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  6. Non-Intrusive Techniques of Inspections During the Pre-Launch Phase of Space Vehicle

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rejkumar; Bardina, Jorge E.

    2005-01-01

    This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrophotometer with additional spectrophotometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. This paper addresses a team of micro flying robots with necessary sensors and photometers to monitor the entire space vehicle internally and externally. The micro flying robots can reach altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robot has an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a Supervisor to fix the problems. As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. The robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  7. Space transportation vehicle design evaluation using saturated designs

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1993-01-01

    An important objective in the preliminary design and evaluation of space transportation vehicles is to find the best values of design variables that optimize the performance characteristic (e.g. dry weight). For a given configuration, the vehicle performance can be determined by the use of complex sizing and performance evaluation computer programs. These complex computer programs utilize iterative algorithms and they are generally too expensive and/or difficult to use directly in multidisciplinary design optimization. An alternative is to use response surface methodology (RSM) and obtain quadratic polynomial approximations to the functional relationships between performance characteristics and design variables. In RSM, these approximation models are then used to determine optimum design parameter values and for rapid sensitivity studies. Constructing a second-order model requires that 'n' design parameters be studied at least at 3 levels (values) so that the coefficients in the model can be estimated. There, 3(n) factorial experiments (point designs or observations) may be necessary. For small values of 'n' such as two or three, this design works well. However, when a large number of design parameters are under study, the number of design points required for a full-factorial design may become excessive. Fortunately, these quadratic polynomial approximations can be obtained by selecting an efficient design matrix using central composite designs (CCD) from design of experiments theory. Each unique point design from the CCD matrix is then conducted using computerized analysis tools (e.g. POST, CONSIZ, etc.). In the next step, least squares regression analysis is used to calculate the quadratic polynomial coefficients from the data. However, in some multidisciplinary applications involving a large number of design variables and several disciplines, the computerized performance synthesis programs may get too time consuming and expensive to run even with the use of

  8. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  9. Advanced Power Sources for Space Missions

    DTIC Science & Technology

    1989-01-01

    baseload operation of the space platform, including communication, station-keeping, and surveillance systems. A typical household consumes energy at the...RESEARCH CENTER, CLEVELAND, OHIO June 25,1987 NASA space power need» and programs SDI space power architecture studies SDI nonnuclear baseload

  10. Survey of Advanced Propulsion Systems for Surface Vehicles

    DTIC Science & Technology

    1975-01-01

    When wheels are used for off-road conditions, their reduced tractive ability makes all- axle drive a practical necessity. Figures 3.4, 3.5, and...is a constant goal of inventors . One approach is to articulate the vehicle so as to optimize wheel contact area (e.g., the XM 808). Another is...conclusion from this discussion is that high-mobility vehicle demands in thrusters are apparently being met by track and all- axle driven wheels

  11. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  12. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space...

  13. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space...

  14. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  15. Common Cause Failure Modeling in Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Ring, Rob; Novack, Steven D.; Britton, Paul

    2015-01-01

    Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFs are a set of dependent type of failures that can be caused for example by system environments, manufacturing, transportation, storage, maintenance, and assembly. Since there are many factors that contribute to CCFs, they can be reduced, but are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and dependent CCF. Because common cause failure data is limited in the aerospace industry, the Probabilistic Risk Assessment (PRA) Team at Bastion Technology Inc. is estimating CCF risk using generic data collected by the Nuclear Regulatory Commission (NRC). Consequently, common cause risk estimates based on this database, when applied to other industry applications, are highly uncertain. Therefore, it is important to account for a range of values for independent and CCF risk and to communicate the uncertainty to decision makers. There is an existing methodology for reducing CCF risk during design, which includes a checklist of 40+ factors grouped into eight categories. Using this checklist, an approach to produce a beta factor estimate is being investigated that quantitatively relates these factors. In this example, the checklist will be tailored to space launch vehicles, a quantitative approach will be described, and an example of the method will be presented.

  16. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  17. US access to space: Launch vehicle choices for 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Pace, Scott N.

    1989-12-01

    Combinations of U.S. launch vehicles capable of meeting a range of government space traffic needs between 1990 and 2010 are evaluated. The purpose of this evaluation is to clarify alternatives available to the United States in pursuing potential national goals and to increase understanding of the implications of those alternatives. Wartime requirements for space launches were not included. Four levels of U.S. space traffic demand for 1990 to 2010 were defined. The first level was budget constrained to limit new program starts. The second level was a continuation of current space traffic plans, including the Space Station program. The third level assumed an expansion of civil space efforts such as a return to the Moon. The fourth level assumed expanded military space efforts such as the development of strategic defenses. Differing combination of existing and proposed launch vehicles were defined to fulfill each demand level. The costs and uncertainties (e.g., payload losses) associated with each launch vehicle combination were estimated. The interrelations of payload costs, launch vehicle costs, and system reliabilities are discussed in the appendices. The space transportation planning process, current issues, and political factors affecting analysis are reviewed. Senior space transportation planners and decision-makers were interviewed on differing institutional criteria for evaluating launch vehicle mixes. Evaluation criteria were defined to assess the launch vehicle mixes for each demand level and for the case of uncertain demand. Recommendations on preferred U.S. actions in space transportation are made based both on analyses and interview results.

  18. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  19. Advancing Space Situational Awareness through International Coordination

    NASA Astrophysics Data System (ADS)

    Onsager, Terrance

    2012-07-01

    The growing interest in Space Situational Awareness and the recognized need for global coordination has led to the involvement of numerous international activities to increase awareness and foster cooperation. These activities are serving to prioritize and to coordinate our efforts and helping to establish a stronger, global Space Situational Awareness enterprise. This coordination is important for our data infrastructure, research developments, and the provision of operational services. Among the organizations that are contributing to this global coordination are: the International Space Environment Service, the World Meteorological Organization, the United Nations Office for Outer Space Affairs, the International Civil Aviation Organization, the Coordination Group for Meteorological Satellites, and the International Committee on GNSS. In this presentation, the contributions of these various organizations to coordinating our Space Situational Awareness efforts will be described, with an emphasis on space weather.

  20. Advanced Mating System Development for Space Applications

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2004-01-01

    This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.

  1. Ultrahigh Temperature Ceramics for Thermal Protection of Next Generation Space Vehicles

    NASA Technical Reports Server (NTRS)

    Loehman, R. E.; Ellerby, D. T.; Gusman, M. I.; Stackpoole, M.; Johnson, S. M.; Arnold, James (Technical Monitor)

    2001-01-01

    Materials with improved properties are needed for thermal protection of next generation space vehicles. Sharp leading edges on these vehicles will have to withstand exposure to high temperatures (> 2200 C or 4000 F) and severe thermal cycling in both neutral and oxidizing environments. These extreme conditions will require materials that possess superior oxidation resistance, low creep, and excellent thermal shock properties. This presentation will first discuss the system requirements for thermal protection of advanced space vehicles and then show how they are driving development of new materials systems. The presentation will focus on ultrahigh temperature ceramics (UHTCs) that are promising candidates for such applications. ZrB2 and HfB2 and composites of those ceramics with SiC are two particular families of UHTCs that are currently under development for sharp leading edges. These ceramics are appealing because their melting temperatures are 3245 C (5873 F) for ZrB2 and 3380 C (6116 F) for HfB2 and because they may form protective, oxidation resistant coatings in use. The mechanical properties of the UHTCs are strongly dependent on phase purity and the processing route used to make them, both of which factors are being actively investigated. For example, oxide impurities could form glassy grain boundary phases that soften at high temperatures and make the ceramic susceptible to creep deformation. Results from scanning and transmission electron microscopic studies of the UHTCs have shown how their processing can be improved to give better properties. This presentation will discuss the UHTC characterization results in some detail, focusing particularly on the structure and composition of the ceramic grain boundaries. The presentation will conclude with some remarks on how the properties of these promising UHTCs can be further improved and how they might be made more economically.

  2. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, Jim

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, th Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and grou handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early the United States prepares to take its next giant leaps to the Moon and beyond.

  3. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  4. Future space transportation systems analysis study. Phase 1: Technical report, appendices. [a discussion of orbit transfer vehicles, lunar transport vehicles, space shuttles, and reusable spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transportation mass requirements developed for each mission and transportation mode were based on vehicle systems sized to fit the exact needs of each mission (i.e. rubber vehicles). The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data will form the basis for conceptual configurations of the transportation elements in a later phase of study. An investigation of the weight growth approach to future space transportation systems analysis is presented. Parameters which affect weight growth, past weight histories, and the current state of future space-mission design are discussed. Weight growth factors of from 10 percent to 41 percent were derived for various missions or vehicles.

  5. Advanced Guidance and Control Project for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.

    2000-01-01

    The goals of this project are to significantly reduce the time and cost associated with guidance and control design for reusable launch vehicles, and to increase their safety and reliability. Success will lead to reduced cycle times during vehicle design and to reduced costs associated with flying to new orbits, with new payloads, and with modified vehicles. Success will also lead to more robustness to unforeseen circumstances in flight thereby enhancing safety and reducing risk. There are many guidance and control methods available that hold some promise for improvement in the desired areas. Investigators are developing a representative set of independent guidance and control methods for this project. These methods are being incorporated into a high-fidelity off is being conducted across a broad range of flight requirements. The guidance and control methods that perform the best will have demonstrated the desired qualities.

  6. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  7. Catalysis study for space shuttle vehicle thermal protection systems. [for vehicle surface

    NASA Technical Reports Server (NTRS)

    Breen, J.; Rosner, D. E.; Delgass, W. N.; Nordine, P. C.; Cibrian, R.; Krishnan, N. G.

    1973-01-01

    Experimental results on the problem of reducing aerodynamic heating on space shuttle orbiter surfaces are presented. Data include: (1) development of a laboratory flow reactor technique for measuring gamma sub O and gamma sub N on candidate materials at surfaces, T sub w, in the nominal range 1000 to 2000, (2) measurements of gamma sub O and gamma sub N above 1000 K for both the glass coating of a reusable surface insulation material and the siliconized surface of a reinforced pyrolyzed plastic material, (3) measurement of the ablation behavior of the coated RPP material at T sub w is greater than or equal to 2150 K, (4) X-ray photoelectron spectral studies of the chemical constituents on these surfaces before and after dissociated gas exposure, (5) scanning electron micrograph examination of as-received and reacted specimens, and (6) development and exploitation of a method of predicting the aerodynamic heating consquences of these gamma sub O(T sub w) and gamma sub N(T sub w) measurements for critical locations on a radiation cooled orbiter vehicle.

  8. The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1999-01-01

    This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

  9. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  10. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  11. DART: Delta Advanced Reusable Transport. An alternate manned space system proposal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Delta Advanced Reusable Transport (DART) craft is being developed to add, multiple, rapid, and cost effective space access to the U.S. capability and to further the efforts towards a permanent space presence. The DART craft provides an augmentative and an alternative system to the Shuttle. As a supplement launch vehicle, the DART adds low cost and easily accessible transport of crew and cargo to specific space destinations to the U.S. program. This adds significant opportunities for manned rated missions that do not require Shuttle capabilities. In its alternative role, the DART can provide emergency space access and satellite repair, the continuation of scientific research, and the furthering of U.S. manned efforts in the event of Shuttle incapabilities. In addition, the DART is being designed for Space Station Freedom compatibility, including its use as a 'lifeboat' emergency reentry craft for Freedom astronauts, as well as the transport of crew and cargo for station resupply.

  12. Orbital Transfer Vehicle (space taxi) with aerobraking at Earth and Mars

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report shall cover all major aspects of the design of an Aeroassisted Manned Transfer Vehicle (or TAXI) for use as part of advanced manned Mars missions based on a cycling ship concept. Along with the heliocentric orbiting Cycling Spacecraft, such a TAXI would be a primary component of a long-term transportation system for Mars exploration. The Aeroassisted Manned Transfer Vehicle (AMTV) design developed shall operate along transfer trajectories between Earth and a Cycling Spacecraft (designed by the University of Michigan) and Mars. All operations of the AMTV shall be done primarily within the sphere of influence of the two planets. Maximum delta-V's for the vehicle have been established near 9 km/sec, with transfer durations of about 3 days. Acceleration deltaV's will be accomplished using 3 SSME-based hydrogen-oxygen chemical rockets (l(sub sp) = 485 sec & Thrust greater than = 300,00 Ib(sub f)/engine) with a thrust vector directly opposite the aerobraking deceleration vector. The aerobraking deceleration portion of an AMTV mission would be accomplished in this design by a moderate L/D aeroshield of an ellipsoidally-blunt, raked-off, elliptic cone (EBROEC) shape. The reusable thermal protection material comprising the shield will consist of a flexible, multi-layer, ceramic fabric stretched over a lightweight, rigid, shape - defining truss structure. Behind this truss, other components, including the engine supports, would be attached and protected from heating during aerobraking passes. Among these other components would be 2 LOX tanks and 4 LH2 tanks (and their support frames) holding over 670,000 lbm of propellant necessary to impart the required delta-V to the 98,000 lbm burnout mass vehicle. A 20,000 lbm crew module with docking port (oriented parallel to the accel./decel. axis) will provide accommodations for 9 crew members (11 under extreme conditions) for durations up to seven days, thus allowing extra time for emergency situations. This AMTV will be

  13. 76 FR 6448 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Marine Mammals Incidental to Space Vehicle and Test Flight Activities From Vandenberg Air Force Base, CA... harassment, incidental to space vehicle and test flight activities at VAFB. Summary of Activity and... incidental to space vehicle and test flight activities at VAFB. Issuance of this LOA is based on...

  14. 77 FR 6086 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Marine Mammals Incidental to Space Vehicle and Test Flight Activities from Vandenberg Air Force Base, CA... harassment, incidental to space vehicle and test flight activities at VAFB. Summary of Activity and... space vehicle and test flight activities at VAFB. Issuance of this LOA is based on findings described...

  15. Space Operations for a New Era of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2010-01-01

    Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicles. The combined Ares I/Ares V architecture was designed to reduce the complexity and labor intensity of ground operations for America s next journeys beyond low-Earth orbit (LEO). The Ares Projects goal is to instill operability as part of the vehicles requirements development, design, and operations. Since completing the Preliminary Design Review in 2008, work has continued to push the Ares I beyond the concept phase and into full vehicle development, while tackling fresh engineering challenges and performing pathfinding activities related to vehicle manufacturing and ground operations.

  16. Space transfer vehicle concepts and requirements study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.

  17. View of the Apollo 10 space vehicle at Pad B, ready for launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Ground-level view at sunset of the Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle at Pad B, Launch Complex 39, Kennedy Space Center. The Apollo 10 stack had just been positioned after being rolled out from the Vehicle Assemble Building (VAB) (34318); View of the Apollo 10 space vehicle (through palm trees and across water) on the way from the VAB to Pad B, Launch Complex 39. The Saturn V and its mobile launch tower are atop a crawler-transporter (34319).

  18. Advanced batteries for electric vehicles-A status report

    SciTech Connect

    Walsh, W.J.

    1981-01-01

    The candidate battery systems for electric vehicles have been evaluated on a common basis. The batteries with the highest probability of successful development and commercialization appear to be lead-acid, nickel-iron, nickel-zinc, zinc-chlorine, lithium-metal sulfide, and sodium sulfur. The relative development risk was assessed and compared to the desirability of the corresponding batteries.

  19. Advances in high energy astronomy from space

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1972-01-01

    Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.

  20. Advanced techniques for future observations from space

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D.

    1980-01-01

    Advanced remote sensing techniques for the study of global meteorology and the chemistry of the atmosphere are considered. Remote sensing from Spacelab/Shuttle and free-flying satellites will provide the platforms for instrumentation based on advanced technology. Several laser systems are being developed for the measurement of tropospheric winds and pressure, and trace species in the troposphere and stratosphere. In addition, a high-resolution passive infrared sensor shows promise for measuring temperature from sea level up through the stratosphere. Advanced optical and microwave instruments are being developed for wind measurements in the stratosphere and mesosphere. Microwave techniques are also useful for the study of meteorological parameters at the air-sea interface.

  1. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  2. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  3. Role of Process Control in Improving Space Vehicle Safety A Space Shuttle External Tank Example

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Nguyen, Son C.; Burleson, Keith W.

    2006-01-01

    Developing a safe and reliable space vehicle requires good design and good manufacturing, or in other words "design it right and build it right". A great design can be hard to build or manufacture mainly due to difficulties related to quality. Specifically, process control can be a challenge. As a result, the system suffers from low quality which leads to low reliability and high system risk. The Space Shuttle has experienced some of those cases, but has overcome these difficulties through extensive redesign efforts and process enhancements. One example is the design of the hot gas temperature sensor on the Space Shuttle Main Engine (SSME), which resulted in failure of the sensor in flight and led to a redesign of the sensor. The most recent example is the Space Shuttle External Tank (ET) Thermal Protection System (TPS) reliability issues that contributed to the Columbia accident. As a result, extensive redesign and process enhancement activities have been performed over the last two years to minimize the sensitivities and difficulties of the manual TPS application process.

  4. Global Positioning Svstem (GPS) on International Space Station (ISS) and Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.

    2002-01-01

    Both the International Space Station and Crew Return Vehicle desired to have GPS on their vehicles due to improve state determination over traditional ground tracking techniques used in the past for space vehicles. Both also opted to use GPS for attitude determination to save the expense of a star tracker. Both vehicles have stringent pointing requirements for roll, pitch, and heading, making a sun or earth sensor not a viable option since the heading is undetermined. This paper discusses the technical challenges associated with the implementation of GPS on both of these vehicles. ISS and CRY use the same GPS receiver, but have faced different challenges since the mission of each is di fferent. ISS will be discussed first, then CRY. The flight experiments flown on the Space Shuttle in support of these efforts is also discussed.

  5. Parametric estimation of R&M parameters during the conceptual design of space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1992-01-01

    Reliability and maintainability parameters of proposed space vehicles are estimated based on a comparability analysis of similar aircraft subsystems. Using multiple regression techniques, parametric equations are developed for each subsystem to predict mean flying hours between failure as a function of vehicle design and performance specifications. These estimates are then adjusted to account for reliability growth, environmental differences, and new technologies. Overall vehicle mission reliability may then be computed from subsystem reliability estimates.

  6. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  7. Combined Pressure and Thermal Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Svartstrom, Kirk Nils (Inventor)

    2015-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  8. Combined Pressure and Thermal Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Svartstrom, Kirk Nils (Inventor)

    2017-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  9. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  10. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  11. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket

  12. Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry

    2009-01-01

    The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.

  13. Advanced technology for America's future in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.

  14. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  15. Advanced batteries for electric vehicle applications: Nontechnical summary

    NASA Astrophysics Data System (ADS)

    Henriksen, G. L.

    This paper provides an overview of the performance characteristics of the most prominent batteries under development for electric vehicles (EV's) and compares these characteristics to the USABC Mid-Term and Long-Term criteria, as well as to typical vehicle-related battery requirements. Most of the battery performance information was obtained from independent tests, conducted using simulated driving power profiles, for DOE and EPRI at Argonne National Laboratory. The EV batteries are categorized as near-term, mid-term, and long-term technologies based on their relative development status, as well as our estimate of their potential availability as commercial EV batteries. Also, the performance capabilities generally increase in going from the near-term to the mid-term and on to the long-term technologies. To date, the USABC has chosen to fund a few selected mid-term and long-term battery technologies.

  16. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  17. Application of advanced technology to space automation

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  18. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  19. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  20. Advanced PEFC development for fuel cell powered vehicles

    NASA Astrophysics Data System (ADS)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  1. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric

  2. Application of the MESA reactive hydrocode to space vehicle explosive ordnance devices

    NASA Technical Reports Server (NTRS)

    Goldstein, Selma

    1993-01-01

    The construction of detailed computational models of the dynamic behavior of various explosive ordnance devices used on space vehicles is discussed. The following topics are presented in viewgraph form: numerical methods, explosives and detonations, and the MESA computer code.

  3. Space transfer vehicle concepts and requirements, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.

  4. Center for Space Power and Advanced Electronics, Auburn University

    NASA Technical Reports Server (NTRS)

    Deis, Dan W.; Hopkins, Richard H.

    1991-01-01

    The union of Auburn University's Center for Space Power and Advanced Electronics and the Westinghouse Science and Technology Center to form a Center for the Commercial Development of Space (CCDS) is discussed. An area of focus for the CCDS will be the development of silicon carbide electronics technology, in terms of semiconductors and crystal growth. The discussion is presented in viewgraph form.

  5. Advanced Learning Space as an Asset for Students with Disabilities

    ERIC Educational Resources Information Center

    Císarová, Klára; Lamr, Marián; Vitvarová, Jana

    2015-01-01

    The paper describes an e-learning system called Advanced Learning Space that was developed at the Technical University of Liberec. The system provides a personalized virtual work space and promotes communication among students and their teachers. The core of the system is a module that can be used to automatically record, store and playback…

  6. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  7. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  8. Space station propulsion: The advanced development program at Lewis

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1985-01-01

    A reference configuration was established for the initial operating capability (IOC) station. The reference configuration has assumed hydrazine fueled thrusters as the propulsion system. This was to establish costing and as a reference for comparison when other propulsion systems are considered. An integral part of the plan to develop the Space Station is the advanced development program. The objective of this program is to provide advanced technology alternatives for the initial and evolutionary Space Station which optimize the system's functional characteristics in terms of performance, cost, and utilization. The portion of the Advanced Development Program that is concerned with auxiliary propulsion and the research and programmatic activities conducted are discussed.

  9. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  10. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  11. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  12. CCSDS Advanced Orbiting Systems - International data communications standards for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.

    1990-01-01

    Established in 1982, the Consultative Committee for Space Data Systems (CCSDS) is an international organization that is staffed by data-handling experts from nearly all of the world's major space agencies. Its goal is to develop standard data-communications techniques so that several agencies may cross-support each other's data flow and thus allow complex, international missions to be flown. Under the general umbrella of Advanced Orbiting Systems (AOS), an international CCSDS task force was formed in 1985 to develop standard data-communications concepts for manned missions, such as the Space Station Freedom and the Hermes space plane, and large unmanned vehicles, such as polar orbiting platforms. The history of the CCSDS and the development of the AOS recommendation are reviewed, and the user services and protocols embodied in its systems architecture are introduced.

  13. Advanced technology for space communications and tracking systems

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    1988-10-01

    Technological advances in the communications and tracking areas being developed by NASA and applicable to future missions and associated space operations are discussed. The applications scenarios considered include the Space Shuttle, Space Station, lunar base, and Mars missions. Performance goals and conceptual designs are discussed, and the relevance of optical, laser, and millimeter wave-based implementations to the various applications are examined. Recommendations for future systems developments are addressed.

  14. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  15. Space transfer vehicle concepts and requirements. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study has been an eighteen-month study effort to develop and analyze concepts for a family of vehicles to evolve from an initial STV system into a Lunar Transportation System (LTS) for use with the Heavy Lift Launch Vehicle (HLLV). The study defined vehicle configurations, facility concepts, and ground and flight operations concepts. This volume reports the program cost estimates results for this portion of the study. The STV Reference Concept described within this document provides a complete LTS system that performs both cargo and piloted Lunar missions.

  16. The Deep Space Network Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    2010-01-01

    The deep space network (DSN)--with its three complexes in Goldstone, California, Madrid, Spain, and Canberra, Australia--provides the resources to track and communicate with planetary and deep space missions. Each complex consists of an array of capabilities for tracking probes almost anywhere in the solar system. A number of innovative hardware, software and procedural tools are used for day-to-day operations at DSN complexes as well as at the network control at the Jet Propulsion Laboratory (JPL). Systems and technologies employed by the network include large-aperture antennas (34-m and 70-m), cryogenically cooled receivers, high-power transmitters, stable frequency and timing distribution assemblies, modulation and coding schemes, spacecraft transponders, radiometric tracking techniques, etc. The DSN operates at multiple frequencies, including the 2-GHz band, the 7/8-GHz band, and the 32/34-GHz band.

  17. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to

  18. Advances in Pharmacotherapeutics of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi

    2006-01-01

    Space Motion Sickness (SMS) is common occurrence in the U.S. manned space flight program and nearly 2/3 of Shuttle crewmembers experience SMS. Several drugs have been prescribed for therapeutic management of SMS. Typically, orally-administered SMS medications (scopolamine, promethazine) have poor bioavailability and often have detrimental neurocognitive side effects at recommended doses. Intramuscularly administered promethazine (PMZ) is perceived to have optimal efficacy with minimal side effects in space. However, intramuscular injections are painful and the sedating neurocognitive side effects of promethazine, significant in controlled ground testing, may be masked in orbit because injections are usually given prior to crew sleep. Currently, EVAs cannot be performed by symptomatic crew or prior to flight day three due to the lack of a consistently efficacious drug, concern about neurocognitive side effects, and because an in-suit vomiting episode is potentially fatal. NASA has long sought a fast acting, consistently effective anti-motion sickness medication which has only minor neurocognitive side effects. Development of intranasal formulations of scopolamine and promethazine, the two commonly used SMS drugs at NASA for both space and reduced gravity environment medical operations, appears to be a logical alternative to current treatment modalities for SMS. The advantages are expected to be fast absorption, reliable and high bioavailability, and probably reduced neurocognitive side effects owing to dose reduction. Results from clinical trials with intranasal scopolamine gel formulation and pre-clinical testing of a prototype microcapsule intranasal gel dosage form of PMZ (INPMZ) will be discussed. These formulations are expected to offer a dependable and effective noninvasive treatment option for SMS.

  19. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  20. Advances in space radiation shielding codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  1. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  2. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  3. Advances in optical fiber sensors for vehicle detection

    NASA Astrophysics Data System (ADS)

    Meller, Scott A.; de Vries, Marten J.; Arya, Vivek; Claus, Richard O.; Zabaronick, Noel

    1998-01-01

    THe primary objective for this project is the design of optical fiber-based sensor instrumentation for specific ITS applications. Specifically, this paper discusses research on optical fiber sensors that can be used for traffic monitoring and vehicle classification. This paper also discusses developments on the application of optical fiber sensor that can be used for monitoring visibility. This research is directly beneficial to the implementation of driver advisory and safety systems, traffic control system, and other ITS applications. This paper summarizes research performed on optical fiber sensors used for measuring traffic flow on highways and discusses progress on optical fiber sensors used for monitoring visibility.

  4. Application of the integrated modular engine (IME) to space vehicle concepts

    NASA Technical Reports Server (NTRS)

    Cramer, John M.; Wakefield, Michael E.

    1992-01-01

    The incorporation of integrated modular engines (IME) in space vehicles offers attractive benefits which include improved system reliability and fault tolerance, increased I(sp) and thrust/weight ratio, and improved operability and maintainability. This paper summarizes a study that was performed to define concepts for three cryogenic space vehicles incorporating the IME: a trans-lunar injection stage, a lunar lander, and an upper stage for a launch vehicle. The goals of the study were to quantify potential IME benefits, identify issues that must be addressed, and define the technical and programmatic actions required to develop the IME.

  5. Considerations Affecting Satellite and Space Probe Research with Emphasis on the "Scout" as a Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Posner, Jack (Editor)

    1961-01-01

    This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.

  6. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  7. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  8. Human Engineering of Space Vehicle Displays and Controls

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  9. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  10. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  11. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    SciTech Connect

    Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj; Rousseau, Aymeric

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  12. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  13. Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Aeronautics Design Program and Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.

  14. Modification of the ionosphere by large space vehicles

    NASA Astrophysics Data System (ADS)

    Mendillo, M.

    Not Available Copyright 1980 by Michael Mendillo. Extracted from ``Space Systems and their Interactions with Earth's Space Environment'' (Vol. 71 of ``Progress in Astronautics and Aeronautics'', eds. H.B. Garret and C.P. Pike), 1980

  15. Space Shuttle 2 advanced space transportation system, volume 2

    NASA Technical Reports Server (NTRS)

    Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.

    1989-01-01

    To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference.

  16. Advances in chitosan-based drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Liming; Sun, Yun; Wu, Yan

    2013-03-01

    Within the past few years, chitosan-based drug delivery vehicles have become some of the most attractive to be studied. In contrast to all other polysaccharides, chitosan has demonstrated its unique characteristics for drug delivery platforms, including its active primary amino groups for chemical modification, simple and mild preparation methods for the encapsulation of biomolecules or drugs, mucoadhesion to facilitate transport across mucosal barriers and so on. In this review, an overview of the various types of chitosan-based drug delivery systems is provided, with special focus on polymeric drug conjugates and drug nanocarriers. The first part of the review is concerned with the development and applications of polymeric chitosan-drug conjugates. Then the chitosan-based nanocarrier systems as well as their preparation methods and applications are further discussed.

  17. Advanced transportation concept for round-trip space travel

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1988-01-01

    A departure from the conventional concept of round-trip space travel is introduced. It is shown that a substantial reduction in the initial load required of the Shuttle or other launch vehicle can be achieved by staging the ascent orbit and leaving fuel for the return trip at each stage of the orbit. Examples of round trips from a low-inclination LEO to a high-inclination LEO and from an LEO to a GEO are used to show the merits of the new concept. Potential problem areas and research needed for the development of an efficient space transportation network are discussed.

  18. Advanced space transportation system support contract

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The general focus is on a phase 2 lunar base, or a lunar base during the period after the first return of a crew to the Moon, but before permanent occupancy. The software effort produced a series of trajectory programs covering low earth orbit (LEO) to various node locations, the node locations to the lunar surface, and then back to LEO. The surface operations study took a lunar scenario in the civil needs data base (CNDB) and attempted to estimate the amount of space-suit work or extravehicular activity (EVA) required to set up the base. The maintenance and supply options study was a first look at the problems of supplying and maintaining the base. A lunar surface launch and landing facility was conceptually designed. The lunar storm shelter study examined the problems of radiation protection. The lunar surface construction and equipment assembly study defined twenty surface construction and assembly tasks in detail.

  19. NASA advanced aeronautics design solar powered remotely piloted vehicle

    NASA Technical Reports Server (NTRS)

    Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.

  20. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  1. Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.

    2003-01-01

    During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

  2. SPACE LAUNCH VEHICLE FULL-SCALE DAMPING TESTS

    DTIC Science & Technology

    The wind study portion of testing showed that the SLV gantry tower is sufficiently stable to be used as a base for forced oscillation of the vehicle...experimental damping factors agreed reasonably well with the results of previous tests. Increased confidence in the recent SLV ground wind restrictions has been the direct result of this test.

  3. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  4. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  5. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  6. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  7. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  8. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  9. Advanced lightweight optics development for space applications

    SciTech Connect

    Bilbro, James W.

    1998-01-15

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed.

  10. Advanced Technologies and Satellite Services for Enhancing Space Surveillance

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Rieger, Philipp; Suess, Helmut; Neff, Thomas; Duerr, Wolfgang

    2010-08-01

    Space-based systems are becoming part of our infrastructure and our dependency on space-based services has grown. Therefore, the assured availability and operational readiness of space-based services is essential, undoubtedly. However, satellites are subject to a variety of damaging effects and potential threats. These are mostly caused by an increasingly crowded region of outer space, by space weather including solar events and, unfortunately, even attacks on space systems which are no longer sience fiction as impressively demonstrated in 2007 with the Chinese anti-satellite test and the intercept of USA-193 in 2008. Today, German armed forces use several space services primarily for reconnaissance, communications and navigation. As a matter of fact, Germany`s sovereignty and national security depend on the availability of multiple space services. This led the Federal Ministry of Defence to set up a dedicated military Space Situational Awareness Centre at Kalkar/Uedem, Germany, as a significant contribution to a national preventive security. This paper provides information on a range of technical issues related to space assets that are important for anyone involved in the debate over space security and gives a brief survey of the German SSA program. The paper deals with a subset of feasible man-made threats and its fatal effects on space assets. Furthermore, the preliminary conceptual design of an onboard sensor suitable for the instant detection of the previously described types of threats is presented. Finally, advanced technologies for the near real-time transfer of data are highlighted.

  11. Next generation earth-to-orbit space transportation systems: Unmanned vehicles and liquid/hybrid boosters

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1991-01-01

    The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.

  12. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  13. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  14. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  15. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect

    Not Available

    2010-08-01

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  16. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    SciTech Connect

    Vimmerstedt, L J; Hammel, C J

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  17. Advances in Rodent Research Missions on the International Space Station

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  18. Advanced Solid State Lighting for AES Deep Space Hab Project

    NASA Technical Reports Server (NTRS)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  19. Protection of Space Vehicles from Micrometeoroid/Orbital Debris (MMOD) Damages

    NASA Technical Reports Server (NTRS)

    Barr, Stephanie

    2007-01-01

    As the environment that puts space vehicles at risk can never be eliminated, space vehicles must implement protection against the MMOD environment. In general, this protection has been implemented on a risk estimate basis, largely focused on estimates of impactor size and estimated flux. However, there is some uncertainty in applying these methods from data gathered in earth orbit to excursions outside. This paper discusses different past thresholds and processes of the past and suggests additional refinement or methods that could be used for future space endeavors.

  20. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  1. Space Wear Vision -Development of a Wardrobe for Life in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Orndorff, Evelyne

    2015-01-01

    one of shirts used as sleep-wear. The IVA (Intra Vehicular Activity) Clothing Study has been the first study with Roscosmos under the "Utilization Sharing Plan On-Board ISS," while the other studies have been conducted at the Johnson Space Center in a controlled environment similar to the ISS. For exercise clothing, study participants wore garments during aerobic exercise. For routine wear clothing, study participants wore the T-shirts daily in an office or laboratory. Daily questionnaires collected data on ordinal preferences of nine sensory elements and on reasons for retiring a used garment. More studies have been initiated on Earth, and some should be planned to engage more astronauts and cosmonauts in the design of the new space wear. Future studies will extend to other types of garments in the wardrobe; another will address microbial growth on textiles. Others will address cleaning and sanitation of clothing in space vehicles. Efforts will be made for additional ISS studies with NASA's international partners.

  2. Design and fabrication of brazed Rene 41 honeycomb sandwich structural panels for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1981-01-01

    The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.

  3. Fundamental study of fuel cell system for space vehicle

    SciTech Connect

    Kikuchi, K.; Ozeki, T.; Yoshida, Y.; Fujita, Y.; Kudo, H.

    1985-01-01

    In the future, satellites will become increasingly larger, and will require larger electric power. The solar array-storage battery combination will satisfy these power requirements because of its long life, light weight and high reliability. On the other hand, the fuel cell system will be mainly used for the winged re-entry vehicle, the orbital transfer vehicle, etc. A fundamental study of the alkaline-matrix type fuel cell system was carried out by using the experimental cell consisting of the anode and the cathode, separated by the asbestos matrix impregnated with electrolyte solution and the electrolyte reservoir plate made of porous nickel adjacent to the anode. The investigation was focused to establish the optimum operating condition which especially related to water balance. The 5 cell stack with an active area of 100 sq cm operated successfully, and put out a power of 79 W at 20 A.

  4. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  5. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  6. Nanomaterials for Advanced Life Support in Advanced Life Support in Space systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Moloney, Padraig; Yowell, Leonard

    2006-01-01

    A viewgraph presentation describing nanomaterial research at NASA Johnson Space Center with a focus on advanced life support in space systems is shown. The topics include: 1) Introduction; 2) Research and accomplishments in Carbon Dioxide Removal; 3) Research and Accomplishments in Water Purification; and 4) Next Steps

  7. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  8. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  9. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  10. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  11. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  12. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  13. Advanced Guidance and Control for Hypersonics and Space Access

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hall, Charles E.; Mulqueen, John A.; Jones, Robert E.

    2003-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety, reliability, and cost requirements for the next generation of reusable launch vehicle (RLV), whether it is fully rocket-powered or has air- breathing components. This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies could have saved a RLV with the same failure mode, the additional vehicle problems where t h i s technology applies, and the costs and time associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is the point where we can look to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AWC, current technology efforts, and the additional work needed for making this goal a reality. There are a number of approaches to AG&C that have the potential for achieving the desired goals. For some of these methods, we compare the results of tests designed to demonstrate the achievement of the goals. Tests up to now have been focused on rocket-powered vehicles; application to hypersonic air-breathers is planned. We list the test cases used to demonstrate that the desired results are achieved, briefly describe an automated test scoring method, and display results of the tests. Some of the technology components have reached the maturity level where they are ready for application to a new vehicle concept, while others are not far along in development.

  14. Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.

  15. An Alternate Configuration of the Multi-Mission Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2014-01-01

    The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.

  16. Maximum Aerodynamic Force on an Ascending Space Vehicle

    ERIC Educational Resources Information Center

    Backman, Philip

    2012-01-01

    The March 2010 issue of "The Physics Teacher" includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in…

  17. Vehicle for Space Transfer and Recovery (VSTAR), volume 2: Substantiating analyses and data

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). Reference materials, calculations and trade studies used in the analysis and selection of VSTAR components. Each major VSTAR system is examined separately. Simple graphs and tables are used to make qualitative comparisons of various VSTAR component candidates. Equations and/or calculations used for a particular analysis are also included where applicable.

  18. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  19. 78 FR 8111 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Marine Mammals Incidental to Space Vehicle and Test Flight Activities From Vandenberg Air Force Base, CA... mammals, by harassment, incidental to space vehicle and test flight activities at VAFB. Summary of... of authorization (LOA) has been issued to the 30th Space Wing, U.S. Air Force (USAF), to take...

  20. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space...