Science.gov

Sample records for advanced spray-dried inhalable

  1. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

    PubMed

    Park, Chun-Woong; Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Zwischenberger, Joseph B; Park, Eun-Seok; Mansour, Heidi M

    2013-10-15

    Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various

  2. Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-09-01

    Dry powder inhalation aerosols of antibiotic drugs (a first-line aminoglycoside, tobramycin, and a first-line macrolide, azithromycin) and a sugar alcohol mucolytic agent (mannitol) as co-spray dried (co-SD) particles at various molar ratios of drug:mannitol were successfully produced by organic solution advanced co-spray drying from dilute solute concentration. These microparticulate/nanoparticulate aerosols consisting of various antibiotic drug:mannitol molar ratios were rationally designed with a narrow and unimodal primary particle size distribution, spherical particle shape, relatively smooth particle surface, and very low residual water content to minimize the interparticulate interactions and enhance in vitro aerosolization. These microparticulate/nanoparticulate inhalation powders were high-performing aerosols as reflected in the aerosol dispersion performance parameters of emitted dose, fine particle fraction (FPF), respirable fraction (RF), and mass median aerodynamic diameter (MMAD). The glass transition temperature (Tg) values were significantly above room temperature, which indicated that the co-SD powders were all in the amorphous glassy state. The Tg values for co-SD tobramycin:mannitol powders were significantly lower than those for co-SD azithromycin:mannitol powders. The interplay between aerosol dispersion performance parameters and Tg was modeled where higher Tg values (i.e., more ordered glass) were correlated with higher values in FPF and RF and lower values in MMAD.

  3. Comparison of physical and inhalation properties of spray-dried and micronized terbutaline sulphate.

    PubMed

    Thi, Thanh Huong Hoang; Danède, Florence; Descamps, Marc; Flament, Marie-Pierre

    2008-09-01

    Terbutaline sulphate particles, for use in dry powder inhaler formulations, were prepared by spray-drying, using a Büchi 190 mini spray dryer. Spray-drying conditions were chosen to allow the production of spray-dried terbutaline sulphate with a size similar to micronized terbutaline sulphate, that is to say about 2.9 microm of volume mean diameter. The physical properties and in vitro inhalation behaviour of micronized and spray-dried terbutaline sulphate were compared. X-ray diffraction, DSC, SEM and laser size analysis were investigated. Spray-dying produced spherically shaped particles with amorphous structure. After blending with different lactoses, adhesion and aerodynamic properties were investigated. Evaluation of adhesion was carried out with a mechanical sieve and an Alpine air-jet sieve. The adhesion of terbutaline sulphate on the lactoses tested was lower in the case of the spray-dried drug. Aerodynamic evaluation of fine particle dose and emitted dose was conducted using a twin stage impactor. The emitted doses and the fine particle doses were higher with the spray-dried terbutaline sulphate. The Alpine air-jet sieve assays showed that there was a correlation between drug separation from a carrier by sieving and that obtained from longer in vitro deposition studies. There was a linear relationship between the adhesion characteristics and the fine particle dose. PMID:18504120

  4. Characterisation of salmon calcitonin in spray-dried powder for inhalation. Effect of chitosan.

    PubMed

    Yang, M; Velaga, S; Yamamoto, H; Takeuchi, H; Kawashima, Y; Hovgaard, L; van de Weert, M; Frokjaer, S

    2007-03-01

    Salmon calcitonin (sCT) powders suitable for inhalation, containing chitosan and mannitol as absorption enhancer and protection agent, respectively, were prepared using a spray-drying process. The effect of chitosan on physicochemical stability of sCT in the dry powder was investigated by different analytical techniques. High-performance liquid chromatography (HPLC) analysis indicated that sCT was chemically stable upon spray-drying. With the proportion of chitosan in spray-drying formulation being increased, dissolution of sCT from the dry powders was decreased both in phosphate buffer and acetate buffer. The thioflavine T fluorescence assay showed that no fibrils were present in the spray-dried powder. However, sCT partly fibrillated in the phosphate buffer, but not in acetate buffer. Fourier transform infrared (FTIR) spectra showed that the secondary structure of sCT was slightly changed in the dry powder, yet no aggregate signal was observed. Circular dichroism analysis indicated that the structure of sCT in an aqueous formulation was slightly altered by addition of chitosan. Nevertheless, recovery of sCT was not influenced by chitosan in the aqueous formulation as indicated by HPLC analysis. This study suggested that sCT, in absence of any additives, was stable during the spray-drying process under certain conditions. Addition of chitosan affects recovery of sCT from spray-dried powders, which may be due to formation of a partially irreversible complex between the protein and chitosan during the spray-drying process.

  5. Minimal amounts of dipalmitoylphosphatidylcholine improve aerosol performance of spray-dried temocillin powders for inhalation.

    PubMed

    Cuvelier, Brieuc; Eloy, Pierre; Loira-Pastoriza, Cristina; Ucakar, Bernard; Sanogo, Abdoul Aziz; Dupont-Gillain, Christine; Vanbever, Rita

    2015-11-30

    Administration of antibiotics by inhalation can greatly improve drug targeting to the site of respiratory infections. In addition, dry powder inhalers are particularly convenient for the patients. The purposes of this study were to demonstrate the interest of pulmonary temocillin delivery to reach high temocillin concentrations locally in the lungs as well as to prepare a spray-dried temocillin powder for inhalation using a minimal amount of generally recognized as safe excipients. Intratracheal instillation of a temocillin solution allowed to reach higher and more sustained drug concentrations in the lungs than intravenous injection in mice, although a 10-fold lower temocillin dose was delivered intratracheally than systemically. A spray-dried powder of pure temocillin presented a fine particle fraction of 9% of the dose loaded in the inhaler. However, the incorporation of 0.5% to 20% of dipalmitoylphosphatidylcholine (DPPC) in the powder increased the fine particle fraction 4- to 5-fold. X-ray photoelectron spectroscopy and X-ray diffraction revealed that DPPC concentrated at the particle surface with its aliphatic chains laterally packed. The minimal amount of DPPC needed to improve the aerosol performance of temocillin supports the use of this excipient in the formulation of cohesive antibiotic powders for inhalation. PMID:26456267

  6. Capreomycin inhalable powders prepared with an innovative spray-drying technique.

    PubMed

    Schoubben, Aurélie; Giovagnoli, Stefano; Tiralti, Maria Cristina; Blasi, Paolo; Ricci, Maurizio

    2014-07-20

    The aim of the work was to produce inhalable capreomycin powders using a novel spray-drying technology. A 2(3) factorial design was used to individuate the best working conditions. The maximum desirability was identified at the smallest mean volume diameter (dv) and span, and the highest yield. Powders were characterized for size, morphology, flowability and aerodynamic properties. Mathematical models showed a good predictivity with biases lower than 20%. The maximum conformity with desirability criteria was obtained spraying a 10mg/mL bacitracin solution at 111 °C with the 4 μm pore size membrane. By processing capreomycin sulfate with the parameters optimized for bacitracin, an inhalable powder was obtained (i.e., yield of 82%, dv of 3.83 μm, and span of 1.04). By further optimization, capreomycin sulfate powder characteristics were improved (i.e., yield, ∼71%; dv, 3.25 μm; span, 0.95). After formulation with lactose, emitted dose and respirable fraction of 87% and ∼27% were obtained, respectively. Two capreomycin sulfate powders with suitable properties for inhalation were produced using the nano spray-dryer B-90. PMID:24747443

  7. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis.

    PubMed

    Eedara, Basanth Babu; Tucker, Ian G; Das, Shyamal C

    2016-06-15

    Sterilization of necrotic granulomas containing Mycobacterium tuberculosis is difficult by oral and parenteral drug delivery of antitubercular drugs. Pulmonary delivery of these drugs should increase the concentration of drug in the granulomas and, thereby, improve the sterilization. The current study aimed to develop spray-dried (SD) powders composed of pyrazinamide, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine N-(carbonyl-methoxy polyethylene glycol-2000) (DSPE-PEG2k) and l-leucine to improve drug delivery to the deeper lung. Pyrazinamide SD powders with varying amounts of DPPC (5, 15 and 25% w/w) were produced using a BUCHI B-290 Mini Spray-Dryer. The powders were characterized physicochemically and for their aerosol dispersion performance using a Next Generation Impactor (NGI). All the SD powders had a narrow particle size distribution (1.29-4.26μm) with low residual moisture (<2%). Solid state characterization confirmed that the α-polymorphic crystalline pyrazinamide transformed into the γ-polymorphic form during spray-drying. SD pyrazinamide (PDDL0) without excipients showed very poor aerosolization with a fine particle fraction (FPF%) of 8.5±1.0%. However, the SD powder with 25% w/w DPPC (PDDL3) exhibited the best aerosolization with a FPF of 73.2±4.0%. Incorporating high amounts of DPPC improved aerosolization of SD powders; however further evaluation of the developed inhalation powders is necessary to determine their therapeutic potential for treating pulmonary tuberculosis. PMID:27091294

  8. Biologic comparison of inhaled insulin formulations: Exubera™ and novel spray-dried engineered particles of dextran-10.

    PubMed

    Kuehl, Philip J; Cherrington, Alan; Dobry, Dan E; Edgerton, Dale; Friesen, Dwayne T; Hobbs, Charles; Leach, Chet L; Murri, Brice; Neal, Doss; Lyon, David K; Vodak, David T; Reed, Matthew D

    2014-12-01

    Inhaled peptides and proteins have promise for respiratory and systemic disease treatment. Engineered spray-dried powder formulations have been shown to stabilize peptides and proteins and optimize aerosol properties for pulmonary delivery. The current study was undertaken to investigate the in vitro and in vivo inhalation performance of a model spray-dried powder of insulin and dextran 10 in comparison to Exubera™. Dextrans are a class of glucans that are generally recognized as safe with optimum glass transition temperatures well suited for spray drying. A 70% insulin particle loading was prepared by formulating with 30% (w/v) dextran 10. Physical characterization revealed a "raisin like" particle. Both formulations were generated to produce a similar bimodal particle size distribution of less than 3.5 μm MMAD. Four female Beagle dogs were exposed to each powder in a crossover design. Similar presented and inhaled doses were achieved with each powder. Euglycemia was achieved in each dog prior and subsequent to dosing and blood samples were drawn out to 245 min post-exposure. Pharmacokinetic analyses of post-dose insulin levels were similar for both powders. Respective dextran 10-insulin and Exubera exposures were similar producing near identical area under the curve (AUC), 7,728 ± 1,516 and 6,237 ± 2,621; concentration maximums (C max), 126 and 121 (μU/mL), and concentration-time maximums, 20 and 14 min, respectively. These results suggest that dextran-10 and other dextrans may provide a novel path for formulating peptides and proteins for pulmonary delivery.

  9. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying.

    PubMed

    Stocke, Nathanael A; Meenach, Samantha A; Arnold, Susanne M; Mansour, Heidi M; Hilt, J Zach

    2015-02-20

    Targeted pulmonary delivery facilitates the direct application of bioactive materials to the lungs in a controlled manner and provides an exciting platform for targeting magnetic nanoparticles (MNPs) to the lungs. Iron oxide MNPs remotely heat in the presence of an alternating magnetic field (AMF) providing unique opportunities for therapeutic applications such as hyperthermia. In this study, spray drying was used to formulate magnetic nanocomposite microparticles (MnMs) consisting of iron oxide MNPs and d-mannitol. The physicochemical properties of these MnMs were evaluated and the in vitro aerosol dispersion performance of the dry powders was measured by the Next Generation Impactor(®). For all powders, the mass median aerosol diameter (MMAD) was <5μm and deposition patterns revealed that MnMs could deposit throughout the lungs. Heating studies with a custom AMF showed that MNPs retain excellent thermal properties after spray drying into composite dry powders, with specific absorption ratios (SAR)>200W/g, and in vitro studies on a human lung cell line indicated moderate cytotoxicity of these materials. These inhalable composites present a class of materials with many potential applications and pose a promising approach for thermal treatment of the lungs through targeted pulmonary administration of MNPs. PMID:25542988

  10. Stabilization of IgG1 in spray-dried powders for inhalation.

    PubMed

    Schüle, S; Schulz-Fademrecht, T; Garidel, P; Bechtold-Peters, K; Frieb, W

    2008-08-01

    The protein stabilizing capabilities of spray-dried IgG1/mannitol formulations were evaluated. The storage stability was tested at different residual moisture levels prepared by vacuum-drying or equilibration prior to storage. Vacuum-drying at 32 degrees C/0.1mbar for 24h reduced the moisture level below 1%, constituting an optimal basis for improved storage stability. The crystalline IgG1/mannitol powders with a weight ratio of 20/80 up to 40/60 failed to prevent the antibody aggregation as assessed by size exclusion chromatography during storage. Ratios of 60/40 up to 80/20 IgG1/mannitol provided superior stability of the antibody and the powders could be produced with high yields. The lower the residual moisture, the better was the stabilizing capability. An amount of 20% mannitol provided the best stabilization. Storage stability of 60/40, 70/30, and 80/20 IgG1/mannitol formulations over one year was adequate at 2-8 degrees C and 25 degrees C. Closed storage (sealed in vials) at 40 degrees C/75% RH and open storage at 25 degrees C/60% RH revealed that the stability still required optimization. The lower the protein content, the better was the powder flowability. The aerodynamic properties of powders spray-dried with 10% solids content were inadequate, as the particle size ranged between 5.1 and 7.2 microm and the fine particle fraction accounted for only 4-11%. Reduction of the solids content to 2.5% did improve the aerodynamic properties as the mass mean aerodynamic diameter was reduced to 3.6 microm and the fine particle fraction was increased to about 14%. The reduction of the solids content did not influence the storage stability significantly. Also spray-drying at higher temperatures had no significant impact on the storage stability, despite a higher tendency to form amorphous systems. In order to improve the storage stability and to maintain the good flowability of 70/30 IgG1/mannitol powder or to keep the storage stability but to improve the flowability

  11. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  12. [The influence of spray drying process conditions on physical, chemical properties and lung inhaling performance of Panax notoginseng saponins - tanshinone II A composite particles].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-06-01

    This study is to report the influence of conditions in spray drying process on physical and chemical properties and lung inhaling performance of Panax notoginseng Saponins - Tanshinone II A composite particles. According to the physical and chemical properties of the two types of components within the composite particles, three solvent systems were selected including ethanol, ethanol : acetone (9 : 1, v/v) and ethanol : acetone (4 : 1, v/v), and three inlet temperature: 110 degrees C, 120 degrees C, 130 degrees C to prepare seven different composite particle samples; each sample was characterized using laser diffraction, scanning electron microscopy (SEM), dynamic vapour sorption (DVS) and atomic force microscope (AFM), and their aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The results indicate that under the conditions of using the mixed solvent system of ethanol--acetone volume ratio of 9 : 1, and the inlet temperature of 110 degrees C, the resulting composite particles showed rough surface, with more tanshinone II A distributing in the outer layer, such composite particles have the best lung inhaling performance and the fine particle fraction (FPF) close to 60%. Finally it is concluded that by adjusting the conditions in co-spray drying process, the distribution amount and existence form of tanshinone II A in the outer layer of the particles can be changed so that to enhance lung inhaling performance of the drug composite particles.

  13. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles.

    PubMed

    Wang, Yajie; Kho, Katherine; Cheow, Wean Sin; Hadinoto, Kunn

    2012-03-15

    Lipid-polymer hybrid nanoparticles - polymeric nanoparticles enveloped by lipid layers - have emerged as a potent therapeutic nano-carrier alternative to liposomes and polymeric nanoparticles. Herein we perform comparative studies of employing spray drying (SD) and spray freeze drying (SFD) to produce inhalable dry-powder form of drug-loaded lipid-polymer hybrid nanoparticles. Poly(lactic-co-glycolic acid), lecithin, and levofloxacin are employed as the polymer, lipid, and drug models, respectively. The hybrid nanoparticles are transformed into micro-scale nanoparticle aggregates (or nano-aggregates) via SD and SFD, where the effects of (1) different excipients (i.e. mannitol, polyvinyl alcohol (PVA), and leucine), and (2) nanoparticle to excipient ratio on nano-aggregate characteristics (e.g. size, flowability, aqueous reconstitution, aerosolization efficiency) are examined. In both methods, PVA is found more effective than mannitol for aqueous reconstitution, whereas hydrophobic leucineis needed to achieve effective aerosolization as it reduces nano-aggregate agglomeration. Using PVA, both methods are equally capable of producing nano-aggregates having size, density, flowability, yield and reconstitutibility in the range ideal for inhaled delivery. Nevertheless, nano-aggregates produced by SFD are superior to SD in terms of their aerosolization efficiency manifested in the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter.

  14. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 1: influence of polymer concentration on physical and in vitro characteristics.

    PubMed

    Salama, Rania; Hoe, Susan; Chan, Hak-Kim; Traini, Daniela; Young, Paul M

    2008-06-01

    A series of co-spray dried microparticles containing di-sodium cromoglycate (DSCG) and polyvinyl alcohol (PVA - 0%, 30%, 50%, 70% and 90% w/w, respectively), were prepared as potential controlled release (CR) viscous/gelling vehicles for drug delivery to the respiratory tract. The microparticles were characterised in terms of particle size, crystal structure, density, surface morphology, moisture sorption, surface energy and in vitro aerosolisation efficiency. The co-spray dried particles were amorphous in nature and had spherical geometry. High-resolution atomic force microscopy analysis of the surfaces of the DSCG/PVA suggested no significant differences in roughness between microparticles containing 30-90% w/w PVA (ANOVA, p<0.05), while no specific trend in either size or density was observed with respect to PVA concentration. In comparison, a linear decrease in the relative moisture sorption (R2=0.997) and concurrent increase in total surface free energy (R2=0.870) were observed as PVA concentration was increased. Furthermore a linear increase in the aerosolisation efficiency, measured by inertial impaction, was observed as PVA concentration was increased (R2=0.993). In addition, the increase in aerosolisation efficiency showed good correlation with equilibrium moisture content (R2=0.974) and surface energy measurement (R2=0.905). These relationships can be attributed to the complex interplay of particle forces at the contiguous interfaces in this particulate system.

  15. Review of patents and application of spray drying in pharmaceutical, food and flavor industry.

    PubMed

    Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis

    2014-04-01

    Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.

  16. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery

    PubMed Central

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397

  17. Sustained delivery by leucine-modified chitosan spray-dried respirable powders.

    PubMed

    Learoyd, Tristan P; Burrows, Jane L; French, Eddie; Seville, Peter C

    2009-05-01

    The controlled co-delivery of multiple agents to the lung offers potential benefits to patients. This study investigated the preparation and characterisation of highly respirable spray-dried powders displaying the sustained release of two chemically distinct therapeutic agents. Spray-dried powders were produced from 30% (v/v) aqueous ethanol formulations that contained hydrophilic (terbutaline sulphate) and hydrophobic (beclometasone dipropionate) model drugs, chitosan (as a drug release modifier) and leucine (aerosolisation enhancer). The influence of chitosan molecular weight on spray-drying thermal efficiency, aerosol performance and drug release profile was investigated. Resultant powders were physically characterised: with in vitro aerosolisation performance and drug release profile investigated by the Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. It was found that increased chitosan molecular weight gave increased spray-drying thermal efficiency. The powders generated were of a suitable size for inhalation-with emitted doses over 90% and fine particle fractions up to 72% of the loaded dose. Sustained drug release profiles were observed in dissolution tests for both agents: increased chitosan molecular weight associated with increased duration of drug release. The controlled co-delivery of hydrophilic and hydrophobic entities underlines the capability of spray drying to produce respirable particles with sustained release for delivery to the lung. PMID:19429272

  18. Pharmaceutical Particle Engineering via Spray Drying

    PubMed Central

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  19. Preparation of nanoscale pulmonary drug delivery formulations by spray drying.

    PubMed

    Bohr, Adam; Ruge, Christian A; Beck-Broichsitter, Moritz

    2014-01-01

    Advances in preparation technologies for nanomedicines have provided novel formulations for pulmonary drug delivery. Application of drugs via the lungs can be considered as one of the most attractive implementations of nanoparticles for therapeutic use due to the unique anatomy and physiology of the lungs. The colloidal nature of nanoparticles provides important advantages to the formulation of drugs, which are normally difficult to administer due to poor stability or uptake, partly because nanoparticles protect the drug from the physiological milieu, facilitate transport across biological barriers and can offer controlled drug release. There are numerous methods for producing therapeutic nanoparticles, each with their own advantages and suitable application. Liquid atomization techniques such as spray drying can produce nanoparticle formulations in a dry powder form suitable for pulmonary administration in a direct one-step process. This chapter describes the different state-of-the-art techniques used to prepare drug nanoparticles (with special emphasize on spray drying techniques) and the strategies for administering such unique formulations to the pulmonary environment.

  20. Spray drying of liquorice (Glycyrrhiza glabra) extract.

    PubMed

    Karaaslan, İrem; Dalgıç, Ali Coşkun

    2014-11-01

    The objective of this work was to study the influence of spray drying conditions on the physicochemical properties of liquorice (Glycyrrhiza glabra) extract. The stickiness and hydroscopicity problems in the power were overcome by use of dextrose equivalent (DE12) and DE19 maltodextrins as drying agents. The inlet air temperatures of 110 °C, 120 °C, and 130 °C and maltodextrin concentrations of 10 %, 15 %, and 20 % (maltodextrin dry solids/100 g feed mixture dry solids) were the independent variables. Moisture content, bulk density, color change, hygroscopicity, acidity & pH, solubility were analyzed to determine the effects of spray drying conditions. Increases in inlet air temperature were caused an increase in yield, pH, solubility and a decrease in moisture content, bulk density, hygroscopicity, L*, a*, b*, acidity. Increases in maltodextrin concentrations were caused an increase in yield, L*, b*, acidity and a decrease in moisture content, bulk density, hygroscopicity, a*, pH, solubility. Increases in DE maltodextrins were caused an increase in bulk density, hygroscopicity, L*, pH and a decrease in yield, moisture content, a*, b*, acidity, solubility.

  1. Spray Drying of Mosambi Juice in Lab

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Verma, A.

    2014-01-01

    The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.

  2. The preparation of steatite suspension for spray drying

    NASA Technical Reports Server (NTRS)

    Jirousek, L.; Spicak, K.

    1983-01-01

    Liquifying agents were investigated for preparation of highly concentrated steatite suspensions which are to be spray-dried. Organic additives for improving the molding properties and strength of green compacts are described. Demands on properties of the spray-dried granules are defined with regard to shrinkage of the molded compacts.

  3. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  4. Spray drying of fruit and vegetable juices--a review.

    PubMed

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work. PMID:24915356

  5. Spray drying of fruit and vegetable juices--a review.

    PubMed

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  6. Nutritional and rheological characterization of spray dried sweetpotato powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray drying feasibility of sweetpotato puree is enhanced using alpha-amylase treatment to reduce puree viscosity and maltodextrin addition to facilitate drying. To better determine potential applications of powders produced with various levels of amylase and maltodextrin, nutrient composition and ...

  7. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide.

    PubMed

    Dufour, Gilles; Bigazzi, William; Wong, Nelson; Boschini, Frederic; de Tullio, Pascal; Piel, Geraldine; Cataldo, Didier; Evrard, Brigitte

    2015-11-30

    To achieve an efficient lung delivery and efficacy, both active ingredient aerosolisation properties and permeability through the lung need to be optimized. To overcome these challenges, the present studies aim to develop cyclodextrin-based spray-dried microparticles containing a therapeutic corticosteroid (budesonide) that could be used to control airway inflammation associated with asthma. The complexation between budesonide and hydroxypropyl-β-cyclodextrin (HPBCD) has been investigated. Production of inhalation powders was carried out using a bi-fluid nozzle spray dryer and was optimized based on a design of experiments. Spray-dried microparticles display a specific "deflated-ball like shape" associated with an appropriate size for inhalation. Aerodynamic assessment show that the fine particle fraction was increased compared to a classical lactose-based budesonide formulation (44.05 vs 26.24%). Moreover, the budesonide permeability out of the lung was shown to be reduced in the presence of cyclodextrin complexes. The interest of this sustained budesonide release was evaluated in a mouse model of asthma. The anti-inflammatory effect was compared to a non-complexed budesonide formulation at the same concentration and attests the higher anti-inflammatory activity reach with the cyclodextrin-based formulation. This strategy could therefore be of particular interest for improving lung targeting while decreasing systemic side effects associated with high doses of corticosteroids. In conclusion, this works reports that cyclodextrins could be used in powder for inhalation, both for their abilities to improve active ingredient aerosolisation properties and further to their dissolution in lung fluid, to decrease permeability out of the lungs leading to an optimized activity profile. PMID:26410753

  8. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide.

    PubMed

    Dufour, Gilles; Bigazzi, William; Wong, Nelson; Boschini, Frederic; de Tullio, Pascal; Piel, Geraldine; Cataldo, Didier; Evrard, Brigitte

    2015-11-30

    To achieve an efficient lung delivery and efficacy, both active ingredient aerosolisation properties and permeability through the lung need to be optimized. To overcome these challenges, the present studies aim to develop cyclodextrin-based spray-dried microparticles containing a therapeutic corticosteroid (budesonide) that could be used to control airway inflammation associated with asthma. The complexation between budesonide and hydroxypropyl-β-cyclodextrin (HPBCD) has been investigated. Production of inhalation powders was carried out using a bi-fluid nozzle spray dryer and was optimized based on a design of experiments. Spray-dried microparticles display a specific "deflated-ball like shape" associated with an appropriate size for inhalation. Aerodynamic assessment show that the fine particle fraction was increased compared to a classical lactose-based budesonide formulation (44.05 vs 26.24%). Moreover, the budesonide permeability out of the lung was shown to be reduced in the presence of cyclodextrin complexes. The interest of this sustained budesonide release was evaluated in a mouse model of asthma. The anti-inflammatory effect was compared to a non-complexed budesonide formulation at the same concentration and attests the higher anti-inflammatory activity reach with the cyclodextrin-based formulation. This strategy could therefore be of particular interest for improving lung targeting while decreasing systemic side effects associated with high doses of corticosteroids. In conclusion, this works reports that cyclodextrins could be used in powder for inhalation, both for their abilities to improve active ingredient aerosolisation properties and further to their dissolution in lung fluid, to decrease permeability out of the lungs leading to an optimized activity profile.

  9. Compare and contrast the effects of surfactants (PluronicF-127 and CremophorEL) and sugars (β-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme.

    PubMed

    Haj-Ahmad, Rita Rochdy; Elkordy, Amal Ali; Chaw, Cheng Shu; Moore, Adrian

    2013-07-16

    promising protectant of proteins. The improved stability of the spray dried and crystallised protein containing PluronicF-127 shows promise for delivery of proteins via inhalation (in a spray dried form which has particle size range suitable for inhalation as revealed by particle size analysis and SEM) and injectable routes (in spray dried and crystallised forms). The way excipients react with proteins is different in the case of spray drying and crystallisation techniques, hence the choice of the additives and the processing techniques play a great role in controlling protein properties, activity and stability as shown in this study.

  10. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    PubMed

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM.

  11. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    PubMed

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. PMID:27451373

  12. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade. PMID:25445306

  13. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.

  14. Spray-dried oil powder with ultrahigh oil content.

    PubMed

    Mezzenga, Raffaele; Ulrich, Stephane

    2010-11-16

    We report a new facile route to the production of solid oil powders with an oil weight content of as high as 90% or beyond. The proposed method starts from a standard protein-stabilized oil-in-water emulsion in which a protein monolayer absorbed at the oil-water interface is successively cross linked by a thermal treatment. The emulsion is then spray dried as for ordinary emulsions, however without the addition of hydrocolloids typically needed when spray drying liquid oil dispersions. This leads to a final solid oil powder in which the total mass is constituted of oil, proteins, and eventual buffer salts and in which the elasticity of the cross-linked protein monolayer is alone sufficient to stabilize the powder and to limit any oil leakage. To best illustrate the potential in food applications and to preserve the food-grade nature of the constituents, we have used thermal denaturation at 80 °C for 15 min to cross link a β-lactoglobulin-stabilized olive oil-in-water emulsion and to produce the corresponding solid oil powder. Because of the simplicity and flexibility of the proposed pathway, the present method can be used inexpensively to convert any type of hydrophobic liquid into the corresponding solid powder and is then particularly suitable for cosmetic, pharmaceutical, medical, biotechnological, and food applications. PMID:20931976

  15. Hierarchical Structure Formation of Nanoparticulate Spray-Dried Composite Aggregates.

    PubMed

    Zellmer, Sabrina; Garnweitner, Georg; Breinlinger, Thomas; Kraft, Torsten; Schilde, Carsten

    2015-11-24

    The design of hierarchically structured nano- and microparticles of different sizes, porosities, surface areas, compositions, and internal structures from nanoparticle building blocks is important for new or enhanced application properties of high-quality products in a variety of industries. Spray-drying processes are well-suited for the design of hierarchical structures of multicomponent products. This structure design using various nanoparticles as building blocks is one of the most important challenges for the future to create products with optimized or completely new properties. Furthermore, the transfer of designed nanomaterials to large-scale products with favorable handling and processing can be achieved. The resultant aggregate structure depends on the utilized nanoparticle building blocks as well as on a large number of process and formulation parameters. In this study, structure formation and segregation phenomena during the spray drying process were investigated to enable the synthesis of tailor-made nanostructures with defined properties. Moreover, a theoretical model of this segregation and structure formation in nanosuspensions is presented using a discrete element method simulation. PMID:26505280

  16. Microencapsulation of soybean oil by spray drying using oleosomes

    NASA Astrophysics Data System (ADS)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  17. Inhalants

    MedlinePlus

    ... Drug Facts Chat Day: Inhalants Drug Facts Chat Day: Inhalants Print Can you get high off of ... Cool Order Free Materials National Drugs & Alcohol Chat Day Newsletter Sign up to receive National Drug & Alcohol ...

  18. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Spray Dried Detergents Subcategory § 417.150...

  19. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Spray Dried Detergents Subcategory § 417.150...

  20. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Spray Dried Detergents Subcategory § 417.150...

  1. Clay as a matrix former for spray drying of drug nanosuspensions.

    PubMed

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2014-04-25

    Utilization of sugars (e.g. lactose, sucrose) as matrix formers for spray drying of drug nanosuspensions is associated with two drawbacks: (1) sugars are incapable of preventing agglomeration of drug nanoparticles (NPs) in the suspension state; and (2) the spray-dried sugars are usually amorphous and hygroscopic. This work aimed to apply a clay, montmorillonite (MMT) as an alternative matrix former for spray drying of drug nanosuspensions with fenofibrate (feno) as a model compound. Drug nanosuspensions were synthesized by liquid antisolvent precipitation with different amount of MMT followed by spray drying. It is found that MMT is able to reduce the agglomeration of drug nanoparticles in the suspension state, as observed from the gradual alleviation of the clogging with the increased clay during the spray drying. The spray-dried feno NPs/MMT powders exhibited a much lower moisture sorption than spray-dried feno NPs/lactose powders as evidenced by the dynamic vapor sorption (DVS) analysis. The dissolution within 5 min for the spray-dried feno NPs/MMT powders at drug:MMT weight ratio of 1:3 was 81.4 ± 1.8% and the total dissolution within 60 min was 93.4 ± 0.9%. Our results demonstrate that MMT is a useful matrix former for preservation of the high dissolution rate of nanosized drug particles after drying. PMID:24560641

  2. Clay as a matrix former for spray drying of drug nanosuspensions.

    PubMed

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2014-04-25

    Utilization of sugars (e.g. lactose, sucrose) as matrix formers for spray drying of drug nanosuspensions is associated with two drawbacks: (1) sugars are incapable of preventing agglomeration of drug nanoparticles (NPs) in the suspension state; and (2) the spray-dried sugars are usually amorphous and hygroscopic. This work aimed to apply a clay, montmorillonite (MMT) as an alternative matrix former for spray drying of drug nanosuspensions with fenofibrate (feno) as a model compound. Drug nanosuspensions were synthesized by liquid antisolvent precipitation with different amount of MMT followed by spray drying. It is found that MMT is able to reduce the agglomeration of drug nanoparticles in the suspension state, as observed from the gradual alleviation of the clogging with the increased clay during the spray drying. The spray-dried feno NPs/MMT powders exhibited a much lower moisture sorption than spray-dried feno NPs/lactose powders as evidenced by the dynamic vapor sorption (DVS) analysis. The dissolution within 5 min for the spray-dried feno NPs/MMT powders at drug:MMT weight ratio of 1:3 was 81.4 ± 1.8% and the total dissolution within 60 min was 93.4 ± 0.9%. Our results demonstrate that MMT is a useful matrix former for preservation of the high dissolution rate of nanosized drug particles after drying.

  3. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    PubMed

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS. PMID:26633346

  4. Effect of storage conditions on compaction behavior of two grades of spray-dried lactose.

    PubMed

    Atassi, Faraj; Almaya, Ahmad; Aburub, Aktham

    2008-01-01

    In this work we examine the effect of storage conditions (moisture exposure) on the compression behavior of 2 grades of spray-dried lactose (Pharmatose DCL 11 and Pharmatose DCL 14) under 2 different circumstances. The first was to expose powder samples to moisture, then compress them. The second was to expose precompressed tablets to moisture. We clearly show that the effect of moisture exposure and amorphous content crystallization in spray-dried lactoses on compaction behavior depends on whether this moisture exposure takes place before or after compression. In addition, the impact of storage conditions depends on the grade of spray-dried lactose. PMID:18649218

  5. [Preparation and characterization of tetrandrine-loaded PLGA nanocomposite particles by premix membrane emulsification coupled with spray-drying method].

    PubMed

    Hu, Tao; Zhu, Hua-Xu; Guo, Li-Wei; Pan, Lin-Mei; Li, Bo; Shi, Fei-Yan; Lu, Jin

    2014-11-01

    For effective inhalable dry-powder drug delivery, tetrandrine-PLGA (polylactic-co-glycolic acid) nanocomposite particles have been developed to overcome the disadvantages of nanoparticles and microparticles. The primary nanoparticles were prepared by using premix membrane emulsification method. To prepare second particles, they were spray dried. The final particles were characterized by scanning electron microscopy (SEM), dry laser particle size analysis, high performance liquid chromatography (HPLC), X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared analysis (IR) and confocal laser scanning microscope (CLSM). The average size of the primary particles was (337.5 ± 6.2) nm, while that second particles was (3.675 ± 0.16) μm which can be decomposed into primary nanoparticles in water. And the second particles were solid sphere-like with the drug dispersed as armorphous form in them. It is a reference for components delivery to lung in a new form. PMID:25757290

  6. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    PubMed

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. PMID:27480399

  7. Inhalants

    MedlinePlus

    ... Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription Drugs & Cold ... Notes Articles Adolescent Cigarette, Alcohol Use Declines as Marijuana Use Rises ( February 2013 ) Program Helps Troubled Boys ...

  8. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations. PMID:27470922

  9. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations.

  10. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    PubMed

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  11. Preparation and characterization of microparticles of piroxicam by spray drying and spray chilling methods

    PubMed Central

    Dixit, M.; Kini, A.G.; Kulkarni, P.K.

    2010-01-01

    Piroxicam, an anti-inflammatory drug, exhibits poor water solubility and flow properties, poor dissolution and poor wetting. Consequently, the aim of this study was to improve the dissolution of piroxicam. Microparticles containing piroxicam were produced by spray drying, using isopropyl alcohol and water in the ratio of 40:60 v/v as solvent system, and spray chilling technology by melting the drug and chilling it with a pneumatic nozzle to enhance dissolution rate. The prepared formulations were evaluated for in vitro dissolution and solubility. The prepared drug particles were characterized by scanning electron microscopy (SEM), differential scanning calorimeter, X-ray diffraction and Fourier transform infrared spectroscopy. Dissolution profile of the spray dried microparticles was compared with spray-chilled microparticles, pure and recrystallized samples. Spray dried microparticles and spray chilled microparticles exhibited decreased crystallinity and improved micromeritic properties. The dissolution of the spray dried microparticle and spray chilled particles were improved compared with recrystallized and pure sample of piroxicam. Consequently, it was believed that spray drying of piroxicam is a useful tool to improve dissolution but not in case of spray chilling. This may be due to the degradation of drug or variations in the resonance structure or could be due to minor distortion of bond angles. Hence, this spray drying technique can be used for formulation of tablets of piroxicam by direct compression with directly compressible tablet excipients. PMID:21589797

  12. Competition of thermodynamic and dynamic factors during formation of multicomponent particles via spray drying.

    PubMed

    Kawakami, Kohsaku; Hasegawa, Yusuke; Deguchi, Kenzo; Ohki, Shinobu; Shimizu, Tadashi; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide

    2013-02-01

    As psicose cannot be spray dried because of its low glass transition temperature (T(g)), additives have been used to manufacture spray-dried particles. Its thermodynamic miscibility with each additive was evaluated by thermal analysis and C solid-state nuclear magnetic resonance. Aspartame was miscible with psicose at all ratios, and spray-dried particles were obtained when T(g) of the mixture was higher than the outlet temperature of the spray dryer, where 30 wt % of psicose was loaded. poly(vinylpyrrolidone) and cluster dextrin were partially miscible with psicose, with a maximum loading of 40 wt %. When polymeric excipients were used, their mixing behavior with psicose was affected by the dynamic factor during the spray drying, that is, enhanced phase separation due to the molecular-weight difference. The T(g) value of the polymer-rich phases, which were likely to form shell layers on the surfaces, played an important role in determining availability of the spray-dried particles. Hydroxypropyl methylcellulose (HPMC) offered a very effective loading capacity of 80 wt %, due to distinct phase separation to form shell phase with a very high T(g). Because molecular weight of HPMC was the smallest among the polymeric excipients, the thermodynamic miscibility seemed to affect the dynamic phase separation. These results provide useful information for preparing multicomponent spray-dried particles.

  13. Spray-dried Amioca starch/Carbopol 974P mixtures as buccal bioadhesive carriers.

    PubMed

    Ameye, D; Mus, D; Foreman, P; Remon, J P

    2005-09-14

    In the present study, spray-dried Amioca starch/Carbopol 974P mixtures were evaluated as potential buccal bioadhesive tablets. Carbopol (C 974P) concentrations from 5 to 75% were tested. All spray-dried mixtures showed a comparable or better bioadhesive capacity compared to a reference formulation (DDWM/C 974P 95/5). The bioadhesive capacities of Amioca/Carbopol 974P mixtures were improved by spray-drying. All spray-dried mixtures showed significantly higher work of adhesion values compared to their equivalent physical mixtures. The influence of Carbopol concentration on the in vivo adhesion time of placebo tablets and in vitro miconazole nitrate release was tested. The ratio Amioca/C 974P 70/30 showed the longest in vivo adhesion time (24.5+/-8.5 h). Lower and higher C 974P concentrations had a shorter in vivo adhesion time. The mixtures containing between 15 and 30% C 974P could all sustain the in vitro miconazole nitrate release over 20 h. Again, lower and higher C 974P concentrations showed a faster in vitro miconazole release. The drug loading capacity of a spray-dried mixture containing 20% C 974P was investigated in vivo in dogs using testosterone as model drug. The spray-dried mixture could be loaded with 60% drug without loosing its in vivo bioadhesive and pharmacokinetic properties. PMID:16019172

  14. Thoria-based cermet nuclear fuel : sintered microsphere fabrication by spray drying.

    SciTech Connect

    Solomon, A.A.; McDeavitt, S.M.; Chandrmouli, V.; Anthonysamy, S.; Kuchibhotla, S.; Downar, T.J.

    2002-01-09

    Cermet nuclear fuels have been demonstrated to have significant potential to enhance fuel performance because of low internal fuel temperatures and low stored energy. The combination of these benefits with the inherent proliferation resistance, high burnup capability, and favorable neutronic properties of the thorium fuel cycle produces intriguing options for advanced nuclear fuel cycles. This paper describes aspects of a Nuclear Energy Research Initiative (NERI) project with two primary goals: (1) Evaluate the feasibility of implementing the thorium fuel cycle in existing or advanced reactors using a zirconium-matrix cermet fuel, and (2) Develop enabling technologies required for the economic application of this new fuel form. Spray drying is a physical process of granulating fine powders that is used widely in the chemical, pharmaceutical, ceramic, and food industries. It is generally used to produce flowable fine powders. Occasionally it is used to fabricate sintered bodies like cemented carbides, but it has not, heretofore, been used to produce sintered microspheres. As a physical process, it can be adapted to many powder types and mixtures and thus, has appeal for nuclear fuels and waste forms of various compositions. It also permits easy recycling of process ''wastes'' and minimal chemical waste streams that can arise in chemical sol/gel processing. On the other hand, for radioactive powders, it presents safety challenges for processing these materials in powder form and in achieving microspheres of high density and perfection.

  15. Inhalants

    MedlinePlus

    ... or LSD. But you may not realize the dangers of substances in your own home. Household products such as glues, hair sprays, paints and lighter fluid can be drugs for kids in search of a quick high. Many young people ... need to know the dangers. Even inhaling once can disrupt heart rhythms and ...

  16. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations.

    PubMed

    Vogt, Markus; Kunath, Klaus; Dressman, Jennifer B

    2008-02-01

    Several techniques were compared for improving the dissolution of fenofibrate, a poorly soluble drug. Particle size reduction was realized by jet milling (micronization; cogrinding with lactose, polyvinylpyrrolidone or sodium lauryl sulphate) and by media milling using a bead mill (nanosizing) with subsequent spray-drying. Solid state characterization by X-ray diffraction and Differential Scanning Calorimetry verified the maintenance of the crystalline state of the drug after dry milling and its conversion to the amorphous state during spray-drying. Micronization of fenofibrate enhanced its dissolution rate in biorelevant media (8.2% in 30min) compared to crude material (1.3% in 30min). Coground mixtures of the drug increased the dissolution rate further (up to 20% in 30min). Supersaturated solutions were generated by nanosizing combined with spray-drying, this process converted fenofibrate to the amorphous state. Fenofibrate drug products commercially available on the German and French markets dissolved similarly to crude or micronized fenofibrate, but significantly slower than the coground or spray-dried fenofibrate mixtures. The results suggest that cogrinding and spray-drying are powerful techniques for the preparation of rapidly dissolving formulations of fenofibrate, and could potentially lead to improvements in the bioavailability of oral fenofibrate products. PMID:17574403

  17. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates.

    PubMed

    Sass, Anke; Lee, Geoffrey

    2014-06-01

    The spray-drying behaviour of 16 water-miscible organic solvents on a bench-scale machine (Büchi B290 with inert loop) was determined under mild-to-moderate process conditions, namely inlet gas temperature of 130 °C and liquid feed flow rate of ≤3 mL/min. The solvents with boiling points below the inlet gas temperature could be fully dried (Group 1 solvents). The two exceptions were DMSO and DMF which despite their higher boiling points could be fully dried. The remaining solvents with boiling points above the inlet gas temperature were not fully dried during passage through the spray-dryer (Group 2 solvents). Trypsin and lysozyme when spray-dried from Group 1 solvent binary mixtures with water showed similar inactivation and residual water content, independent of solvent. The level of residual solvent was, however, strongly dependent on solvent. Trehalose (20%) and mannitol (10%) could be spray-dried from DMSO/water binary mixtures, but the amorphous disaccharide required higher inlet gas temperature. Trehalose/trypsin and mannitol/trypsin formulations showed differing degrees of protection against enzyme inactivation when spray-dried from Group 1 solvent binary mixtures with water. In all solvents the mannitol protected as well, if not better, than the trehalose. This study identifies some suitable organic solvents for spray-drying protein formulations, but also shows the difficulties of remaining organic solvent under the moderate inlet gas temperature used.

  18. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement

    PubMed Central

    Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali

    2013-01-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535

  19. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates.

    PubMed

    Sass, Anke; Lee, Geoffrey

    2014-06-01

    The spray-drying behaviour of 16 water-miscible organic solvents on a bench-scale machine (Büchi B290 with inert loop) was determined under mild-to-moderate process conditions, namely inlet gas temperature of 130 °C and liquid feed flow rate of ≤3 mL/min. The solvents with boiling points below the inlet gas temperature could be fully dried (Group 1 solvents). The two exceptions were DMSO and DMF which despite their higher boiling points could be fully dried. The remaining solvents with boiling points above the inlet gas temperature were not fully dried during passage through the spray-dryer (Group 2 solvents). Trypsin and lysozyme when spray-dried from Group 1 solvent binary mixtures with water showed similar inactivation and residual water content, independent of solvent. The level of residual solvent was, however, strongly dependent on solvent. Trehalose (20%) and mannitol (10%) could be spray-dried from DMSO/water binary mixtures, but the amorphous disaccharide required higher inlet gas temperature. Trehalose/trypsin and mannitol/trypsin formulations showed differing degrees of protection against enzyme inactivation when spray-dried from Group 1 solvent binary mixtures with water. In all solvents the mannitol protected as well, if not better, than the trehalose. This study identifies some suitable organic solvents for spray-drying protein formulations, but also shows the difficulties of remaining organic solvent under the moderate inlet gas temperature used. PMID:23596974

  20. A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development

    PubMed Central

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  1. Optimization and dissolution performance of spray-dried naproxen nano-crystals.

    PubMed

    Kumar, Sumit; Shen, Jie; Zolnik, Banu; Sadrieh, Nakissa; Burgess, Diane J

    2015-01-01

    The purpose of this study was to investigate the in vitro dissolution performance of the different sized spray-dried nano-crystalline powders of naproxen. A DoE approach was used to formulate and optimize nano-crystalline suspensions. The critical wet milling operation parameters were i.e., drug concentration, drug-to-stabilizer ratio, stabilizer type (HPMC E15 or Tween 80) and milling intensity. The nano-crystalline suspensions were optimized for size and physical stability and then spray-dried to obtain nano-crystalline powders. Trehalose and lactose were investigated as spray-drying auxiliary excipients to achieve non-aggregating powders. Particle size, DSC and PXRD were utilized for characterization of powder formulations. A modified USP apparatus II was utilized to determine the in vitro release/dissolution of powder formulations. The size of the nano-crystalline suspensions was dependent on drug concentration and milling intensity. HPMC E15 containing formulations were better in terms of the spray-dried powder yield compared to Tween 80 containing formulations. Trehalose was selected to formulate non-aggregating nano-crystalline powders. No polymorphic changes were observed following the wet milling and spray-drying processes. Size dependent in vitro dissolution profiles, utilizing a dialysis sac method were obtained for the crystalline powders.

  2. Stabilisation of proteins via mixtures of amino acids during spray drying.

    PubMed

    Ajmera, Ankur; Scherließ, Regina

    2014-03-10

    Biologicals are often formulated as solids in an effort to preserve stability which generally requires stabilising excipients for proper drying. The purpose of this study was to screen amino acids and their combinations for their stabilising effect on proteins during spray drying. Catalase, as model protein, was spray dried in 1+1 or 1+2 ratios with amino acids. Some amino acids namely arginine, glycine and histidine showed good retention of catalase functionality after spray drying and subsequent storage stress. A 1+1 combination of arginine and glycine in a 1+2 ratio with catalase resulted in a tremendously good stabilising effect. Storage at high temperature/humidity also showed beneficial effects of this combination. To evaluate whether this was a general principle, these findings were transferred to an antigenic protein of comparable size and supramolecular structure (haemagglutinin) as well as to a smaller enzyme (lysozyme). Upon spray drying with the combination of amino acids it could be shown that both proteins remain more stable especially after storage compared to the unprotected protein. The combination of arginine and glycine is tailored to the needs of protein stabilisation during spray drying and may hence be utilised in dry powder formulation of biomolecules with superior stability characteristics. PMID:24412336

  3. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    SciTech Connect

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  4. Physico-chemical and functional properties of spray-dried sourdough in breadmaking.

    PubMed

    Tafti, Abolfazl Golshan; Peighambardoust, Seyed Hadi; Hesari, Javad; Bahrami, Akbar; Bonab, Elnaz Shakuoie

    2013-06-01

    In present study, spray-dried sourdough was produced using a pilot scale spray dryer and the physico-chemical and microbial characteristics of the obtained sourdough powder were investigated. The application of the spray-dried sourdough at different levels (3%, 6%, 9% and 15%) in breadmaking was also evaluated. Bulk density, wettability and suspensibility of the sourdough powder were 0.6 g/cm(3), 98 s and 29%, respectively. The most of the powder particles were in a range of 106-250 µm. The spray-dried sourdough had a moisture content and ash content of 3.72% and 1.9% (db), respectively. The pH and total titratable acidity of the sourdough powder were 3.26 and 59 (mL of 0.1 N NaOH/10 g powder), respectively. Spray drying reduced lactic acid bacteria population of the sourdough to 2 × 10(5) CFU/g compared to the initial value of 10(9) CFU/g. Iranian traditional flat bread (Sangak) made with different levels of the sourdough powder had significantly (p < 0.05) lower pH and higher total titratable acidity compared to those of the control. The results of sensory evaluation showed that Sangak breads containing 15% sourdough powder were slightly darker and sourer than the other breads. Incorporation of spray-dried sourdough delayed bread staling, as judged by sensory panel. The results suggest that spray-dried sourdough at the level of 9% can be successfully used for Sangak breadmaking, leading to bread with an improved flavor and delayed staling.

  5. Release characteristics of flavor from spray-dried powder in boiling water and during rice cooking.

    PubMed

    Shiga, Hirokazu; Yoshii, Hidefumi; Taguchi, Rumiko; Nishiyama, Taiji; Furuta, Takeshi; Linko, Pekka

    2003-02-01

    The release characteristics of flavor in boiling water and the flavor retention in the rice after cooking were investigated by using spray dried powder in encapsulated in or emulsified with d-limonene or ethyl n-hexanoate in cyclodextrin and maltodextrin, or in gum arabic and maltodextrin. The behavior of flavor release into the boiling water was well simulated by Avrami's equation. The retention of d-limonene and ethyl n-hexanoate in cooked rice was correlated in each case with the flavor amount of spray-dried powder added.

  6. Non-aqueous spray drying as a route to ultrafine ceramic powders

    SciTech Connect

    Armor, J.N. ); Fanelli, A.J.; Marsh, G.M. ); Zambri, P.M. )

    1988-09-01

    Spray drying imparts unique powder handling features to a wide variety of dried products and is usually carried out in a heated air stream while feeding an aqueous suspension of some solid material. The present work, however, describes non-aqueous spray drying as a means of preparing fine powders of metal oxides. In this case an alcohol solvent was used in place of water and the slurry sprayed under an inert atmosphere. Using the non-aqueous technique, the product consists of distinct but loosely aggregated primary particles. Such materials have potential for use as catalysts or catalyst supports.

  7. Improvement of solubility and dissolution rate of poorly water-soluble salicylic acid by a spray-drying technique.

    PubMed

    Kawashima, Y; Saito, M; Takenaka, H

    1975-01-01

    Spray drying techniques have been applied to improve the solubility and dissolution rate of poorly water-soluble salicylic acid. Spray drying of the acid dispersed in acacia solutions resulted in as much as a 50% improvement in the solubility of the product. Solubility improvement was closely related not only to the concentration of acacia but also the amount of amorphous material in the spray-dried products. The heat of solution was inversely related to these parameters. The dissolution rate of spray-dried product was almost instantaneous being about 60 times faster than that of the original powder. A great improvement in the wettability of the spray-dried material seemed to be mainly responsible for the increase of dissolution rate.

  8. Consumer acceptance and stability of spray dried betanin in model juices.

    PubMed

    Kaimainen, Mika; Laaksonen, Oskar; Järvenpää, Eila; Sandell, Mari; Huopalahti, Rainer

    2015-11-15

    Spray dried beetroot powder was used to colour model juices, and the consumer acceptance of the juices and stability of the colour during storage at 60 °C, 20 °C, 4 °C, and -20 °C were studied. The majority of the consumers preferred the model juices coloured with anthocyanins or beetroot extract over model juices coloured with spray dried beetroot powder. The consumers preferred more intensely coloured samples over lighter samples. Spray dried betanin samples were described as 'unnatural' and 'artificial' whereas the colour of beetroot extract was described more 'natural' and 'real juice'. No beetroot-derived off-odours or off-flavours were perceived in the model juices coloured with beetroot powder. Colour stability in model juices was greatly dependent on storage temperature with better stability at lower temperatures. Colour stability in the spray dried powder was very good at 20 °C. Betacyanins from beetroot could be a potential colourant for food products that are stored cold. PMID:25977043

  9. Properties of chitosan microencapsulated orange oil prepared by spray-drying and its stability to detergents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fragrance encapsulated in small particles of less than 20 µm diameter is preferred for use in textiles. In this study, aromatic orange oil was emulsified in a continuous phase of chitosan and spray-dried to produce microcapsules. The most effective combination of emulsifiers, ratio of chitosan to oi...

  10. Crystallization of spray-dried lactose/protein mixtures in humid air

    NASA Astrophysics Data System (ADS)

    Shawqi Barham, A.; Kamrul Haque, Md.; Roos, Yrjö H.; Kieran Hodnett, B.

    2006-10-01

    An in situ crystallization technique with X-ray diffraction analysis complemented by ex situ scanning electron microscopy and chromatographic analysis of the α/( α+ β) solid-state anomeric ratios has been developed to study the crystallization of lactose/protein mixtures in humid air. This technique was used to determine changes in phase composition and morphology during crystallization. Following an induction period during which water is sorbed, crystallization is rapid and the predominant phase observed using the in situ method in spray-dried lactose/sodium-caseinate, albumin and gelatin is α-lactose monohydrate. However, in the case of spray-dried lactose/whey protein isolate (WPI) the predominant phase that appears is the α/ β mixed phase with smaller amounts of α-lactose monohydrate. With pure lactose the α/ β mixed phase appears as a transient shortly after the onset of crystallization and α-lactose monohydrate and β-lactose both appear as stable crystalline phases at longer times. Another transient phase with 2 θ=12.2°, 20.7° and 21.8° was observed in spray-dried lactose/albumin. This phase decomposed as α-lactose monohydrate developed. Three phases seem to persist in the case of spray-dried lactose/gelatin, namely the phase with peaks at 2 θ=12.2°, 20.7° and 21.8°, α-lactose monohydrate and β-lactose for the duration of the in situ experiment.

  11. Consumer acceptance and stability of spray dried betanin in model juices.

    PubMed

    Kaimainen, Mika; Laaksonen, Oskar; Järvenpää, Eila; Sandell, Mari; Huopalahti, Rainer

    2015-11-15

    Spray dried beetroot powder was used to colour model juices, and the consumer acceptance of the juices and stability of the colour during storage at 60 °C, 20 °C, 4 °C, and -20 °C were studied. The majority of the consumers preferred the model juices coloured with anthocyanins or beetroot extract over model juices coloured with spray dried beetroot powder. The consumers preferred more intensely coloured samples over lighter samples. Spray dried betanin samples were described as 'unnatural' and 'artificial' whereas the colour of beetroot extract was described more 'natural' and 'real juice'. No beetroot-derived off-odours or off-flavours were perceived in the model juices coloured with beetroot powder. Colour stability in model juices was greatly dependent on storage temperature with better stability at lower temperatures. Colour stability in the spray dried powder was very good at 20 °C. Betacyanins from beetroot could be a potential colourant for food products that are stored cold.

  12. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT...

  13. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT...

  14. The impact of atomization on the surface composition of spray-dried milk droplets.

    PubMed

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. PMID:26803667

  15. Control of particle morphology in the spray drying of colloidal suspensions.

    PubMed

    Lintingre, E; Lequeux, F; Talini, L; Tsapis, N

    2016-09-28

    Powders of nanoparticles are volatile, i.e. easily disperse in air, which makes their handling difficult. Granulation of nanoparticle powders provides a solution to that issue, and it is generally performed by spray drying the nanoparticles that have been suspended in a liquid. Spray drying of a colloidal suspension consists of atomising the suspension into droplets by a fast flowing and hot gas. Once the droplets dried, the resulting dry grains/microparticles can be used in a wide range of applications - food, pharmaceutics, fillers, ceramics, etc. It is well known that the grains resulting from spray-drying may be spherical but may also exhibit other diverse morphologies. Although different influencing parameters have been identified, no clear overview can be found in the literature for the driving mechanisms of grain shaping. In the present work, we review the assumptions made in the literature to explain the different morphologies. We analyse the orders of magnitude of the different effects at stake and show that the grain shape does not result from a hydrodynamic instability but is determined by the drying stage. However, we emphasize that neither the drying time nor the associated Péclet number are critical parameters for the determination of shape morphology. In light of those results, we also review and discuss the single droplet experiments developed to mimic spray drying. Generalising our previous works, we further analyse how the control of morphology can be achieved by tuning the colloidal interactions in the suspension. We detail the model we have developed that relates the colloidal interaction potential to a critical pressure exerted by the solvent as it flows, and we provide a quantitative prediction of the grain shape. Finally, we offer perspectives with regard to spray drying of systems such as molecular solutions, widely performed in e.g. the pharmaceutical industry. PMID:27532509

  16. Retention of Polyphenolic Species in Spray-Dried Blackberry Extract Using Mannitol as a Thermoprotectant

    PubMed Central

    Eldridge, Joshua A.; Repko, Debra

    2014-01-01

    Abstract The purpose of these studies was to determine if a Büchi Mini Spray Dryer B-290 (Büchi Corporation, New Castle, DE, USA) could be used to prepare blackberry extract powders containing mannitol as a thermoprotectant without extensively degrading anthocyanins and polyphenols in the resulting powders. Three blackberry puree extract samples were each prepared by sonication of puree in 30/70% ethanol/water containing 0.003% HCl. Blackberry puree extract sample 1 (S1) contained no mannitol, while blackberry puree extract sample 2 (S2) contained 3.0:1 (w/w) mannitol:berry extract, and blackberry puree extract sample 3 (S3) contained 6.3:1 (w/w) mannitol:berry extract. The levels of anthocyanins and polyphenols in reconstituted spray-dried powders produced from S1–S3 were compared to solutions of S1–S3 that were held at 4°C as controls. All extract samples could be spray-dried using the Büchi Mini Spray Dryer B-290. S1, with no mannitol, showed a 30.8% decrease in anthocyanins and a 24.1% decrease in polyphenols following spray-drying. However, S2 had a reduction in anthocyanins of only 13.8%, while polyphenols were reduced by only 6.1%. S3, with a ratio of mannitol to berry extract of 6.3:1, exhibited a 12.5% decrease in anthocyanins while the decrease in polyphenols after spray-drying was not statistically significant (P=.16). Collectively, these data indicate that a Büchi Mini Spray Dryer B-290 is a suitable platform for producing stable berry extract powders, and that mannitol is a suitable thermoprotectant that facilitates retention of thermosensitive polyphenolic species in berry extracts during spray-drying. PMID:24892214

  17. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    PubMed

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature. PMID:22549223

  18. Retention of polyphenolic species in spray-dried blackberry extract using mannitol as a thermoprotectant.

    PubMed

    Eldridge, Joshua A; Repko, Debra; Mumper, Russell J

    2014-10-01

    The purpose of these studies was to determine if a Büchi Mini Spray Dryer B-290 (Büchi Corporation, New Castle, DE, USA) could be used to prepare blackberry extract powders containing mannitol as a thermoprotectant without extensively degrading anthocyanins and polyphenols in the resulting powders. Three blackberry puree extract samples were each prepared by sonication of puree in 30/70% ethanol/water containing 0.003% HCl. Blackberry puree extract sample 1 (S1) contained no mannitol, while blackberry puree extract sample 2 (S2) contained 3.0:1 (w/w) mannitol:berry extract, and blackberry puree extract sample 3 (S3) contained 6.3:1 (w/w) mannitol:berry extract. The levels of anthocyanins and polyphenols in reconstituted spray-dried powders produced from S1-S3 were compared to solutions of S1-S3 that were held at 4°C as controls. All extract samples could be spray-dried using the Büchi Mini Spray Dryer B-290. S1, with no mannitol, showed a 30.8% decrease in anthocyanins and a 24.1% decrease in polyphenols following spray-drying. However, S2 had a reduction in anthocyanins of only 13.8%, while polyphenols were reduced by only 6.1%. S3, with a ratio of mannitol to berry extract of 6.3:1, exhibited a 12.5% decrease in anthocyanins while the decrease in polyphenols after spray-drying was not statistically significant (P=.16). Collectively, these data indicate that a Büchi Mini Spray Dryer B-290 is a suitable platform for producing stable berry extract powders, and that mannitol is a suitable thermoprotectant that facilitates retention of thermosensitive polyphenolic species in berry extracts during spray-drying.

  19. A Review of Methods for Evaluating Particle Stability in Suspension Based Pressurized Metered Dose Inhalers.

    PubMed

    D'Sa, Dexter; Chan, Hak-Kim

    2015-01-01

    Advances in particle engineering techniques, such as spray drying, freeze drying and supercritical fluid precipitation, have greatly enhanced the ability to control the structure, morphology, and solid state phase of inhalable sized particles (1 - 5 µm) for formulation in pressurized metered dose inhalers (pMDI). To optimize the properties of these engineered particles for formulation in hydrofluoroalkane propellants (HFA 134a / 227) it is necessary to measure both bulk and individual particle properties before, after, and during formulation. This review examines established and recently developed methods for evaluating a variety of particle properties including but not limited to size, surface and internal morphology, chemical composition, and solid state phase. Novel methods for evaluating particle physical and chemical stability directly in propellant or similar environments are also discussed.

  20. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  1. Effect of sucrose on physical properties of spray-dried whole milk powder.

    PubMed

    Ma, U V Lay; Ziegler, G R; Floros, J D

    2008-11-01

    Spray-dried whole milk powders were prepared from whole condensed milk with various sucrose concentrations (0%, 2.5%, 5%, 7.5%, and 10% w/w), and their glass transition temperature and some physical properties of importance in chocolate manufacture were evaluated. In milk powder samples, the glass transition temperature and free-fat content decreased in a nonlinear manner with sucrose addition. Moreover, increasing sucrose concentration reduced the formation of dents on the particle surface. Addition of sucrose in whole condensed milk increased linearly the apparent particle density and in a nonlinear manner the particle size of spray-dried milk powders. The particle size volume distribution of milk powders with the highest sucrose concentration differed from the log-normal distribution of the other samples due to the formation of large agglomerates. Neither vacuole volume, nor the amorphous state of milk powders was affected by sucrose addition. PMID:19021798

  2. Spray drying as a strategy for biosurfactant recovery, concentration and storage.

    PubMed

    Barcelos, Gisely S; Dias, Lívia C; Fernandes, Péricles L; Fernandes, Rita de Cássi R; Borges, Arnaldo C; Kalks, Karlos Hm; Tótola, Marcos R

    2014-01-01

    The objective of this study was to analyze the use of Spray Drying for concentration and preservation of biosurfactants produced by Bacillus subtilis LBBMA RI4914 isolated from a heavy oil reservoir. Kaolinite and maltodextrin 10DE or 20DE were tested as drying adjuvants. Surface activity of the biosurfactant was analyzed by preparing dilution x surface activity curves of crude biosurfactant, crude biosurfactant plus adjuvants and of the dried products, after their reconstitution in water. The shelf life of the dried products was also evaluated. Spray drying was effective in the recovery and concentration of biosurfactant, while keeping its surface activity. Drying adjuvants were required to obtain a solid product with the desired characteristics. These compounds did not interfere with tensoactive properties of the biosurfactant molecules. The dehydrated product maintained its surfactant properties during storage at room temperature during the evaluation period (120 days), with no detectable loss of activity. PMID:24570847

  3. Effect of sucrose on physical properties of spray-dried whole milk powder.

    PubMed

    Ma, U V Lay; Ziegler, G R; Floros, J D

    2008-11-01

    Spray-dried whole milk powders were prepared from whole condensed milk with various sucrose concentrations (0%, 2.5%, 5%, 7.5%, and 10% w/w), and their glass transition temperature and some physical properties of importance in chocolate manufacture were evaluated. In milk powder samples, the glass transition temperature and free-fat content decreased in a nonlinear manner with sucrose addition. Moreover, increasing sucrose concentration reduced the formation of dents on the particle surface. Addition of sucrose in whole condensed milk increased linearly the apparent particle density and in a nonlinear manner the particle size of spray-dried milk powders. The particle size volume distribution of milk powders with the highest sucrose concentration differed from the log-normal distribution of the other samples due to the formation of large agglomerates. Neither vacuole volume, nor the amorphous state of milk powders was affected by sucrose addition.

  4. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace.

    PubMed

    Souza, Volnei Brito de; Fujita, Alice; Thomazini, Marcelo; da Silva, Edson Roberto; Lucon, João Francisco; Genovese, Maria Inés; Favaro-Trindade, Carmen Sílvia

    2014-12-01

    The stability of anthocyanin and phenolic compounds, the antioxidant capacity, the antimicrobial activity and the capacity to inhibit arginase from Leishmania were evaluated in spray-dried powders from Bordo grape winemaking pomace extract. The pigments were produced using maltodextrin as the carrier agent at concentrations varying from 10% to 30% and air entrance temperatures varying from 130 to 170°C. A sample of freeze-dried extract without the carrier was also evaluated. The anthocyanins in the spray-dried samples showed good stability during storage, better than the freeze-dried and liquid extracts. The samples were capable of inhibiting the growth of Staphylococcus aureus and Listeria monocytogenes and showed high inhibitory capacity against the enzyme arginase from Leishmania. These results provide evidence that Bordo grapes from the winemaking process have the potential to be used as natural pigments with functional properties. PMID:24996348

  5. Activity of spray-dried microparticles containing pomegranate peel extract against Candida albicans.

    PubMed

    Endo, Eliana Harue; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; Filho, Benedito Prado Dias

    2012-01-01

    Pomegranate has attracted interest from researchers because of its chemical composition and biological properties. It possesses strong antioxidant activity, with potential health benefits, and also antimicrobial properties. The aim of this study was to produce microparticles containing pomegranate extract by the spray-drying technique, utilizing alginate or chitosan as encapsulating agents. Characterization and antifungal assays were carried out. Production yields were about 40% for alginate microparticles and 41% for chitosan. Mean diameters were 2.45 µm and 2.80 µm, and encapsulation efficiencies were 81.9% and 74.7% for alginate and chitosan microparticles, respectively. The spray-drying process preserved the antifungal activity against Candida albicans. These results could be useful for developing dosage forms for treating candidiasis, and should be further investigated in in vivo models. PMID:22922280

  6. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying.

  7. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace.

    PubMed

    Souza, Volnei Brito de; Fujita, Alice; Thomazini, Marcelo; da Silva, Edson Roberto; Lucon, João Francisco; Genovese, Maria Inés; Favaro-Trindade, Carmen Sílvia

    2014-12-01

    The stability of anthocyanin and phenolic compounds, the antioxidant capacity, the antimicrobial activity and the capacity to inhibit arginase from Leishmania were evaluated in spray-dried powders from Bordo grape winemaking pomace extract. The pigments were produced using maltodextrin as the carrier agent at concentrations varying from 10% to 30% and air entrance temperatures varying from 130 to 170°C. A sample of freeze-dried extract without the carrier was also evaluated. The anthocyanins in the spray-dried samples showed good stability during storage, better than the freeze-dried and liquid extracts. The samples were capable of inhibiting the growth of Staphylococcus aureus and Listeria monocytogenes and showed high inhibitory capacity against the enzyme arginase from Leishmania. These results provide evidence that Bordo grapes from the winemaking process have the potential to be used as natural pigments with functional properties.

  8. Influence of emulsion composition and spray-drying conditions on microencapsulation of tilapia oil.

    PubMed

    Huang, Hui; Hao, Shuxian; Li, Laihao; Yang, Xianqing; Cen, Jianwei; Lin, Wanling; Wei, Ya

    2014-09-01

    The influence of processing conditions on the microencapsulation of tilapia oil by spray drying was studied. Trehalose, gelatin, sucrose and xanthan were used as emulsion composition. The experimental parameters of spray drying such as inlet air temperature, solid content, drying air flow rate and atomizing pressure were optimized using a central composite design. Encapsulation efficiency and lipid oxidation were determined. Bulk density, powder morphology and particle size were also analyzed. Trehalose improved the glass transition temperature of wall material significantly and prevented the oxidation of the fish oil. Encapsulation efficiency reached a maximum of 90 % under optimum conditions with an inlet air temperature of 121 °C, a drying air flow rate of 0.65 m(3)/min and a spray pressure of 100 kPa.

  9. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention.

    PubMed

    Fu, Nan; Zhou, Zihao; Jones, Tyson Byrne; Tan, Timothy T Y; Wu, Winston Duo; Lin, Sean Xuqi; Chen, Xiao Dong; Chan, Peggy P Y

    2011-07-15

    Epigallocatechin gallate (EGCG) originated from green tea is well-known for its pharmaceutical potential and antiproliferating effect on carcinoma cells. For drug delivery, EGCG in a micro-/nanoparticle form is desirable for their optimized chemopreventive effect. In this study, first time reports that EGCG microparticles produced by low temperature spray drying can maintain high antioxidant activity. A monodisperse droplet generation system was used to realize the production of EGCG microparticles. EGCG microparticles were obtained with narrow size distribution and diameter of 30.24 ± 1.88 μM and 43.39 ± 0.69 μM for pure EGCG and lactose-added EGCG, respectively. The EC50 value (the amount of EGCG necessary to scavenge 50% of free radical in the medium) of spray dried pure EGCG particles obtained from different temperature is in the range of 3.029-3.075 μM compared to untreated EGCG with EC50 value of 3.028 μM. Varying the drying temperatures from 70°C and 130°C showed little detrimental effect on EGCG antioxidant activity. NMR spectrum demonstrated the EGCG did not undergo chemical structural change after spray drying. The major protective mechanism was considered to be: (1) the use of low temperature and (2) the heat loss from water evaporation that kept the particle temperature at low level. With further drier optimization, this monodisperse spray drying technique can be used as an efficient and economic approach to produce EGCG micro-/nanoparticles.

  10. The spray drying of acetazolamide as method to modify crystal properties and to improve compression behaviour.

    PubMed

    Di Martino, P; Scoppa, M; Joiris, E; Palmieri, G F; Andres, C; Pourcelot, Y; Martelli, S

    2001-02-01

    Acetazolamide shows a very poor compression ability and tablets must usually be produced through a wet granulation process. However, the possibility to obtain pure acetazolamide for direct compression could be interesting for industrial application. With the scope to obtain a material for direct compression, three different crystallisation methods were chosen, with respect to acetazolamide solvent solubility. (a) Acetazolamide was dissolved in an ammonia solution and then spray dried. It was possible to characterise the spherical particles as a mixture of two polymorphic forms, I and II by Powder X-ray diffraction study. (b) Pure form I was obtained by slowly cooling to room temperature a boiling water solution. (c) Pure form II, the marketed form, was obtained by neutralisation of an ammonia solution. Their compression behaviour was investigated firstly by a rotary press. Whilst pure polymorphic forms I and II could not be compressed, the spray dried particles showed very good compression properties. In fact, tablets were obtained only by spray dried particles, which show very good properties under compression and the absence of capping tendency. On the other hand, it was impossible to obtain tablets from polymorphic forms I and II, whatever compression pressures were used. In order to explain their densification mechanism, a single-punch tablet machine, equipped for the measurement of the upper punch displacement in the die, was used. From calculated Heckel's parameters, it was demonstrated that the spray dried material shows a greater particle rearrangement in the initial stage of compression due to its spherical habit and minor wrinkledness of particle surface. The crystalline structure due to the presence of polymorphic forms I and II concur to lowering the intrinsic elasticity of the material. This fact avoids the risk of the rupturing the interpaticulate bonds, which are formed during the compression, concurring to the consolidation of the tablet. PMID

  11. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention.

    PubMed

    Fu, Nan; Zhou, Zihao; Jones, Tyson Byrne; Tan, Timothy T Y; Wu, Winston Duo; Lin, Sean Xuqi; Chen, Xiao Dong; Chan, Peggy P Y

    2011-07-15

    Epigallocatechin gallate (EGCG) originated from green tea is well-known for its pharmaceutical potential and antiproliferating effect on carcinoma cells. For drug delivery, EGCG in a micro-/nanoparticle form is desirable for their optimized chemopreventive effect. In this study, first time reports that EGCG microparticles produced by low temperature spray drying can maintain high antioxidant activity. A monodisperse droplet generation system was used to realize the production of EGCG microparticles. EGCG microparticles were obtained with narrow size distribution and diameter of 30.24 ± 1.88 μM and 43.39 ± 0.69 μM for pure EGCG and lactose-added EGCG, respectively. The EC50 value (the amount of EGCG necessary to scavenge 50% of free radical in the medium) of spray dried pure EGCG particles obtained from different temperature is in the range of 3.029-3.075 μM compared to untreated EGCG with EC50 value of 3.028 μM. Varying the drying temperatures from 70°C and 130°C showed little detrimental effect on EGCG antioxidant activity. NMR spectrum demonstrated the EGCG did not undergo chemical structural change after spray drying. The major protective mechanism was considered to be: (1) the use of low temperature and (2) the heat loss from water evaporation that kept the particle temperature at low level. With further drier optimization, this monodisperse spray drying technique can be used as an efficient and economic approach to produce EGCG micro-/nanoparticles. PMID:21554936

  12. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    PubMed

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. PMID:26182904

  13. Arrhenius activation energy of damage to catalase during spray-drying.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined.

  14. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    PubMed

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose.

  15. Development of ointment formulations prepared with Achyrocline satureioides spray-dried extracts.

    PubMed

    De Paula, I C; Ortega, G G; Bassani, V L; Petrovick, P R

    1998-03-01

    Achyrocline satureioides spray-dried extracts, prepared with colloidal silicon dioxide, microcrystalline cellulose + colloidal silicon dioxide (1:1), and beta-cyclodextrin + colloidal silicon dioxide (1:1), were incorporated in a glyceryl monostearate base. The influence of the spray-drying adjuvants on the formulations' physical characteristics, such as spreading properties, oil indexes, viscosities, and the pH determination, were evaluated. The results indicated that the adjuvants influenced the ointments' physical parameters at different levels, although all of them maintained their plastic flow and presented antithixotropic behavior. The presence of colloidal silicon dioxide alone, in the dried extract, imparted the lowest oil index value and an intermediary spreading area to the ointment. The colloidal silicon dioxide content reduction and the substitution of part of it by beta-cyclodextrin or microcrystalline cellulose enhanced the ointments' oil index values, while the best spreading area was reached by the ointment prepared with the spray-dried extract containing colloidal silicon dioxide and microcrystalline cellulose.

  16. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances.

  17. Spray dried excipient base: a novel technique for the formulation of orally disintegrating tablets.

    PubMed

    Mishra, Dina Nath; Bindal, Madhu; Singh, Shailendra Kumar; Vijaya Kumar, Sengodan Gurusamy

    2006-01-01

    Orally disintegrating tablets (ODT) are gaining popularity over conventional tablets due to their convenience in administration and suitability for patients having dysphagia. Moreover no water is required for swallowing the tablets and hence suitable for geriatric, pediatric and traveling patients. The purpose of this study is to assess the suitability of spray dried excipient base in the formulation of ODTs of Valdecoxib (low aqueous solubility) and Metoclopramide (high aqueous solubility). Spray dried excipient base was prepared using Scientech spray drier. Super disintegrants (such as Ac-Di-Sol, Kollidon CL, sodium starch glycolate), diluent (mannitol) alongwith sweetening agent (aspartame) were used in the formulation of tablets. The tablets were evaluated for hardness, friability, water absorption ratio, disintegration time (DT) and in vitro drug release. Using the same excipients, the tablets were prepared by direct compression and were evaluated in the similar way. Maximum drug release and minimum DT were observed with Kollidon CL excipient base as compared to tablets prepared by direct compression, showing the superiority of the spray dried excipient base technique over direct compression technique.

  18. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent.

    PubMed

    Tran, Tuan Hiep; Poudel, Bijay K; Marasini, Nirmal; Chi, Sang-Cheol; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-02-25

    The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble drug, raloxifene by solid dispersion (SD) nanoparticles using the spray-drying technique. These spray-dried SD nanoparticles were prepared with raloxifene (RXF), polyvinylpyrrolidone (PVP) and Tween 20 in water. Reconstitution of optimized RXF-loaded SD nanoparticles in pH 1.2 medium showed a mean particle size of approximately 180 nm. X-ray diffraction and differential scanning calorimetry indicated that RXF existed in an amorphous form within spray-dried nanoparticles. The optimized formulation showed an enhanced dissolution rate of RXF at pH 1.2, 4.0, 6.8 and distilled water as compared to pure RXF powder. The improved dissolution of raloxifene from spray-dried SD nanoparticles appeared to be well correlated with enhanced oral bioavailability of raloxifene in rats. Furthermore, the pharmacokinetic parameters of the spray-dried SD nanoparticles showed increased AUC(0-∞) and C(max) of RXF by approximately 3.3-fold and 2.3-fold, respectively. These results suggest that the preparation of RXF-SD nanoparticles using the spray drying technique without organic solvents might be a promising approach for improving the oral bioavailability of RXF. PMID:23318367

  19. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. PMID:27523619

  20. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration.

  1. Physical Properties and Effect in a Battery of Safety Pharmacology Models for Three Structurally Distinct Enteric Polymers Employed as Spray-Dried Dispersion Carriers

    PubMed Central

    Fryer, Ryan M.; Patel, Mita; Zhang, Xiaomei; Baum-Kroker, Katja S.; Muthukumarana, Akalushi; Linehan, Brian; Tseng, Yin-Chao

    2016-01-01

    Establishing a wide therapeutic index (TI) for pre-clinical safety is important during lead optimization (LO) in research, prior to clinical development, although is often limited by a molecules physiochemical characteristics. Recent advances in the application of the innovative vibrating mesh spray-drying technology to prepare amorphous solid dispersions may offer an opportunity to achieve high plasma concentrations of poorly soluble NCEs to enable testing and establishment of a wide TI in safety pharmacology studies. While some of the amorphous solid dispersion carriers are generally recognized as safe for clinical use, whether they are sufficiently benign to enable in vivo pharmacology studies has not been sufficiently demonstrated. Thus, the physical properties, and effect in a battery of in vivo safety pharmacology models, were assessed in three classes of polymers employed as spray-dried dispersion carriers. The polymers (HPMC-AS, Eudragit, PVAP) displayed low affinity with acetone/methanol, suitable for solvent-based spray drying. The water sorption of the polymers was moderate, and the degree of hysteresis of HPMC-AS was smaller than Eudragit and PVAP indicating the intermolecular interaction of water-cellulose molecules is weaker than water-acrylate or water-polyvinyl molecules. The polymer particles were well-suspended without aggregation with a mean particle size less than 3 μm in an aqueous vehicle. When tested in conscious Wistar Han rats in safety pharmacology models (n = 6–8/dose/polymer) investigating effects on CNS, gastrointestinal, and cardiovascular function, no liabilities were identified at any dose tested (30–300 mg/kg PO, suspension). In brief, the polymers had no effect in a modified Irwin test that included observational and evoked endpoints related to stereotypies, excitation, sedation, pain/anesthesia, autonomic balance, reflexes, and others. No effect of the polymers on gastric emptying or intestinal transit was observed when

  2. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes.

    PubMed

    Cho, Wonkyung; Kim, Min-Soo; Jung, Min-Sook; Park, Junsung; Cha, Kwang-Ho; Kim, Jeong-Soo; Park, Hee Jun; Alhalaweh, Amjad; Velaga, Sitaram P; Hwang, Sung-Joo

    2015-01-15

    The overall aim of this study was to prepare a nasal powder formulation of salmon calcitonin (sCT) using an absorption enhancer to improve its bioavailability. In this work, powder formulations for nasal delivery of sCT were studied using various absorption enhancers and stabilizers. Powders were prepared by two different methods: conventional spray-drying (SD) and novel supercritical fluid-assisted spray-drying (SASD) to investigate the role of CO2 in the particle formation process. The prepared sCT powder formulations were characterized by several analyses; powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and the Fourier transform infrared (FT-IR) spectroscopy method. The particle size distribution was also evaluated. In vivo absorption tests were carried out in Sprague-Dawley rat using the prepared powder formulations, and the results were compared to those of raw sCT. Quantitative analysis by high-performance liquid chromatography (HPLC) indicated that sCT was chemically stable after both the SD and SASD processes. Results of PXRD, SEM, and FT-IR did not indicate a strong interaction or defragmentation of sCT. The in vivo absorption test showed that SD- and SASD-processed sCT powders increased the bioavailability of the drug when compared to the nasal administration of raw sCT. In addition, SASD-processed sCT exhibited higher nasal absorption when compared with SD-processed sCT in all formulations due to a reduction of particle size. The results from this study illustrate that the preparation of nasal powders using the SASD process could be a promising approach to improve nasal absorption of sCT.

  3. [Advances in the research of pathogenesis and treatment of severe smoke inhalation injury].

    PubMed

    Feng, Shengjuan; Jia, Chiyu; Liu, Zhen; Lyu, Xiaowu

    2016-02-01

    Among the fire victims, respiratory tract injury resulted from smoke inhalation is the major cause of death. Particulate substances in smoke, toxic and harmful gas, and chemical substances act together would rapidly induce the occurrence of dramatic pathophysiologic reaction in the respiratory tract, resulting in acute injury to the respiratory tract, thus inducing serious injury to it and acute respiratory distress syndrome, leading to death of the victims. In recent years, the pathophysiologic mechanism of severe smoke inhalation injury has been gradually clarified, thus appreciable advances in its treatment have been achieved. This paper is a brief review of above-mentioned aspects.

  4. Advances in metered dose inhaler technology: formulation development.

    PubMed

    Myrdal, Paul B; Sheth, Poonam; Stein, Stephen W

    2014-04-01

    Pressurized metered dose inhalers (MDIs) are a long-standing method to treat diseases of the lung, such as asthma and chronic obstructive pulmonary disease. MDIs rely on the driving force of the propellant, which comprises the bulk of the MDI formulation, to atomize droplets containing drug and excipients, which ideally should deposit in the lungs. During the phase out of chlorofluorocarbon propellants and the introduction of more environmentally friendly hydrofluoroalkane propellants, many improvements were made to the methods of formulating for MDI drug delivery along with a greater understanding of formulation variables on product performance. This review presents a survey of challenges associated with formulating MDIs as solution or suspension products with one or more drugs, while considering the physicochemical properties of various excipients and how the addition of these excipients may impact overall product performance of the MDI. Propellants, volatile and nonvolatile cosolvents, surfactants, polymers, suspension stabilizers, and bulking agents are among the variety of excipients discussed in this review article. Furthermore, other formulation approaches, such as engineered excipient and drug-excipient particles, to deliver multiple drugs from a single MDI are also evaluated. PMID:24452499

  5. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.

    PubMed

    Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica

    2014-09-01

    Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.

  6. Production of microparticles of molinate degrading biocatalysts using the spray drying technique.

    PubMed

    Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C

    2016-10-01

    Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy.

  7. Effects of spray drying and size reduction of edible bird's nest on in-vitro digestibility

    NASA Astrophysics Data System (ADS)

    Muslim, Masitah; Babji, Abdul Salam; Mustapha, Wan Aida Wan

    2015-09-01

    The purpose of this study is to determine the effects of spray drying and size reduction of edible bird's nest (EBN) on in-vitro digestibility respectively. Sample prepared were EBN microparticulates; 710 µm (EBN710), 300 µm (EBN300) and 38 µm (EBN38), EBN spray died (EBNSD) and raw EBN (EBNraw) as control. Protein content and solubility were determined before the samples being subjected to in-vitro digestibility. Protein content of EBN710 (55.37±0.269%), EBN300 (56.57±0.163%) EBN38 (56.77±0.021%) and EBNraw (55.46±0.269%) was not significantly different (p>0.05) but EBNSD (60.33b+0.346%) was the highest (p<0.05). Solubility results showed that EBNSD had the highest solubility (94.38±1.24%) in water significantly (p<0.05) compared to EBNraw (16.01±0.231%), EBN710 (21.89+0.41%), EBN300 (22.52+0.072%) and EBN38 (27.51±0.321%). Digestibility of EBN300 (88.43±0.95%) was higher (p<0.05) compared to EBNSD (85.23±0.27%). However, treatment of microparticulates and spray drying were not significantly different with EBNraw (85.38±1.12%). Digestibility of EBN microparticulates and spray dried powder were all lower (p<0.05) than casein (98.36+0.95%). Lower EBN digestibility could be due to the nature of EBN protein as glycoprotein. Proteolytic (tryptic) digestion of native glycoprotein is often incomplete due to ste aric hindrance from the presence of bulky oligosaccharides.

  8. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    PubMed

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications.

  9. Resistance of 17 mesophilic lactic Streptococcus bacteriophages to pasteurization and spray-drying.

    PubMed

    Chopin, M C

    1980-02-01

    For 17 phages active against Streptococcus cremoris, Str. lactis and Str. lactis subsp. diacetylactis, the killing efficiency of pasteurization (log No/N) at 72 degrees C for 15 s in skim-milk showed large variations from greater than 6 to 0; the efficienty of killing during spray-drying ranged from 3.7 to 0.2 and phages survived well storage of milk powder at room temperature. Destruction in a heat exchanger was found to be greater than that calculated from biphasic curves obtained by heating phages in sealed ampoules. No relationship was established between lytic classification of phages and their heat resistance.

  10. Critical processing parameters of carbon dioxide spray drying for the production of dried protein formulations: A study with myoglobin.

    PubMed

    Nuchuchua, O; Every, H A; Jiskoot, W

    2016-06-01

    The aim of this study was to gain fundamental insight into protein destabilization induced by supercritical CO2 spray drying processing parameters. Myoglobin was used as a model protein (5mg/ml with 50mg/ml trehalose in 10mM phosphate buffer, pH 6.2). The solution was exposed to sub- and supercritical CO2 conditions (65-130bar and 25-50°C), and CO2 spray drying under those conditions. The heme binding of myoglobin was determined by UV/Vis, fluorescence, and circular dichroism spectroscopy, while myoglobin aggregation was studied by using size-exclusion chromatography and flow imaging microscopy. It was found that pressure and temperature alone did not influence myoglobin's integrity. However, when pressurized CO2 was introduced into myoglobin solutions at any condition, the pH of the myoglobin formulation shifted to about 5 (measured after depressurization), resulting in heme binding destabilization and aggregation of myoglobin. When exposed to CO2, these degradation processes were enhanced by increasing temperature. Heme binding destabilization and myoglobin aggregation were also seen after CO2 spray drying, and to a greater extent. Moreover, the CO2 spray drying induced the partial loss of heme. In conclusion, pressurized CO2 destabilizes the myoglobin, leading to heme loss and protein aggregation upon spray drying. PMID:27080205

  11. [Advances in the experimental study of the use of mesenchy- mal stem cells for the treatment of inhalation injury].

    PubMed

    Feng, Zhu; Guanghua, Guo

    2015-06-01

    Inhalation injury seriously threatens the survival and quality of life in burn and trauma patients. So far there is no breakthrough in the treatment of inhalation injury. A significant advance has been witnessed in the experimental study of the use of stem cells in the treatment of lung injury in recent years. In this paper, according to the results of our study in the systemic transplantation of bone marrow mesenchymal stem cells for the treatment of inhalation injury, the effect of mesenchymal stem cells on anti-inflammatory process and repair of lung tissues in inhalation injury, and its possible mechanisms are reviewed.

  12. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability.

    PubMed

    Avila-Reyes, Sandra V; Garcia-Suarez, Francisco J; Jiménez, María Teresa; San Martín-Gonzalez, María F; Bello-Perez, Luis A

    2014-02-15

    Protection of probiotics by substances considered as prebiotics can be an alternative to increase their viability in the large intestine. The objective of this study was to use two wall materials (native rice starch and inulin) without bonding agent to protect Lactobacillus rhamnosus during spray-drying and determine the viability of the microorganism under two storage conditions. For spray-drying conditions tested in this work the product yield with native rice starch (NRS) ranged between 65% and 74% whereas for inulin (IN) it ranged between 43% and 54%. In general, IN solutions exhibited higher outlet temperature than NRS dispersions. Capsules of IN had smaller particle size than those of NRS. Due to the higher hydrophilic nature of IN capsules as compared to NRS, IN capsules exhibited higher water activity than NRS capsules. Confocal microscopy showed marked differences between both wall materials, which could in turn cause differences in the release profile of encapsulated microorganisms. Agglomerates of NRS provided better protection to the microorganisms as evidenced by the lower reduction in viability when compared to IN, and this effect was corroborated by the stability study. It is possible to protect probiotics using both colloids, but differences in the viability and stability during storage were determined. The use of IN could prove beneficial in the encapsulation of probiotic strains since this carbohydrate is not hydrolyzed by human digestive enzymes and may act as prebiotic.

  13. In Vitro and In Vivo Performance of Different Sized Spray-Dried Crystalline Itraconazole.

    PubMed

    Kumar, Sumit; Jog, Rajan; Shen, Jie; Zolnik, Banu; Sadrieh, Nakissa; Burgess, Diane J

    2015-09-01

    The objectives of the present study were to formulate and optimize different sized liquid and solid nanocrystalline formulations and evaluate their in vitro and in vivo performance to determine the effect of particle size on the oral bioavailability of solid nanocrystalline formulations. Nanotechnology is a promising approach to solve the problem of poor oral bioavailability of Biopharmaceutical Classification System class II/IV compounds. However, the highly exposed surface area of nanocrystals and hence their high Gibb's free energy poses a great challenge to nanocrystalline suspension stabilization. In this study, stabilization was achieved by preparing spray-dried nanocrystalline powders. A design of experiment approach was utilized to optimize the nanocrystalline suspensions/powders. On the basis of drug solubility studies, polyvinylpyrrolidone 40 KDa and sodium lauryl sulfate were selected for wet milling processing. Mannitol was chosen as the auxiliary excipient for spray-drying processing. In vitro dissolution utilizing a United States Pharmacopeia (USP) apparatus II showed superior release profiles for both liquid and nanocrystalline powder formulations compared with coarse-sized and unmilled formulations. Significantly, the oral bioavailability of nanocrystalline formulations with particle size of 280 nm was more than 20 times that of the unmilled formulation, whereas the nanocrystalline formulation with particle size of 750 nm showed only a 2.8 times increase in bioavailability compared with the unmilled formulation.

  14. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    PubMed Central

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  15. Spray Drying of Rhodomyrtus tomentosa (Ait.) Hassk. Flavonoids Extract: Optimization and Physicochemical, Morphological, and Antioxidant Properties

    PubMed Central

    Wu, Pingping; Ma, Guangzhi; Li, Nianghui; Yin, Yanyan; Zhu, Baojun; Chen, Meiling; Huang, Ruqiang

    2014-01-01

    The optimal condition of spray drying purified flavonoids extract from R. tomentosa berries was studied by response surface methodology. The optimized condition for microencapsulation was of maltodextrin to gum Arabic ratio 1 : 1.3, total solid content 27.4%, glycerol monostearate content 0.25%, and core to coating material ratio 3 : 7, resulting in EE 91.75%. Prepared at the optimized condition, the flavonoids extract microcapsules (FEMs) were irregularly spherical particles with low moisture content (3.27%), high solubility (92.35%), and high bulk density (0.346 g/cm3). DPPH radical scavenging activity of FEMs was not decreased after spray drying (P > 0.05) and higher than those in citric acid and rutin at the same concentration. Moreover, FEMs effectively retarded the oxidation of fresh lard during the 10-day storage period compared with vitamin C, nonencapsulated flavonoids extract, and rutin. Therefore, FEMs produced at the optimized condition could be used as powder ingredients with antioxidant capacities. PMID:26904629

  16. Atomized sludges via spray-drying at low temperatures: an alternative to conventional wastewater treatment plants.

    PubMed

    Cusidó, Joan A; Cremades, Lázaro V

    2012-08-30

    Removal of sludges from Wastewater Treatment Plants (WWTP) represents a serious worldwide environmental problem for which alternatives other than their simple incineration are investigated. In this work the treatment of raw sludge from urban WWTP by means of a minimization process through spray-drying is analyzed as well as some proposals for revaluating the resulting dry product. Analysis is supported by some experimental results obtained with a laboratory spray dryer. The experimental procedure at laboratory scale is extrapolated to an industrial plant scale. An economic analysis of the proposal in relation to other possible sludge treatments is presented, taking into account in this case the comparison between the costs of the processes of sludge thickening, stabilization and dehydratation and the costs of spray-drying (especially power consumption), minimization of the final waste and reuse options. Finally, an environmental balance of the process is presented. In contrast with the classical treatment line, this alternative allows transforming sludges, i.e., a waste, into a valuable product with several applications. PMID:22525834

  17. Identification and stability of a new bichalcone in Achyrocline satureioides spray dried powder.

    PubMed

    Holzschuh, M H; Gosmann, G; Schneider, P H; Schapoval, E E S; Bassani, V L

    2010-09-01

    A new chemical structure, the 4,2',4",2'''-tetrahydroxy-6',6'''-dimethoxy-4'-O-4'''- bichalcone, named achyrobichalcone was isolated and identified from an Achyrocline satureioides spray-dried powder (SDP80). The thermal and photo stability of this new compound as well as that of the main polyphenols present in the spray dried powder, quercetin, luteolin, 3-O-metylquercetin and the corresponding kinetics of degradation are reported. In the long-term testing (30 +/- 2 degrees C/75 +/- 5% RH, 12 months), the total polyphenols contained in SDP80 demonstrated to be stable, remaining higher than 90% after a 12 month exposure. The photo stability testing revealed that all polyphenols were stable for 48 h when SDP80 was conditioned in amber or transparent flasks and exposed to UV-C radiation (light express LE UV, 254 nm, 30W). In contrast, when unprotected, the polyphenols demonstrated to be sensitive to both, thermal stress testing (80 +/- 2 degrees C), for 14 days and to UV-C radiation. Luteolin showed to be the most stable against UVC light and 3-O-methylquercetin against temperature. The achyrobichalcone demonstrated to be the more unstable against both, temperature and light. The kinetics of polyphenol thermal degradation (80 +/- 2 degrees C, 49 days) and photodegradation (UV-C radiation, 96 h) followed, 2nd and 1st order reaction, respectively.

  18. Development and characterisation of metformin loaded spray dried Bora rice microspheres.

    PubMed

    Sharma, Hemanta Kumar; Mohapatra, Jadavesh; Nath, Lila Kanta

    2013-01-01

    Bora rice, a glutinous rice, is grown in Assam (a north eastern state of India) and is used traditionally for various purposes. The rationale of this study was to prepare and to assess Metformin loaded mucoadhesive spray dried microspheres using locally grown Bora rice powder. Metformin loaded microspheres were prepared using Bora rice and sodium alginate by spray drying method. For the study of the consequence of parameters of spray drier on the properties of microspheres, parameters such as aspirator flow rate, temperature, feed flow rate and concentration of the spray solution were changed. The in-vitro release properties were also studied. Almost spherical microspheres were obtained with significant swelling and mucoadhesivity. Dissolution study was carried out in phosphate buffer (pH 7.4) for 7 hrs. It was also noted to possess good mucoadhesive in such a way that about 90% of microspheres remained adherent on the surface of intestinal mucosa of pig skin. The total amount of drug released from microspheres after 7 hr. was 80%. The release of drug was not affected by the changes in parameters but was affected when sodium alginate concentration was changed. It was observed that microsphere properties changed as the parameters were changed. Smaller particles were obtained when the concentration of the spray solution, aspirator flow rate, the temperature difference between inlet and outlet and feed flow rate were lower.

  19. Enhancing graphene oxide reinforcing potential in composites by combined latex compounding and spray drying

    NASA Astrophysics Data System (ADS)

    Mao, Yingyan; Zhang, Shubai; Zhang, Dandan; Chan, Tung W.; Liu, Li

    2014-04-01

    A new strategy was developed to prepare graphene oxide/styrene-butadiene rubber (GO/SBR) composites with highly exfoliated GO sheets and strong interfaces. In particular, GO/SBR microparticles, in which exfoliated GO sheets (with a thickness of ˜1 nm and diameter of tens of nanometers) are trapped in a well-dispersed state throughout the SBR matrix, were made by a combined latex-compounding and spray-drying method. Subsequently, a chemical bridge between GO and rubber matrix through KH550 and Si69 was built during vulcanization, and the interfacial strength of the cured GO/SBR composite was remarkably improved. Due to the highly exfoliated structure and the strong interface, the GO/SBR composite exhibited 7.8 times higher modulus at 300% strain and 6.4 times higher tensile strength compared with cured pure SBR. The combined latex-compounding and spray-drying method presented here is feasible and water-mediated and has great potential for industrial applications.

  20. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    PubMed

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. PMID:26988509

  1. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    PubMed

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  2. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  3. [Optimization of spraying dry technology of Biqiu ranules ethanol extract by Box-Behnken response surface method].

    PubMed

    Zhang, Yan-jun; Liu, Li-li; Hu, Jun-hua; Wu, Yun; Chao, En-xiang; Xiao, Wei

    2015-09-01

    With inlet temperature, specific gravity, feeding speed as independent variables, the comprehensive evaluating indexes of content of schisandrin and arctiin as dependent variable, the experimental data were fitted to a second order polynomial equation. Based on establishing the mathematical relationship between the comprehensive evaluating indexes and respective variables, Box-Benhnken central composite test and response surface analysis method was employed to optimize the spray drying technology of Biqiu granules ethanol extract. The optimal drying parameter was as follows: the inlet temperature was 175 degrees C, the specific gravity was 1.10, feeding speed was 32 r x min(-1). Under these conditions, the comprehensive evaluating indexes of spraying dry processes was 92.68, which was close to the model prediction. The spraying dry technology of Biqiu granules ethanol extract optimized by response surface methodology was accurate and feasible, which provided theoretical experiment basis for the industrialization production. PMID:26983204

  4. Silver Nanoparticles in SiO2 Microspheres - Preparation by Spray Drying and Use as Antimicrobial Agent.

    PubMed

    Mahltig, Boris; Haufe, Helfried; Muschter, Kerstin; Fischer, Anja; Kim, Young Hwan; Gutmann, Emanuel; Reibold, Marianne; Meyer, Dirk Carl; Textor, Torsten; Kim, Chang Woo; Kang, Young Soo

    2010-06-01

    Silver nanoparticles embedded in SiO2 particles of micrometer size are prepared using spray drying. The spray drying is performed with a SiO2 sol (solvent water:ethanol 4: 1) containing SiO2 and silver particles of nanometer size. During spray drying the SiO2 nanoparticles aggregate to SiO2 microspheres whereas the silver particles exhibit only a small tendency of aggregation and keep their nanometer size. However under special conditions also the formation of crystalline silver rods is observed. The antibacterial activity of the resulting Ag/SiO2 powders is determined against the bacteria Escherichia coli and Bacillus subtilis. Because of this antibacterial acitivity and the fact that the powder of SiO2 microspheres exhibits a good dispersibility, such materials have an immense potential to be used as antimicrobial additive in processes like master batch or fiber production. PMID:24061743

  5. Advances in Inhalation Gas Dosimetry for Derivation of a Reference Concentration (RfC) and Use in Risk Assessment

    EPA Science Inventory

    This status report provides a review of advances in the state of the science for interspecies inhalation gas dosimetry related to extrathoracic (ET) or upper respiratory tract (URT), tracheobronchial (TB), pulmonary (PU), and extrarespiratory (systemic, SYS) effects.

  6. Optimization of spray-drying conditions for the large-scale preparation of Bacillus thuringiensis var. israelensis after downstream processing.

    PubMed

    Prabakaran, G; Hoti, S L

    2008-05-01

    Reduction of water activity in the formulations of mosquito biocontrol agent, Bacillus thuringiensis var. israelensis is very important for long term and successful storage. A protocol for spray drying of B. thuringiensis var. israelensis was developed through optimizing parameters such as inlet temperature and atomization type. A indigenous isolate of B. thuringiensis var. israelensis (VCRC B-17) was dried by freeze and spray drying methods and the moisture content and mosquito larvicidal activity of materials produced by the two methods were compared. The larvicidal activity was checked against early fourth instars Aedes aegypti larvae. Results showed that the freeze-dried powders retained the larvicidal activity fairly well. The spray-dried powder moderately lost its larvicidal activity at different inlet temperatures. Between the two types of atomization, centrifugal atomization retained more activity than the nozzle type atomization. Optimum inlet temperature for both centrifugal and nozzle atomization was 160 degrees C. Keeping the outlet temperature constant at 70 degrees C the moisture contents for the spray-dried powders through centrifugal atomization and freeze-dried powders were 10.23% and 11.80%, respectively. The LC(50) values for the spray-dried and freeze-dried powders were 17.42 and 16.18 ng/mL, respectively. Spore count of materials before drying was 3 x 10(10) cfu/mL and after spray drying through nozzle and centrifugal atomization at inlet and outlet temperature of 160 degrees C/70 degrees C were 2.6 x 10(9) and 5.0 x 10(9) cfu/mL, respectively.

  7. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    PubMed

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  8. Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying.

    PubMed

    Drusch, Stephan; Serfert, Yvonne; Scampicchio, Matteo; Schmidt-Hansberg, Benjamin; Schwarz, Karin

    2007-12-26

    The aim of the present research was to identify principal parameters determining the oxidative stability of microencapsulated fish oil. Microcapsules were prepared by spray-drying using different types of n-octenylsuccinate-derivatized starch, gum Arabic, sugar beet pectin, sodium caseinate, and/or glucose syrup. Two principal components to classify the different microcapsules accounting for up to 79% of the variance were identified. The principal components were determined by physicochemical parameters reflecting the emulsifying ability of the encapsulant and the drying behavior of the parent emulsion. Microcapsules, which were identified by principal component analysis to be significantly different, exhibited a low stability upon storage, showing that the principal components and, thus, the underlying physicochemical parameters analyzed in the present study are correlated with core material stability.

  9. Measurement of thermal characteristics of spray-dried milk and juice blend.

    PubMed

    Afifi, Hanan S; Abu Shelaibi, A A; Laleye, L C; Ismail, I A

    2009-01-01

    Blended concentrated grape/peach (G/P) juice 60% total soluble solids (TSS) with condensed whole cow milk 40% TSS (1.5:8.5) was spray dried using a pilot-scale spray drier FT 80 at feeding pressure 7,000 Pa, at chamber temperature 180 degrees C and at chamber pressure -110 Pa. The glass transition state of blended G/P juice-milk powder, three pure sugars (glucose, sucrose and lactose) and casein were studied using differential scanning calorimetry. The calorimetry showed that G/P juice-milk powder is a glassy material. The glass transition temperature of blended G/P juice-milk powder at 0.248 water activity was 42 degrees C, compared with commercial full milk powder (control) of 29 degrees C at 0.334 at water activity (a(w)).

  10. Alginate microspheres obtained by the spray drying technique as mucoadhesive carriers of ranitidine.

    PubMed

    Szekalska, Marta; Amelian, Aleksandra; Winnicka, Katarzyna

    2015-03-01

    The present study is aimed at formulation of alginate (ALG) microspheres with ranitidine (RNT) by the spray drying method. Obtained microspheres were characterized for particle size, surface morphology, entrapment efficiency, drug loading, in vitro drug release and zeta potential. Mucoadhesive properties were examined by a texture analyser and three types of adhesive layers--gelatine discs, mucin gel and porcine stomach mucosa. Microspheres showed a smooth surface with narrow particle size distribution and RNT loading of up to 70.9%. All formulations possessed mucoadhesive properties and exhibited prolonged drug release according to the first-order kinetics. DSC reports showed that there was no interaction between RNT and ALG. Designed microspheres can be considered potential carriers of ranitidine with prolonged residence time in the stomach. PMID:25781701

  11. Application of ultrasound to microencapsulation of coconut milk fat by spray drying method.

    PubMed

    Le, Hoang Du; Le, Van Viet Man

    2015-04-01

    Mixtures of coconut milk and gelatin solution were treated by ultrasound, mixed with maltodextrin and subsequently spray-dried to yield powder. The effects of ultrasonic power and sonication time on the microencapsulation efficiency (ME) and microencapsulation yield (MY) of coconut fat were investigated. The results indicated that increase in ultrasonic power from 0 to 5.68 W/g and in sonication time from 0 to 2.5 min augmented ME and MY of coconut fat. However, treatment with sonication power higher than 5.68 W/g led to a drop in fat ME and MY, mainly due to aggregation of fat particles and that blocked the adsorption of gelatin molecules on the particle surface. PMID:25829636

  12. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-01

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior.

  13. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-01

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior. PMID:23044149

  14. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations.

    PubMed

    Paudel, Amrit; Worku, Zelalem Ayenew; Meeus, Joke; Guns, Sandra; Van den Mooter, Guy

    2013-08-30

    Spray drying is an efficient technology for solid dispersion manufacturing since it allows extreme rapid solvent evaporation leading to fast transformation of an API-carrier solution to solid API-carrier particles. Solvent evaporation kinetics certainly contribute to formation of amorphous solid dispersions, but also other factors like the interplay between the API, carrier and solvent, the solution state of the API, formulation parameters (e.g. feed concentration or solvent type) and process parameters (e.g. drying gas flow rate or solution spray rate) will influence the final physical structure of the obtained solid dispersion particles. This review presents an overview of the interplay between manufacturing process, formulation parameters, physical structure, and performance of the solid dispersions with respect to stability and drug release characteristics.

  15. Characterization of the spray drying behaviour of emulsions containing oil droplets with a structured interface.

    PubMed

    Serfert, Y; Schröder, J; Mescher, A; Laackmann, J; Shaikh, M Q; Rätzke, K; Gaukel, V; Schuchmann, H P; Walzel, P; Moritz, H-U; Drusch, S; Schwarz, K

    2013-01-01

    The aim of this study was to characterize the process of atomization and drying of layer-by-layer emulsions containing lecithin (single layer emulsion) and lecithin/chitosan (bilayer emulsion) and the oxidative stability of the microcapsules during storage. For this purpose, the analysis of the emulsion spray droplet size during two-fluid nozzle and rotary atomization was carried out to identify suitable process parameters. The drying behaviour of single and bilayer emulsions was investigated by calculation of the volume flow density during single-droplet drying during acoustic levitation. In spray-dried solid particles, the oxidative stability in the single layer microcapsules was higher than in the bilayer microcapsules. This was partly attributed to lower microencapsulation efficiency in the bilayer microcapsules compared to the single layer microcapsules. Furthermore, it could be shown, that excess chitosan in the bulk carrier matrix affects the free volume elements and thus oxygen diffusion. PMID:23088319

  16. Influence of slurry flocculation on the character and compaction of spray-dried silicon nitride granules

    SciTech Connect

    Takahashi, Hideo; Shinohara, Nobuhiro; Okumiya, Masataro; Uematsu, Keizo; JunIchiro, Tsubaki; Iwamoto, Yuji; Kamiya, Hidehiro

    1995-04-01

    The effect of slurry flocculation on the characteristics of silicon nitride granules prepared by the spray drying process is investigated. The flocculation state of an aqueous silicon nitride slurry is controlled by adding nitric acid and evaluated as a function of pH. Dense and hard silicon nitride granules result from a well-dispersed slurry having a high pH (e.g., 10.8). These hard granules retain their shape in green compacts and form detrimental defects. Lowering the pH of the slurry to a certain value (e.g., pH 7.9) results in slurry flocculation. Granules prepared from this flocculated slurry have low density and low diametral compression strength and contribute to the elimination large pores in green compacts.

  17. Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying.

    PubMed

    Minemoto, Y; Hakamata, K; Adachi, S; Matsuno, R

    2002-01-01

    Linoleic acid was emulsified with gum arabic or maltodextrin at various weight ratios of the acid to the polysaccharide in the presence or absence of a small-molecule emulsifier. The emulsions were spray-dried to produce microcapsules. Emulsions prepared with gum arabic were smaller in droplet size and more stable than those prepared with maltodextrin, and linoleic acid in a gum arabic-based microcapsule was also most resistant to oxidation than that in a maltodextrin-based microcapsule. Although the oil droplet size in the emulsion with maltodextrin decreased and the emulsion stability was improved by addition of a small-molecule emulsifier to linoleic acid, the oxidative stability of the encapsulated linoleic acid was not significantly improved. Encapsulated linoleic acid of small droplet size oxidized more slowly than that of large droplet size.

  18. Spray drying of Tinospora cordifolia leaf and stem extract and evaluation of antioxidant activity.

    PubMed

    Sarala, M; Velu, V; Anandharamakrishnan, C; Singh, R P

    2012-02-01

    Tinospora cordifolia (Guduchi) is widely used in folk medicine/ ayurvedic system of medicine, also in ayurvedic 'Rasayanas' to improve the immune system and used as general tonic, anti-periodic, anti-spasmodic, anti-inflammatory, anti-arthritic and anti-diabetic agent. Numerous studies have been reported on the health benefits of individual parts or whole Guduchi plant. However, most of the work has focused on the extracts of T. cordifolia. In this study, T. cordifolia leaf and stem extract powders were prepared using spray drying at 90 °C outlet temperature of the spray dryer. The powder morphology has also been studied by scanning electron microscopy. The antioxidant activity was followed by DPPH method. The leaf extract powder showed higher retention of antioxidant activity than stem extract powder. PMID:23572835

  19. Physicochemical aspects involved in methotrexate release kinetics from biodegradable spray-dried chitosan microparticles

    NASA Astrophysics Data System (ADS)

    Mesquita, Philippe C.; Oliveira, Alice R.; Pedrosa, Matheus F. Fernandes; de Oliveira, Anselmo Gomes; da Silva-Júnior, Arnóbio Antônio

    2015-06-01

    Spray dried methotrexate (MTX) loaded chitosan microparticles were prepared using different drug/copolymer ratios (9%, 18%, 27% and 45% w/w). The physicochemical aspects were assessed in order to select particles that were able to induce a sustained drug release effect. Particles were successfully produced which exhibited desired physicochemical aspects such as spherical shape and high drug loading. XRD and FT-IR analysis demonstrated that drug is not bound to copolymer and is only homogeneously dispersed in an amorphous state into polymeric matrix. Even the particles with higher drug loading levels presented a sustained drug release profile, which were mathematically modeled using adjusted Higuchi model. The drug release occurred predominantly with drug dissolution and diffusion through swollen polymeric matrix, with the slowest release occurring with particles containing 9% of drug, demonstrating an interesting and promising drug delivery system for MTX.

  20. Formulation and evalution of montelukast sodium - chitosan based spray dried microspheres for pulmonary drug delivery.

    PubMed

    Panchal, Rushi; Patel, Harsha; Patel, Vishnu; Joshi, Pratik; Parikh, Ankit

    2012-03-01

    The objective of present work was to prepare microspheres of montelukast sodium using a natural polymer- chitosan by spray drying method by using glutaraldehyde as a cross linking agent. The microspheres were characterized for size, shape, dissolution, swelling and mucoadhesion. It was observed that, all microspheres were spherical in shape with narrow size distribution. Microspheres had mean particle size of 7-12 μm, with % encapsulation efficiency of 78-86%. The % yield was 32-49% and drug load was 48-53%. With the increase in proportion of chitosan in formulation mucoadhesive strength was increase and also increased in particle size of microspheres. As the drug:polymer ratio increase drug loading was increase and % encapsulation efficiency was also increase.

  1. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    SciTech Connect

    Moreira, B. R. E-mail: fabiopassador@gmail.com Passador, F. R. E-mail: fabiopassador@gmail.com Pessan, L. A. E-mail: fabiopassador@gmail.com

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  2. [Spray-dried plasma in diets for weaned piglets: influence on growth and underlying mechanisms].

    PubMed

    van Dijk, A J

    2002-09-01

    Spray-dried animal plasma (SDAP) is a by-product of slaughter plants. The plasma obtained from slaughtered pigs or ruminants is spray-dried and used for the production of human foodstuffs and animal feeds. SDAP added to the diet of weaned piglets has considerable positive effects on the growth performance of piglets. In a meta-analysis, it was calculated from 68 comparisons between SDAP-containing diets and control diets that the SDAP-induced change in average daily gain (ADG) and average daily feed intake (ADFI) in the first 2 weeks after weaning was +26.8% and +24.5%, respectively. Two experiments demonstrated that dietary SDAP can reduce post-weaning diarrhoea. The aim of the research described in this thesis was to learn more about the mechanisms underlying the growth- and health-promoting properties of SDAP in the diet of weaned piglets. Results showed that dietary SDPP has positive effects on the post-weaning growth performance and health of piglets. These effects are more pronounced in piglets kept under suboptimal conditions and/or high infection pressure, and in piglets fed on diets lacking anti-microbial growth promoters. SDAP acts by influencing the gastrointestinal microflora: it appears to affect pathogenic bacteria rather than exert a general anti-bacterial effect leading to nutrient sparing, as has been described for anti-microbial growth promoters. SDAP has great potential as treatment for immuno-compromised mammals, such as neonates, and for animals in which antibiotic treatment is not possible, for instance when there is a ban against antibiotics or when multi-resistant bacteria are involved. PMID:12244856

  3. Effect of spray drying on the sensory and physical properties of hydrolysed casein using gum arabic as the carrier.

    PubMed

    Subtil, S F; Rocha-Selmi, G A; Thomazini, M; Trindade, M A; Netto, F M; Favaro-Trindade, C S

    2014-09-01

    This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein. PMID:25190858

  4. Value-Added Processing of Peanut Skins: Antioxidant Capacity,Total Phenolics,and Procyanidin Content of Spray Dried Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To explore a potential use for peanut skins as a functional food ingredient, milled skins were extracted with 70% ethanol, separated into a soluble extract and insoluble material by filtration, and spray dried with or without the addition of maltodextrin. Peanut skin extracts had high levels of proc...

  5. Value-Added Processing of Peanut Skins: Antioxidant Capacity, Total Phenolics, and Procyanidin Content of Spray Dried Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To explore a potential use for peanut skins as a functional food ingredient, milled skins were extracted with 70% ethanol, separated into a soluble extract and insoluble material by filtration, and spray dried with or without the addition of maltodextrin. Peanut skin extracts had high levels of proc...

  6. Development of polyvinylpyrrolidone-based spray-dried solid dispersions using response surface model and ensemble artificial neural network.

    PubMed

    Patel, Ashwinkumar D; Agrawal, Anjali; Dave, Rutesh H

    2013-06-01

    A model for spray drying processes was developed using polyvinylpyrrolidone (PVP)-K29/32 as a placebo formulation to predict quality attributes (process yield, outlet temperature, and particle size) for binary solid dispersions (SDs). The experiments were designed to achieve a better understanding of the spray drying process. The obtained powders were analyzed by modulated differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, polarized light microscopy, and particle size analysis. On the basis of the experimental data, a response surface model and an ensemble artificial neural network were developed. Both models showed significant correlation between experimental and predicted data for all quality attributes. In addition, a Pearson correlation analysis, response surface curves, Kohonen's self-organizing maps, and contribution plots were used to evaluate the effect of individual process parameters on quality attributes. The predictive abilities of both models were compared using separate validation datasets. These datasets contained binary SDs of four model drugs with PVP based on root mean square error and mean absolute error for each quality attribute. The results indicate that both models show reliable predictivity for all quality attributes. The present methodology provides a useful tool for designing a spray drying process, which will help formulation scientists save time, drug usage, and resources in the development of spray-dried SDs.

  7. [Effect of air humidity on traditional Chinese medicine extract of spray drying process and prediction of its powder stability].

    PubMed

    He, Yan; Xie, Yin; Zheng, Long-jin; Liu, Wei; Rao, Xiao-yong; Luo, Xiao-jian

    2015-02-01

    In order to solve the adhesion and the softening problems of traditional Chinese medicine extract during spray drying, a new method of adding dehumidified air into spray drying process was proposed, and the storage stability conditions of extract powder could be predicted. Kouyanqing extract was taken as model drug to investigate on the wet air (RH = 70%) and dry air conditions of spray drying. Under the dry air condition, the influence of the spray drying result with different air compression ratio and the spray-dried powder properties (extract powder recovery rate, adhesion percentage, water content, angle of repose, compression ratio, particle size and distribution) with 100, 110, 120, 130, 140 °C inlet temperature were studied. The hygroscopic investigation and Tg value with different moisture content of ideal powder were determined. The water activity-equilibrium moisture content (aw-EMC) and the equilibrium moisture content-Tg (EMC-Tg) relationships were fitted by GAB equation and Gordon-Taylor model respectively, and the state diagram of kouyanqing powder was obtained to guide the rational storage conditions. The study found that in the condition of dry air, the extract powder water content decreased with the increase of air compression ratio and the spray drying effect with air compression ratio of 100% was the best performance; in the condition of wet air, the extract powder with high water content and low yield, and the value were 4.26% and 16.73 °C, while, in the dry air condition the values were 2.43% and 24.86 °C with the same other instru- ment parameters. From the analysis of kouyanqing powder state diagram, in order to keep the stability, the critical water content of 3.42% and the critical water content of 0.188. As the water decreased Tg value of extract powder is the major problem of causing adhesion and softening during spray drying, it is meaningful to aid dehumidified air during the process. PMID:26084164

  8. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process.

    PubMed

    Kim, Jeong-Soo; Kim, Min-Soo; Park, Hee Jun; Jin, Shun-Ji; Lee, Sibeum; Hwang, Sung-Joo

    2008-07-01

    The objective of the study was to prepare amorphous atorvastatin hemi-calcium using spray-drying and supercritical antisolvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. Atorvastatin hemi-calcium trihydrate was transformed to anhydrous amorphous form by spray-drying and SAS process. With the SAS process, the mean particle size and the specific surface area of amorphous atorvastatin were drastically changed to 68.7+/-15.8nm, 120.35+/-1.40m2/g and 95.7+/-12.2nm, 79.78+/-0.93m2/g from an acetone solution and a tetrahydrofuran solution, respectively and appeared to be associated with better performance in apparent solubility, dissolution and pharmacokinetic studies, compared with unprocessed crystalline atorvastatin. Oral AUC0-8h values in SD rats for crystalline and amorphous atorvastatin were as follow: 1121.4+/-212.0ngh/mL for crystalline atorvastatin, 3249.5+/-406.4ngh/mL and 3016.1+/-200.3ngh/mL for amorphous atorvastatin from an acetone solution and a tetrahydrofuran solution with SAS process, 2227.8+/-274.5 and 2099.9+/-339.2ngh/mL for amorphous atorvastatin from acetone and tetrahydrofuran with spray-drying. The AUCs of all amorphous atorvastatin significantly increased (P<0.05) compared with crystalline atorvastatin, suggesting that the enhanced bioavailability was attributed to amorphous nature and particle size reduction. In addition, the SAS process exhibits better bioavailability than spray-drying because of particle size reduction with narrow particle size distribution. It was concluded that physicochemical properties and bioavailability of crystalline atorvastatin could be improved by physical modification such as particle size reduction and generation of amorphous state using spray-drying and SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of atorvastatin.

  9. The effect of feed solids concentration and inlet temperature on the flavor of spray dried whey protein concentrate.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-01-01

    Previous research has demonstrated that unit operations in whey protein manufacture promote off-flavor production in whey protein. The objective of this study was to determine the effects of feed solids concentration in liquid retentate and spray drier inlet temperature on the flavor of dried whey protein concentrate (WPC). Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 ppm hydrogen peroxide), and ultrafiltered (UF) to obtain WPC80 retentate (25% solids, wt/wt). The liquid retentate was then diluted with deionized water to the following solids concentrations: 25%, 18%, and 10%. Each of the treatments was then spray dried at the following temperatures: 180 °C, 200 °C, and 220 °C. The experiment was replicated 3 times. Flavor of the WPC80 was evaluated by sensory and instrumental analyses. Particle size and surface free fat were also analyzed. Both main effects (solids concentration and inlet temperature) and interactions were investigated. WPC80 spray dried at 10% feed solids concentration had increased surface free fat, increased intensities of overall aroma, cabbage and cardboard flavors and increased concentrations of pentanal, hexanal, heptanal, decanal, (E)2-decenal, DMTS, DMDS, and 2,4-decadienal (P < 0.05) compared to WPC80 spray dried at 25% feed solids. Product spray dried at lower inlet temperature also had increased surface free fat and increased intensity of cardboard flavor and increased concentrations of pentanal, (Z)4-heptenal, nonanal, decanal, 2,4-nonadienal, 2,4-decadienal, and 2- and 3-methyl butanal (P < 0.05) compared to product spray dried at higher inlet temperature. Particle size was higher for powders from increased feed solids concentration and increased inlet temperature (P < 0.05). An increase in feed solids concentration in the liquid retentate and inlet temperature within the parameters evaluated decreased off-flavor intensity in the resulting WPC80. PMID:24329978

  10. The effect of feed solids concentration and inlet temperature on the flavor of spray dried whey protein concentrate.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-01-01

    Previous research has demonstrated that unit operations in whey protein manufacture promote off-flavor production in whey protein. The objective of this study was to determine the effects of feed solids concentration in liquid retentate and spray drier inlet temperature on the flavor of dried whey protein concentrate (WPC). Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 ppm hydrogen peroxide), and ultrafiltered (UF) to obtain WPC80 retentate (25% solids, wt/wt). The liquid retentate was then diluted with deionized water to the following solids concentrations: 25%, 18%, and 10%. Each of the treatments was then spray dried at the following temperatures: 180 °C, 200 °C, and 220 °C. The experiment was replicated 3 times. Flavor of the WPC80 was evaluated by sensory and instrumental analyses. Particle size and surface free fat were also analyzed. Both main effects (solids concentration and inlet temperature) and interactions were investigated. WPC80 spray dried at 10% feed solids concentration had increased surface free fat, increased intensities of overall aroma, cabbage and cardboard flavors and increased concentrations of pentanal, hexanal, heptanal, decanal, (E)2-decenal, DMTS, DMDS, and 2,4-decadienal (P < 0.05) compared to WPC80 spray dried at 25% feed solids. Product spray dried at lower inlet temperature also had increased surface free fat and increased intensity of cardboard flavor and increased concentrations of pentanal, (Z)4-heptenal, nonanal, decanal, 2,4-nonadienal, 2,4-decadienal, and 2- and 3-methyl butanal (P < 0.05) compared to product spray dried at higher inlet temperature. Particle size was higher for powders from increased feed solids concentration and increased inlet temperature (P < 0.05). An increase in feed solids concentration in the liquid retentate and inlet temperature within the parameters evaluated decreased off-flavor intensity in the resulting WPC80.

  11. Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying.

    PubMed

    Sosa, Natalia; Gerbino, Esteban; Golowczyc, Marina A; Schebor, Carolina; Gómez-Zavaglia, Andrea; Tymczyszyn, E Elizabeth

    2016-01-01

    In this work maltodextrins were added to commercial galacto-oligosaccharides (GOS) in a 1:1 ratio and their thermophysical characteristics were analyzed. GOS:MD solutions were then used as matrices during spray-drying of Lactobacillus plantarum CIDCA 83114. The obtained powders were equilibrated at different relative humidities (RH) and stored at 5 and 20°C for 12 weeks, or at 30°C for 6 weeks. The Tgs of GOS:MD matrices were about 20-30°C higher than those of GOS at RH within 11 and 52%. A linear relation between the spin-spin relaxation time (T2) and T-Tg parameter was observed for GOS:MD matrices equilibrated at 11, 22, 33, and 44% RH at 5, 20, and 30°C. Spray-drying of L. plantarum CIDCA 83114 in GOS:MD matrices allowed the recovery of 93% microorganisms. In contrast, only 64% microorganisms were recovered when no GOS were included in the dehydration medium. Survival of L. plantarum CIDCA 83114 during storage showed the best performance for bacteria stored at 5°C. In a further step, the slopes of the linear regressions provided information about the rate of microbial inactivation for each storage condition (k values). This information can be useful to calculate the shelf-life of spray-dried starters stored at different temperatures and RH. Using GOS:MD matrices as a dehydration medium enhanced the recovery of L. plantarum CIDCA 83114 after spray-drying. This strategy allowed for the first time the spray-drying stabilization of a potentially probiotic strain in the presence of GOS. PMID:27199918

  12. Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying

    PubMed Central

    Sosa, Natalia; Gerbino, Esteban; Golowczyc, Marina A.; Schebor, Carolina; Gómez-Zavaglia, Andrea; Tymczyszyn, E. Elizabeth

    2016-01-01

    In this work maltodextrins were added to commercial galacto-oligosaccharides (GOS) in a 1:1 ratio and their thermophysical characteristics were analyzed. GOS:MD solutions were then used as matrices during spray-drying of Lactobacillus plantarum CIDCA 83114. The obtained powders were equilibrated at different relative humidities (RH) and stored at 5 and 20°C for 12 weeks, or at 30°C for 6 weeks. The Tgs of GOS:MD matrices were about 20–30°C higher than those of GOS at RH within 11 and 52%. A linear relation between the spin-spin relaxation time (T2) and T-Tg parameter was observed for GOS:MD matrices equilibrated at 11, 22, 33, and 44% RH at 5, 20, and 30°C. Spray-drying of L. plantarum CIDCA 83114 in GOS:MD matrices allowed the recovery of 93% microorganisms. In contrast, only 64% microorganisms were recovered when no GOS were included in the dehydration medium. Survival of L. plantarum CIDCA 83114 during storage showed the best performance for bacteria stored at 5°C. In a further step, the slopes of the linear regressions provided information about the rate of microbial inactivation for each storage condition (k values). This information can be useful to calculate the shelf-life of spray-dried starters stored at different temperatures and RH. Using GOS:MD matrices as a dehydration medium enhanced the recovery of L. plantarum CIDCA 83114 after spray-drying. This strategy allowed for the first time the spray-drying stabilization of a potentially probiotic strain in the presence of GOS. PMID:27199918

  13. STATUS REPORT: EVIDENCE BASED ADVANCES IN INHALATION DOSIMETRY FOR GASES WITH EFFECTS IN THE LOWER RESPIRATORY TRACT AND IN THE BODY

    EPA Science Inventory

    This report summarizes the status of specific inhalation dosimetry procedures for gases as outlined in U.S. EPA’s 1994 Methods for Derivation of Inhalation Reference Concentrations and Applications of Inhalation Dosimetry (U.S. EPA 1994) and reviews recent scientific advances in...

  14. The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-07-01

    Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D₁₂-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to

  15. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process.

    PubMed

    Park, Junsung; Park, Hee Jun; Cho, Wonkyung; Cha, Kwang-Ho; Kang, Young-Shin; Hwang, Sung-Joo

    2010-08-30

    The aim of this study was to investigate the effects of micronization and amorphorization of cefdinir on solubility and dissolution rate. The amorphous samples were prepared by spray-drying (SD) and supercritical anti-solvent (SAS) process, respectively and their amorphous natures were confirmed by DSC, PXRD and FT-IR. Thermal gravimetric analysis was performed by TGA. SEM was used to investigate the morphology of particles and the processed particle had a spherical shape, while the unprocessed crystalline particle had a needle-like shape. The mean particle size and specific surface area were measured by dynamic light scattering (DLS) and BET, respectively. The DLS result showed that the SAS-processed particle was the smallest, followed by SD and the unprocessed cefdinir. The BET result was the same as DLS result in that the SAS-processed particle had the largest surface area. Therefore, the processed cefdinir, especially the SAS-processed particle, appeared to have enhanced apparent solubility, improved intrinsic dissolution rate and better drug release when compared with SD-processed and unprocessed crystalline cefdinir due not only to its amorphous nature, but also its reduced particle size. Conclusions were that the solubility and dissolution rate of crystalline cefdinir could be improved by physically modifying the particles using SD and SAS-process. Furthermore, SAS-process was a powerful methodology for improving the solubility and dissolution rate of cefdinir.

  16. The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying.

    PubMed

    Tian, Guifang; Li, Yuan; Yuan, Qipeng; Cheng, Li; Kuang, Pengqun; Tang, Pingwah

    2015-05-20

    Sulforaphene (SFE) was extracted from the radish seeds and the purity of SFE extracted by our laboratory was 95%. It is well known that SFE can prevent cancers. It is also known that SFE is unstable to heat. To overcome the problem, SFE microcapsules using natural biopolymers were prepared by spray drying. The results indicated that SFE microcapsules using hydroxypropyl-β-cyclodextrin (HP-β-CD), maltodextrin (MD) and isolated soybean protein (SPI) as wall materials could effectively improve its stability against heat, especially SFE-loaded HP-β-CD and MD microcapsules. The amount of SFE in the microcapsules was found 20% higher than that of the non-encapsulated SFE under 90 °C in 168 h. Our finding suggested that the rate of degradation of the non-encapsulated and encapsulated SFE with HP-β-CD, MD and SPI followed the first-order kinetics. The speed of the degradation of the encapsulated SFE in biopolymers increased from SFE with HP-β-CD, to SFE with MD, and to SFE-SPI. The non-encapsulated SFE degrades fastest. PMID:25817636

  17. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    PubMed

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor.

  18. Shelf life and storage stability of spray-dried bovine colostrum powders under different storage conditions.

    PubMed

    Yu, Huaning; Zheng, Yuanrong; Li, Yunfei

    2015-02-01

    Spray dried bovine colostrum (SDBC) powders were packaged in aluminium-laminated polyethylene (ALPE) and polyethylene terephthalate (PET) pouches and then stored under different conditions (25 °C and 50 % relative humidity (RH), 4 °C and 40-70 % RH, 50 °C and 20-50 % RH). The shelf life of SDBC powder was evaluated as 425.5 and 86.5 days in ALPE and PET pouches under 25 °C and 50 % RH, respectively. The storage stability of SDBC powder in terms of quality parameters including thiobarbituric acid (TBA), hydroxymethyl furfural (HMF), colour change, moisture content and IgG concentration was studied in both packaging materials under different storage conditions. Results showed that ALPE pouches were more suitable for packaging SDBC powder than PET pouches and storage condition of 4 °C and 40-70 % RH was relative suitable for keeping quality of SDBC powder. The glass transition concept was helpful for evaluating the chemical stability of SDBC powder during storage. PMID:25694704

  19. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin.

    PubMed

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-07-01

    To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug-drug systems such as naproxen-indomethacin and to examine the influence of the process conditions on the resulting initial sample crystallinity and the recrystallization behavior of the drug(s). For this purpose, the process parameters inlet temperature and pump feed rate were varied according to a 2(2) factorial design and the obtained samples were analyzed with X-ray powder diffractometry and Fourier-transformed infrared spectroscopy. Evaluation of the data revealed that the preparation of fully amorphous samples could be achieved depending on the process conditions. The resulting recrystallization behavior of the samples, such as the total recrystallization rate, the individual recrystallization rates of naproxen and indomethacin as well as the polymorphic form of indomethacin that was formed were influenced by these process conditions. For initially amorphous samples, it was found that naproxen and indomethacin recrystallized almost simultaneously, which supports the theory of formation of drug-drug heterodimers in the co-amorphous phase.

  20. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique

    PubMed Central

    Tobar-Grande, Blanca; Godoy, Ricardo; Bustos, Paulina; von Plessing, Carlos; Fattal, Elias; Tsapis, Nicolas; Olave, Claudia; Gómez-Gaete, Carolina

    2013-01-01

    In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1β, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis. PMID:23737670

  1. Characterization of scandia doped pressed cathode fabricated by spray drying method

    NASA Astrophysics Data System (ADS)

    Cui, Yuntao; Wang, Jinshu; Liu, Wei; Wang, Yiman; Zhou, Meiling

    2011-10-01

    Scandia doped pressed cathode was prepared by a new method of spray drying combined with two-step hydrogen reduction process. The Sc 2O 3 and barium-calcium aluminate co-doped powders have sub-micrometer size in the range of 0.1-1 μm and scandium oxide and barium-calcium aluminate are distributed evenly in the powders. The cathodes sintered by powder metallurgy at 1600 °C b have a smooth surface and sub-micrometer grain structure with homogeneous distribution of scandium, barium, calcium and aluminum which are dispersed over and among the tungsten grains. This cathode has good emission, e.g., the current density of this cathode reaches 31.50 A/cm 2 at 850 °C b. After proper activation, the cathode surface is covered by a Ba-Sc-O active substances layer with a preferable atomic ratio, leading to its good emission property. The evaporation activation energy of SDP cathode with 4.58 eV is the highest among the Ba-W, M-type and SDP cathodes, and the average evaporation velocity vt of SDP cathode with 1.28 × 10 -8 g cm -2 s -1 at 1150 °C b is the lowest one.

  2. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    PubMed

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment. PMID:26856301

  3. Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres

    PubMed Central

    Kalluri, Sujith; Seng, Kuok Hau; Guo, Zaiping; Du, Aijun; Konstantinov, Konstantin; Liu, Hua Kun; Dou, Shi Xue

    2015-01-01

    Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1. PMID:26173985

  4. In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying.

    PubMed

    De Cicco, Felicetta; Reverchon, Ernesto; Adami, Renata; Auriemma, Giulia; Russo, Paola; Calabrese, Elena C; Porta, Amalia; Aquino, Rita P; Del Gaudio, Pasquale

    2014-01-30

    This study focuses on designing microparticulate carriers based on high-mannuronic alginate and amidated pectin blend loaded with gentamicin sulphate able to move rapidly from dry to soft hydrogel. Supercritical assisted atomization was used to produce microparticles in form of dry powder and characteristics were compared with those obtained by spray-drying. Particles with very high encapsulation efficiency (approximately 100%) and small diameter (less than 2 μm) showed good flowability and high fluid uptake enabling wound site filling and limiting bacterial proliferation. Moisture transmission of the in situ formed hydrogel was about 95 g/m(2)h, ideal to avoid wound dehydration or occlusion phenomena. All formulations presented a burst effect, suitable to prevent infection spreading at the beginning of the therapy, followed by prolonged release (4-10 days) related to drug/polymers ratio. Antimicrobial tests showed stronger effect than pure GS over time (up-to 24 days) and the ability to degrade preformed biofilms, essential to properly treat infected wounds.

  5. Evaporation of multi-component mixtures and shell formation in spray dried droplets

    NASA Astrophysics Data System (ADS)

    Valente, Pedro; Duarte, Íris; Porfirio, Tiago; Temtem, Márcio

    2015-11-01

    Drug particles where the active pharmaceutical ingredient (APIs) is dispersed in a polymer matrix forming an amorphous solid dispersion (ASD) is a commonly used strategy to increase the solubility and dissolution rate of poorly water soluble APIs. However, the formation and stability of an amorphous solid dispersion depends on the polymer/API combination and process conditions to generate it. The focus of the present work is to further develop a numerical tool to predict the formation of ASDs by spray drying solutions of different polymer/API combinations. Specifically, the evaporation of a multi-component droplet is coupled with a diffusion law within the droplet that minimizes the Gibbs free energy of the polymer/API/solvents system, following the Flory-Huggins model. Prior to the shell formation, the evaporation of the solvents is modelled following the simplified approach proposed by Abramzon & Sirignano (1989) which accounts for the varying relative velocity between the droplet and the drying gas. After shell formation, the diffusion of the solvents across the porous shell starkly modifies the evaporative dynamics.

  6. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data.

  7. Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (rubus fruticosus).

    PubMed

    Rigon, Renata Trindade; Zapata Noreña, Caciano P

    2016-03-01

    Blackberry aqueous extract acidified with 2 % citric acid was spray-dried using gum Arabic (GA) and polydextrose (PD) as encapsulating agents at concentrations of 10 and 15 % and temperatures of 140 to 160 °C. All powders presented high solubility, ranging from 88.2 to 97.4 %, and the encapsulation conditions did not significantly affect the hygroscopicity. The powders produced with gum Arabic showed higher brightness than those with polydextrose. The anthocyanins retention in the microcapsules was 878.32 to 1300.83 mg/100 g, and the phenolics was 2106.56 to 2429.22 mg (GAE)/100 g. The antioxidant activity was quantified according to DDPH and ABTS methods, with values ​​ranging from 31.28 to 40.26 % and 27 to 45.15 %, respectively. The microscopy showed spherical particles for both encapsulating agents, and smooth surface with some concavities with the gum Arabic, and smooth or slightly rough surface when using polydextrose. The Pearson correlation coefficient showed a high correlation between the color parameters, L*, a*, b*, Hue, Chroma and browning index (BI), which were also strongly correlated with anthocyanins. Phenolic presented correlation with DPPH and ABTS values. The results showed that the best encapsulation condition was atomization at 140 °C and 15 % gum Arabic. PMID:27570276

  8. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data. PMID:25450477

  9. Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres

    NASA Astrophysics Data System (ADS)

    Kalluri, Sujith; Seng, Kuok Hau; Guo, Zaiping; Du, Aijun; Konstantinov, Konstantin; Liu, Hua Kun; Dou, Shi Xue

    2015-07-01

    Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (-2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g-1 and 640 mAh g-1 at 0.1 A g-1.

  10. Formulation, optimization and evaluation of spray-dried mucoadhesive microspheres as intranasal carriers for Valsartan.

    PubMed

    Pardeshi, Chandrakant V; Rajput, Pravin V; Belgamwar, Veena S; Tekade, Avinash R

    2012-01-01

    This investigation deals with the intranasal delivery of Valsartan, encapsulated in HPMC-based spray-dried mucoadhesive microspheres, with an aim to provide rapid absorption and quick onset of action for treating hypertension. A 2³-factorial design has been employed for the assessment of influence of three independent variables, namely inlet temperature, feed-flow rate and drug-polymer ratio on production yield, particle size and in vitro drug diffusion of the prepared microspheres. Microspheres were evaluated for particle size, entrapment efficiency, swelling property, in vitro mucoadhesion, in vitro drug diffusion, ex vivo drug permeation, histopathological examination and stability studies. The results of differential scanning calorimetry, X-ray diffraction and scanning electron microscopy revealed molecular dispersion of Valsartan into microspheres with spherical shape and smooth surface. Optimized formulation indicated good mucoadhesion with no severe sign of damage on nasal mucosa. Results of the non-invasive animal studies in dexamethasone-induced hypertensive rat model suggested the suitability of investigated drug delivery system for intranasal administration.

  11. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology.

    PubMed

    Balasubramani, P; Palaniswamy, P T; Visvanathan, R; Thirupathi, V; Subbarayan, A; Prakash Maran, J

    2015-01-01

    Experiments were conducted on microencapsulation of garlic oleoresin by spray drying with garlic oleoresin concentration (10%, 20% and 30%) as core material, maltodextrin concentration (40%, 50% and 60%) as wall material and inlet temperature of drying air (180 °C, 200 °C and 220 °C) as process parameters. The process in-terms of encapsulation efficiency was optimised following response surface methodology and Pareto analysis of variance (ANOVA). Second order polynomial regression model showed good fit of the experimental data with high coefficient of determination (R(2)) along with predicted values. The relationships between the independent and dependent parameters were represented using response surface and contour plots. The optimum levels of process parameters, viz., garlic oleoresin concentration, maltodextrin concentration and inlet temperature of air drying were found to be 10%, 60% and 200 °C, respectively with the maximum encapsulation efficiency of 81.9% and desirability of 0.998. The microencapsulated garlic oleoresin powder obtained at optimized conditions was spherical with smooth surface as analysed through scanning electron microscopy.

  12. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    PubMed

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor. PMID:25771045

  13. Accelerated ketoprofen release from spray-dried polymeric particles: importance of phase transitions and excipient distribution.

    PubMed

    Gue, Emilie; Muschert, Susanne; Willart, Jean-Francois; Danede, Florence; Delcourt-Debruyne, Elisabeth; Descamps, Marc; Siepmann, Juergen

    2015-05-01

    HPMC-, PVPVA- and PVP-based microparticles loaded with 30% ketoprofen were prepared by spray drying suspensions or solutions in various water:ethanol blends. The inlet temperature, drying gas and feed flow rates were varied. The resulting differences in the ketoprofen release rates in 0.1 M HCl could be explained based on X-ray diffraction, mDSC, SEM and particle size analysis. Importantly, long term stable drug release could be provided, being much faster than: (i) drug release from a commercial reference product, (ii) the respective physical drug:polymer mixtures, as well as (iii) the dissolution of ketoprofen powder as received. In addition, highly supersaturated release media were obtained, which did not show any sign for re-crystallization during the observation period. Surprisingly, spraying suspensions resulted in larger microparticles exhibiting faster drug release compared to spraying solutions, which resulted in smaller particles exhibiting slower drug release. These effects could be explained based on the physico-chemical characteristics of the systems.

  14. The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying.

    PubMed

    Tian, Guifang; Li, Yuan; Yuan, Qipeng; Cheng, Li; Kuang, Pengqun; Tang, Pingwah

    2015-05-20

    Sulforaphene (SFE) was extracted from the radish seeds and the purity of SFE extracted by our laboratory was 95%. It is well known that SFE can prevent cancers. It is also known that SFE is unstable to heat. To overcome the problem, SFE microcapsules using natural biopolymers were prepared by spray drying. The results indicated that SFE microcapsules using hydroxypropyl-β-cyclodextrin (HP-β-CD), maltodextrin (MD) and isolated soybean protein (SPI) as wall materials could effectively improve its stability against heat, especially SFE-loaded HP-β-CD and MD microcapsules. The amount of SFE in the microcapsules was found 20% higher than that of the non-encapsulated SFE under 90 °C in 168 h. Our finding suggested that the rate of degradation of the non-encapsulated and encapsulated SFE with HP-β-CD, MD and SPI followed the first-order kinetics. The speed of the degradation of the encapsulated SFE in biopolymers increased from SFE with HP-β-CD, to SFE with MD, and to SFE-SPI. The non-encapsulated SFE degrades fastest.

  15. Bioadhesive vaginal tablets containing spray dried microspheres loaded with clotrimazole for treatment of vaginal candidiasis.

    PubMed

    Gupta, Naresh Vishal; Natasha, Shirodker; Getyala, Anil; Bhat, Ramnath Sudeendra

    2013-09-01

    The aim of the present investigation was to prepare and evaluate novel bioadhesive vaginal tablets containing clotrimazole loaded microspheres in order to provide long-term therapeutic activity at the site of infection. Tablets were prepared by incorporating drug loaded microspheres and using bioadhesive polymers hydroxypropylmethylcellulose, sodium carboxymethylcellulose and Carbopol. Microspheres were prepared by the spray drying technique using Eudragit RS-100 and Eudragit RL-100. Microspheres were characterized by SEM, DSC, FTIR, particle size analysis and evaluated for percentage yield, drug loading, encapsulation efficiency and in vitro drug release. To achieve bioadhesion to the mucosal tissue, optimized microspheres were incorporated into bioadhesive tablets and were evaluated for in vitro drug release, in vitro and in vivo mucoadhesion. FTIR and DSC studies showed that no chemical interaction occurred between the drug and polymers. The sphericity factor indicated that the prepared microspheres were spherical. Formulation Mt6 indicated a controlled in vitro drug release and good bioadhesive strength. The in vivo images confirmed the bioadhesion and retention property of tablets up to 24 h. The results indicated that this drug delivery system can be explored for controlled intravaginal drug release.

  16. Spray Drying Tenofovir Loaded Mucoadhesive and pH-Sensitive Microspheres Intended for HIV Prevention

    PubMed Central

    Zhang, Tao; Zhang, Chi; Agrahari, Vivek; Murowchick, James B.; Oyler, Nathan A.; Youan, Bi-Botti C.

    2013-01-01

    Purpose To develop spray dried mucoadhesive and pH-sensitive microspheres (MS) based on polymethacrylate salt intended for vaginal delivery of tenofovir (a model HIV microbicide) and assess their critical biological responses. Methods The formulation variables and process parameters are screened and optimized using a 24-1 fractional factorial design. The MS are characterized for size, zeta potential, yield, encapsulation efficiency, Carr’s index, drug loading, in vitro release, cytotoxicity, inflammatory responses and mucoadhesion. Results The optimal MS formulation has an average size of 4.73 µm, Zeta potential of −26.3 mV, 68.9% yield, encapsulation efficiency of 88.7%, Carr’s index of 28.3 and drug loading of 2% (w/w). The MS formulation can release 90% of its payload in the presence of simulated human semen. At a concentration of 1 mg/ml, the MS are noncytotoxic to vaginal endocervical/epithelial cells and Lactobacillus crispatus when compared to control media. There is also no statistically significant level of inflammatory cytokine (IL1-α, IL-1β, IL-6, IL-8, and IP-10) release triggered by MS. The mucoadhesive property of MS formulation is 2-fold higher than that of 1% HEC gel formulation. Conclusion These data suggest the promise of using such MS as an alternative controlled microbicide delivery template by intravaginal route for HIV prevention. PMID:23274788

  17. In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying.

    PubMed

    De Cicco, Felicetta; Reverchon, Ernesto; Adami, Renata; Auriemma, Giulia; Russo, Paola; Calabrese, Elena C; Porta, Amalia; Aquino, Rita P; Del Gaudio, Pasquale

    2014-01-30

    This study focuses on designing microparticulate carriers based on high-mannuronic alginate and amidated pectin blend loaded with gentamicin sulphate able to move rapidly from dry to soft hydrogel. Supercritical assisted atomization was used to produce microparticles in form of dry powder and characteristics were compared with those obtained by spray-drying. Particles with very high encapsulation efficiency (approximately 100%) and small diameter (less than 2 μm) showed good flowability and high fluid uptake enabling wound site filling and limiting bacterial proliferation. Moisture transmission of the in situ formed hydrogel was about 95 g/m(2)h, ideal to avoid wound dehydration or occlusion phenomena. All formulations presented a burst effect, suitable to prevent infection spreading at the beginning of the therapy, followed by prolonged release (4-10 days) related to drug/polymers ratio. Antimicrobial tests showed stronger effect than pure GS over time (up-to 24 days) and the ability to degrade preformed biofilms, essential to properly treat infected wounds. PMID:24299894

  18. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients.

    PubMed

    Ribeiro, Andreia; Ruphuy, Gabriela; Lopes, José Carlos; Dias, Madalena Maria; Barros, Lillian; Barreiro, Filomena; Ferreira, Isabel C F R

    2015-12-01

    In this work, hydroalcoholic extracts of two mushrooms species, Suillus luteus (L.: Fries) (Sl) and Coprinopsis atramentaria (Bull.) (Ca), were studied for their synergistic antioxidant effect and their viability as functional food ingredients tested by incorporation into a food matrix (cottage cheese). In a first step, the individual extracts and a combination of both, showing synergistic effects (Sl:Ca, 1:1), were microencapsulated by spray-drying using maltodextrin as the encapsulating material. The incorporation of free extracts resulted in products with a higher initial antioxidant activity (t0) but declining after 7 days (t7), which was associated with their degradation. However, the cottage cheese enriched with the microencapsulated extracts, that have revealed a lower activity at the initial time, showed an increase at t7. This improvement can be explained by an effective protection provided by the microspheres together with a sustained release. Analyses performed on the studied cottage cheese samples showed the maintenance of the nutritional properties and no colour modifications were noticed.

  19. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    PubMed

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state.

  20. Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying.

    PubMed

    Santana, Audirene A; Cano-Higuita, Diana M; de Oliveira, Rafael A; Telis, Vânia R N

    2016-12-01

    The objective of this work was to study the spray drying of jussara pulp using ternary mixtures of gum Arabic (GA) and modified starch (MS) together with either whey protein concentrate (WPC) or soy protein isolate (SPI), as the carrier agents. Two experimental mixture designs and triangular response surfaces were used to evaluate the effects of the mixtures on the responses for powders formulated with GA:MS:WPC and GA:MS:SPI, respectively. The spray drying process was selected for each carrier agent mixture, aiming to maximum the process yield (PY), solubility (S), retention of total anthocyanins (RTA) and encapsulation efficiency (EE). It was shown that the ternary formulations showed higher PY, S and RTA than the pure and binary formulations, as well as good results for EE and a low moisture content, showing that the use of GA and MS together with either WPC or SPI provide better microencapsulation of the jussara pulp. PMID:27374499

  1. Preparation of high emissivity NiCr2O4 powders with a spinel structure by spray drying

    NASA Astrophysics Data System (ADS)

    Cheng, Xu-Dong; Min, Jie; Zhu, Zhen-Qi; Ye, Wei-Ping

    2012-02-01

    Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200°C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.

  2. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles.

    PubMed

    Chen, Jie; Ormes, James D; Higgins, John D; Taylor, Lynne S

    2015-02-01

    Amorphous solid dispersions are frequently prepared by spray drying. It is important that the resultant spray dried particles do not crystallize during formulation, storage, and upon administration. The goal of the current study was to evaluate the impact of surfactants on the crystallization of celecoxib amorphous solid dispersions (ASD), suspended in aqueous media. Solid dispersions of celecoxib with hydroxypropylmethylcellulose acetate succinate were manufactured by spray drying, and aqueous suspensions were prepared by adding the particles to acidified media containing various surfactants. Nucleation induction times were evaluated for celecoxib in the presence and absence of surfactants. The impact of the surfactants on drug and polymer leaching from the solid dispersion particles was also evaluated. Sodium dodecyl sulfate and Polysorbate 80 were found to promote crystallization from the ASD suspensions, while other surfactants including sodium taurocholate and Triton X100 were found to inhibit crystallization. The promotion or inhibition of crystallization was found to be related to the impact of the surfactant on the nucleation behavior of celecoxib, as well as the tendency to promote leaching of the drug from the ASD particle into the suspending medium. It was concluded that surfactant choice is critical to avoid failure of amorphous solid dispersions through crystallization of the drug.

  3. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    PubMed

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown.

  4. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone.

    PubMed

    Fujimori, Miki; Kadota, Kazunori; Kato, Kouki; Seto, Yoshiki; Onoue, Satomi; Sato, Hideyuki; Ueda, Hiroshi; Tozuka, Yuichi

    2016-01-01

    The improvement in the solubility and dissolution rate may promote a superior absorption property towards the human body. The spray-dried powders (SDPs) of ipriflavone, which was used as a model hydrophobic flavone, with trans-glycosylated rutin (Rutin-G) showed the highest solubilizing effect of ipriflavone among three types of trans-glycosylated food additives. The SDPs of ipriflavone with Rutin-G have both a significant higher dissolution rate and solubility enhancement of ipriflavone. This spray-dried formulation of ipriflavone with Rutin-G exhibited a low hygroscopicity as a critical factor in product preservation. In addition, an improvement in the oral absorption of ipriflavone was achieved by means of preparing composite particles of ipriflavone/Rutin-G via spray drying, indicating a 4.3-fold increase in the area under the plasma concentration-time curve compared with that of untreated ipriflavone. These phenomena could be applicable to food ingredients involving hydrophobic flavones for producing healthy food with a high quality.

  5. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    PubMed Central

    2012-01-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% (w/v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation. PMID:22587614

  6. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  7. Synthesis of Cr-doped CaTiSiO{sub 5} ceramic pigments by spray drying

    SciTech Connect

    Lyubenova, T. Stoyanova Matteucci, F.; Costa, A.L.; Dondi, M.; Ocana, M.

    2009-04-02

    Cr-doped CaTiSiO{sub 5} was synthesized by spray drying and conventional ceramic method in order to assess its potential as ceramic pigment. The evolution of the phase composition with thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses (DTA-TGA-EGA). Powder morphology and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. The color efficiency of pigments was evaluated by optical spectroscopy (UV-vis-NIR) and colorimetric analysis (CIE Lab). Results proved that spray drying is an efficient procedure to prepare highly reactive pigment precursors. The spray-dried powders consist of hollow spherical particles with aggregate size in the 1-10 {mu}m range, developing a brown coloration. Optical spectra reveal the occurrence of Cr(III) and Cr(IV), both responsible for the brown color of this pigment. The former occupies the octahedral site of titanite, in substitution of Ti(IV), while the latter is located at the tetrahedral site, where replaces Si(IV)

  8. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method.

    PubMed

    Li, Feng-Qian; Ji, Rui-Rui; Chen, Xu; You, Ben-Ming; Pan, Yong-Hua; Su, Jia-Can

    2010-12-01

    To control the release rate and mask the bitter taste, cetirizine dihydrochloride (CedH) was entrapped within chitosan nanoparticles (CS-NPs) using an ionotropic gelation process, followed by microencapsulation to produce CS matrix microparticles using a spray-drying method. The aqueous colloidal CS-NPs dispersions with a drug encapsulation efficiency (EE) of <15%, were then spray dried to produce a powdered nanoparticles-in-microparticles system with an EE of >70%. The resultant spherical CS microparticles had a smooth surface, were free of organic solvent residue and showed a diameter range of 0.5~5 μm. The in vitro drug release properties of CedH encapsulated microparticles showed an initial burst effect during the first 2 h. Drug release from the matrix CS microparticles could be retarded by the crosslinking agent pentasodium tripolyphosphate or the wall material. The technique of 'ionotropic gelation' combined with 'spray-drying' could be applicable for preparation of CS nanoparticlesin-microparticles drug delivery systems. CS-NPs based microparticles might provide a potential micro-carrier for oral administration of the freely water-soluble drug--CedH.

  9. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    PubMed

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making.

  10. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept.

  11. Impact of spray-dried bovine serum and environment on turkey performance.

    PubMed

    Campbell, J M; Quigley, J D; Russell, L E

    2004-10-01

    Two 28-d experiments were conducted with 280 and 224 Hybrid turkeys for experiments 1 (7 poults per pen, 10 pens per treatment) and 2 (7 poults per pen, 8 pens per treatment), respectively. The effect of Innavax (INX; spray-dried serum) administered in drinking water on turkey performance was evaluated. In both experiments, turkeys were randomly assigned to receive tap water mixed with 0, 0.45, 0.90, or 1.35% (wt/wt) INX and housed in floor pens containing clean (experiment 1) or used (experiment 2) litter. In experiment 1, a quadratic response in average daily gain (ADG), water intake, and feed efficiency occurred (P < 0.05) in the first week with increasing levels of INX. During the second and third weeks, a quadratic response in water intake occurred (P < 0.05) with 0.90% INX resulting in peak intake. In the fourth week, ADG increased quadratically (P < 0.05) with increasing INX. Overall for the 4-wk period, ADG and water intake increased quadratic manner (P < 0.05) with increasing INX to a maximum at 0.90%. In experiment 2, ADG and water intake increased linearly (P < 0.05) during the first week. Feed efficiency was unaffected (P > 0.05) by experimental treatment during the first week but increased linearly (P < 0.05) from d 8 to 14 and d 15 to 21. The growth response to INX was influenced by environment. A greater growth response of turkeys to INX was observed when turkeys were housed in floor pens with used litter compared with floor pens with clean litter. PMID:15510553

  12. Protein micro and nanoencapsulation within glycol-chitosan/Ca²+/alginate matrix by spray drying.

    PubMed

    Erdinc, B; Neufeld, R J

    2011-06-01

    Encapsulation of therapeutic peptides and proteins into polymeric micro and nanoparticulates has been proposed as a strategy to overcome limitations to oral protein administration. Particles having diameter less than 5 µm are able to be taken up by the M cells of Peyer's patches found in intestinal mucosa. Current formulation methodologies involve organic solvents and several time consuming steps. In this study, spray drying was investigated to produce protein loaded micro/nanoparticles, as it offers the potential for single step operation, producing dry active-loaded particles within the micro to nano-range. Spherical, smooth surfaced particles were produced from alginate/protein feed solutions. The effect of operational parameters on particle properties such as recovery, residual activity and particle size was studied using subtilisin as model protein. Particle recovery depended on the inlet temperature of the drying air, and mean particle size ranged from 2.2 to 4.5 µm, affected by the feed rate and the alginate concentration in the feed solution. Increase in alginate:protein ratio increased protein stability. Presence of 0.2 g trehalose/g particle increased the residual activity up to 90%. Glycol-chitosan-Ca(2+)alginate particles were produced in a single step operation, with resulting mean diameter of 3.5 μm. Particles showed fluorescein isothiocyanate labeled bovine serum albumin (BSA)-protein entrapment with increasing concentration toward the particle surface. Similar, limited release profiles of BSA, subtilisin and lysozyme were observed in gastric simulation, with ultimate full release of the proteins in gastrointestinal simulation. PMID:21449696

  13. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  14. Spray dried glyceryl monooleate-magnesium trisilicate dry powder as cubic phase precursor.

    PubMed

    Shah, Manish H; Biradar, Shailesh V; Paradkar, Anant R

    2006-10-12

    Glyceryl monooleate (GMO) is a polar amphiphilic lipid, which forms different sequential lyotropic liquid crystals upon hydration. GMO has been utilized for various delivery systems and routes of administrations. Owing to sticky and waxy nature of GMO, preparation of oral solid dosage form utilizing GMO is still a challenge for pharmaceutical researchers. Therefore, the objective of the present work was to fabricate dry powder precursors using GMO, which upon hydration in situ forms cubic phase and can be wisely used for fabrication of oral solid dosage forms. In addition to this, dry powder precursor was evaluated for drug loading, in vitro release behavior and in vivo performance of model drug diclofenac sodium (DiNa). The dry powder precursor was obtained by spray-drying GMO with DiNa using magnesium trisilicate (MTS) as adsorbent. The percent drug entrapment of various batches of powder precursor was in the range of 84-93% indicating high content uniformity. SEM and image analysis showed that as the amount of MTS in powder precursor was increased, the particle size decreased. Furthermore, the viscosity of powder precursor was function of amount of MTS. The rate of water uptake of powder precursor was higher due to uniform layer of GMO on the MTS surface, which led to faster transformation of lamellar phase into cubic phase. The polarizing light microscopy confirmed that cubic phase was formed upon hydration of powder precursor. The drug released from powder precursor was initially governed by the cubic phase formed and in later stage it depends upon dynamic swelling behavior of hexagonally packed cylindrical aggregates. The drug loaded powder precursor was found to have more effective and prolonged anti-inflammatory and analgesic activity as compared to pure drug. Thus the dry powder precursor of cubic phase was prepared in which drug release was entirely governed by the mesophases formed.

  15. Formulation Development, Process Optimization, and In Vitro Characterization of Spray-Dried Lansoprazole Enteric Microparticles.

    PubMed

    Vora, Chintan; Patadia, Riddhish; Mittal, Karan; Mashru, Rajashree

    2016-01-01

    This research focuses on the development of enteric microparticles of lansoprazole in a single step by employing the spray drying technique and studies the effects of variegated formulation/process variables on entrapment efficiency and in vitro gastric resistance. Preliminary trials were undertaken to optimize the type of Eudragit and its various levels. Further trials included the incorporation of plasticizer triethyl citrate and combinations of other polymers with Eudragit S 100. Finally, various process parameters were varied to investigate their effects on microparticle properties. The results revealed Eudragit S 100 as the paramount polymer giving the highest gastric resistance in comparison to Eudragit L 100-55 and L 100 due to its higher pH threshold and its polymeric backbone. Incorporation of plasticizer not only influenced entrapment efficiency, but diminished gastric resistance severely. On the contrary, polymeric combinations reduced entrapment efficiency for both sodium alginate and glyceryl behenate, but significantly influenced gastric resistance for only sodium alginate and not for glyceryl behenate. The optimized process parameters were comprised of an inlet temperature of 150°C, atomizing air pressure of 2 kg/cm(2), feed solution concentration of 6% w/w, feed solution spray rate of 3 ml/min, and aspirator volume of 90%. The SEM analysis revealed smooth and spherical shape morphologies. The DSC and PXRD study divulged the amorphous nature of the drug. Regarding stability, the product was found to be stable under 3 months of accelerated and long-term stability conditions as per ICH Q1A(R2) guidelines. Thus, the technique offers a simple means to generate polymeric enteric microparticles that are ready to formulate and can be directly filled into hard gelatin capsules. PMID:27222612

  16. Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30.

    PubMed

    Thybo, Pia; Pedersen, Betty L; Hovgaard, Lars; Holm, Rene; Mullertz, Anette

    2008-01-01

    The main purpose of this study was to obtain stable, well-characterized solid dispersions (SDs) of amorphous probucol and polyvinylpyrrolidone K-30 (PVP-K30) with improved dissolution rates. A secondary aim was to investigate the flow-through dissolution method for in-vitro dissolution measurements of small-sized amorphous powders dispersed in a hydrophilic polymer. SDs were prepared by spray drying solutions of probucol and different amounts of PVP-K30. The obtained SDs were characterized by dissolution rate measurements in a flow-through apparatus, X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), particle sizing (laser diffraction) and Brunauer-Emmett-Teller Method (BET) and results were compared with starting material and a physical mixture. The physical stability was monitored after storage at 25 degrees C and 60% RH for up to 12 weeks. The flow-through method was found suitable as dissolution method. All SDs showed improved in-vitro dissolution rates when compared to starting material and physical mixtures. The greatest improvement in the in-vitro dissolution rate was observed for the highest polymer to drug ratio. By means of the results from XRPD and DSC, it was argued that the presence of amorphous probucol improved the dissolution rate, but the amorphous state could not fully account for the difference in dissolution profiles between the SDs. It was suggested that the increase in surface area due to the reduction in particle size contributed to an increased dissolution rate as well as the presence of PVP-K30 by preventing aggregation and drug re-crystallization and by improving wettability during dissolution. The stabilizing effect of the polymer was verified in the solid state, as all the SDs retained probucol in the amorphous state throughout the entire length of the stability study.

  17. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    PubMed

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making. PMID:26712628

  18. Evaluation of the Microcentrifuge Dissolution Method as a Tool for Spray-Dried Dispersion.

    PubMed

    Wu, Benjamin; Li, Jinjiang; Wang, Yahong

    2016-03-01

    Although using spray-dried dispersions (SDDs) to improve the bioavailability of poorly water-soluble compounds has become a common practice in supporting the early phases of clinical studies, their performance evaluation, whether in solid dosage forms or alone, still presents significant challenges. A microcentrifuge dissolution method has been reported to quickly assess the dissolution performance of SDDs. While the microcentrifuge dissolution method has been used in the SDD community, there is still a need to understand the mechanisms about the molecular species present in supernatant after centrifugation, the molecular nature of active pharmaceutical ingredients (APIs), as well as the impact of experimental conditions. In this paper, we aim to assess the effect of API and polymer properties on the dissolution behavior of SDDs along with centrifuging parameters, and for this, two poorly water-soluble compounds (indomethacin and ketoconazole) and two commonly used polymers in the pharmaceutical industry (PVP and HPMC-AS) were chosen to prepare SDDs. A typical microcentrifuge dissolution procedure as reported in the publication (Curatolo et al., Pharm Res 26:1419-1431, 2009) was followed. In addition, after separation of the supernatant from precipitation, some of the samples were filtered through filters of various sizes to investigate the particulate nature (particle size) of the supernatant. Furthermore, the centrifuge speed was varied to study sedimentation of API, SDD, or polymer particles. The results indicated that for the SDDs of four drug-polymer pairs, microcentrifuge dissolution exhibited varied behaviors, depending on the polymer and the drug used. The SDDs of indomethacin with either PVP or HPMC-AS showed a reproducible dissolution with minimum variability even after filtration and subjecting to varied centrifugation speed, suggesting that the supernatant behaved solution-like. However, ketoconazole-PVP and ketoconazole-HPMC-AS SDDs displayed a

  19. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    PubMed

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  20. Nano spray-dried sodium chloride and its effects on the microbiological and sensory characteristics of surface-salted cheese crackers.

    PubMed

    Moncada, Marvin; Astete, Carlos; Sabliov, Cristina; Olson, Douglas; Boeneke, Charles; Aryana, Kayanush J

    2015-09-01

    Reducing particle size of salt to approximately 1.5 µm would increase its surface area, leading to increased dissolution rate in saliva and more efficient transfer of ions to taste buds, and hence, perhaps, a saltier perception of foods. This has a potential for reducing the salt level in surface-salted foods. Our objective was to develop a salt using a nano spray-drying method, to use the developed nano spray-dried salt in surface-salted cheese cracker manufacture, and to evaluate the microbiological and sensory characteristics of cheese crackers. Sodium chloride solution (3% wt/wt) was sprayed through a nano spray dryer. Particle sizes were determined by dynamic light scattering, and particle shapes were observed by scanning electron microscopy. Approximately 80% of the salt particles produced by the nano spray dryer, when drying a 3% (wt/wt) salt solution, were between 500 and 1,900 nm. Cheese cracker treatments consisted of 3 different salt sizes: regular salt with an average particle size of 1,500 µm; a commercially available Microsized 95 Extra Fine Salt (Cargill Salt, Minneapolis, MN) with an average particle size of 15 µm; and nano spray-dried salt with an average particle size of 1.5 µm, manufactured in our laboratory and 3 different salt concentrations (1, 1.5, and 2% wt/wt). A balanced incomplete block design was used to conduct consumer analysis of cheese crackers with nano spray-dried salt (1, 1.5, and 2%), Microsized salt (1, 1.5, and 2%) and regular 2% (control, as used by industry) using 476 participants at 1wk and 4mo. At 4mo, nano spray-dried salt treatments (1, 1.5, and 2%) had significantly higher preferred saltiness scores than the control (regular 2%). Also, at 4mo, nano spray-dried salt (1.5 and 2%) had significantly more just-about-right saltiness scores than control (regular 2%). Consumers' purchase intent increased by 25% for the nano spray-dried salt at 1.5% after they were notified about the 25% reduction in sodium content of the

  1. Dry powder cationic lipopolymeric nanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage

    PubMed Central

    Vadakkan, Mithun Varghese; Annapoorna, K; Sivakumar, KC; Mundayoor, Sathish; Kumar, GS Vinod

    2013-01-01

    Excipients having self-assembling properties are less explored in the field of dry powder inhalation (DPI) technology. An amphiphilic lipopolymer system was developed using stearic acid (SA) and branched polyethyleneimine (BPEI) (1800 Dalton), at different proportions by covalent conjugation. A molecular dynamic (MD) simulation tool was employed for predicting the carrier behavior in a polar in vivo condition. The structural characterization was carried out using nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared (FTIR) spectroscopy. The physical nature of the lipopolymer was analyzed by differential scanning calorimetry. Determination of zeta potential and diameter of the micelles showed existence of cationic particles in the nano size range when a lower number of primary amino groups of BPEI was grafted with SA. The rifampicin (RIF)-loaded lipopolymer was also formulated further into spray-dried microparticles. Powder X-ray diffraction (PXRD) studies revealed that the RIF API (active pharmaceutical ingredient) exists as molecular dispersion in spray-dried microparticles. Topological analysis of the spray-dried nanomicelle was carried out using scanning electron microscopy (SEM). A large population of the drug-carrying particles were found to be under the inhalable size range (fine particle fraction 67.88% ± 3%). In vitro drug release kinetics from spray-dried nanomicelles were carried out at lung fluid pH. PMID:23990716

  2. Influences of process and formulation parameters on powder flow properties and immunogenicity of spray dried polymer particles entrapping recombinant pneumococcal surface protein A.

    PubMed

    Anish, Chakkumkal; Upadhyay, Arun K; Sehgal, Devinder; Panda, Amulya Kumar

    2014-05-15

    Particle size, antigen load and its release characteristic are the three the main attributes of polymer particles based vaccine delivery systems. The present studies focus on the formulation of spray dried polylactide microparticles entrapping pneumococcal surface protein A (PspA). Influence of process variables during polymer particle formation were optimized by using half-factorial design. Feed rate and atomization pressure during spray drying were found to be the most important parameters for achieving uniform size particles. Spray drying of preformed particles from different stages of solvent evaporation method resulted in formation of particle having different porosity and protein release profile. Presence of polyvinyl alcohol in the external aqueous phase not only contributed towards regulating the size of particles but also influenced the burst release of protein from particles. Polymer particles entrapping PspA elicited robust IgG responses both in mice and in rats. Antigen load in microparticles correlated with the antibody titer indicating the maintenance of protein integrity during particle formation using spray drying. Both, process engineering and formulation parameters during spray drying influenced the particles in terms of size, load and antigen release characteristics.

  3. Impact of extra virgin olive oil and ethylenediaminetetraacetic acid (EDTA) on the oxidative stability of fish oil emulsions and spray-dried microcapsules stabilized by sugar beet pectin.

    PubMed

    Polavarapu, Sudheera; Oliver, Christine M; Ajlouni, Said; Augustin, Mary Ann

    2012-01-11

    The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.

  4. In vitro antioxidant and in vivo hepatoprotective effect on ethanol-mediated liver damage of spray dried Vernonia amygdalina water extract.

    PubMed

    Ho, Wan Yong; Yeap, SweeKeong; Liang, Woon San; Beh, Boon Kee; Mohamad, NurulElyani; Alitheen, Noorjahan Banu

    2015-01-01

    Vernonia amygdalina is a strong natural antioxidant that possessed various medicinal properties. In this study, the spray-dried water extract of V. amygdalina was evaluated for its in vitro antioxidant capacity and in vivo hepatoprotective effect against alcoholic-mediated liver damage. Total phenolic and flavonoid content of spray-dried V. amygdalina water extract were determined. Liver enzyme profiles, liver antioxidant level and nitric oxide level were evaluated in alcohol-induced liver injured mice or co-supplement with spray-dried V. amydalina. Water extract of spray-dried V. amygalina that contained phenolic content of 24.8±1.5 mg/g gallic acid equivalent and total flavonoid content of 25.7±1.3 mg/g catechin equivalent was able to inhibit 50% of xanthine and tyrosinase oxidation at 170 μg/ml and 2 mg/mL, respectively. On the other hand, extracts at both 10 and 50 mg/kg body weight were able to reduce the levels of Alanine transaminase (ALT), Alkaline phosphatase (ALP), Aspartate transaminase (AST), triglyceride and total bilirubin content inthe alcohol-mediated liver injury in mice. Furthermore, it also helped to increase levels of Superoxide dismutase (SOD), Ferric reducing ability of plasma (FRAP) and reduce the levels of Nitric oxide (NO) and Malondialdehyde (MDA) in the liver of the treated mice. These resultssuggestedthat water extract of spray-dried V. amygdalina exhibited liver protective effect, which could be contributed by its antioxidant properties.

  5. Evaluation of the mucosal irritation potency of co-spray dried Amioca/poly(acrylic acid) and Amioca/Carbopol 974P mixtures.

    PubMed

    Adriaens, E; Ameye, D; Dhondt, M M M; Foreman, P; Remon, J P

    2003-03-26

    The purpose of this study was to evaluate the biocompatibility of different Amioca/poly(acrylic acid) and Amioca/Carbopol 974P co-spray dried mixtures with an alternative mucosal irritation test using slugs. The irritation potential of the mixtures was measured by the amount of mucus produced during a repeated 30-min contact period. Additionally, membrane damage was assessed by measuring the protein and enzyme release from the body wall of slugs after treatment. All the Amioca/poly(acrylic acid) co-spray dried mixtures (50:50 and 25:75 ratios) induced slight irritation of the mucosal tissue as was demonstrated by the significantly increased mucus production however no increased protein and enzyme release was detected. Co-spray dried Amioca/Carbopol 974P mixtures containing 40% and more Carbopol 974P demonstrated a significantly higher mucus production and release of cytosolic LDH, indicating membrane damage. The total mucus production of the slugs treated with the co-spray dried mixtures containing up to 20% Carbopol 974P was significantly higher compared to the blank slugs. However, these mixtures induced no membrane damage since no additional effect on the protein release and no enzyme release was detected. By co-spray drying up to 20% Carbopol 974P could be incorporated without showing a distinct sign of irritation. These mixtures can be considered as potentially safe bioadhesive carriers.

  6. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel.

    PubMed

    Sawicki, Emilia; Beijnen, Jos H; Schellens, Jan H M; Nuijen, Bastiaan

    2016-09-25

    Previously, it was shown in Phase I clinical trials that solubility-limited oral absorption of docetaxel and paclitaxel can be drastically improved with a freeze dried solid dispersion (fdSD). These formulations, however, are unfavorable for further clinical research because of limitations in amorphicity of SD and scalability of the production process. To resolve this, a spray drying method for an SD (spSD) containing docetaxel or paclitaxel and subsequently drug products were developed. Highest saturation solubility (Smax), precipitation onset time (Tprecip), amorphicity, purity, residual solvents, yield/efficiency and powder flow of spSDs were studied. Drug products were monitored for purity/content and dissolution during 24 months at +15-25°C. Docetaxel spSD Smax was equal to that of fdSD but Tprecip was 3 times longer. Paclitaxel spSD Smax was 30% increased but Tprecip was equal to fdSD. spSDs were fully amorphous, >99% pure, <5% residual solvents, mean batch yield was 100g and 84%. spSDs had poor powder flow characteristics, which could not be resolved by changing settings, but by using 75% lactose as diluent. The drug product was a tablet with docetaxel or paclitaxel spSD and was stable for at least 24 months. Spray drying is feasible for the production of SD of docetaxel or paclitaxel for upcoming clinical trials.

  7. Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix.

    PubMed

    Mlalila, Nichrous; Swai, Hulda; Kalombo, Lonji; Hilonga, Askwar

    2014-01-01

    The goal of this study was to explore the effects of spray-drying on w/o/w double emulsions of methyltestosterone (MT) loaded in a stearic acid matrix. MT-loaded nanoparticles were formulated by a water-in-oil-in-water emulsion technique using 50, 75, and 100 mg of stearic acid, 2% and 3% w/v polyvinyl alcohol, 5% w/v lactose, and 0.2% w/v chitosan. The emulsions were immediately spray-dried based on an optimized model of inlet temperature and pump rate, and characterized for optimized responses with regard to particle size, polydispersity index, and zeta potential, for both emulsion and powder samples. Dynamic light scattering analysis shown that the nanoparticles increased in size with increasing concentrations of polyvinyl alcohol and stearic acid. Scanning electron microscopy indicated that the MT-loaded nanoparticles were spherical in shape, had a smooth surface, and were in an amorphous state, which was confirmed by differential scanning calorimetry. These MT-loaded nanoparticles are a promising candidate carrier for the delivery of MT; however, further studies are needed in order to establish the stability of the system and the cargo release profile under normal conditions of use. PMID:25489238

  8. Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix

    PubMed Central

    Mlalila, Nichrous; Swai, Hulda; Kalombo, Lonji; Hilonga, Askwar

    2014-01-01

    The goal of this study was to explore the effects of spray-drying on w/o/w double emulsions of methyltestosterone (MT) loaded in a stearic acid matrix. MT-loaded nanoparticles were formulated by a water-in-oil-in-water emulsion technique using 50, 75, and 100 mg of stearic acid, 2% and 3% w/v polyvinyl alcohol, 5% w/v lactose, and 0.2% w/v chitosan. The emulsions were immediately spray-dried based on an optimized model of inlet temperature and pump rate, and characterized for optimized responses with regard to particle size, polydispersity index, and zeta potential, for both emulsion and powder samples. Dynamic light scattering analysis shown that the nanoparticles increased in size with increasing concentrations of polyvinyl alcohol and stearic acid. Scanning electron microscopy indicated that the MT-loaded nanoparticles were spherical in shape, had a smooth surface, and were in an amorphous state, which was confirmed by differential scanning calorimetry. These MT-loaded nanoparticles are a promising candidate carrier for the delivery of MT; however, further studies are needed in order to establish the stability of the system and the cargo release profile under normal conditions of use. PMID:25489238

  9. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs: a particle engineering approach.

    PubMed

    Bohr, Adam; Boetker, Johan P; Rades, Thomas; Rantanen, Jukka; Yang, Mingshi

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered with solid dispersions, for instance regarding their physical stability, and the full potential of these formulations has yet to be reached. Solid dispersions have mainly been used to produce immediate release systems using water-soluble polymers but an extended release system may provide equal or better performance due to enhancement in the pharmacokinetics and low variability in plasma concentration. Progress in processing technologies and particle engineering provides new opportunities to prepare particle-based solid dispersions with control of physical characteristics and tailored drug release kinetics. Spray-drying and electrospraying are both technologies that allow production and continuous manufacturing of particle-based amorphous solid dispersions in a single step process and electrospinning further allows the production of fiber based systems. This review presents the use of spray drying and electrospraying/electrospinning as techniques for preparing particle-based solid dispersions, describes the particle formation processes via numerical and experimental models and discusses particle engineering using these techniques. Examples are given on the applications of these techniques for preparing solid dispersions and the challenges associated with the techniques such as stability, preparation of final dosage form and scale-up are also discussed.

  10. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  11. Technological Characterization and Stability of Ilex paraguariensis St. Hil. Aquifoliaceae (Maté) Spray-Dried Powder

    PubMed Central

    Yatsu, Francini K.J.; Borghetti, Greice S.

    2011-01-01

    Abstract The present work was designed to produce an Ilex paraguariensis spray-dried powder (SDP), in semi-industrial scale, in order to characterize its technological and chemical properties as well as to evaluate the thermal stability and photostability of the main polyphenol constituents. The yield of the spray-drying process was satisfactory (67%). The resulting SDP showed to be a material presenting spherical particles with a mean size of 19.6 μm, smooth surface, and good flow properties. The four polyphenol compounds previously reported for the species—neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin—were identified. Regarding the photostability test, the polyphenols present in the SDP proved to be stable against ultraviolet C radiation for 48 hours, independently of the packaging material. In the thermal stability test, the polyphenols were demonstrated to be hygroscopic and responsive to temperature (40°C) under an atmosphere of high relative humidity (75%) for 4 months, especially when the SDP was conditioned in permeable flasks. These findings demonstrate that heat and residual moisture content play an important role in the stability of the polyphenols and reinforce the relevance of conditioning SDP in humid tight packages under low temperatures. PMID:21370969

  12. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  13. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures.

    PubMed

    Carné-Sánchez, Arnau; Imaz, Inhar; Cano-Sarabia, Mary; Maspoch, Daniel

    2013-03-01

    Metal-organic frameworks (MOFs) are among the most attractive porous materials known today. Their miniaturization to the nanoscale--into nanoMOFs--is expected to serve myriad applications from drug delivery to membranes, to open up novel avenues to more traditional storage and catalysis applications, and to enable the creation of sophisticated superstructures. Here, we report the use of spray-drying as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm. This strategy conceptually mimics the emulsions used by chemists to confine the synthesis of materials, but does not require secondary immiscible solvents or surfactants. We demonstrate that the resulting spherical, hollow superstructures can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nanoMOFs. This spray-drying strategy enables the construction of multicomponent MOF superstructures, and the encapsulation of guest species within these superstructures. We anticipate that this will provide new routes to capsules, reactors and composite materials.

  14. Surelease or organic solution of ethylcellulose in preparation of sustained release theophylline micromatrices or matrices using spray drying technique.

    PubMed

    Afrasiabi Garekani, Hadi; Sedighi, Samira; Sadeghi, Fatemeh

    2015-03-01

    This study evaluated ethylcellulose (EC) in two forms in preparation of sustained release theophylline microparticles using spray drying. Spray dried (SD) samples at different drug:polymer ratios were prepared using Surelease (SDaq) or organic solutions of ethylcellulose (SDor). Properties of particles (yield, particle morphology, size distribution and release profiles) were examined. Differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies were performed to track polymorphic changes and/or drug polymer interactions. SD samples were compressed and crushing strengths and release profiles were determined. The yields were in the range of 55-70%. The SD samples were nearly spherical with numerous fine particles attached to their surfaces. The SDor samples showed the smallest particle size. No polymorphism or drug-polymer interaction was observed. Uncompressed SDaq samples showed inadequate sustained release of drug compared to SDor samples. Surelease content did not affect drug release from SDaq samples. Tablets prepared from SDaq were softer and showed some plasticity, while those prepared from SDor exhibited higher crushing strengths. Tablets prepared from SDaq showed sustained release properties while the release of drug from compressed SDor samples were too slow. Overall Surelease was unable to sustain release of theophylline from SDaq microparticles, however, in compacted form showed more appropriate drug release than compacted SDor.

  15. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets

    PubMed Central

    Li, Feng-Qian; Yan, Cheng; Bi, Juan; Lv, Wei-Lin; Ji, Rui-Rui; Chen, Xu; Su, Jia-Can; Hu, Jin-Hong

    2011-01-01

    Scopolamine hydrobromide (SH)-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs) using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w) and loading capacity of 20% (w/w) were achieved for the microparticles, which ranged from 2 μm to 8 μm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH’s intrinsic characteristics. PMID:21720502

  16. Surelease or organic solution of ethylcellulose in preparation of sustained release theophylline micromatrices or matrices using spray drying technique.

    PubMed

    Afrasiabi Garekani, Hadi; Sedighi, Samira; Sadeghi, Fatemeh

    2015-03-01

    This study evaluated ethylcellulose (EC) in two forms in preparation of sustained release theophylline microparticles using spray drying. Spray dried (SD) samples at different drug:polymer ratios were prepared using Surelease (SDaq) or organic solutions of ethylcellulose (SDor). Properties of particles (yield, particle morphology, size distribution and release profiles) were examined. Differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies were performed to track polymorphic changes and/or drug polymer interactions. SD samples were compressed and crushing strengths and release profiles were determined. The yields were in the range of 55-70%. The SD samples were nearly spherical with numerous fine particles attached to their surfaces. The SDor samples showed the smallest particle size. No polymorphism or drug-polymer interaction was observed. Uncompressed SDaq samples showed inadequate sustained release of drug compared to SDor samples. Surelease content did not affect drug release from SDaq samples. Tablets prepared from SDaq were softer and showed some plasticity, while those prepared from SDor exhibited higher crushing strengths. Tablets prepared from SDaq showed sustained release properties while the release of drug from compressed SDor samples were too slow. Overall Surelease was unable to sustain release of theophylline from SDaq microparticles, however, in compacted form showed more appropriate drug release than compacted SDor. PMID:24286215

  17. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel.

    PubMed

    Sawicki, Emilia; Beijnen, Jos H; Schellens, Jan H M; Nuijen, Bastiaan

    2016-09-25

    Previously, it was shown in Phase I clinical trials that solubility-limited oral absorption of docetaxel and paclitaxel can be drastically improved with a freeze dried solid dispersion (fdSD). These formulations, however, are unfavorable for further clinical research because of limitations in amorphicity of SD and scalability of the production process. To resolve this, a spray drying method for an SD (spSD) containing docetaxel or paclitaxel and subsequently drug products were developed. Highest saturation solubility (Smax), precipitation onset time (Tprecip), amorphicity, purity, residual solvents, yield/efficiency and powder flow of spSDs were studied. Drug products were monitored for purity/content and dissolution during 24 months at +15-25°C. Docetaxel spSD Smax was equal to that of fdSD but Tprecip was 3 times longer. Paclitaxel spSD Smax was 30% increased but Tprecip was equal to fdSD. spSDs were fully amorphous, >99% pure, <5% residual solvents, mean batch yield was 100g and 84%. spSDs had poor powder flow characteristics, which could not be resolved by changing settings, but by using 75% lactose as diluent. The drug product was a tablet with docetaxel or paclitaxel spSD and was stable for at least 24 months. Spray drying is feasible for the production of SD of docetaxel or paclitaxel for upcoming clinical trials. PMID:27480397

  18. The amorphous state of spray-dried maltodextrin: sub-sub-Tg enthalpy relaxation and impact of temperature and water annealing.

    PubMed

    Descamps, Nicolas; Palzer, Stefan; Zuercher, Ulrich

    2009-01-01

    The annealing behaviour of a spray-dried maltodextrin was investigated by differential scanning calorimetry. Special attention was paid to the effect of temperature and humidity on the annealing process. Comparison was also made with the glassy state of the same compound prepared by various cooling processes. The presence of a very pronounced sub-T(g) peak upon ageing reveals the specificities of the glass and the complexity of the relaxation spectrum of the spray-dried material. This peak seems actually to correspond to a partial ergodicity recovery that may be attributed to onset of molecular mobility occurring below T(g). The position of the sub-T(g) peak with regard to the conventional T(g) was systematically studied. It clearly showed the difference between the effect of temperature and water plasticization on the relaxations occurring in the glassy state of materials prepared by spray-drying. PMID:18977472

  19. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies.

    PubMed

    Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat

    2016-06-15

    Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH.

  20. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed.

  1. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies.

    PubMed

    Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat

    2016-06-15

    Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH. PMID:26868567

  2. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion☆

    PubMed Central

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900

  3. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-01

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %.

  4. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles.

    PubMed

    Lallbeeharry, P; Tian, Y; Fu, N; Wu, W D; Woo, M W; Selomulya, C; Chen, X D

    2014-09-01

    Mixing surfactants with whole milk feed before spray drying could be a commercially favorable approach to produce instant whole milk powders in a single step. Pure whole milk powders obtained directly from spray drying often have a high surface fat coverage (up to 98%), rendering them less stable during storage and less wettable upon reconstitution. Dairy industries often coat these powders with lecithin, a food-grade surfactant, in a secondary fluidized-bed drying stage to produce instant powders. This study investigated the changes in wetting behavior on the surface of a whole milk particle caused by the addition of surfactants before drying. Fresh whole milk was mixed with 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin (total solids), and the wetting behavior of the shell formed by each sample was captured using a single-droplet drying device at intermediate drying stages as the shell was forming. The addition of surfactants improved shell wettability from the beginning of shell formation, producing more wettable milk particles after drying. The increase in surfactant loading by 10 times reduced the wetting time from around 30s to <5s. At the same loading of 1% (wt/wt; total solids), milk particles with Tween 80 were much more wettable than those with lecithin (<5s compared with >30s). We proposed that Tween 80 could adsorb at the oil-water interface of fat globules, making the surface fat more wettable, whereas lecithin tends to combine with milk proteins to form a complex, which then competes for the air-water surface with fat globules. Spray-drying experiments confirmed the greatly improved wettability of whole milk powders by the addition of either 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin; wetting time was reduced from 35±4s to <15s. To the best of our knowledge, this is the first time that a dynamic droplet drying system has been used to elucidate the complex interactions between ionic or nonionic surfactants and milk components (both proteins and fat

  5. Inhaled sodium cromoglycate to treat cough in advanced lung cancer patients.

    PubMed Central

    Moroni, M.; Porta, C.; Gualtieri, G.; Nastasi, G.; Tinelli, C.

    1996-01-01

    C-fibres probably represent the common final pathway in both ACE inhibitors and neoplastic cough. A recent report demonstrated that inhaled sodium cromoglycate is an effective treatment for ACE inhibitors' cough; this effect might be due to the suppression of afferent unmyelinated C-fibres. We tested the hypothesis that inhaled sodium cromoglycate might also be effective in lung cancer patients who presented with irritative neoplastic cough. Twenty non-small-cell lung cancer (NSCLC) patients complaining of cough resistant to conventional treatment were randomised to receive, in a double-blind trial, either inhaled sodium cromoglycate or placebo. Patients recorded cough severity daily, before and during treatment, on a 0 to 4 scale. The efficacy of treatment was tested with the Mann-Whitney U-test for non-parametric measures, comparing the intergroup differences in the measures of summary of symptom scores calculated in each patient before and after treatment. We report that inhaled sodium cromoglycate can reduce cough, also in NSCLC patients and that such reduction, observed in all patients treated, is statistically significant (P < 0.001). Inhaled sodium cromoglycate appears to be a cost-effective and safe treatment for lung cancer-related cough. PMID:8688342

  6. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage.

    PubMed

    Baranauskiene, Renata; Bylaite, Egle; Zukauskaite, Jurate; Venskutonis, Rimantas P

    2007-04-18

    The effect of different commercial modified food starch carrier materials on the flavor retention of the essential oil (EO) of peppermint (Mentha piperita L.) during spray drying and storage was evaluated. The obtained results revealed that the emulsification and encapsulation efficiencies of peppermint EO were higher for all n-octenyl succinic anhydride (OSAN)-modified starches as compared to those of hydrolyzed starches (dextrins). The compositions of pure, emulsified, and encapsulated peppermint EOs in different matrices were quite similar; however, some changes in the percentages of some individual compounds were observed. Larger differences in the compositions of surface oils from various encapsulation products were obtained. Flavor components were released at different rates by each of the encapsulated products. The aroma binding capacity of different modified starch matrices to lock EO droplets depends on the water activity, and the leakage of aromas from encapsulated powder products during storage increased with increasing water activity.

  7. Study of the Effect of Dillenia indica Fruit Mucilage on the Properties of Metformin Hydrochloride Loaded Spray Dried Microspheres

    PubMed Central

    Sharma, Hemanta Kumar; Nath, Lila Kanta

    2014-01-01

    Natural materials are preferred over synthetic counterparts because of their biodegradable and biocompatible nature. The present work was proposed to utilize mucilage from natural source for the development of controlled release formulation of metformin hydrochloride. Natural mucilaginous substance extracted from Dillenia indica L. (DI) fruit was used in fabricating controlled release microspheres. The microspheres were prepared by spray drying method under different formulation parameters. The prepared microspheres were studied for particle size, drug excipient compatibility, particle shape and surface morphologies, drug entrapment efficiency, mucoadhesivity, and in vitro drug release properties. The prepared microspheres exhibited mucoadhesive properties and demonstrated controlled release of metformin hydrochloride. The study reveals that the natural materials can be used for formulation of controlled release microspheres and would provide ample opportunities for further study. PMID:27379337

  8. Preparation of naproxen-ethyl cellulose microparticles by spray-drying technique and their application to textile materials.

    PubMed

    Arici, Mesut; Topbas, Ozlem; Karavana, Sinem Yaprak; Ertan, Gokhan; Sariisik, Merih; Ozturk, Cihat

    2014-01-01

    The objective of this study is to develop a new textile-based drug delivery system containing naproxen (NAP) microparticles and to evaluate the potential of the system as the carrier of NAP for topical delivery. Microparticles were prepared by spray-drying using an aqueous ethyl cellulose dispersion. The drug content and entrapment efficiency, particle size and distribution, particle morphology and in vitro drug release characteristics of microparticles were optimized for the application of microparticles onto the textile fabrics. Microparticles had spherical shape in the range of 10-15 μm and a narrow particle size distribution. NAP encapsulated in microparticles was in the amorphous or partially crystalline nature. Microparticles were tightly fixed onto the textile fabrics. In vitro drug release exhibited biphasic release profile with an initial burst followed by a very slow release. Skin permeation profiles were observed to follow near zero-order release kinetics. PMID:24861324

  9. Spray dried chitosan-EDTA superior microparticles as solid substrate for the oral delivery of amphotericin B.

    PubMed

    Singh, Kuldeep; Tiwary, A K; Rana, Vikas

    2013-07-01

    The present investigation was aimed at synthesis of chitosan-EDTA superior microparticles (COECH) bearing high oil adsorbing and oil desorbing properties. These superior particles were prepared by thermal amide conjugation of COO(-) group of EDTA with NH2 group of chitosan employing spray-drying technique. The synthesis was optimized using 4(2) full factorial design. The particles showed high oil adsorbing capacity as well as oil desorbing capacity with enhanced dispersive components of surface free energy as compared to Aerosil 200. In addition, these COECH microparticles showed higher amphotericin B loading capacity, enhancement in the in vitro dissolution performance (12-fold) and produces nanoemulsion in the size range of 70-90 nm. Further, the results were in consonance with those observed during ex vivo performance. Thus, the findings revealed simple synthesis of COECH microparticles that showed superior properties of solid substrate for the development of amphotericin B nanoemulsion.

  10. Retrofit costs for lime/limestone FGD and lime spray drying at coal-fired utility boilers

    SciTech Connect

    Emmel, T.E.; Jones, J.W.

    1990-01-01

    The paper gives results of a research program the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 controls to existing coal-fired utility boilers. The costs of retrofitting conventional lime/limestone wet flue gas desulfurization (L/LS FGD) and lime spray drying (LSD) FGD at 100-200 coal-fired power plants are being estimated under this program. The retrofit capital cost estimating procedures used for L/LS FGD and LSD FGD make two cost adjustments to current procedures used to estimate FGD costs: cost adders (for items not normally included in FGD system costs; e.g., demolition and relocation of existing facilities) and cost multipliers (to adjust capital costs for site access, congestion, and underground obstructions).

  11. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying.

    PubMed

    Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko

    2015-01-01

    Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.

  12. Aerodynamic properties, solubility and in vitro antibacterial efficacy of dry powders prepared by spray drying: Clarithromycin versus its hydrochloride salt.

    PubMed

    Manniello, Michele Dario; Del Gaudio, Pasquale; Porta, Amalia; Aquino, Rita Patrizia; Russo, Paola

    2016-07-01

    Antibiotic therapy for a direct administration to the lung in cystic fibrosis patients has to provide suitable availability, possibly in the lower respiratory tract, characterized by the presence of thick secretions. One of the crucial steps in the therapeutic management of the respiratory disease could be the drug solubilization directly in this site of action. The aim of the study was to prepare respirable powders of clarithromycin, while improving drug aqueous solubility. With this aim, several batches of micronized particles were prepared by spray drying different feed solutions, varying the solvent composition (water/isopropyl alcohol ratio), the drug concentration and pH of the liquid feeds. Particle size distribution of raw materials and engineered particles was determined using a light-scattering laser granulometer while particle morphology was assessed by scanning electron microscopy. The in vitro deposition of the micronized clarithromycin powders was evaluated by means of a Single-Stage Glass Impinger using the RS01 model7 by Plastiape® as device for the aerosolization. Solubility measurements of raw and spray-dried (SD) drug were carried out at 37°C in phosphate buffer (0.05M, pH 6.8). Results indicate that morphology and aerodynamic properties of SD particles were strongly influenced by organic solvent concentration and pH of the liquid feeds processed, both modifying drug solubility. Spherical particles and crystals were obtained at higher pH and lower organic solvent content, while wrinkled particles with very interesting aerodynamic properties and higher drug solubility were obtained at lower pH values. Thanks to a fine tuning of the process parameters and liquid feed composition, we produced SD powders with good aerodynamic properties, without using any excipients. Furthermore, SD powders of clarithromycin hydrochloric salt showed higher activity against Pseudomonas aeruginosa growth, compared to clarithromycin raw material. PMID:27106605

  13. Preparation and Characterization of the Solid Spherical HMX/F2602 by the Suspension Spray-Drying Method

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Li, Xiaodong; Wang, Jingyu; Ye, Baoyun; Wang, Cailing

    2016-10-01

    Solid spherical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/fluororubber2602 (HMX/F2602) was prepared by the suspension spray-drying method as follows: firstly, thinning octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was obtained by a solvent-anti-solvent method. Secondly, thinning HMX suspended in ethyl acetate solvent in a solution of a binder-F2602-was made into a suspension. Finally, the samples were prepared by spray drying. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), and its thermal stability as well as mechanical and spark sensitivities were measured. The results of SEM showed that the grain of HMX/F2602 was solid spherical and the particle distribution was homogeneous. The results of XPS indicated that F2602 can be successfully coated on the surface of HMX crystals. Compared to raw HMX, th characteristic drop height was increased from 19.60 to 40.37 cm, an increase of 79.10%. The friction sensitivities of HMX reduced from 100 to 28% and the spark sensitivity of HMX/F2602 increased. The critical explosion temperatures of raw HMX and HMX/F2602 were 275.43 and 274.30°C, respectively. The amount of gas evolution of raw HMX and HMX/F2602 was 0.15 and 0.12 ml.(5 g)-1, respectively. The results of DSC and vacuum stability tests (VSTs) indicate that the thermal stability of HMX/F2602 was equal to that of raw HMX and HMX and F2602 had good compatibility.

  14. A study of the differences between two amorphous spray-dried samples of cefditoren pivoxil which exhibited different physical stabilities.

    PubMed

    Ohta, Masato; Buckton, Graham

    2005-01-31

    The objective of this study was to investigate the reasons for the difference in physical stability of two amorphous cefditoren pivoxil samples that had been prepared using spray drying at inlet-air temperatures of 40 degrees C (SD-A) and 100 degrees C (SD-B). The two samples appeared amorphous by powder X-ray diffraction and had indistinguishable glass transition temperatures. Despite the fact that glass transition is often regarded as an indicator of the stability of amorphous forms, crystallisation was observed for SD-A, but not for SD-B, during storage at 60 degrees C and 81% relative humidity (RH). Gravimetric water sorption data demonstrated very similar water sorption until high RH values, at which point SD-A sorbed more water than did SD-B. The values of the dispersive, acidic (K(A)) and basic (K(D)) components of surface energy of the spray-dried samples were obtained using inverse gas chromatography (IGC), in the dry state and after equilibration with different RH environments. The data showed that the two amorphous samples had different surface properties and that the effect of sorbed water on these samples was also different. It is concluded that the two samples did not have long-range order, but had differences in the orientation of molecules at the surface, which were significant enough to alter the stability when the samples were stressed with water vapour and high temperature storage. IGC proved a valuable tool with which to study changes in the surface properties of amorphous materials. PMID:15652196

  15. Aerodynamic properties, solubility and in vitro antibacterial efficacy of dry powders prepared by spray drying: Clarithromycin versus its hydrochloride salt.

    PubMed

    Manniello, Michele Dario; Del Gaudio, Pasquale; Porta, Amalia; Aquino, Rita Patrizia; Russo, Paola

    2016-07-01

    Antibiotic therapy for a direct administration to the lung in cystic fibrosis patients has to provide suitable availability, possibly in the lower respiratory tract, characterized by the presence of thick secretions. One of the crucial steps in the therapeutic management of the respiratory disease could be the drug solubilization directly in this site of action. The aim of the study was to prepare respirable powders of clarithromycin, while improving drug aqueous solubility. With this aim, several batches of micronized particles were prepared by spray drying different feed solutions, varying the solvent composition (water/isopropyl alcohol ratio), the drug concentration and pH of the liquid feeds. Particle size distribution of raw materials and engineered particles was determined using a light-scattering laser granulometer while particle morphology was assessed by scanning electron microscopy. The in vitro deposition of the micronized clarithromycin powders was evaluated by means of a Single-Stage Glass Impinger using the RS01 model7 by Plastiape® as device for the aerosolization. Solubility measurements of raw and spray-dried (SD) drug were carried out at 37°C in phosphate buffer (0.05M, pH 6.8). Results indicate that morphology and aerodynamic properties of SD particles were strongly influenced by organic solvent concentration and pH of the liquid feeds processed, both modifying drug solubility. Spherical particles and crystals were obtained at higher pH and lower organic solvent content, while wrinkled particles with very interesting aerodynamic properties and higher drug solubility were obtained at lower pH values. Thanks to a fine tuning of the process parameters and liquid feed composition, we produced SD powders with good aerodynamic properties, without using any excipients. Furthermore, SD powders of clarithromycin hydrochloric salt showed higher activity against Pseudomonas aeruginosa growth, compared to clarithromycin raw material.

  16. Multivariate analysis of phenol in freeze-dried and spray-dried insulin formulations by NIR and FTIR.

    PubMed

    Maltesen, Morten Jonas; Bjerregaard, Simon; Hovgaard, Lars; Havelund, Svend; van de Weert, Marco; Grohganz, Holger

    2011-06-01

    Dehydration is a commonly used method to stabilise protein formulations. Upon dehydration, there is a significant risk the composition of the formulation will change especially if the protein formulation contains volatile compounds. Phenol is often used as excipient in insulin formulations, stabilising the insulin hexamer by changing the secondary structure. We have previously shown that it is possible to maintain this structural change after drying. The aim of this study was to evaluate the residual phenol content in spray-dried and freeze-dried insulin formulations by Fourier transform infrared (FTIR) spectroscopy and near infrared (NIR) spectroscopy using multivariate data analysis. A principal component analysis (PCA) and partial least squares (PLS) projections were used to analyse spectral data. After drying, there was a difference between the two drying methods in the phenol/insulin ratio and the water content of the dried samples. The spray-dried samples contained more water and less phenol compared with the freeze-dried samples. For the FTIR spectra, the best model used one PLS component to describe the phenol/insulin ratio in the powders, and was based on the second derivative pre-treated spectra in the 850-650 cm(-1) region. The best PLS model based on the NIR spectra utilised three PLS components to describe the phenol/insulin ratio and was based on the standard normal variate transformed spectra in the 6,200-5,800 cm(-1) region. The root mean square error of cross validation was 0.69% and 0.60% (w/w) for the models based on the FTIR and NIR spectra, respectively. In general, both methods were suitable for phenol quantification in dried phenol/insulin samples.

  17. Method of creating starch-like ultra-fine rice flour and effect of spray drying on formation of free fatty acid.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice flour from long, medium, and short grain cultivars were processed by passing a 32% rice flour slurry through a microfluidizer at 100 MPa, and spray dryer at three different outlet temperatures, OT (50°C, 80°C, and 115°C). Spray drying conditions were controlled by the flow-rate of the slurry ...

  18. Comparative studies on exenatide-loaded poly (D,L-lactic-co-glycolic acid) microparticles prepared by a novel ultra-fine particle processing system and spray drying.

    PubMed

    Zhu, Chune; Huang, Ying; Zhang, Xiaoying; Mei, Liling; Pan, Xin; Li, Ge; Wu, Chuanbin

    2015-08-01

    The purpose of this study was to compare the properties of exenatide-loaded poly (D,L-lactic-co-glycolic acid) microparticles (Ex-PLGA-MPs) prepared by a novel ultra-fine particle processing system (UPPS) and spray drying. UPPS is a proprietary technology developed by our group based on the disk rotation principle. Characteristics of the MPs including morphology, particle size distribution, drug content, encapsulation efficiency and in vitro release were comparatively studied. Cytotoxicity of the MPs was examined on A549 cells and the pharmacodynamics was investigated in vivo in type 2 diabetes Sprague-Dawley (SD) rats. Ex-PLGA-MPs prepared by UPPS showed larger particle size, denser surface, greater encapsulation efficiency, less initial burst release, and stable sustained release for more than one month in vitro as compared with the spray drying MPs. Meanwhile, the UPPS MPs effectively controlled the body growth rate and blood glucose in diabetes rats for at least three weeks after a single injection, while the spray drying MPs showed effective control period of about two weeks. UPPS technology was demonstrated to manufacture Ex-PLGA-MPs as a potential sustained release protein/polypeptide delivery system, which is an alternative method for the most commonly used spray drying. This comparative research provides a new guidance for microparticle preparation technology. PMID:26037698

  19. Development and Characterization of Sodium Hyaluronate Microparticle-Based Sustained Release Formulation of Recombinant Human Growth Hormone Prepared by Spray-Drying.

    PubMed

    Kim, Sun J; Kim, Chan W

    2016-02-01

    The purpose of this study was to develop and characterize a sodium hyaluronate microparticle-based sustained release formulation of recombinant human growth hormone (SR-rhGH) prepared by spray-drying. Compared to freeze-drying, spray-dried SR-rhGH showed not only prolonged release profiles but also better particle property and injectability. The results of size-exclusion high-performance liquid chromatography showed that no aggregate was detected, and dimer was just about 2% and also did not increase with increase of inlet temperature up to 150 °C. Meanwhile, the results of reversed-phase high-performance liquid chromatography revealed that related proteins increased slightly from 4.6% at 100 °C to 6.3% at 150 °C. Thermal mapping test proved that product temperature did not become high to cause protein degradation during spray-drying because thermal energy was used for the evaporation of surface moisture of droplets. The structural characterization by peptide mapping, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and circular dichroism revealed that the primary, secondary, and tertiary structures of rhGH in SR-rhGH were highly comparable to those of reference somatropin materials. The biological characterization by rat weight gain and cell proliferation assays provided that bioactivity of SR-rhGH was equivalent to that of native hGH. These data establish that spray-dried SR-rhGH is highly stable by preserving intact rhGH and hyaluronate microparticle-based formulation by spray-drying can be an alternative delivery system for proteins. PMID:26869423

  20. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

    PubMed Central

    Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.

    2015-01-01

    The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218

  1. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    SciTech Connect

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

  2. Quality evaluation of peony seed oil spray-dried in different combinations of wall materials during encapsulation and storage.

    PubMed

    Shi, Yan; Wang, Shu-Jie; Tu, Zong-Cai; Wang, Hui; Li, Ru-Yi; Zhang, Lu; Huang, Tao; Su, Ting; Li, Cui

    2016-06-01

    This study aimed at evaluating the performance of peony seed oil microencapsulated by spray drying during encapsulation and storage. Four different combinations of gum arabic (GA), corn syrup (CS), whey protein concentrate (WPC) and sodium caseinate (CAS) were used to encapsulate peony seed oil. The best encapsulation efficiency was obtained for CAS/CS followed by the CAS/GA/CS combination with the encapsulation ratio of 93.71 and 92.80 %, respectively, while the lowest encapsulation efficiency was obtained for WPC/GA/CS (85.96 %). Scanning electron microscopy and confocal laser scanning microscopy revealed that the particles were spherical in shape and did not exhibit apparent cracks or fissures, and gum arabic was uniformly distributed across the wall of the microcapsules. Oxidative stability study indicated that the CAS/GA/CS combination presented the best protection against lipid oxidation and the smallest loss of polyunsaturated fatty acid content among all of the formulas as measured by gas chromatography. Therefore, CAS/GA/CS could be promising materials encapsulate peony seed oil with high encapsulation efficiency and minimal lipid oxidation. PMID:27478215

  3. Application of X-ray microtomography for the characterisation of hollow polymer-stabilised spray dried amorphous dispersion particles.

    PubMed

    Gamble, John F; Terada, Masako; Holzner, Christian; Lavery, Leah; Nicholson, Sarah J; Timmins, Peter; Tobyn, Mike

    2016-08-20

    The aim of this study was to investigate the capability of X-ray microtomography to obtain information relating to powder characteristics such as wall thickness and solid volume fraction for hollow, polymer-stabilised spray dried dispersion (SDD) particles. SDDs of varying particle properties, with respect to shell wall thickness and degree of particle collapse, were utilised to assess the capability of the approach. The results demonstrate that the approach can provide insight into the morphological characteristics of these hollow particles, and thereby a means to understand/predict the processability and performance characteristics of the bulk material. Quantitative assessments of particle wall thickness, particle/void volume and thereby solid volume fraction were also demonstrated to be achievable. The analysis was also shown to be able to qualitatively assess the impact of the drying rate on the morphological nature of the particle surfaces, thus providing further insight into the final particle shape. The approach demonstrated a practical means to access potentially important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as particle size and bulk density, may enable a better understanding of such materials, and their impact on downstream processability and dosage form performance.

  4. Assessment of antioxidant activity of spray dried extracts of Psidium guajava leaves by DPPH and chemiluminescence inhibition in human neutrophils.

    PubMed

    Fernandes, M R V; Azzolini, A E C S; Martinez, M L L; Souza, C R F; Lucisano-Valim, Y M; Oliveira, W P

    2014-01-01

    This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β -cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH(•) method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells. PMID:24822200

  5. One-step spray-dried polyelectrolyte microparticles enhance the antigen cross-presentation capacity of porcine dendritic cells.

    PubMed

    Devriendt, Bert; Baert, Kim; Dierendonck, Marijke; Favoreel, Herman; De Koker, Stefaan; Remon, Jean Paul; De Geest, Bruno G; Cox, Eric

    2013-06-01

    Vaccination is regarded as the most efficient and cost-effective way to prevent infectious diseases. Vaccine design nowadays focuses on the implementation of safer recombinant subunit vaccines. However, these recombinant subunit antigens are often poor immunogens and several strategies are currently under investigation to enhance their immunogenicity. The encapsulation of antigens in biodegradable microparticulate delivery systems seems a promising strategy to boost their immunogenicity. Here, we evaluate the capacity of polyelectrolyte complex microparticles (PECMs), fabricated by single step spray-drying, to deliver antigens to porcine dendritic cells and how these particles affect the functional maturation of dendritic cells (DCs). As clinically relevant model antigen F4 fimbriae, a bacterial adhesin purified from a porcine-specific enterotoxigenic Escherichia coli strain was chosen. The resulting antigen-loaded PECMs are efficiently internalised by porcine monocyte-derived DCs. F4 fimbriae-loaded PECMs (F4-PECMs) enhanced CD40 and CD25 surface expression by DCs and this phenotypical maturation correlated with an increased secretion of IL-6 and IL-1β. More importantly, F4-PECMs enhance both the T cell stimulatory and antigen presentation capacity of DCs. Moreover, PECMs efficiently promoted the CD8(+) T cell stimulatory capacity of dendritic cells, indicating an enhanced ability to cross-present the encapsulated antigens. These results could accelerate the development of veterinary and human subunit vaccines based on polyelectrolyte complex microparticles to induce protective immunity against a variety of extra- and intracellular pathogens. PMID:23207327

  6. Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice.

    PubMed

    Barbosa, J; Borges, S; Teixeira, P

    2015-12-01

    The demand for new functional non-dairy based products makes the production of a probiotic orange juice powder an encouraging challenge. However, during drying process and storage, loss of viability of the dried probiotic cultures can occur, since the cells are exposed to various stresses. The influence of sub-lethal conditions of temperature, acidic pH and hydrogen peroxide on the viability of Pediococcus acidilactici HA-6111-2 and Lactobacillus plantarum 299v during spray drying in orange juice and subsequent storage under different conditions was investigated. At the end of storage, the survival of both microorganisms through simulated gastro-intestinal tract (GIT) conditions was also determined. The viability of cells previously exposed to each stress was not affected by the drying process. However, during 180 days of storage at room temperature, unlike P. acidilactici HA-6111-2, survival of L. plantarum 299v was enhanced by prior exposure to sub-lethal conditions. Previous exposure to sub-lethal stresses of each microorganism did not improve their viability after passage through simulated GIT. Nevertheless, as cellular inactivation during 180 days of storage was low, both microorganisms were present in numbers of ca. 10(7) cfu/mL at the end of GIT. This is an indication that both bacteria are good candidates for use in the development of an orange juice powder with functional characteristics.

  7. Ex vivo human trabecular bone model for biocompatibility evaluation of calcium phosphate composites modified with spray dried biodegradable microspheres.

    PubMed

    Schnieders, Julia; Gbureck, Uwe; Germershaus, Oliver; Kratz, Marita; Jones, David B; Kissel, Thomas

    2013-10-01

    Our aim was to study the suitability of the ex-vivo human trabecular bone bioreactor ZetOS to test the biocompatibility of calcium phosphate bone cement composites modified with spray dried, drug loaded microspheres. We hypothesized, that this bone bioreactor could be a promising alternative to in vivo assessment of biocompatibility in living human bone over a defined time period. Composites consisting of tetracycline loaded poly(lactic-co-glycolic acid) microspheres and calcium phosphate bone cement, were inserted into in vitro cultured human femora head trabecular bone and incubated over 30 days at 37°C in the incubation system. Different biocompatibility parameters, such as lactate dehydrogenase activity, alkaline phosphatase release and the expression of relevant cytokines, IL-1β, IL-6, and TNF-α, were measured in the incubation medium. No significant differences in alkaline phosphatase, osteocalcin, and lactate dehydrogenase activity were measured compared to control samples. Tetracycline was released from the microspheres, delivered and incorporated into newly formed bone. In this study we demonstrated that ex vivo biocompatibility testing using human trabecular bone in a bioreactor is a potential alternative to animal experiments since bone metabolism is still maintained in a physiological environment ex vivo.

  8. Assessment of Antioxidant Activity of Spray Dried Extracts of Psidium guajava Leaves by DPPH and Chemiluminescence Inhibition in Human Neutrophils

    PubMed Central

    Fernandes, M. R. V.; Azzolini, A. E. C. S.; Martinez, M. L. L.; Souza, C. R. F.; Lucisano-Valim, Y. M.; Oliveira, W. P.

    2014-01-01

    This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β-cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH• method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells. PMID:24822200

  9. Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum.

    PubMed

    He, Huizi; Hong, Yan; Gu, Zhengbiao; Liu, Guodong; Cheng, Li; Li, Zhaofeng

    2016-08-20

    The objective of this investigation was to improve the stability of CLA and to allow for its controlled release by encapsulating it with combinations of octenyl-succinic anhydride (OSA) starch and xanthan gum (XG) in three ratios (OSA/XG: 60/1, 80/1, and 100/1, w/w). The wall material was examined using FTIR and TGA. The microcapsules were characterized by laser particle size analysis (LPS) and SEM. Oxidation of the microcapsules was monitored by headspace method. The results revealed that microcapsules created with an OSA/XG ratio of 60/1 provided superior protection to CLA against oxidation. When CLA-microcapsules were subjected to conditions simulating those in the human gastrointestinal system, 12.1%-50.1% of the CLA was released. CLA encapsulation in spray-dried microcapsules of OSA/XG appears to be an effective technique that provides good protection against oxidation and could be useful in the targeted delivery of functional lipids or other bioactive components to the small intestine. PMID:27178930

  10. Novel Spray Dried Glycerol 2-Phosphate Cross-Linked Chitosan Microparticulate Vaginal Delivery System—Development, Characterization and Cytotoxicity Studies

    PubMed Central

    Szymańska, Emilia; Szekalska, Marta; Czarnomysy, Robert; Lavrič, Zoran; Srčič, Stane; Miltyk, Wojciech; Winnicka, Katarzyna

    2016-01-01

    Chitosan microparticulate delivery systems containing clotrimazole were prepared by a spray drying technique using glycerol 2-phosphate as an ion cross-linker. The impact of a cross-linking ratio on microparticle characteristics was evaluated. Drug-free and drug-loaded unmodified or ion cross-linked chitosan microparticles were examined for the in vitro cytotoxicity in VK2/E6E7 human vaginal epithelial cells. The presence of glycerol 2-phosphate influenced drug loading and encapsulation efficacy in chitosan microparticles. By increasing the cross-linking ratio, the microparticles with lower diameter, moisture content and smoother surface were observed. Mucoadhesive studies displayed that all formulations possessed mucoadhesive properties. The in vitro release profile of clotrimazole was found to alter considerably by changing the glycerol 2-phosphate/chitosan ratio. Results from cytotoxicity studies showed occurrence of apoptotic cells in the presence of chitosan and ion cross-linked chitosan microparticles, followed by a loss of membrane potential suggesting that cell death might go through the mitochondrial apoptotic pathway. PMID:27690062

  11. Advances in asthma and COPD management: delivering CFC-free inhaled therapy using Modulite technology.

    PubMed

    Acerbi, D; Brambilla, G; Kottakis, I

    2007-01-01

    Inhaled corticosteroids (ICS) and long-acting beta-agonists (LABA) are currently used in the management of asthma and chronic obstructive pulmonary disease (COPD). Localized targeted delivery of these drugs into the lungs is achieved by means of two types of inhalation devices; pressurized metered-dose inhalers (pMDIs) and dry powder-inhalers (DPIs). For environmental reasons, the chlorofluorocarbon (CFC) propellants used in pMDIs are now being replaced by ozone friendly hydrofluoroalkanes (HFAs). These new generation HFA-based pMDIs, developed to provide effective lung deposition of the active moiety, have a favorable safety and tolerability profile. However, HFA-based re-formulation of LABAs and ICS for pMDIs presents particular technical difficulties, especially in terms of ensuring dose content uniformity. This review focuses on the technology and clinical efficacy of the HFA solution pMDIs using Modulite platform technology (Chiesi Farmaceutici S.p.A). Modulite technology allows the development of HFA solution formulations that can mimic the established CFC-based drug formulations on a microgram to microgram basis and provides formulations with novel particle size distributions that improve on existing delivery systems; by manipulation of aerosol clouds and particle size, the delivery of HFA-formulated drugs can be optimized to either achieve fine particle fractions and deposition patterns similar to established CFC-based drug formulations, thus facilitating the transition to new environment-friendly pMDIs in the clinical setting, or achieve finer drug particles able to penetrate deeper into the bronchi for targeted drug delivery as medical need may dictate. Long-term, multiple-dose clinical studies of Modulite formulations of beclomethasone dipropionate (BDP), budesonide and formoterol have been demonstrated to be therapeutically equivalent to their respective previously established CFC or DPI formulations. As a result, a number of Modulite pMDIs have either

  12. The mesoporosity of microparticles spray dried from trehalose and nanoparticle hydroxyapatite depends on the ratio of nanoparticles to sugar and nanoparticle surface charge.

    PubMed

    Wright, David M; Saracevic, Zlatko S; Kyle, Nigel H; Motskin, Michael; Skepper, Jeremy N

    2010-01-01

    The ratio of hydroxyapatite (HA) nanoparticles (NP) to trehalose in composite microparticle (MP) vaccine vehicles by determining inter-nanoparticle space potentially influences antigen release. Mercury porosimetry and gas adsorption analysis have been used quantify this space. Larger pores are present in MPs spray dried solely from nanoparticle gel compared with MPs spray dried from nanoparticle colloid which have less inter-nanoparticle volume. This is attributed to tighter nanoparticle packing caused by citrate modification of their surface charge. The pore size distributions (PSD) for MP where the trehalose has been eliminated by combustion generally broaden and shifts to higher values with increasing initial trehalose content. Modal pore size, for gel derived MPs is comparable to modal NP width below 30% initial trehalose content and approximates to modal NP length (approximately 50 nm) at 60% initial trehalose content. For colloidally derived MPs this never exceeds the modal NP width. Pore-sizes are comparable, to surface inter-nanoparticle spacings observed by SEM.

  13. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying.

    PubMed

    Morales-Medina, R; Tamm, F; Guadix, A M; Guadix, E M; Drusch, S

    2016-03-01

    The functionality of fish protein hydrolysates (FPH) for the microencapsulation of fish oil was investigated. Muscle protein from sardine (Sardina pilchardus) and horse mackerel (Trachurus mediterraneus) was hydrolysed using Alcalase or trypsin. Physically stable emulsions suitable for spray-drying were obtained when using FPH with a degree of hydrolysis of 5%. Microencapsulation efficiency amounted to 98±0.1% and oxidative stability of the encapsulated oil over a period of twelve weeks was in a similar range as it is reported for other matrix systems. Therefore, the suitability of FPH for use in spray-dried emulsions has been shown for the first time. Since no clear correlation between the antioxidative activity of the FPH and the course of lipid oxidation could be established future research is required to more specifically characterise the molecular structure of the peptides and its impact on protein alteration and role in lipid oxidation.

  14. Determination of residual acetone and acetone related impurities in drug product intermediates prepared as Spray Dried Dispersions (SDD) using gas chromatography with headspace autosampling (GCHS).

    PubMed

    Quirk, Emma; Doggett, Adrian; Bretnall, Alison

    2014-08-01

    Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA.

  15. [Inhaled therapy in asthma].

    PubMed

    Plaza Moral, Vicente; Giner Donaire, Jordi

    2016-04-01

    Because of its advantages, inhaled administration of aerosolized drugs is the administration route of choice for the treatment of asthma and COPD. Numerous technological advances in the devices used in inhaled therapy in recent decades have boosted the appearance of multiple inhalers and aerosolized drugs. However, this variety also requires that the prescribing physician is aware of their characteristics. The main objective of the present review is to summarize the current state of knowledge on inhalers and inhaled drugs commonly used in the treatment of asthma. The review ranges from theoretical aspects (fundamentals and available devices and drugs) to practical and relevant aspects for asthma care in the clinical setting (therapeutic strategies, education, and adherence to inhalers). PMID:26683076

  16. Spray dried microspheres based on chitosan: A promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis.

    PubMed

    Díaz, Alejandra Graciela; Quinteros, Daniela Alejandra; Llabot, Juan Manuel; Palma, Santiago Daniel; Allemandi, Daniel Alberto; Ghersi, Giselle; Zylberman, Vanesa; Goldbaum, Fernando Alberto; Estein, Silvia Marcela

    2016-05-01

    Previous studies have demonstrated that parenteral immunization with polymeric antigen BLSOmp31 induced a strong immune response and conferred protection against Brucella ovis in rams. This work describes the development of a novel formulation strategy for the delivery of BLSOmp31 in the nasal mucosa. Chitosan microparticles were prepared by spray-drying technology processes and recombinant chimera BLSOmp31 was loaded by passive adsorption onto chitosan microspheres, which were characterized by means of the evaluation of size, zeta potential, morphology, and loading and release rate of BLSOmp31. The mucoadhesive properties of microspheres were evaluated by studying the interaction between microparticles and mucin. The antigen BLSOmp31 integrity was investigated by SDS-PAGE. The yield of production of spray-drying process was 68.95%. Microspheres had a good sphericity, 1-10 μm of particle size and had a positive charge. The loading capacity was found to be 45.19%. The initial fast release of BLSOmp31 from chitosan microparticles was 60%. The BLSOmp31 integrity was not affected by passive adsorption (ionic interaction). The amount of mucin adsorbed on the surface of CMs-BLSOmp31 was lower than on the surface of blank CMs at neutral pH. In vivo studies were carried out in rams. Intranasal immunization induced systemic and local antibodies. In conclusion, the use of BLSOmp31-loaded chitosan spray-drying microspheres offers a promising way for nasal mucosal vaccination in sheep against brucellosis.

  17. Entrapment of a volatile lipophilic aroma compound (d-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus).

    PubMed

    Fisk, Ian D; Linforth, Robert; Trophardy, Gil; Gray, David

    2013-11-01

    Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (the flavour compound d-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and d-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and d-limonene retention was 89-93% and 24-27%. Samples were compared to processed emulsions containing sunflower oil and d-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and d-limonene retention of 82-89%, 7.7-9.1% and 48-50%, 55-59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most d-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation.

  18. Spray dried microspheres based on chitosan: A promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis.

    PubMed

    Díaz, Alejandra Graciela; Quinteros, Daniela Alejandra; Llabot, Juan Manuel; Palma, Santiago Daniel; Allemandi, Daniel Alberto; Ghersi, Giselle; Zylberman, Vanesa; Goldbaum, Fernando Alberto; Estein, Silvia Marcela

    2016-05-01

    Previous studies have demonstrated that parenteral immunization with polymeric antigen BLSOmp31 induced a strong immune response and conferred protection against Brucella ovis in rams. This work describes the development of a novel formulation strategy for the delivery of BLSOmp31 in the nasal mucosa. Chitosan microparticles were prepared by spray-drying technology processes and recombinant chimera BLSOmp31 was loaded by passive adsorption onto chitosan microspheres, which were characterized by means of the evaluation of size, zeta potential, morphology, and loading and release rate of BLSOmp31. The mucoadhesive properties of microspheres were evaluated by studying the interaction between microparticles and mucin. The antigen BLSOmp31 integrity was investigated by SDS-PAGE. The yield of production of spray-drying process was 68.95%. Microspheres had a good sphericity, 1-10 μm of particle size and had a positive charge. The loading capacity was found to be 45.19%. The initial fast release of BLSOmp31 from chitosan microparticles was 60%. The BLSOmp31 integrity was not affected by passive adsorption (ionic interaction). The amount of mucin adsorbed on the surface of CMs-BLSOmp31 was lower than on the surface of blank CMs at neutral pH. In vivo studies were carried out in rams. Intranasal immunization induced systemic and local antibodies. In conclusion, the use of BLSOmp31-loaded chitosan spray-drying microspheres offers a promising way for nasal mucosal vaccination in sheep against brucellosis. PMID:26952451

  19. Entrapment of a volatile lipophilic aroma compound (d-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus).

    PubMed

    Fisk, Ian D; Linforth, Robert; Trophardy, Gil; Gray, David

    2013-11-01

    Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (the flavour compound d-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and d-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and d-limonene retention was 89-93% and 24-27%. Samples were compared to processed emulsions containing sunflower oil and d-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and d-limonene retention of 82-89%, 7.7-9.1% and 48-50%, 55-59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most d-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation. PMID:24235784

  20. Entrapment of a volatile lipophilic aroma compound (d-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus)☆

    PubMed Central

    Fisk, Ian D.; Linforth, Robert; Trophardy, Gil; Gray, David

    2013-01-01

    Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (the flavour compound d-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and d-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and d-limonene retention was 89–93% and 24–27%. Samples were compared to processed emulsions containing sunflower oil and d-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and d-limonene retention of 82–89%, 7.7–9.1% and 48–50%, 55–59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most d-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation. PMID:24235784

  1. An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen-PVP K 25 solid dispersions.

    PubMed

    Paudel, Amrit; Loyson, Yves; Van den Mooter, Guy

    2013-04-01

    The present study investigates the effect of changing spray drying temperature (40°C-120°C) and/or atomizing airflow rate (AR; 5-15 L/min) on the phase structure, physical stability, and performance of spray-dried naproxen-polyvinylpyrrolidone (PVP) K 25 amorphous solid dispersions. The modulated differential scanning calorimetry, attenuated total internal reflectance-Fourier transform infrared, and powder X-ray diffractometry (pXRD) studies revealed that higher inlet temperature (IT) or atomization airflow leads to the formation of amorphous-phase-separated dispersions with higher strongly H-bonded and free PVP fractions, whereas that prepared with the lowest IT was more homogeneous. The dispersion prepared with the lowest atomization AR showed trace crystallinity. Upon exposure to 75% relative humidity (RH) for 3 weeks, the phase-separated dispersions generated by spray drying at higher temperature or higher atomization airflow retained relatively higher amorphous drug fraction compared with those prepared at slow evaporation conditions. The humidity-controlled pXRD analysis at 98% RH showed that the dispersion prepared with highest atomization AR displayed the slowest kinetics of recrystallization. The molecular-level changes occurring during recrystallization at 98% RH was elucidated by spectroscopic monitoring at the same humidity. The rate and extent of the drug dissolution was the highest for dispersions prepared at the highest atomizing AR and the lowest for that prepared with the slowest atomizing condition. PMID:23359268

  2. Influence of Excipients and Spray Drying on the Physical and Chemical Properties of Nutraceutical Capsules Containing Phytochemicals from Black Bean Extract.

    PubMed

    Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2015-12-03

    Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability.

  3. Influence of Excipients and Spray Drying on the Physical and Chemical Properties of Nutraceutical Capsules Containing Phytochemicals from Black Bean Extract.

    PubMed

    Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2015-01-01

    Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability. PMID:26633352

  4. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.

    PubMed

    Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2011-04-01

    Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions

  5. Preparation of co-spray dried cushioning agent containing stearic acid for protecting pellet coatings when compressed.

    PubMed

    Li, Xiao; Xu, De Sheng; Li, Min; Liu, Li; Heng, Paul

    2016-01-01

    This study investigated the applicability of stearic acid as a co-adjuvant in cushioning agent formulated to prevent coat damage when compressing coated pellets. The co-processed and physical blended fillers were prepared by spray drying and physically blending, respectively, with filler ingredients consisting of stearic acid, microcrystalline cellulose, fully gelatinized starch, and corn starch. Pellets containing drug were produced by coating onto non-pariels a drug layer of metformin followed by a sustained-release layer. Drug release from tablets composed of co-processed or physical blended fillers (0, 1, 5, and 10% stearic acid levels) and coated drug containing pellets were analyzed using similarity factor F2. Under the same force and the stearic acid level, co-processed fillers produced pellet containing tablets which showed higher F2 or t50 values and tensile strengths as well as lower yield pressures as compared with tablets containing physical blended fillers. It was shown that the destructive degree of pellet coating was significantly reduced after being co-processed by homogenization and the incorporation of stearic acid in the cushioning agents, as shown by the improved F2 and t50 values. In addition, disintegrate times of tablets containing co-processed agents decreased despite the hydrophobic stearic acid. In conclusion, the inclusion of stearic acid in co-processed cushioning agents was effective at protecting compacted coated pellets from compression-induced damage without compromising disintegratability. The findings could serve as a step towards resolving the technical challenges of balancing the drug release profiles, tablet tensile strength, and disintegration time of compacting coated pellets into multi-particulate-sustained release tablets.

  6. Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature.

    PubMed

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2016-06-01

    Production of probiotic food supplements that are shelf-stable at room temperature has been developed for consumer's convenience, but information on the stability in acid and bile environment is still scarce. Viability and acid and bile tolerance of microencapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplements were evaluated. Bifidobacterium and L. acidophilus were encapsulated with casein-based emulsion using spray drying. Water activity (aw ) of the microspheres containing Bifidobacterium or L. acidophilus (SD GM product) was adjusted to 0.07 followed by storage at 25 °C for 10 wk. Encapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplement products (AL, GH, RE, and BM) were tested. Since commercial probiotic products contained mixed bacteria, selective media MRS-LP (containing L-cysteine and Na-propionate) and MRS-clindamycin agar were used to grow Bifidobacterium spp. or L. acidophilus, respectively, and to inhibit the growth of other strains. The results showed that aw had a strong negative correlation with the viability of dehydrated probiotics of the 6 products. Viable counts of Bifidobacterium spp. and L. acidophilus of SD GM, AL, and GH were between 8.3 and 9.2 log CFU/g, whereas that of BM and RE were between 6.7 and 7.3 log CFU/g. Bifidobacterium in SD GM, in AL, and in GH products and L. acidophilus in SD GM, in AL, and in BM products demonstrated high tolerance to acid. Most of dehydrated probiotic bacteria were able to survive in bile environment except L. acidophilus in RE product. Exposure to gastric juice influenced bacterial survivability in subsequent bile environment. PMID:27145163

  7. Spray-dried animal plasma prevents the effects of Staphylococcus aureus enterotoxin B on intestinal barrier function in weaned rats.

    PubMed

    Pérez-Bosque, Anna; Amat, Concepció; Polo, Javier; Campbell, Joy M; Crenshaw, Joe; Russell, Louis; Moretó, Miquel

    2006-11-01

    In this study, we investigated intestinal barrier function during inflammation as well as the effects of dietary supplementation with porcine spray-dried animal plasma (SDAP) proteins and porcine immunoglobulin concentrate (IC). Wistar Lewis rats were fed from d 21 (weaning) until d 34 or 35 either a control diet or a diet containing SDAP or IC. On d 30 and d 33, rats received an intraperitoneal dose of Staphylococcus aureus enterotoxin B (SEB; 0.5 mg/kg body wt; groups SEB, SEB-SDAP, and SEB-IC). SEB reduced the potential difference across the jejunum by 60%, the short-circuit current by 70%, and Na-K-ATPase activity in intestinal mucosa (all P < 0.05). The fluxes of dextran flux (4 kDa) and horseradish peroxidase (HRP, 40 kDa) across the intestinal wall also increased in SEB-treated rats (P < 0.01, P = 0.068, respectively). SEB also increased HRP flux across the paracellular space (P < 0.05). Moreover, SEB-treated rats had a reduced expression of tight junction proteins, such as ZO-1 (10% reduction; P < 0.05) and beta-catenin (20% reduction; P < 0.05). Dietary supplementation with SDAP or IC prevented dextran (P < 0.05) and HRP (P < 0.05) paracellular flux across the intestinal epithelium. SDAP supplementation also prevented SEB effects on Na-K-ATPase activity (P < 0.05). In our model of SEB-induced intestinal inflammation, the increased permeability across the intestinal mucosa was due to the lower expression of tight junction proteins, an effect that can be prevented by both SDAP and IC supplementation.

  8. A new approach to prepare well-dispersed CaF(2) nanoparticles by spray drying technique.

    PubMed

    Sun, Limin; Chow, Laurence C; Bonevich, John E; Wang, Tongxin; Mitchell, James W

    2011-08-01

    Previously, nano-sized calcium fluoride (CaF₂) particles were prepared using a spray drying method by simultaneously feeding Ca(OH)₂ and NH₄F solutions to a two-liquid nozzle. The aim of the present study was to prepare better-dispersed nano-CaF₂ particles by co-forming a soluble salt, sodium chloride (NaCl). NaCl of various concentrations were added to the NH(4) F solution, leading to formation of (CaF₂ +NaCl) composites with CaF₂ /NaCl molar ratios of 4/1, 4/4, and 4/16. Pure nano-CaF₂ was also prepared as the control. Powder X-ray diffraction analysis showed that the products contained crystalline CaF₂ and NaCl. Scanning electron microscopy examinations showed that both the CaF₂ /NaCl composite and pure CaF₂ particles were about (50-800) nm in size and consisted of primary CaF₂ particles of < 50 nm in size. BET surface area measurements showed similar primary particle sizes for all samples. Dynamic light scattering measurements showed that the washed (CaF₂+NaCl) particles were much smaller than the pure CaF₂ as the dissolution of NaCl "freed" most of the primary CaF₂ particles, leading to a greater degree of particle dispersion. The well-dispersed nano-CaF₂ may be expected to be a more effective anticaries agent than NaF by providing longer lasting elevations of fluoride concentrations in oral fluids.

  9. Spray-dried high-amylose sodium carboxymethyl starch: impact of α-amylase on drug-release profile.

    PubMed

    Nabais, Teresa; Zaraa, Sarra; Leclair, Grégoire

    2016-11-01

    Spray-dried high-amylose sodium carboxymethyl starch (SD HASCA) is a promising pharmaceutical excipient for sustained-release (SR) matrix tablets produced by direct compression. The presence of α-amylase in the gastrointestinal tract and the variations of the gastric residence time of non-disintegrating dosage forms may affect the presystemic metabolism of this excipient and, consequently, the drug-release profile from formulations produced with SD HASCA. In this study, the influence of α-amylase and the residence time in acidic conditions on the drug-release profile was evaluated for a once-daily acetaminophen formulation (Acetaminophen SR) and a once-daily tramadol hydrochloride formulation (Tramadol SR). Both formulations were based on SD HASCA. α-Amylase concentrations ranging from 0 IU/L to 20000 IU/L did not significantly affect the drug-release profiles of acetaminophen and tramadol hydrochloride from SD HASCA tablets (f2 > 50) for all but only one of the studied conditions (f2 = 47). Moreover, the drug-release properties from both SD HASCA formulations were not significantly different when the residence time in acidic medium was 1 h or 3 h. An increase in α-amylase concentration led to an increase in the importance of polymer erosion as the main mechanism of drug-release instead of drug diffusion, for both formulations and both residence times, even if release profiles remained comparable. As such, it is expected that α-amylase concentration and residence time in the stomach will not clinically affect the performance of both SD HASCA SR formulations, even if the mechanism of release itself may be affected.

  10. Effect of spray-dried bovine serum on intake, health, and growth of broilers housed in different environments.

    PubMed

    Campbell, J M; Quigley, J D; Russell, L E; Kidd, M T

    2003-11-01

    Three experiments utilizing broilers were conducted in different environments to evaluate the effects of Innavax (INX; spray-dried serum) administered in drinking water on broiler performance. In Exp. 1 (1 to 42 d), 252 Ross x Cobb male broilers were assigned randomly to one of six treatments consisting of tap water mixed with 0, 0.25, 0.50, 0.75, 1.0, or 1.25% (wt/wt) INX. Broilers (six broilers per pen; seven pens per treatment) were housed in Petersime battery cages (raised wire flooring) in temperature-controlled rooms. Average daily gain, and feed and water intake (as-fed) were not affected (P > 0.05) by experimental treatments. Feed efficiency tended to improve linearly (P = 0.076) from d 0 to 7 with increasing levels of INX, but was unaffected (P > 0.05) during the remaining periods. In Exp. 2 and 3, 800 Ross x Ross 308 male broilers (400 broilers in each trial; 10 broilers per pen; 10 pens per treatment) in two 21-d experiments were assigned randomly to one of four treatments consisting of tap water mixed with 0, 0.45, 0.90, or 1.35% (wt/wt) INX. Broilers were housed in floor pens containing clean (Exp. 2) or used (Exp. 3) litter. In Exp. 2, intake, ADG, and feed efficiency were linearly improved (P < 0.05) during the first week with increasing levels of INX. During the second week (d 8 to 14), ADG, water intake, and feed efficiency were linearly improved (P < 0.05) with increasing levels of INX. In the third week (d 15 to 21), ADG and feed and water intake were not affected (P > 0.10) by level of INX. Overall (d 0 to 21), ADG, intake, and feed efficiency were linearly improved (P < 0.05) with INX. In Exp. 3, ADG, water intake, and feed efficiency were linearly improved (P < 0.05) during each period. Feed intake was not affected (P > 0.05) by experimental treatment during d 0 to 7, but was linearly increased (P < 0.05) from d 8 to 14 and 15 to 21. The greatest growth response of broilers to INX was observed when broilers were housed in floor pens with used

  11. Performance and physiology of pigs administered spray-dried plasma protein during the late suckling period and transported after weaning.

    PubMed

    Wittish, L M; McElroy, A P; Harper, A F; Estienne, M J

    2014-10-01

    The objective was to determine the effects of spray-dried plasma protein (SDPP), given as an oral gavage during the last 5 d of suckling, on weight gain and physiology in pigs after weaning and transportation for 5 h. Pigs were assigned to 1 of 4 treatments: 1) SDPP (9.375 g) + transportation, 2) water + transportation, 3) SDPP + no transportation, and 4) water + no transportation (n = 10 barrows and 10 gilts per treatment). Pigs received 25 mL of the SDPP (0.375 g/mL) or water twice daily. There was no effect (P = 0.55) of gavage on weaning BW. On the day of weaning, BW decreased in all groups but the magnitude was greatest in SDPP pigs that were transported (gavage × transportation × time, P = 0.03). Rectal temperatures increased in all groups but were greater after transportation than after no transportation (gavage × transportation × time, P < 0.01). Effects of transportation × time existed for several blood chemistry measures. Urea and protein concentrations increased (P < 0.01) in transported pigs only. Creatinine, chloride, and albumin increased (P < 0.01) and CO2 decreased (P < 0.01) in both transported and nontransported pigs, but the magnitudes of change were greater after transportation. Concentrations of sodium increased (P < 0.01) only in transported pigs receiving water and not in the other groups (gavage × transportation × time, P < 0.01). Concentrations of phosphorous (P < 0.01) were affected by sex × gavage × transportation × time and increased (P < 0.01) in transported, water-treated gilts but not barrows. Overall changes in concentrations of urea, creatinine, chloride, CO2, protein, albumin, sodium, and phosphorous are consistent with dehydration in transported pigs in this study and in the case of sodium (both sexes) and phosphorous (gilts only), these minerals were maintained by prior gavage with SDPP. Transported pigs receiving SDPP tended (P = 0.1) to have greater concentrations of glucose than transported pigs receiving water and

  12. Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying.

    PubMed

    Corrigan, Owen I; Crean, Abina M

    2002-10-01

    Hydrocortisone-PVP composites were successfully prepared using the supercritical fluid gas anti-solvent method (GAS). Analysis by differential scanning calorimetry DSC and powder X-ray diffraction (XRD) indicated that these systems were more crystalline than corresponding systems prepared by spray drying. These systems, prepared by the GAS method were more similar in physicochemical properties to coprecipitates prepared by conventional solvent evaporation. Compressed composites of hydrocortisone-PVP systems, prepared by the GAS method, had dissolution rates lower than those of corresponding systems prepared by the other processing methods but equivalent to those of corresponding physical mixtures.

  13. Advances in metered dose inhaler technology with the development of a chlorofluorocarbon-free drug delivery system.

    PubMed

    Ross, D L; Gabrio, B J

    1999-01-01

    The impending phaseout of chlorofluorocarbon (CFC)-containing metered dose inhalers (MDIs) has challenged the pharmaceutical industry to rethink and redesign many components of the technology involved in delivering asthma medication to the lungs. Along with the emergence of the first formulation using the nonozone-depleting propellant, hydrofluoroalkane (HFA) 134a to replace CFC propellants, advances in drug delivery technology have improved the performance characteristics of the MDI itself. Although MDIs have remained the mainstay of asthma therapy for 40 years, MDI technology still presents challenges. Some of the shortcomings of existing CFC MDIs affect the reliability of dosing. These challenges have been addressed in the development of the first CFC-free beta-agonist for the treatment of asthma. Airomir CFC-free (salbutamol sulfate; 3M Pharmaceuticals, St. Paul, MN), which is currently available in over 30 countries and was recently approved in the United States (Proventil HFA; Schering-Plough, Madison, NJ), incorporates numerous design and technological improvements which together with the introduction of CFC-free propellants mark the beginning of the next generation of asthma therapy. Although the new generation of CFC-free MDIs incorporates several improvements in dose reproducibility, these changes should be virtually transparent to the patient switching from a CFC MDI to a CFC-free MDI. What may be noticeable is a "softer puff," which is the result of valve and actuator redesign. The taste of the new CFC-free product may also be a little different yet totally acceptable to users.

  14. Inhalation Injuries

    MedlinePlus

    ... you can inhale that can cause acute internal injuries. Particles in the air from fires and toxic ... and lung diseases worse. Symptoms of acute inhalation injuries may include Coughing and phlegm A scratchy throat ...

  15. Inhalational anthrax.

    PubMed

    Cuneo, Brian M

    2004-03-01

    Anthrax remains a real threat. In a spore form, it is highly infectious and dispersible. The initial symptoms are similar to those of influenza, and the early stage of inhalational anthrax may not be recognized. Early antibiotic treatment is important to achieving a good outcome. Contrary to historical experience. many patients with even advanced anthrax can be saved with aggressive medical care. Prevention of anthrax infections requires vigilant infection control methods as well as a rational prophylactic plan. All health care providers should be familiar with the symptoms and treatment of this disease. It is hoped that future research will clarify tests for early diagnosis, the best methods of prophylaxis, and the most effective treatments. Unfortunately the threat of bioterrorism, and anthrax in particular, is unlikely to go away. PMID:15062228

  16. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System.

    PubMed

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g(-1), respectively, at a current density of 2 A g(-1). The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  17. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System.

    PubMed

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g(-1), respectively, at a current density of 2 A g(-1). The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  18. The Anti-Inflammatory Effect of Spray-Dried Plasma Is Mediated by a Reduction in Mucosal Lymphocyte Activation and Infiltration in a Mouse Model of Intestinal Inflammation

    PubMed Central

    Pérez-Bosque, Anna; Miró, Lluïsa; Amat, Concepció; Polo, Javier; Moretó, Miquel

    2016-01-01

    Spray-dried preparations from porcine and bovine plasma can alleviate mucosal inflammation in experimental models and improve symptoms in patients with enteropathy. In rodents, dietary supplementation with porcine spray-dried plasma (SDP) attenuates intestinal inflammation and improves the epithelial barrier function during intestinal inflammation induced by Staphylococcus aureus enterotoxin B (SEB). The aim of this study was to discern the molecular mechanisms involved in the anti-inflammatory effects of SDP. Male C57BL/6 mice were fed with 8% SDP or control diet (based on milk proteins) for two weeks, from weaning until day 33. On day 32, the mice were given a SEB dose (i.p., 25 µg/mouse) or vehicle. SEB administration increased cell recruitment to mesenteric lymph nodes and the percentage of activated Th lymphocytes and SDP prevented these effects). SDP supplementation increased the expression of interleukin 10 (IL-10) or transforming growth factor- β (TGF-β) compared to the SEB group. The SEB challenge increased six-fold the expression of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) and intercellular adhesion molecule 1 (ICAM-1); and these effects were attenuated by SDP supplementation. SEB also augmented NF-κB phosphorylation, an effect that was prevented by dietary SDP. Our results indicate that the anti-inflammatory effects of SDP involve the regulation of transcription factors and adhesion molecules that reduce intestinal cell infiltration and the degree of the inflammatory response. PMID:27782068

  19. Trehalose limits BSA aggregation in spray-dried formulations at high temperatures: implications in preparing polymer implants for long-term protein delivery.

    PubMed

    Rajagopal, Karthikan; Wood, Joseph; Tran, Benjamin; Patapoff, Thomas W; Nivaggioli, Thierry

    2013-08-01

    Polymer implants are promising systems for sustained release applications but their utility for protein delivery has been hindered because of concerns over drug stability at elevated temperatures required for processing. Using bovine serum albumin (BSA) as a model, we have assessed whether proteins can be formulated for processing at elevated temperatures. Specifically, the effect of trehalose and histidine-HCl buffer on BSA stability in a spray-dried formulation has been investigated at temperatures ranging from 80°C to 110°C. When both the sugar and buffer are present, aggregation is suppressed even when exposed to 100°C, the extrusion temperature of poly(lactide-co-glycolide) (PLGA), a bioresorbable polymer. Estimation of aggregation rate constants (k) indicate that though both trehalose and histidine-HCl buffer contribute to BSA stability, the effect because of trehalose alone is more pronounced. BSA-loaded PLGA implants were prepared using hot-melt extrusion process and in vitro release was conducted in phosphate buffered saline at 37°C. Comparison of drug released from implants prepared using four different formulations confirmed that maximal release was achieved from the formulation in which BSA was least aggregated. These studies demonstrate that when trehalose and histidine-HCl buffer are included in spray-dried formulations, BSA stability is maintained both during processing at 100°C and long-term residence within implants.

  20. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  1. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    PubMed Central

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  2. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying.

    PubMed

    Bustamante, Mariela; Oomah, B Dave; Rubilar, Mónica; Shene, Carolina

    2017-02-01

    Mucilage (M) and soluble protein (SP) extracted from chia seed and flaxseed were used as encapsulating material for two probiotic bacteria: Bifidobacterium infantis and Lactobacillus plantarum by spray drying. Probiotic survival and viability after spray drying and during storage were evaluated. B. infantis and L. plantarum displayed high survival (⩾98%) after encapsulation with mixtures of maltodextrin (MD) combined with M and SP from flaxseed (MD:FM:FSP - 7.5:0.2:7.5%, w/w/w) and chia seed (MD:CM:CSP - 7.5:0.6:7.5%, w/w/w), respectively. These ternary blends protected the probiotics and enhanced their resistance to simulated gastric juice and bile solution. Probiotics encapsulated with the ternary blends incorporated in instant juice powder exhibited high viability (>9Log10CFU/g) after 45days refrigerated storage. Encapsulation with the ternary blends reduced particle size of the probiotic powders thereby offering additional functional benefits. Our results reveal that chia seed and flaxseed are excellent sources of probiotic encapsulating agents.

  3. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    PubMed

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage.

  4. Comparison of spray-dried egg and albumen powder with conventional animal protein sources as feed ingredients in diets fed to weaned pigs.

    PubMed

    Zhang, Sai; Piao, Xiangshu; Ma, Xiaokang; Xu, Xiao; Zeng, Zhikai; Tian, Qiyu; Li, Yao

    2015-08-01

    We evaluated the apparent (AID) and standardized ileal digestibility (SID) of amino acids (AA) in spray-dried egg (SPE) and albumen powder (AP) compared with spray-dried porcine plasma (SDPP), dried porcine solubles (DPS) and fish meal (FM). Additionally, the effects of these egg byproducts as a replacement for conventional animal proteins on the performance and nutrient digestibility of piglets were studied. In Exp. 1, six barrows fitted with ileal T-cannulas were allotted to a 6 × 6 Latin Square design and fed six diets. The AID and SID of AA were generally higher in AP and FM (P < 0.01) than in the other protein sources. In Exp. 2, 150 piglets weaned at 21 days, were fed diets containing the five protein sources for 3 weeks. Weight gain of piglets fed SDPP was the highest among the treatments. Dry matter and protein digestibility for pigs offered SDPP were higher (P < 0.01) than those offered FM and DPS. AP decreased (P < 0.05) Escherichia coli counts in the cecum. DPS decreased (P < 0.05) serum diamine oxidase compared with SPE. In conclusion, AP and SPE are competitive with traditional animal protein sources and can be successfully fed to piglets without compromising performance.

  5. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release.

    PubMed

    Meeus, Joke; Lenaerts, Maité; Scurr, David J; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van Den Mooter, Guy

    2015-04-01

    For ternary solid dispersions, it is indispensable to characterize their structure, phase behavior, and the spatial distribution of the dispersed drug as this might influence the release profile and/or stability of these formulations. This study shows how formulation (feed concentration) and process (feed rate, inlet air temperature, and atomizing air pressure) parameters can influence the characteristics of ternary spray-dried solid dispersions. The microspheres considered here consist of a poly(lactic-co-glycolic acid) (PLGA) surface layer and an underlying polyvinylpyrrolidone (PVP) phase. A poorly soluble active pharmaceutical ingredient (API) was molecularly dispersed in this matrix. Differences were observed in component miscibility, phase heterogeneity, particle size, morphology, as well as API surface coverage for selected spray-drying parameters. Observed differences are likely because of changes in the droplet generation, evaporation, and thus particle formation processes. However, varying particle characteristics did not influence the drug release of the formulations studied, indicating the robustness of this approach to produce particles of consistent drug release characteristics. This is likely because of the fact that the release is dominated by diffusion from the PVP layer through pores in the PLGA surface layer and that observed differences in the latter have no influence on the release.

  6. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid.

    PubMed

    Booysen, L L I J; Kalombo, L; Brooks, E; Hansen, R; Gilliland, J; Gruppo, V; Lungenhofer, P; Semete-Makokotlela, B; Swai, H S; Kotze, A F; Lenaerts, A; du Plessis, L H

    2013-02-28

    Poly-(dl-lactic-co-glycolic) acid (PLGA) nanoparticles were prepared by a double emulsion solvent evaporation spray-drying technique and coated with polyethylene glycol (PEG 1% v/v). The PLGA nanoparticles had a small size (229±7.6 to 382±23.9nm), uniform size distribution and positive zeta potential (+12.45±4.53mV). In vitro/in vivo assays were performed to evaluate the pharmacokinetic (PK) and pharmacodynamic (PD) performance of these nanoparticles following nanoencapsulation of the anti-tuberculosis drugs rifampicin (RIF) and isoniazid (INH). The results demonstrated the potential for the reduction in protein binding of these drugs by protection in the polymer core. Furthermore, in vitro efficacy was demonstrated using Mycobacterium tuberculosis (M. tb.) (strain H37Rv). Sustained drug release over seven days were observed for these drugs following once-off oral administration in mice with subsequent drug distribution of up to 10 days in the liver and lungs for RIF and INH, respectively. It was concluded by these studies combined with our previous reports that spray-dried PLGA nanoparticles demonstrate potential for the improvement of tuberculosis chemotherapy by nanoencapsulation of anti-tuberculosis drugs.

  7. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying.

    PubMed

    Bustamante, Mariela; Oomah, B Dave; Rubilar, Mónica; Shene, Carolina

    2017-02-01

    Mucilage (M) and soluble protein (SP) extracted from chia seed and flaxseed were used as encapsulating material for two probiotic bacteria: Bifidobacterium infantis and Lactobacillus plantarum by spray drying. Probiotic survival and viability after spray drying and during storage were evaluated. B. infantis and L. plantarum displayed high survival (⩾98%) after encapsulation with mixtures of maltodextrin (MD) combined with M and SP from flaxseed (MD:FM:FSP - 7.5:0.2:7.5%, w/w/w) and chia seed (MD:CM:CSP - 7.5:0.6:7.5%, w/w/w), respectively. These ternary blends protected the probiotics and enhanced their resistance to simulated gastric juice and bile solution. Probiotics encapsulated with the ternary blends incorporated in instant juice powder exhibited high viability (>9Log10CFU/g) after 45days refrigerated storage. Encapsulation with the ternary blends reduced particle size of the probiotic powders thereby offering additional functional benefits. Our results reveal that chia seed and flaxseed are excellent sources of probiotic encapsulating agents. PMID:27596397

  8. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    NASA Astrophysics Data System (ADS)

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g‑1, respectively, at a current density of 2 A g‑1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  9. The role of physico-chemical and bulk characteristics of co-spray dried L-leucine and polyvinylpyrrolidone on glidant and binder properties in interactive mixtures.

    PubMed

    Mangal, Sharad; Meiser, Felix; Lakio, Satu; Morton, David; Larson, Ian

    2015-02-20

    In this study, polyvinylpyrrolidone (PVP) was spray dried with l-leucine (PVP-Leu) to create a prototype multifunctional interactive excipient. The physico-chemical and bulk properties such as particle size, surface composition, surface energy and bulk cohesion of PVP-Leu was measured and compared against pure spray dried PVP (PVP-SD). The mixing behaviour of these excipients and their effect on flow and binder activity of paracetamol was assessed. The mean particle sizes of PVP-Leu PVP-SD and PVP were 2.5, 2.1 and 21.9μm, respectively. Surface composition characterization indicated that l-leucine achieved higher concentrations on the surface compared to the bulk of the PVP-Leu particles. The surface energy of PVP-Leu was significantly lower compared to PVP-SD. In addition, PVP-Leu exhibited a significantly lower bulk cohesion compared PVP-SD. The excipients were blended with paracetamol and qualitative characterization indicated that PVP-Leu blended more homogeneously with paracetamol compared to PVP-SD. Both PVP-Leu and PVP-SD then exhibited a significantly improved binder activity compared to PVP. The flow of the paracetamol was markedly improved with PVP-Leu while PVP-SD and PVP had negligible effect on its flow. This study reveals how physico-chemical and bulk properties of such prototype interactive excipients can play a key role in determining multi-factorial excipient performance.

  10. Recent advances in understanding the influence of composite-formulation properties on the performance of dry powder inhalers

    NASA Astrophysics Data System (ADS)

    Young, Paul M.; Traini, Daniela; Coates, Matthew; Chan, Hak-Kim

    2007-05-01

    The aerosolisation performances of dry powder inhaler (DPI) systems have been concisely reviewed, focusing on the composite interactions that exist in this kind of complex systems between cohesive and adhesive forces. Furthermore, the influence of the inhalation device design on the performance of the powder formulation has been evaluated. In summary, how the specific properties of formulation components are directly linked to aerosolisation performance of DPI systems is highlighted in this article.

  11. Overview of inhalation toxicology.

    PubMed Central

    Dorato, M A

    1990-01-01

    The development of inhalation toxicology as a distinct discipline can be traced back well over one hundred years. The technology has advanced in terms of materials and designs used to construct inhalation chambers and the equipment used to generate controlled test atmospheres of a wide variety of gases, vapors, dusts, and droplets. Consideration of metered dose inhalers, a relatively recent concern, has led to the design of new equipment for administering this unique dosage form. The parameters used to evaluate inhalation toxicity are similar to those used for any other route of administration. In addition, there are some unique procedures for early screening of pulmonary toxicity, especially within a series of related chemicals. Images FIGURE 1. FIGURE 3. FIGURE 7. FIGURE 8. PMID:2200660

  12. Response of early-weaned pigs to spray-dried porcine or animal plasma-based diets supplemented with egg-yolk antibodies against enterotoxigenic Escherichia colil.

    PubMed

    Owusu-Asiedu, A; Baidoot, S K; Nyachoti, C M; Marquardt, R R

    2002-11-01

    Two experiments involving 168 10-d-old weaned pigs were conducted to compare growth-promoting properties of dietary spray-dried animal plasma (SDAP), spray-dried porcine plasma (SDPP), and chicken egg-yolk antibodies (EYA) or egg-yolk powder (EYP, contains no specific antibodies) from d 0 to 14 postweaning. In Exp. 1, 96 pigs (3.2 +/- 0.2 kg BW) were used to test the hypothesis that the superior performance of piglets fed SDPP-based diets was partly due to the presence of specific antibodies against enterotoxigenic Escherichia coli (ETEC), which could be replaced with EYA. Four experimental diets in a completely randomized design and arranged in a 2 x 2 factorial (SDPP without or with autoclaving [AuSDPP] and without [EYP] or with supplementation of EYA) were used. Autoclaving SDPP at 121degrees C for 15 min completely destroyed anti-K88/F18 antibodies. Overall feed intake and gain:feed ratio were similar (P > 0.05) among treatments and averaged 122.7 g/d and 0.688, respectively. However, pigs fed AuSDPP+EYP diets had poorer (P < 0.001) ADG compared with those fed SDPP+EYP or SDPP+EYA from 0 to 14 d. Scours were four times higher (P < 0.05) for treatment AuSDPP+EYP compared with all other treatments. Plasma urea nitrogen concentration was higher (P < 0.05) in AuSDPP+EYP- and AuSDPP+EYA-fed pigs. Also twice the number of piglets fed AuSDPP+EYP appeared unhealthy compared with piglets on treatment AuSDPP+EYA. In Exp. 2, 72 10-d-old weaned pigs (3.5 kg BW) were used to compare the effect of EYA supplementation and oral challenge of ETEC strain F18 on performance and visceral organ weights. The experimental diets consisted of SDAP+EYP, SDAP+EYA, SDPP+EYP, and SDPP+EYA. From d 0 to 7, and the entire experimental period, dietary treatment did not influence (P > 0.05) growth rate and feed consumption. Plasma urea N concentration was higher (P < 0.05) in piglets fed the SDAP+EYP diet before and after the oral challenge. Gain:feed ratio, organ weights, villi heights, and

  13. Spray-dried plasma promotes growth, modulates the activity of antioxidant defenses, and enhances the immune status of gilthead sea bream (Sparus aurata) fingerlings.

    PubMed

    Gisbert, E; Skalli, A; Campbell, J; Solovyev, M M; Rodríguez, C; Dias, J; Polo, J

    2015-01-01

    Terrestrial animal byproduct meals, including nonruminant blood meal and blood products, represent the largest and largely untapped safe source of animal protein available within the international market for the aquafeed industry. Spray-dried blood and spray-dried plasma (SDP) proteins have long been recognized as high-quality feed ingredients for farmed animals. In this study, we evaluated the inclusion of SDP from porcine blood (SDPP) in growing diets for gilthead sea bream. Three isonitrogenous (CP = 51.2%) and isolipidic (fat = 12.4%) diets manufactured by cold extrusion (0.8 to 1.5 mm pellet size) were prepared by substituting high-quality fish meal with 0, 3, and 6% SDPP. The diets were tested for a period of 60 d at 22°C with 4 replicates each (400-L cylindroconical tanks, 150 fish per tank, and initial density = 0.5 kg/m(3)). The SDPP inclusion in diets for gilthead sea bream fingerlings were evaluated in terms of growth performance, feed utilization, histological organization of the intestinal mucosa, activity of oxidative stress enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and glutathione reductase) in the intestine, and nonspecific serum immune parameters (lysozyme and bactericidal activity). Results from this study indicated that dietary SDPP promoted fish growth in terms of BW and length; fish fed 3% SDPP were 10.5% heavier (P < 0.05) than those fed the control diet. Spray-dried plasma from porcine blood modulated the activity of the antioxidative defenses in the intestine (P < 0.05) and increased the density of goblet cells in the intestine (P < 0.05) and benefited the host by providing an effective immune barrier against gut pathogenic microbiota. The nonspecific serum immune response in fish fed diets with SDPP was greater (P < 0.05) than in fish fed the control diet. These results indicated that the inclusion of SDPP in gilthead sea bream feed could be beneficial for the fish by enhancing intestinal and serum innate immune

  14. Spray-dried plasma promotes growth, modulates the activity of antioxidant defenses, and enhances the immune status of gilthead sea bream (Sparus aurata) fingerlings.

    PubMed

    Gisbert, E; Skalli, A; Campbell, J; Solovyev, M M; Rodríguez, C; Dias, J; Polo, J

    2015-01-01

    Terrestrial animal byproduct meals, including nonruminant blood meal and blood products, represent the largest and largely untapped safe source of animal protein available within the international market for the aquafeed industry. Spray-dried blood and spray-dried plasma (SDP) proteins have long been recognized as high-quality feed ingredients for farmed animals. In this study, we evaluated the inclusion of SDP from porcine blood (SDPP) in growing diets for gilthead sea bream. Three isonitrogenous (CP = 51.2%) and isolipidic (fat = 12.4%) diets manufactured by cold extrusion (0.8 to 1.5 mm pellet size) were prepared by substituting high-quality fish meal with 0, 3, and 6% SDPP. The diets were tested for a period of 60 d at 22°C with 4 replicates each (400-L cylindroconical tanks, 150 fish per tank, and initial density = 0.5 kg/m(3)). The SDPP inclusion in diets for gilthead sea bream fingerlings were evaluated in terms of growth performance, feed utilization, histological organization of the intestinal mucosa, activity of oxidative stress enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and glutathione reductase) in the intestine, and nonspecific serum immune parameters (lysozyme and bactericidal activity). Results from this study indicated that dietary SDPP promoted fish growth in terms of BW and length; fish fed 3% SDPP were 10.5% heavier (P < 0.05) than those fed the control diet. Spray-dried plasma from porcine blood modulated the activity of the antioxidative defenses in the intestine (P < 0.05) and increased the density of goblet cells in the intestine (P < 0.05) and benefited the host by providing an effective immune barrier against gut pathogenic microbiota. The nonspecific serum immune response in fish fed diets with SDPP was greater (P < 0.05) than in fish fed the control diet. These results indicated that the inclusion of SDPP in gilthead sea bream feed could be beneficial for the fish by enhancing intestinal and serum innate immune

  15. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents.

    PubMed

    Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Nazareno, Mónica Azucena; Osorio, Coralia

    2015-11-15

    The microencapsulation of betalains from cactus fruit by spray drying was evaluated as a stabilization strategy for these pigments. The betalains used as active agent were extracted from purple fruits of Opuntia ficus-indica (BE) and encapsulated with maltodextrin and cladode mucilage MD-CM and only with MD. The microcapsulates were characterized by scanning electron microscopy (SEM), thermal analysis (TGA-DSC), tristimulus colorimetry, as well as, their humidity, water activity and dietary fiber content were also determined. The active agent content was measured by UV-Vis spectrophotometry and its composition confirmed by HPLC-ESIMS. A pigment storage stability test was performed at 18 °C and different relative humidities. The addition of CM in the formulation increased the encapsulation efficiency, diminished the moisture content, and allowed to obtain more uniform size and spherical particles, with high dietary fiber content. These microencapsulates are promising functional additive to be used as natural colorant in the food industry. PMID:25977013

  16. Facile Sol-Gel/Spray-Drying Synthesis of Interweaved Si@TiO2&CNTs Hybrid Microsphere as Superior Anode Materials for Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jiyun; Hou, Xianhua; Li, Yana; Ru, Qiang; Qin, Haiqing; Hu, Shejun

    2016-07-01

    A unique intertwined structure of silicon-based composite (Si@TiO2&CNTs) has been synthesized by sol-gel and spray drying methods. The Si@TiO2&CNTs is mainly composed of three kinds of materials:the prepared nanosilicon particles, TiO2, and carbon nanotubes (CNTs). A layer of TiO2 particles is found effective for enhancing the electrical conductivity and structure stability of the silicon particles. Additionally, the twisted CNTs are beneficial to build a better conductive network, consequently improving the anode working conditions when the cell is charged or discharged. As a lithium ion battery anode, a specific capacity of approximately 1521 mAh g-1 after 100 cycles is obtained.

  17. Facile Sol-Gel/Spray-Drying Synthesis of Interweaved Si@TiO2&CNTs Hybrid Microsphere as Superior Anode Materials for Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jiyun; Hou, Xianhua; Li, Yana; Ru, Qiang; Qin, Haiqing; Hu, Shejun

    2016-11-01

    A unique intertwined structure of silicon-based composite (Si@TiO2&CNTs) has been synthesized by sol-gel and spray drying methods. The Si@TiO2&CNTs is mainly composed of three kinds of materials:the prepared nanosilicon particles, TiO2, and carbon nanotubes (CNTs). A layer of TiO2 particles is found effective for enhancing the electrical conductivity and structure stability of the silicon particles. Additionally, the twisted CNTs are beneficial to build a better conductive network, consequently improving the anode working conditions when the cell is charged or discharged. As a lithium ion battery anode, a specific capacity of approximately 1521 mAh g-1 after 100 cycles is obtained.

  18. Effect of the pH in the formation of β-galactosidase microparticles produced by a spray-drying process.

    PubMed

    Estevinho, Berta N; Ramos, Irena; Rocha, Fernando

    2015-07-01

    The objective of this work was to investigate the influence of pH in the microencapsulation process, using a modified chitosan to microencapsulate the enzyme β-galactosidase, by a spray-drying technique. Structural analysis of the surface of the particles was performed by scanning electron microscopy (SEM), showing that the obtained microparticles have an average diameter smaller than 3.5 μm and in general a regular shape. The activity of the enzyme was studied by spectrophotometric methods using the substrate O-nitrophenyl-β,D-galactopyranoside (ONPG). The parameters of Michaelis-Menten were calculated. The value of Km decreases with the decrease of the pH, which can be associated to an increase of the affinity between the enzyme and substrate to smaller pH's. The highest value of the parameter Vmax, representing the maximum reaction rate at a given enzyme concentration, was obtained at pH 6.

  19. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents.

    PubMed

    Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Nazareno, Mónica Azucena; Osorio, Coralia

    2015-11-15

    The microencapsulation of betalains from cactus fruit by spray drying was evaluated as a stabilization strategy for these pigments. The betalains used as active agent were extracted from purple fruits of Opuntia ficus-indica (BE) and encapsulated with maltodextrin and cladode mucilage MD-CM and only with MD. The microcapsulates were characterized by scanning electron microscopy (SEM), thermal analysis (TGA-DSC), tristimulus colorimetry, as well as, their humidity, water activity and dietary fiber content were also determined. The active agent content was measured by UV-Vis spectrophotometry and its composition confirmed by HPLC-ESIMS. A pigment storage stability test was performed at 18 °C and different relative humidities. The addition of CM in the formulation increased the encapsulation efficiency, diminished the moisture content, and allowed to obtain more uniform size and spherical particles, with high dietary fiber content. These microencapsulates are promising functional additive to be used as natural colorant in the food industry.

  20. Development of a novel mucosal vaccine against strangles by supercritical enhanced atomization spray-drying of Streptococcus equi extracts and evaluation in a mouse model.

    PubMed

    Rodrigues, Miguel A; Figueiredo, Lara; Padrela, Luís; Cadete, Ana; Tiago, João; Matos, Henrique A; Gomes de Azevedo, Edmundo; Florindo, Helena F; Gonçalves, Lídia M D; Almeida, António J

    2012-10-01

    Strangles is an extremely contagious and sometimes deadly disease of the Equidae. The development of an effective vaccine should constitute an important asset to eradicate this worldwide infectious disease. In this work, we address the development of a mucosal vaccine by using a Supercritical Enhanced Atomization (SEA) spray-drying technique. Aqueous solutions containing the Streptococcus equi extracts and chitosan were converted into nanospheres with no use of organic solvents. The immune response in a mouse model showed that the nanospheres induced a well-balanced Th1 and Th2 response characterized by a unitary ratio between the concentrations of IgG2a and IgG1, together with IgA production. This strategy revealed to be an effective alternative for immunization against S. equi, and therefore, it may constitute a feasible option for production of a strangles vaccine.

  1. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  2. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs.

    PubMed

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E; Campbell, Joy M; Crenshaw, Joe D; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 10(5.2 ± 0.12) tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance.

  3. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs

    PubMed Central

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E.; Campbell, Joy M.; Crenshaw, Joe D.; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 105.2±0.12 tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance. PMID:26171968

  4. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone.

    PubMed

    Meeus, Joke; Chen, Xinyong; Scurr, David J; Ciarnelli, Valeria; Amssoms, Katie; Roberts, Clive J; Davies, Martyn C; van Den Mooter, Guy

    2012-09-01

    Injectable controlled-release formulations are of increasing interest for the treatment of chronic diseases. This study aims to develop and characterize a polymeric matrix for intramuscular or subcutaneous injection, consisting of two biocompatible polymers, particularly suitable for formulating poorly soluble drugs. For this matrix, the water-insoluble polymer poly(lactic-co-glycolic acid) (PLGA) is combined with the water-soluble polymer polyvinylpyrrolidone (PVP). Microparticles of these two polymers were prepared by spray drying. The phase behavior of the samples was studied by means of modulated differential scanning calorimetry and the results showed that phase separation occurred in the bulk sample through evidence of two mixed amorphous phases, namely, a PLGA-rich phase and a PVP-rich phase. Characterization of the samples by scanning electron microscopy demonstrated that the spray-dried particles were hollow with a thin shell. Because of the importance in relation to stability and drug release, information about the surface of the microparticles was collected by different complementary surface analysis techniques. Atomic force microscopy gathered information about the morphology and phase behavior of the microparticle surface. Time-of-flight secondary ion mass spectrometry analysis of the particles revealed that the surface consisted mainly of the PLGA-rich phase. This was confirmed by X-ray photoelectron spectroscopy at an increased sampling depth (≈ 10 nm). Nanothermal analysis proved to be an innovative way to thermally detect the presence of the PLGA-dominated surface layer and the underlying PVP phase. Taken together, this information provides a rational basis for predicting the likely drug release behavior this formulation will display.

  5. Inhalant Abuse

    MedlinePlus

    ... risk of being hurt in a fall, a fire or a car crash (for example, if your child tries to drive while he or she is high on an inhalant). Inhalants block oxygen flow to the brain and every other organ ...

  6. [Recent progress of dry powder inhalation of proteins and peptides].

    PubMed

    Zhou, Jie-yu; Zhang, Lan; Mao, Shi-rui

    2015-07-01

    To provide theoretical and practical basis for the successful formulation design of physically-mixed inhalation dry powder of proteins and peptides, related references were collected, analyzed and summarized. In this review drug micronization technology and commonly used carriers for inhalation dry powder preparation were introduced. For proteins and peptides, supercritical fluid technology and spray-drying are more suitable because of their capabilities of keeping drug activity. Being approved by U. S. Food and Drug Administration, lactose has been extensively used as carriers in many inhalation products. Formulation and process factors influencing drug deposition in the lung, including carrier properties, drug-carrier ratio, blending order, mixing methods, mixing time and the interaction between drug and carrier, were elucidated. The size, shape and surface properties of carries all influence the interaction between drug and carrier. Besides, influence of micromeritic properties of the dry powder, such as particle size, shape, density, flowability, charge, dispersibility and hygroscopicity, on drug deposition in the lung was elaborated. Among these particle size plays the most crucial role in particle deposition in the lung. Moreover, based on the mechanisms of powder dispersity, some strategies to improve drug lung deposition were put forward, such as adding carrier fines, adding adhesive-controlling materials and reprocessing micronized drug. In order to design physically-mixed inhalation dry powder for proteins and peptides with high lung deposition, it is essential to study drug-carriers interactions systematically and illustrate the potential influence of formulation, process parameters and micromeritic properties of the powder. PMID:26552141

  7. Asthma Inhalers

    MedlinePlus

    ... reduce the release of chlorofluorocarbons (CFCs) into the atmosphere when taking certain asthma medications. Until recently, most ... hydrofluoroalkane (HFA) inhalers, that do not rob the atmosphere of ozone. “The FDA [Food and Drug Administration] ...

  8. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation.

    PubMed

    Hu, Tingting; Chiou, Herbert; Chan, Hak-Kim; Chen, Jian-Feng; Yun, Jimmy

    2008-02-01

    Reactive high gravity controlled precipitation (HGCP) was carried out to produce salbutamol sulphate (SS) particles suitable for inhalation. Aqueous solutions of free salbutamol base and sulphuric acid were mixed intensely inside a HGCP reactor to form the particles. Spray drying was employed to obtain dry powders. Physical properties of the powders were characterised by scanning electron microscopy, X-ray powder diffraction, thermal gravimetric analysis and dynamic water vapour sorption. Aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The results showed that the reactive HGCP powder, comprising primary SS sub-micron particles (approximately 100 nm in width and approximately 500 nm in length) packed into loose spherical agglomerates of about 2 microm in diameter, is of the same polymorphic form as the raw crystalline material, has a high specific surface area (24.7 +/- 0.1 m(2)/g), but a low moisture content (0.2%) and low moisture uptake (1.4% at RH 90%). The aerosol performance of the reactive HGCP powder is excellent, showing FPF(loaded) and FPF(emitted) of 76 +/- 5% and 83 +/- 7%, respectively, with low capsule and device retention. In conclusion, reactive HGCP followed by spray drying is suitable to produce stable crystalline powders of salbutamol with enhanced inhalation properties.

  9. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation.

    PubMed

    Hu, Tingting; Chiou, Herbert; Chan, Hak-Kim; Chen, Jian-Feng; Yun, Jimmy

    2008-02-01

    Reactive high gravity controlled precipitation (HGCP) was carried out to produce salbutamol sulphate (SS) particles suitable for inhalation. Aqueous solutions of free salbutamol base and sulphuric acid were mixed intensely inside a HGCP reactor to form the particles. Spray drying was employed to obtain dry powders. Physical properties of the powders were characterised by scanning electron microscopy, X-ray powder diffraction, thermal gravimetric analysis and dynamic water vapour sorption. Aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The results showed that the reactive HGCP powder, comprising primary SS sub-micron particles (approximately 100 nm in width and approximately 500 nm in length) packed into loose spherical agglomerates of about 2 microm in diameter, is of the same polymorphic form as the raw crystalline material, has a high specific surface area (24.7 +/- 0.1 m(2)/g), but a low moisture content (0.2%) and low moisture uptake (1.4% at RH 90%). The aerosol performance of the reactive HGCP powder is excellent, showing FPF(loaded) and FPF(emitted) of 76 +/- 5% and 83 +/- 7%, respectively, with low capsule and device retention. In conclusion, reactive HGCP followed by spray drying is suitable to produce stable crystalline powders of salbutamol with enhanced inhalation properties. PMID:17722000

  10. Cardiovascular safety pharmacology studies in dogs enabled for a poorly soluble molecule using spray-dried dispersion: Impact on lead selection.

    PubMed

    Tseng, Yin-Chao; Linehan, Brian; Ng, Khing Jow; Smith, Dustin M; Markert, Michael; Patel, Mita; Guth, Brian; Fryer, Ryan M

    2016-10-15

    The aim of this study was to identify an adequate formulation for a poorly soluble lead molecule (BI-A) that would achieve sufficiently high plasma concentrations after oral administration in dogs to enable a robust cardiovascular safety pharmacology assessment in telemetry-instrumented conscious dogs during lead optimization in drug discovery. A spray-dried dispersion of BI-A (BI-A-SDD) containing a 1:2 ratio of BI-A and hydroxypropyl methylcellulose acetate succinate-LF was prepared using a Büchi spray dryer B-90 (B-90). Physical form characterization, an in vitro dissolution test and a preliminary pharmacokinetic (PK) study following oral administration of BI-A-SDD were performed. Thereafter, effects on cardiovascular parameters in conscious, chronically-instrumented dogs were investigated for 24h after a single oral dose (5, 10, and 50mg/kg) using a modified Latin square cross-over study design. The BI-A-SDD powder was confirmed to be amorphous and was stable as an aqueous suspension for at least 4h. The BI-A-SDD suspension provided a greater rate and extent of dissolution than the crystalline BI-A suspension and the supersaturation was maintained for at least 4h. In PK studies the Cmax of the BI-A-SDD formulation (25.4μM; 77-fold the projected efficacious Cmax of 0.33μM) was 7.5-fold higher than the Cmax observed using oral administration of a 10% hydroxypropyl-β-cyclodextrin formulation at 100mg/kg in dogs (3.4μM). In conscious, chronically-instrumented dogs, the doses tested and plasma concentrations achieved were sufficient to enable a robust safety pharmacology evaluation. Multiple off-target hemodynamic effects were detected including acute elevations in aortic blood pressure (up to 22% elevation in systolic and diastolic blood pressure) and tachycardia (68% elevation in heart rate), results that were confirmed in other in vivo models. These results led to a deprioritization of BI-A. The study demonstrated that a spray-dried dispersion, prepared

  11. Cardiovascular safety pharmacology studies in dogs enabled for a poorly soluble molecule using spray-dried dispersion: Impact on lead selection.

    PubMed

    Tseng, Yin-Chao; Linehan, Brian; Ng, Khing Jow; Smith, Dustin M; Markert, Michael; Patel, Mita; Guth, Brian; Fryer, Ryan M

    2016-10-15

    The aim of this study was to identify an adequate formulation for a poorly soluble lead molecule (BI-A) that would achieve sufficiently high plasma concentrations after oral administration in dogs to enable a robust cardiovascular safety pharmacology assessment in telemetry-instrumented conscious dogs during lead optimization in drug discovery. A spray-dried dispersion of BI-A (BI-A-SDD) containing a 1:2 ratio of BI-A and hydroxypropyl methylcellulose acetate succinate-LF was prepared using a Büchi spray dryer B-90 (B-90). Physical form characterization, an in vitro dissolution test and a preliminary pharmacokinetic (PK) study following oral administration of BI-A-SDD were performed. Thereafter, effects on cardiovascular parameters in conscious, chronically-instrumented dogs were investigated for 24h after a single oral dose (5, 10, and 50mg/kg) using a modified Latin square cross-over study design. The BI-A-SDD powder was confirmed to be amorphous and was stable as an aqueous suspension for at least 4h. The BI-A-SDD suspension provided a greater rate and extent of dissolution than the crystalline BI-A suspension and the supersaturation was maintained for at least 4h. In PK studies the Cmax of the BI-A-SDD formulation (25.4μM; 77-fold the projected efficacious Cmax of 0.33μM) was 7.5-fold higher than the Cmax observed using oral administration of a 10% hydroxypropyl-β-cyclodextrin formulation at 100mg/kg in dogs (3.4μM). In conscious, chronically-instrumented dogs, the doses tested and plasma concentrations achieved were sufficient to enable a robust safety pharmacology evaluation. Multiple off-target hemodynamic effects were detected including acute elevations in aortic blood pressure (up to 22% elevation in systolic and diastolic blood pressure) and tachycardia (68% elevation in heart rate), results that were confirmed in other in vivo models. These results led to a deprioritization of BI-A. The study demonstrated that a spray-dried dispersion, prepared

  12. Effect of bovine colostrum, cheese whey, and spray-dried porcine plasma on the in vitro growth of probiotic bacteria and Escherichia coli.

    PubMed

    Champagne, Claude P; Raymond, Yves; Pouliot, Yves; Gauthier, Sylvie F; Lessard, Martin

    2014-05-01

    The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man - Rogosa - Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μ(max)), lag time (LagT), and biomass (OD(max)) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μ(max) of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μ(max) was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli. PMID:24773334

  13. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes. Volume 2, Duct spray drying: Final report

    SciTech Connect

    Jozewicz, W.; Rochelle, G.T.

    1992-01-29

    Removal of sulfur dioxide (SO{sub 2}) from the flue gas of coal- burning power plants can be achieved by duct spray drying using calcium hydroxide [Ca(OH){sub 2}] slurries. A primary objective of this research was to discover the aspects of mass transfer into Ca(OH){sub 2} slurries which limit SO{sub 2} absorption. A bench- scale stirred tank reactor with a flat gas/liquid interface was used to simulate SO{sub 2} absorption in a slurry droplet. The absorption rate of SO{sub 2} from gas concentrations of 500 to 5000 ppm was measured at 55{degrees}C in clear solutions and slurries of Ca(OH){sub 2} up to 1.0 M (7 wt percent). Results are reported in terms of the enhancement factor, {O}. This research will allow prediction of conditions where the absorption of SO{sub 2} in Ca(OH){sub 2} slurries can be enhanced by changes to liquid phase constituents (under which SO{sub 2} absorption is controlled by liquid film mass transfer). Experiments in the stirred tank have shown that SO{sub 2} absorption in a 1.0 M Ca(OH){sub 2} slurry was completely dominated by gas film mass transfer with a large excess of Ca(OH){sub 2} but becomes controlled by liquid film resistance at greater than 50 percent Ca(OH){sub 2} utilization. (VC)

  14. Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions.

    PubMed

    Vitali, Luciano; Laranjeira, Mauro C M; Gonçalves, Norberto S; Fávere, Valfredo T

    2008-03-01

    In the present study, a new chelating adsorbent was prepared from chitosan microspheres cross-linked with glutaraldehyde by spray drying using 8-hydroxyquinoline -5 sulphonic acid as chelant agent (CTS-SX-CL). Microspheres of the new adsorbent were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The effect of pH, contact time and concentration of metallic ions in solution were evaluated on the adsorption behavior of Cd(II) and Zn(II) by CTS-SX-CL. Adsorption was maximum for both Cd(II) and Zn(II) at pH 8.0. Adsorption kinetic curves were obtained and could be fit by the pseudo second-order adsorption model. An analysis of equilibrium adsorption data using the Langmuir isotherm model indicated that the maximum adsorption capacity of CTS-SX-CL was higher than that of CTS-CL for both ions investigated. The adsorption capacity increased 74% for Cd(II).

  15. The effect of alkylpolyglycoside surfactants on the crystallization of spray-dried salbutamol sulphate: a GravimetricNear-Infrared Spectroscopy Study.

    PubMed

    Columbano, Angela; Buckton, Graham; Wikeley, Philip

    2002-01-01

    This study monitored the effect of a series of structurally related surfactants on the crystallization of amorphous salbutamol sulphate. Amorphous salbutamol sulphate was prepared by spray drying from a solution in water and in the presence of various alkylpolyglycosides (APGs) at different concentrations. The particles were then analyzed using isothermal microcalorimetry and water vapor sorption (Dynamic Vapour Sorption, DVS) analysis combined with near-infrared spectroscopy (DVS-NIR). Both isothermal microcalorimetry and DVS-NIR were able to detect the transition from the amorphous to the crystalline state. The presence of APG surfactants modified the shape of the crystallization peak obtained using isothermal microcalorimetry. The gravimetric study combined with NIR revealed that while the crystallization was similar for the particles with or without surfactant, there was a great difference in the release of water from the newly formed crystal. In the presence of some of the surfactants tested, salbutamol sulphate released the water much faster than in the absence of surfactant. These results helped to explain the differences found in the isothermal microcalorimeter data. Differences were observed in the shapes of the NIR water peaks related to water due to the presence of the surfactant. In conclusion, the use of DVS combined with NIR has helped to analyze and understand the effect of APGs on the crystallization of amorphous salbutamol sulphate.

  16. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Min; Hou, Xianhua; Sha, Yujing; Wang, Jie; Hu, Shejun; Liu, Xiang; Shao, Zongping

    2014-02-01

    A silicon/graphite/amorphous carbon (Si/C) composite with a low silicon content in a core-shell structure has been easily synthesized using a simple method based on spray drying in combination with a subsequent pyrolysis process; natural graphite serves as the core, and silicon nanoparticles, which filled in the porous carbon matrix formed from the pyrolysis of citric acid and pitch precursors, serve as the shell. The combination of the core-shell structure for the composite and porous carbon-coating layer accommodates the large volume change of the silicon during the lithium intercalation/extraction process, thus stabilizing the electrode structure during discharge/charge cycles. As an anode material, the as-obtained Si/C composite demonstrates high capacity and excellent cycle stability. An initial specific discharge capacity of approximately 723.8 mAh g-1 and a reversible specific capacity of approximately 600 mAh g-1 after 100 cycles at a constant density of 100 mA g-1 are reached, about two times the values for graphite. Due to the simple synthesis process and the excellent performance of the resulted electrode, great commercial potential is envisioned.

  17. Li EXCESS Li4+xTi5-xO12-δ/C COMPOSITE USING SPRAY-DRYING METHOD AND ITS ELECTRODE PROPERTIES

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Daisuke; Suzuki, Norio; Kadoma, Yoshihiro; Ui, Koichi; Kumagai, Naoaki

    2012-03-01

    We have prepared a lithium excess carbon composite material, Li4+xTi5-xO12-δ/C (LTO/C), using various amounts of sucrose as a carbon source by the spray-drying method. The prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and elemental analysis. The prepared material had the Li4Ti5O12 phase including 3.9-18.4 wt.% carbon. Transmission electron microscopy images and the selected area diffraction (SAD) pattern showed that the prepared materials consisted of a carbon nanonetwork in the LTO/C composite. The charge-discharge cycling tests were carried out using the R2032 coin-type cell under the following conditions; 1.2-3.0 V, 0.1 C-10 C (1 C = 175 mA g-1), 25°C. Based on the electrochemical results, the electrode performance of the prepared material was improved with increasing amounts of residual carbon, in particular, LTO/C including 6.2 wt.% residual carbon exhibited the best electrode performance of 156 mAh g-1 at 1 C during 50 cyclings when compared to the other materials.

  18. Effect of bovine colostrum, cheese whey, and spray-dried porcine plasma on the in vitro growth of probiotic bacteria and Escherichia coli.

    PubMed

    Champagne, Claude P; Raymond, Yves; Pouliot, Yves; Gauthier, Sylvie F; Lessard, Martin

    2014-05-01

    The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man - Rogosa - Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μ(max)), lag time (LagT), and biomass (OD(max)) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μ(max) of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μ(max) was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli.

  19. Morphology, structure and supramolecular organization of hybrid 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine-hyaluronic acid microparticles prepared by spray drying.

    PubMed

    Gómez Gaete, Carolina; Tsapis, Nicolas; Silva, Lídia; Bourgaux, Claudie; Fattal, Elias

    2008-05-10

    We characterized the morphology, structure and supramolecular organization of microparticles obtained by spray drying 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and hyaluronic acid (HA). Pure DPPC microparticles are small and strongly aggregated with phospholipids organized in a lamellar-like structure observable by scanning electron microscopy (SEM). X-ray scattering demonstrates that it corresponds to an almost dry lamellar phase with chains tilted with respect to the bilayer surface and organized according to a hexagonal lattice within the bilayer. Upon aging, DPPC reorganizes into an orthorhombic structure within the bilayer. The addition of HA leads to an increase of particle size and a decrease of aggregation and tap density associated to a morphology switch from dense spheres to hollow shells. By contrast, the supramolecular organization is not modified: HA is mostly "sandwiched" between DPPC headgroups. In addition, HA impedes phospholipids rearrangement upon aging. Altogether, for drug delivery purposes, the addition of HA is beneficial in terms of stability and physical properties.

  20. Preparation of Spray-Dried Soy Isoflavone-Loaded Gelatin Microspheres for Enhancement of Dissolution: Formulation, Characterization and in Vitro Evaluation

    PubMed Central

    Panizzon, Gean Pier; Bueno, Fernanda Giacomini; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; Dias Filho, Benedito Prado

    2014-01-01

    The most bioactive soy isoflavones (SI), daidzein (DAI) and genistein (GEN) have poor water solubility, which reduces their bioavailability and health benefits and limits their use in industry. The goal of this study was to develop and characterize a new gelatin matrix to microencapsulate DAI and GEN from soy extract (SE) by spray drying, in order to obtain solid dispersions to overcome solubility problems and to allow controlled release. The influences of 1:2 (MP2) and 1:3 (MP3) SE/polymer ratios on the solid state, yield, morphology, encapsulation efficiency, particle size distribution, release kinetics and cumulative release were evaluated. Analyses showed integral microparticles and high drug content. MP3 and MP2 yield were 43.6% and 55.9%, respectively, with similar mean size (p > 0.05), respectively. X-ray diffraction revealed the amorphous solid state of SE. In vitro release tests showed that dissolution was drastically increased. The results indicated that SE microencapsulation might offer a good system to control SI release, as an alternative to improve bioavailability and industrial applications. PMID:25494200

  1. Effect of enzymatic hydrolysis of starch on pasting, rheological and viscoelastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying.

    PubMed

    Kumar, P Arun; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Simha, H V Vikram; Nath, B Surendra

    2016-10-01

    The influence of enzymatic hydrolysis of starch on the pasting properties of barnyard millet was studied using a rheometer. The effects of blending hydrolyzed barnyard millet wort with milk at different ratios (0:1, 1:1, 1:1.5 and 1:2) on flow and viscoelastic behavior were investigated. From the pasting curves, it was evident that enzymatically-hydrolyzed starch did not exhibit typical pasting characteristics expected of normal starch. The Herschel-Bulkley model fitted well to the flow behaviour data, with coefficient of determination (R(2)) ranging from 0.942 to 0.988. All milk-wort blends demonstrated varying degree of shear thinning with flow behavior index (n) ranging from 0.252 to 0.647. Stress-strain data revealed that 1:1 blend of milk to wort had the highest storage modulus (7.09-20.06Pa) and an elastically-dominant behavior (phase angle <45°) over the tested frequency range. The crossover point of G' and G" shifted to higher frequencies with increasing wort content. From the flow and viscoelastic behavior, it was concluded that the 1:1 blend of milk to wort would have least phase separation and better flowability during spray drying.

  2. Flurbiprofen-loaded nanoparticles prepared with polyvinylpyrrolidone using Shirasu porous glass membranes and a spray-drying technique: nano-sized formation and improved bioavailability.

    PubMed

    Oh, Dong Hoon; Din, Fakhar Ud; Kim, Dong Wuk; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2013-01-01

    A unique flurbiprofen-loaded nanoemulsion was listed earlier using a Shirasu porous glass (SPG) membrane emulsification technique, which gave constant emulsion droplets with a thin size distribution. In this study, a flurbiprofen-loaded nanoemulsion was developed further into a solid form using polyvinylpyrrolidone (PVP) as a carrier by a spray-drying technique. The flurbiprofen-loaded nanoparticles with a weight ratio of flurbiprofen/PVP/surfactant mixture of 1/8/2 were connected with about 130,000-fold enhanced drug solubility and had a mean size of about 70 nm. In these nanoparticles, flurbiprofen was found in an altered amorphous state. Additionally, the nanoparticles gave significantly shorter T(max), and greater AUC and C(max) compared to the commercially available product. Specially, the AUC of the drug from the nanoparticles was about 10-fold greater compared to the commercially available product. Therefore, these flurbiprofen-loaded nanoparticles can be convenient for distributing a poorly water-soluble flurbiprofen with improved bioavailability using uniform nano-sized particles.

  3. Indacaterol Oral Inhalation

    MedlinePlus

    ... as a powder-filled capsule to inhale by mouth using a special inhaler. It is usually inhaled ... stop the pieces of capsule from reaching your mouth as you inhale the medication. Very tiny pieces ...

  4. Inhaled Asthma Medications

    MedlinePlus

    ... metered – dose inhaler (MDI), which uses a chemical propellant to push the medication out of the inhaler. ... powder inhalers (DPIs) deliver medication without using chemical propellants, but they require a strong and fast inhalation. ...

  5. Development of an Inhaled Dry-Powder Formulation of Tobramycin Using PulmoSphere™ Technology

    PubMed Central

    Weers, Jeffry; Heuerding, Silvia

    2011-01-01

    Abstract At present, the only approved inhaled antipseudomonal antibiotics for chronic pulmonary infections in patients with cystic fibrosis (CF) are nebulized solutions. However, prolonged administration and cleaning times, high administration frequency, and cumbersome delivery technologies with nebulizers add to the high treatment burden in this patient population. PulmoSphere™ technology is an emulsion-based spray-drying process that enables the production of light porous particle, dry-powder formulations, which exhibit improved flow and dispersion from passive dry powder inhalers. This review explores the fundamental characteristics of PulmoSphere technology, focusing on the development of a dry powder formulation of tobramycin for the treatment of chronic pulmonary Pseudomonas aeruginosa (Pa) infection in CF patients. This dry powder formulation provides substantially improved intrapulmonary deposition efficiency, faster delivery, and more convenient administration over nebulized formulations. The availability of more efficient and convenient treatment options may improve treatment compliance, and thereby therapeutic outcomes in CF. PMID:21395432

  6. Electrochemical properties of micron-sized, spherical, meso- and macro-porous Co3O4 and CoO-carbon composite powders prepared by a two-step spray drying process

    NASA Astrophysics Data System (ADS)

    Kim, Jung Hyun; Kang, Yun Chan

    2014-04-01

    Micron-sized, spherical, meso- and macro-porous Co3O4 and CoO-carbon composite powders were prepared via a simple two-step spray drying process. The CoO-carbon composite powders, in which homogeneous mixing of the metal oxide and carbon components was achieved using the first spray drying process, were wet milled to produce the slurry for the second spray drying process. Co3O4 and CoO-carbon composite powders with mean particle sizes of 4.4 and 4.7 μm were respectively obtained by spray-drying the slurry after post-treatment at 400 °C under air and nitrogen atmospheres. Meso- and macro-pores were uniformly distributed inside the Co3O4 and CoO-carbon composite powders. The CoO-carbon composite powders exhibited discharge capacities of 882 and 855 mA h g-1 at a high constant current density of 1400 mA g-1 for the 2nd and 100th cycles. The discharge capacities of the Co3O4 powders at the 2nd and 100th cycles were 970 and 644 mA h g-1. With stepwise increment in the current density from 500 to 5000 mA g-1, the discharge capacities of the CoO-carbon composite powders decreased slightly from 985 to 698 mA h g-1. The superior rate and cycling performances of the CoO-carbon composite powders are ascribed to their meso- and macro-porous structures and carbon components.Micron-sized, spherical, meso- and macro-porous Co3O4 and CoO-carbon composite powders were prepared via a simple two-step spray drying process. The CoO-carbon composite powders, in which homogeneous mixing of the metal oxide and carbon components was achieved using the first spray drying process, were wet milled to produce the slurry for the second spray drying process. Co3O4 and CoO-carbon composite powders with mean particle sizes of 4.4 and 4.7 μm were respectively obtained by spray-drying the slurry after post-treatment at 400 °C under air and nitrogen atmospheres. Meso- and macro-pores were uniformly distributed inside the Co3O4 and CoO-carbon composite powders. The CoO-carbon composite powders

  7. Influence of carrier on the performance of dry powder inhalers.

    PubMed

    Saint-Lorant, G; Leterme, P; Gayot, A; Flament, M P

    2007-04-01

    The aim of this work is to study carriers which can become alternatives to monohydrate lactose in dry powder inhalers and to consider particle parameters that influence adhesion between drug and carrier in dry powder inhalers. Different forms of mannitol, lactose and maltitol were mixed with either terbutaline sulphate or formoterol fumarate. The blends were submitted to different adhesion tests where drug detachment from the carrier was obtained either through mechanical vibration or by aspiration. Parameters like particle shape, roughness, amorphous content and cristalline form may affect interactions between drug and carrier. In our case, crystallized forms of the carrier offered lower adhesion but better release of the active ingredient than spray-dried forms. The crystallized mannitol produced maximal fine particle dose. The blends of the mannitols and the two active ingredients gave different results. The two techniques used to assess the adhesion of drugs to carrier particles provide complementary information about drug/carrier interactions and detachment. The mechanical sieving allows to assess blend stability and the air-jet sieving makes it possible to determine how easily the drug separates from carrier. For the drugs tested, the results of fine particle doses are in agreement with the Alpine air-jet sieve results. The tests used are helpful for the choice of a new carrier in the field of the development of new carriers for dry powder inhalers. PMID:17113733

  8. Inhibition of Listeria monocytogenes in full- and low-sodium frankfurters at 4, 7, or 10°C using spray-dried mixtures of organic acid salts.

    PubMed

    Sansawat, Thanikarn; Zhang, Lei; Jeong, Jong Y; Xu, Yanyang; Hessell, Gerald W; Ryser, Elliot T; Harte, Janice B; Tempelman, Robert; Kang, Iksoon

    2013-09-01

    In meat processing, powdered ingredients are preferred to liquids because of ease of handling, mixing, and storing. This study was conducted to assess Listeria monocytogenes inhibition and the physicochemical and organoleptic characteristics of frankfurters that were prepared with organic acid salts as spray-dried powders (sodium lactate-sodium acetate, sodium lactate-sodium acetate-sodium diacetate, and potassium acetate-potassium diacetate) or liquids (sodium lactate, sodium lactate-sodium diacetate, potassium lactate, and potassium lactate-sodium diacetate). Full-sodium (1.8% salt) and low-sodium (1.0% salt) frankfurters were prepared according to 10 and 5 different formulations (n = 3), respectively, and were dip inoculated with a six-strain cocktail of L. monocytogenes (∼4 log CFU/g). Populations of Listeria and mesophilic aerobic bacteria were quantified during storage at 4, 7, and 10°C for up to 90 days. Four powder and two liquid full-sodium formulations and one powder low-sodium formulation, all of which contained diacetate except for 1% sodium lactate-sodium acetate powder, completely inhibited Listeria growth at 4°C. However, Listeria grew in full-sodium formulations at 10°C and in low-sodium formulations at 7 and 10°C except for the formulation containing 0.8% potassium acetate-0.2% potassium diacetate powder. All formulations were similar in terms of water activity, cooking yield, moisture, and protein content. Sodium content and pH were affected by the concentrations of sodium and diacetate, respectively. Frankfurter appearance, texture, flavor, and overall acceptability were similar (P > 0.05) regardless of the formulation, except for flavor and overall acceptability of the low-sodium formulation containing potassium acetate-potassium diacetate. Based on these findings, cosprayed powders appear to be a viable alternative to current liquid inhibitors for control of Listeria in processed meats.

  9. Effect of dietary inclusion of spray-dried porcine plasma on performance, some physiological and immunological response of broiler chickens challenged with Salmonella sofia.

    PubMed

    Beski, S S M; Swick, R A; Iji, P A

    2016-10-01

    This study was conducted to investigate the effect of spray-dried porcine plasma (SDPP) in broiler chickens under Salmonella sofia disease challenge. The experiment comprised five starter diets: positive control (no supplement), diet supplemented with in-feed antibiotics (IFA; salinomycin 0.05% + zinc bacitracin 0.033%) and diets supplemented with SDPP at 10 or 20 g/kg diet. All four of these groups were challenged with S. sofia, while a fifth group was unchallenged and used as the negative control. The experimental diets were fed to 14 days; then, the birds were switched to commercial-type grower and finisher diets. Oral inoculation of the challenged groups with S. sofia occurred on day 8, 10 and 12. Body weight was significantly higher in the birds fed diets containing IFA and SDPP than in the challenged control group, but it was only significant in starter and grower phases. In general, there was an improvement in the weights of the immune-related organs, but it was only significant for the weight of the bursa of SDPP-fed birds at 13 days. At day 13, blood potassium content was lower and the concentrations of IgG and IgM tended to be lower in the birds fed on low-SDPP starter diets than those of the other groups. There were significant differences in the concentration of lactic acid in the ileum and acetic acid, formic acid, butyric acid and propionic acid in the caeca. Inclusion of SDPP to the starter diets of broiler chicks had positive effects on broiler performance, immunity and gut health during exposure to highly pathogenic conditions. PMID:26613960

  10. Novel powder formulations for controlled delivery of poorly soluble anticancer drug: application and investigation of TPGS and PEG in spray-dried particulate system.

    PubMed

    Mu, Li; Teo, More-Ming; Ning, Hui-Zhong; Tan, Chou-Song; Feng, Si-Shen

    2005-04-18

    Biodegradable poly (lactic-co-glycolic acid) (PLGA), D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) and/or polyethylene glycol (PEG) were combined as pharmaceutical excipient to fabricate microparticles containing sparingly soluble drug paclitaxel by spray-drying technique with successful achievement. The effect of formulation variety on particle morphology, surface composition, thermal property, drug entrapped capability, and drug release profile was investigated. The result indicated that the use of the appropriate mixtures of PLGA, TPGS and/or PEG produced paclitaxel-loaded microparticles characterised by acceptable pharmaceutical properties. Atomic force microcopy (AFM) and scanning electron microscopy (SEM) showed that the produced microparticles were spherical in shape with dimples or pores. The particle size ranged from 0.88 to 2.44 microm with narrow distribution. The combination of TPGS and PEG in the formulation resulted in a narrow particle size distribution in general although the influence of the formulation on the particle size was not significant. Differential scanning calorimetry (DSC) study implied that all those components in consideration were compatible well in the blend formulation systems. The paclitaxel entrapped in the particles existed in an amorphous or disordered-crystalline status in the matrices and was independent of the PLGA/TPGS/PEG ratio. X-ray photoelectron spectroscope (XPS) analysis revealed that after incorporation the particle's surface was dominated with PLGA due to its hydrophobic property. The formulation variety had an important impact on the drug release that was reduced with the presence of large fraction of TPGS resulting from a strong hydrophobic interaction between various matrix materials and the drug inside the particle. A zero order release could be yielded by optimising the ratio of PLGA/TPGS/PEG. The combination of PLGA/TPGS/PEG as safe pharmaceutical excipient to formulate particulate delivery

  11. Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaned pigs.

    PubMed

    Nofrarías, M; Manzanilla, E G; Pujols, J; Gibert, X; Majó, N; Segalés, J; Gasa, J

    2006-10-01

    We evaluated the effects of a 6% spray-dried porcine plasma (SDPP) and a plant extracts mixture (XT; 5% carvacrol, 3% cinnamaldehyde, and 2% capsicum oleoresin) on the productive performance, intestinal morphology, and leukocyte cell subsets of early-weaned pigs compared with a control group. Morphometry of the jejunum, ileum, and colon, and immune cell analysis of blood, ileocolic lymph node (LN), and ileal Peyer's patches were done in 24 weaned pigs (20 +/- 2 d) at 19 or 21 d postweaning. Although SDPP and XT treatments did not increase ADG or ADFI, SDPP improved the G:F ratio (P = 0.024) compared with the control group. Dietary SDPP reduced the percentages of blood monocytes (P = 0.006) and macrophages in ileal Peyer's patches and LN (P = 0.04), of B lymphocytes (P = 0.04) and gammadelta+ T cells in LN (P = 0.009), and of intraepithelial lymphocytes (P = 0.026) as well as the density of lamina propria cells in the colon (P < 0.01). Dietary XT reduced intraepithelial lymphocyte numbers in jejunum (P = 0.034) and the percentages of blood cytotoxic cells (P = 0.07) and B lymphocytes in LN (P = 0.03); however, XT increased blood monocytes (P = 0.038) and the density of lamina propria lymphocytes in the colon (P = 0.003). These results indicate that dietary SDPP and plant extracts can affect intestinal morphology and immune cell subsets of gut tissues and blood in weaned pigs. Furthermore, the effects of SDPP suggest lower activation of the immune system of the piglets. PMID:16971575

  12. Detergency stability and particle characterization of phosphate-free spray dried detergent powders incorporated with palm C16 methyl ester sulfonate (C16MES).

    PubMed

    Siwayanan, Parthiban; Aziz, Ramlan; Bakar, Nooh Abu; Ya, Hamdan; Jokiman, Ropien; Chelliapan, Shreeshivadasan

    2014-01-01

    Phosphate-free spray dried detergent powders (SDDP) comprising binary anionic surfactants of palm C16 methyl ester sulfonate (C16MES) and linear alkyl benzene sulfonic acid (LABSA) were produced using a 5 kg/h-capacity co-current pilot spray dryer (CSD). Six phosphate-free detergent (PFD) formulations comprising C16MES/LABSA in various ratios under pH 7-8 were studied. Three PFD formulations having C16MES/LABSA in respective ratios of 0:100 (control), 20:80 and 40:60 ratios were selected for further evaluation based on their optimum detergent slurry concentrations. The resulting SDDP from these formulations were analysed for its detergency stability (over nine months of storage period) and particle characteristics. C16MES/LABSA of 40:60 ratio was selected as the ideal PFD formulation since its resulting SDDP has consistent detergency stability (variation of 2.3% in detergency/active over nine months storage period), excellent bulk density (0.37 kg/L), fine particle size at 50% cumulative volume percentage (D50 of 60.48 μm), high coefficient of particle size uniformity (D60/D10 of 3.86) and large spread of equivalent particle diameters. In terms of surface morphology, the SDDP of the ideal formulation were found to have regular hollow particles with smooth spherical surfaces. Although SDDP of the ideal formulation have excellent characteristics, but in terms of flowability, these powders were classified as slightly less free flowing (Hausner ratio of 1.27 and Carr's index of 21.3).

  13. Inhaled Corticosteroids

    PubMed Central

    Barnes, Peter J.

    2010-01-01

    Inhaled corticosteroids (ICS) are the most effective controllers of asthma. They suppress inflammation mainly by switching off multiple activated inflammatory genes through reversing histone acetylation via the recruitment of histone deacetylase 2 (HDAC2). Through suppression of airway inflammation ICS reduce airway hyperresponsiveness and control asthma symptoms. ICS are now first-line therapy for all patients with persistent asthma, controlling asthma symptoms and preventing exacerbations. Inhaled long-acting β2-agonists added to ICS further improve asthma control and are commonly given as combination inhalers, which improve compliance and control asthma at lower doses of corticosteroids. By contrast, ICS provide much less clinical benefit in COPD and the inflammation is resistant to the action of corticosteroids. This appears to be due to a reduction in HDAC2 activity and expression as a result of oxidative stress. ICS are added to bronchodilators in patients with severe COPD to reduce exacerbations. ICS, which are absorbed from the lungs into the systemic circulation, have negligible systemic side effects at the doses most patients require, although the high doses used in COPD has some systemic side effects and increases the risk of developing pneumonia.

  14. Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms.

    PubMed

    Vollenbroek, Jasper; Hebbink, Gerald A; Ziffels, Susanne; Steckel, Hartwig

    2010-08-16

    Alpha-lactose monohydrate is widely used as an excipient in dry powder inhalers, and plays a very important role in the efficiency of the drug delivery. Due to the processing, low levels of amorphous lactose could be present in the blends. Varying amounts could have a strong effect on the efficiency of drug delivery of the powder blends. Therefore, the accurate measurement of low levels of amorphous lactose content is very important. A new method was developed to measure the amorphous content, based on dynamic vapour sorption (DVS). In contrast to the traditional re-crystallization approach of amorphous lactose, the new method is based on moisture sorption isotherms. Moisture sorption isotherms of blends of crystalline alpha-lactose and freeze-dried or spray-dried amorphous lactose were measured. By fitting the data with a Brunauer, Emmett, and Teller (BET) isotherm, a linear correlation was found between measured and actual amorphous content for the whole range of 0.1-100%. Differences between freeze-dried and spray-dried lactose, due to different molecular arrangements, could be removed by a preconditioning the samples at 35% RH prior to the isotherm measurement. It was shown that accurate determination of very low concentrations of amorphous lactose content is possible using moisture sorption isotherm analyses. PMID:20493937

  15. Subsequent growth performance and digestive physiology of broilers fed on starter diets containing spray-dried porcine plasma as a substitute for meat meal.

    PubMed

    Beski, S S M; Swick, R A; Iji, P A

    2015-01-01

    A 4 × 2 factorial experiment was conducted to investigate the effect of inclusion of spray-dried porcine plasma (SDPP), in lieu of meat meal, in the starter diet on performance and digestive physiology of broiler chickens between hatch and 35 d of age. Four levels of SDPP (0, 5, 10 or 20 g/kg) were included in the starter diets in lieu of meat meal on either wheat- or maize-based diets. Over the first 10 d, and throughout the 35-d experimental period, birds gained more body weight with increasing concentrations of SDPP regardless to the type of grain used. Inclusion of SDPP in the starter diet markedly improved feed per gain in the starter phase and across the 35-d study. There was no significant effect of the type of grain and its interaction with SDPP on the body weight gain and feed per gain for the two assessed periods. At d 10, the relative weight of the gizzard+proventriculus, spleen and liver increased with increasing concentrations of SDPP. At 24 d of age, the grain and SDPP inclusion significantly interacted, depressing the weight of bursa and spleen in birds that received the highest concentration of SDPP in the maize-based diet. Birds fed on the maize-based diets had higher relative weight of pancreas than those on the wheat-based diets. Increasing concentrations of SDPP in the starter diet improved the activities of maltase, sucrase and alkaline phosphatase at 24 d of age. The interaction of grain and SDPP concentration was significant for sucrase activity in birds on the wheat-based diets. Chickens on maize-based diets had higher alkaline phosphatase and maltase activities than those on wheat-based diets. Chicks that were offered SDPP-containing starter diets had longer villi, deeper crypts and lower villi/crypt than the control at 24 d of age regardless of the grain type used. Furthermore, longer villi and larger villi/crypt were found in chicken groups fed on wheat-based diets than those on maize-based diets. Chickens on maize-based diets had higher

  16. Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L).

    PubMed

    Arthurs, S P; Lacey, L A; Behle, R W

    2006-10-01

    Commercial formulations of the codling moth, Cydia pomonella L., granulovirus (CpGV) are limited by their short residual activity under orchard conditions in the Pacific Northwest. We evaluated spray-dried lignin-encapsulated formulations of CpGV for improved solar stability based on laboratory bioassays with a solar simulator and in field tests in an infested apple orchard. In laboratory tests, aqueous lignin formulations containing a high dosage of 3 x 10(10) occlusion bodies (OB)/L, with and without the additives titanium dioxide (TiO(2)) and sugar, provided significant solar protection of virus, i.e., mortality of codling moth exposed to lignin formulations that had been irradiated with 9.36 x 10(6) joules/m(2) was 92-94%, compared with 66-67% from a glycerin-stabilized product (Cyd-X) or suspension of pure unformulated virus at the same rates. By comparison, a lower dosage of the lignin formulation (3 x 10(8)OB/L) did not provide significant solar protection. Equivalent dosage-dependent patterns in solar protection were observed in further tests with the lignin formulation, when an intermediate (3 x 10(9)OB/L) as well as the low dosage provided no solar protection. Equivalent rates of a blank lignin formulation (containing no virus) did not affect larval mortality, suggesting a protective effect of the lignin on the virus at the high rate. The use of several spray adjuvants, 'NuFilm-17' and 'Organic Biolink' (sticker-spreaders at 0.06% v/v), 'Raynox' (sunburn protectant at 5% v/v), and 'Trilogy'(neem oil at 1% v/v) did not provide solar protection of a commercial CpGV preparation in laboratory tests. In season long orchard tests (Golden Delicious), the lignin formulation of CpGV applied at 6.57 x 10(12)OB/ha did not significantly improve control of codling moth or protection of fruit compared with Cyd-X at equivalent rates. Our studies show that lignin-based CpGV formulations provided solar protection at relatively high virus dosages. The testing of lignin

  17. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    Tetracycline-HCl (TCH)-loaded microspheres were prepared from poly(lactide-co-glycolide) (PLGA) by spray drying. The drug was incorporated in the polymer matrix either in solid state or as w/o emulsion. The spin probe 4-hydroxy-2,2,6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) and the spin trap tert-butyl-phenyl-nitrone (PBN) were co-encapsulated into the TCH-loaded and placebo particles. We investigated the effects of gamma-irradiation on the formation of free radicals in polymer and drug and the mechanism of chain scission after sterilization. Gamma-Irradiation was performed at 26.9 and 54.9 kGy using a 60Co source. The microspheres were characterized especially with respect to the formation of radicals and in vitro polymer degradation. Electron paramagnetic resonance (EPR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectroscopy (GC-MS), and scanning electron microscopy (SEM) were used for characterization of the microspheres. Using EPR spectroscopy, we successfully detected gamma-irradiation induced free radicals within the TCH-loaded microspheres, while unloaded PLGA did not contain radicals under the same conditions. The relatively low glass transition temperature of the poly(dl-lactide-co-glycolide) (37-39 degrees C) seems to favor subsequent reactions of free radicals due to the high mobility of the polymeric chains. Because of the high melting point of TCH (214 degrees C), the radicals can only be stabilized in drug loaded microspheres. In order to determine the mechanism of polymer degradation after exposure to gamma-rays, the spin trap PBN and the spin probe TEMPOL were encapsulated in the microspheres. gamma-Irradiation of microspheres containing PBN resulted in the formation of a lipophilic spin adduct, indicating that a polymeric radical was generated by random chain scission. Polymer degradation by an unzipping mechanism would have

  18. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy.

    PubMed

    Lee, Sie Huey; Teo, Jeanette; Heng, Desmond; Ng, Wai Kiong; Zhao, Yanli; Tan, Reginald B H

    2016-04-01

    Respiratory lung infections due to multidrug-resistant (MDR) superbugs are on a global upsurge and have very grim clinical outcomes. Their MDR profile makes therapeutic options extremely limited. Although a highly toxic antibiotic, colistin, is favored today as a "last-line" therapeutic against these hard-to-treat MDR pathogens, it is fast losing its effectiveness. This work therefore seeks to identify and tailor-make useful combination regimens (that are potentially rotatable and synergistic) as attractive alternative strategies to address the rising rates of drug resistance. Three potentially rotatable ternary dry powder inhaler constructs (each involving colistin and 2 other different-classed antibiotics chosen from rifampicin, meropenem, and tigecycline) were identified (with distinct complementary killing mechanisms), coformulated via spray drying, evaluated on their aerosol performance using a Next-Generation Impactor and tested for their efficacies against a number of MDR pathogens. The powder particles were of respirable size (d50, 3.1 ± 0.3 μm-3.4 ± 0.1 μm) and predominantly crumpled in morphology. When dispersed via a model dry powder inhaler (Aerolizer(®)) at 60 L/min, the powders showed concomitant in vitro deposition with fine particle fractions of ∼53%-70%. All formulations were successfully tested in the laboratory to be highly effective against the MDR pathogens. In addition, a favorable synergistic interaction was detected across all 3 formulations when tested against MDR Pseudomonas aeruginosa.

  19. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy.

    PubMed

    Lee, Sie Huey; Teo, Jeanette; Heng, Desmond; Ng, Wai Kiong; Zhao, Yanli; Tan, Reginald B H

    2016-04-01

    Respiratory lung infections due to multidrug-resistant (MDR) superbugs are on a global upsurge and have very grim clinical outcomes. Their MDR profile makes therapeutic options extremely limited. Although a highly toxic antibiotic, colistin, is favored today as a "last-line" therapeutic against these hard-to-treat MDR pathogens, it is fast losing its effectiveness. This work therefore seeks to identify and tailor-make useful combination regimens (that are potentially rotatable and synergistic) as attractive alternative strategies to address the rising rates of drug resistance. Three potentially rotatable ternary dry powder inhaler constructs (each involving colistin and 2 other different-classed antibiotics chosen from rifampicin, meropenem, and tigecycline) were identified (with distinct complementary killing mechanisms), coformulated via spray drying, evaluated on their aerosol performance using a Next-Generation Impactor and tested for their efficacies against a number of MDR pathogens. The powder particles were of respirable size (d50, 3.1 ± 0.3 μm-3.4 ± 0.1 μm) and predominantly crumpled in morphology. When dispersed via a model dry powder inhaler (Aerolizer(®)) at 60 L/min, the powders showed concomitant in vitro deposition with fine particle fractions of ∼53%-70%. All formulations were successfully tested in the laboratory to be highly effective against the MDR pathogens. In addition, a favorable synergistic interaction was detected across all 3 formulations when tested against MDR Pseudomonas aeruginosa. PMID:27019964

  20. Cationic, amphiphilic dextran nanomicellar clusters as an excipient for dry powder inhaler formulation.

    PubMed

    Vadakkan, Mithun Varghese; Binil Raj, S S; Kartha, Chandrasekharan C; Vinod Kumar, G S

    2015-09-01

    Effective delivery of drugs to alveoli in a controlled manner using hydrophobic polymers as carriers has already been reported. Preclinical studies revealed that toxicity and hydrophobicity are related to each other in pulmonary delivery. Here, we are reporting a chemically modified dextran having amphiphilicity and cationicity achieved by controlled grafting of stearyl amine. Two proportions of lipopolymers were synthesized and physico-chemical characterization was carried out. In vivo evaluation of sub-acute toxicity of the synthesized lipopolymer in Sprague-Dawley rats was carried out for three months. This was followed by a histological evaluation of the sacrificed animal's lung. Further, the synthesized lipopolymer was formulated with drug (Rifampicin) loaded inhalable microparticles through spray drying. The final drug formulation was tested for toxicity and proinflammatory responses in human cell lines. Dose deposition efficiency of the formulation was determined using Anderson Cascade Impactor. PMID:26013041

  1. Effects of spray-dried porcine plasma on growth performance, immune response, total antioxidant capacity, and gut morphology of nursery pigs.

    PubMed

    Tran, H; Bundy, J W; Li, Y S; Carney-Hinkle, E E; Miller, P S; Burkey, T E

    2014-10-01

    Two experiments were conducted to evaluate the effects of spray-dried porcine plasma (SDPP) on growth performance, immunity, antioxidant capacity, and gut morphology of nursery pigs. In Exp. 1, 96 weaned pigs (Nebraska female × Danbred sire; 20 ± 1 d of age; initial BW = 6.06 ± 0.02 kg) were assigned to 16 pens and randomly allotted to the control (CTL; no SDPP) or the CTL + SDPP treatment in 2 phases (phase 1: d 0 to 14, 5% SDPP; phase 2: d 14 to 28, 2.5% SDPP). Blood samples were collected on d 0 and weekly thereafter to quantify IgG, IgA, and total antioxidant capacity. On d 14, pigs (n = 16; 8 pigs/treatment) were selected and euthanized for small intestine tissue and alveolar macrophage collection. On d 7, pigs fed SDPP had greater ADG, ADFI (P = 0.001), and G:F (P = 0.019) compared with CTL pigs. On d 28, pigs fed SDPP had greater BW (P = 0.024) and tended to have greater ADG (P = 0.074) and ADFI (P = 0.062) compared with CTL pigs. There were no differences between treatments for serum IgG, IgA, and total antioxidant capacity. On d 14, greater villus height (P = 0.011) and villus:crypt (P = 0.008) were observed in duodenal tissue sections obtained from SDPP-fed pigs compared with CTL pigs. To evaluate effects of SDPP on immune biomarkers, alveolar macrophages collected from 3 pigs/treatment on d 14 were cultured in vitro and challenged with lipopolysaccharide (LPS; 10 ng/mL). Therefore, 4 treatments included 1) CTL diet with no LPS, 2) CTL diet with LPS (CTL+), 3) SDPP diet with no LPS, and 4) SDPP diet with LPS. There were no diet effects on tumor necrosis factor-α gene expression or secretion by alveolar macrophages. For IL-10 gene expression, a diet × LPS interaction (P = 0.009) was observed where CTL+ had greater (P < 0.05) IL-10 mRNA abundance compared with other treatments. A second experiment was conducted to evaluate the in vitro effects of porcine plasma using model porcine jejunal epithelial cells (IPEC-J2). The treatments applied to the IPEC

  2. Efficacy of dietary spray dried plasma protein to mitigate the negative effects on performance of pigs fed diets with corn naturally contaminated with multiple mycotoxins.

    PubMed

    Weaver, A C; Campbell, J M; Crenshaw, J D; Polo, J; Kim, S W

    2014-09-01

    The ability of spray dried plasma protein (SDPP) to reduce the negative effects of multiple mycotoxins from naturally contaminated corn on weaned pig performance and health was investigated (n = 180; 6.84 ± 0.11 kg). For 12 d after weaning, pigs were fed phase 1 nursery diets with either 0% SDPP (PP0) or 6% SDPP (PP6). After 12 d, pigs were fed phase 2 diets for 3 wk. Pigs fed PP0 in phase 1 continued to be fed a phase 2 diet with no SDPP (PP0/PP0) or were fed a diet including corn naturally contaminated with multiple mycotoxins (M), labeled PP0/PP0M. Pigs fed SDPP in phase 1 were fed either a diet with no SDPP (PP6/PP0), a diet with M and no SDPP (PP6/PP0M), a diet with M and 3% SDPP (PP6/PP3M), or a diet with M and 6% SDPP (PP6/PP6M). During phase 1, pigs fed PP6 had increased (P < 0.05) ADG, ADFI, and G:F, whereas immunological parameters were not altered. During phase 2, pigs consuming PP0/PP0M had reduced ADG (P < 0.01) and ADFI (P < 0.05) in contrast to pigs fed PP0/PP0, whereas the performance of pigs fed PP6/PP0M was intermediate to pigs fed PP0/PP0M and PP6/PP0. The ADG and ADFI did not differ for pigs fed PP0/PP0M and PP6/PP0M during phase 2. Performance of pigs fed PP6/PP3M in contrast to pigs fed PP6/PP0M during phase 2 did not differ; however, these pigs had lower (P < 0.05) tumor necrosis factor α and tended (P = 0.094) to have lower DNA damage. During phase 2, ADG and ADFI of pigs fed PP6/PP6M did not differ from pigs fed PP6/PP0M, but G:F tended (P = 0.067) to be increased in pigs fed PP6/PP6M. Over the entire study period, pigs fed PP0/PP0M had reduced (P < 0.05) ADG and tended (P = 0.067) to have reduced ADFI. During this time, pigs fed PP6/PP0M tended to have greater ADG and ADFI (P = 0.093 and P = 0.067, respectively) compared with pigs fed PP0/PP0M. Overall, feeding a diet with SDPP improved growth performance and feed intake of young pigs directly after weaning. Feeding multiple M had a negative impact on growth performance of pigs during

  3. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery.

    PubMed

    Won, Jong Min; Choi, Seung Ho; Hong, Young Jun; Ko, You Na; Kang, Yun Chan

    2014-01-01

    ZnFe2O4 yolk-shell powders were prepared by applying a simple spray-drying process. Dextrin was used as a drying additive and carbon source material, and thus played a key role in the preparation of the powders. The combustion of precursor powders consisting of zinc and iron salts and dextrin obtained by a spray-drying process produced the yolk-shell-structured ZnFe2O4 powders even at a low post-treatment temperature of 350 °C. The ZnFe2O4 powders prepared from the spray solution without dextrin had a filled and pockmarked structure. The initial discharge capacities of the ZnFe2O4 yolk-shell and filled powders post-treated at 450 °C at a current density of 500 mA g(-1) were 1226 and 993 mA h g(-1), respectively, and the corresponding initial Coulombic efficiencies were 74 and 58%. The discharge capacities of the ZnFe2O4 powders with yolk-shell and filled structures post-treated at 450 °C after 200 cycles were 862 and 332 mA h g(-1), respectively. The ZnFe2O4 yolk-shell powders with high structural stability during cycling had superior electrochemical properties to those of the powders with filled structure. PMID:25168407

  4. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery

    PubMed Central

    Won, Jong Min; Choi, Seung Ho; Hong, Young Jun; Ko, You Na; Kang, Yun Chan

    2014-01-01

    ZnFe2O4 yolk–shell powders were prepared by applying a simple spray-drying process. Dextrin was used as a drying additive and carbon source material, and thus played a key role in the preparation of the powders. The combustion of precursor powders consisting of zinc and iron salts and dextrin obtained by a spray-drying process produced the yolk–shell-structured ZnFe2O4 powders even at a low post-treatment temperature of 350°C. The ZnFe2O4 powders prepared from the spray solution without dextrin had a filled and pockmarked structure. The initial discharge capacities of the ZnFe2O4 yolk–shell and filled powders post-treated at 450°C at a current density of 500 mA g−1 were 1226 and 993 mA h g−1, respectively, and the corresponding initial Coulombic efficiencies were 74 and 58%. The discharge capacities of the ZnFe2O4 powders with yolk–shell and filled structures post-treated at 450°C after 200 cycles were 862 and 332 mA h g−1, respectively. The ZnFe2O4 yolk–shell powders with high structural stability during cycling had superior electrochemical properties to those of the powders with filled structure. PMID:25168407

  5. Fabrication of nanocomposite particles using a two-solution mixing-type spray nozzle for use in an inhaled curcumin formulation.

    PubMed

    Taki, Moeko; Tagami, Tatsuaki; Fukushige, Kaori; Ozeki, Tetsuya

    2016-09-10

    A unique two-solution mixing-type spray nozzle is useful for producing nanocomposite particles (microparticles containing drug nanoparticles) in one step. The nanocomposite particles can prevent nanoparticle aggregation. Curcumin has many reported pharmacological effects. Curcumin was entrapped in mannitol microparticles using a spray dryer coupled with a two-solution mixing-type spray nozzle to prepare "curcumin nanocomposite particles" and the application of these particles for inhalation formulations was investigated. Spray drying conditions (flow rate, concentration and inlet temperature) affected the size of both the resulting curcumin nanocomposite particles and the curcumin nanoparticles in the nanocomposite particles. The aerosol performance of the curcumin nanocomposite particles changed depending on the spray drying conditions and several conditions provided better deposition compared with the curcumin original powder. The curcumin nanocomposite particles showed an improved dissolution profile of curcumin compared with the original powder. Furthermore, the curcumin nanocomposite particles showed a higher cytotoxic effect compared with the curcumin original powder towards three cancer cell lines. Curcumin nanocomposite particles containing curcumin nanoparticles show promise as an inhalation formulation for treating lung-related diseases including cancer. PMID:27374204

  6. Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach

    PubMed Central

    Karimi, Keyhaneh; Pallagi, Edina; Szabó-Révész, Piroska; Csóka, Ildikó; Ambrus, Rita

    2016-01-01

    Pulmonary drug delivery of ciprofloxacin hydrochloride offers effective local antibacterial activity and convenience of easy application. Spray drying is a trustworthy technique for the production of ciprofloxacin hydrochloride microparticles. Quality by design (QbD), an up-to-date regulatory-based quality management method, was used to predict the final quality of the product. According to the QbD-based theoretical preliminary parameter ranking and priority classification, dry powder inhalation formulation tests were successfully performed in practice. When focusing on the critical parameters, the practical development was more effective and was in correlation with our previous findings. Spray drying produced spherical microparticles. The dry powder formulations prepared were examined by particle size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro drug release and aerodynamic particle size analyses were also performed. These formulations showed an appropriate particle size ranging between 2 and 4 μm and displayed an enhanced aerosol performance with fine particle fraction up to 80%. PMID:27784991

  7. Inhalable microparticles of nitric oxide donors induce phagosome maturation and kill Mycobacterium tuberculosis.

    PubMed

    Verma, Rahul Kumar; Agrawal, Atul Kumar; Singh, Amit Kumar; Mohan, Mradul; Gupta, Anuradha; Gupta, Pushpa; Gupta, Umesh Datta; Misra, Amit

    2013-07-01

    Nitric oxide (NO) kills Mycobacterium tuberculosis (Mtb) in vitro, but gaseous NO is difficult to administer to patients. We evaluated the consequences of intracellular delivery of NO using inhalable microparticles (MP) containing NO donors. MP containing 10% w/w of NO donors alone, or in addition to 25% each of isoniazid (INH) and rifabutin (RFB) in a polylactide-co-glycolide (PLGA) matrix were prepared by spray drying. THP-1-derived macrophages infected with Mtb H37Rv were exposed to MP or soluble NO donors. Phagosome-lysosome fusion (PLF) and bacterial killing were monitored. Colony forming units (cfu) in lungs and spleen of mice infected with a low-dose aerosol and administered inhalations of MP were enumerated. Bacterial DNA in these tissues was estimated by real-time PCR. In vitro studies indicated a bacteriostatic effect of NO donors despite significant enhancement of PLF. Daily inhalation of MP containing 10% diethylenetriamine nitric oxide adduct (DETA/NO) alone reduced log10 cfu in the lungs from 6.1 to 4.4 at the highest dose in four weeks, but did not significantly affect cfu in the spleen. Inhalations of MP containing DETA/NO in combination with INH and RFB significantly (P < 10(-5), ANOVA) reduced cfu in lungs and spleens by 4 log. Gross morphology and histology of the lungs and spleen indicated that inhaled particles were well-tolerated. Inhalable MP containing NO donors need further investigation as an adjunct to standard anti-tuberculosis chemotherapy. PMID:23562366

  8. Effects of feeding a spray-dried multivalent polyclonal antibody preparation on feedlot performance, feeding behavior, carcass characteristics, rumenitis, and blood gas profile of Brangus and Nellore yearling bulls.

    PubMed

    Millen, D D; Pacheco, R D L; DiLorenzo, N; Martins, C L; Marino, C T; Bastos, J P S T; Mariani, T M; Barducci, R S; Sarti, L M N; DiCostanzo, A; Rodrigues, P H M; Arrigoni, M D B

    2015-09-01

    The objective of this study was to evaluate the effects of replacing monensin (MON) with a spray-dried multivalent polyclonal antibody preparation (PAP) against several ruminal microorganisms on feedlot performance, carcass characteristics, feeding behavior, blood gas profile, and the rumenitis incidence of Brangus and Nellore yearling bulls. The study was designed as a completely randomized design with a 2 × 2 factorial arrangement, replicated 6 times (4 bulls per pen and a total of 24 pens), in which bulls ( = 48) of each biotype were fed diets containing either MON fed at 300 mg/d or PAP fed at 3 g/d. No significant feed additive main effects were observed for ADG ( = 0.27), G:F ( = 0.28), HCW ( = 0.99), or dressing percentage ( = 0.80). However, bulls receiving PAP had greater DMI ( = 0.02) and larger ( = 0.02) final LM area as well as greater ( < 0.01) blood concentrations of bicarbonate and base excess in the extracellular fluid than bulls receiving MON. Brangus bulls had greater ( < 0.01) ADG and DMI expressed in kilograms, final BW, heavier HCW, and larger initial and final LM area than Nellore bulls. However, Nellore bulls had greater daily DMI fluctuation ( < 0.01), expressed as a percentage, and greater incidence of rumenitis ( = 0.05) than Brangus bulls. In addition, Brangus bulls had greater ( < 0.01) DMI per meal and also presented lower ( < 0.01) DM and NDF rumination rates when compared with Nellore bulls. Significant interactions ( < 0.05) between biotype and feed additive were observed for SFA, unsaturated fatty acids (UFA), MUFA, and PUFA concentrations in adipose tissues. When Nellore bulls were fed PAP, fat had greater ( < 0.05) SFA and PUFA contents but less ( < 0.01) UFA and MUFA than Nellore bulls receiving MON. For Brangus bulls, MON led to greater ( < 0.05) SFA and PUFA and less ( < 0.05) UFA and MUFA than Brangus bulls fed PAP. Feeding a spray-dried PAP led to similar feedlot performance compared with that when feeding MON. Spray-dried

  9. Inhalation exposure technology, dosimetry, and regulatory issues.

    PubMed

    Dorato, M A; Wolff, R K

    1991-01-01

    Inhalation toxicology technology has provided the scientific community with important advances in studies of inhaled toxicants. These advances include new and more efficient exposure systems (e.g., flow-past nose-only exposure systems), and improved approaches to inhalation chamber environmental control (e.g., temperature, humidity, air quality). Practical problems and approaches to testing and operating inhalation exposure systems and the advantages and disadvantages of the major inhalation exposure types (e.g., whole-body, nose-only) are discussed. Important aspects of study design, such as high level particulate exposures resulting in large lung burdens (e.g., greater than or equal to 2 mg/g of lung), slowed pulmonary clearance rates, and nonspecific toxicity are considered, along with practical issues of comparative dosimetry. Regulatory guidelines have continued to present challenges in designing and conducting acute, subchronic, and chronic inhalation studies. The important regulatory issue of performing acute inhalation toxicity studies at high aerosol concentrations and "respirable" particle size distribution is discussed. PMID:1813983

  10. Mometasone Oral Inhalation

    MedlinePlus

    ... or she watches.The dose counter on the base of your mometasone inhaler tells you how many ... Hold the inhaler straight up with the colored base on the bottom. Twist the white cap counterclockwise ...

  11. Budesonide Oral Inhalation

    MedlinePlus

    ... 6 years of age and older. Budesonide suspension (liquid) for oral inhalation (Pulmicort Respules) is used in ... of inhalations even if it still contains some liquid and continues to release a spray when it ...

  12. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    PubMed

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  13. Beclomethasone Oral Inhalation

    MedlinePlus

    ... with water and spit. Do not swallow the water. Keep the inhaler clean and dry with the cover tightly in place ... all times. To clean your inhaler, use a clean, dry tissue or cloth. Do not wash or put any part of your inhaler in water.

  14. Synergistic combination dry powders for inhaled antimicrobial therapy

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  15. Dynamics of airflow in a short inhalation

    PubMed Central

    Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.

    2015-01-01

    During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147

  16. Inhalable DNase I microparticles engineered with biologically active excipients.

    PubMed

    Osman, Rihab; Al Jamal, Khuloud T; Kan, Pei-Lee; Awad, Gehanne; Mortada, Nahed; El-Shamy, Abd-Elhameed; Alpar, Oya

    2013-12-01

    Highly viscous mucus poses a big challenge for the delivery of particulates carrying therapeutics to patients with cystic fibrosis. In this study, surface modifying DNase I loaded particles using different excipients to achieve better lung deposition, higher enzyme stability or better biological activity had been exploited. For the purpose, controlled release microparticles (MP) were prepared by co-spray drying DNase I with the polymer poly-lactic-co-glycolic acid (PLGA) and the biocompatible lipid surfactant 1,2-dipalmitoyl-Sn-phosphatidyl choline (DPPC) using various hydrophilic excipients. The effect of the included modifiers on the particle morphology, size, zeta potential as well as enzyme encapsulation efficiency, biological activity and release had been evaluated. Powder aerosolisation performance and particle phagocytosis by murine macrophages were also investigated. The results showed that more than 80% of enzyme activity was recovered after MP preparation and that selected surface modifiers greatly increased the enzyme encapsulation efficiency. The particle morphology was greatly modified altering in turn the powders inhalation indices where dextran, ovalbumin and chitosan hydrochloride increased considerably the respirable fraction compared to the normal hydrophilic carriers lactose and PVP. Despite of the improved aerosolisation caused by chitosan hydrochloride, yet retardation of chitosan coated particles in artificial mucus samples discouraged its application. On the other hand, dextran and polyanions enhanced DNase I effect in reducing cystic fibrosis mucus viscosity. DPPC proved good ability to reduce particles phagocytic uptake even in the presence of the selected adjuvants. The prepared MP systems were biocompatible with lung epithelial cells. To conclude, controlled release DNase I loaded PLGA-MP with high inhalation indices and enhanced mucolytic activity on CF sputum could be obtained by surface modifying the particles with PGA or dextran. PMID

  17. Rifapentine-Proliposomes for Inhalation: In Vitro and In Vivo Toxicity

    PubMed Central

    Patil-Gadhe, Arpana A.; Kyadarkunte, Abhay Y.; Pereira, Michael; Jejurikar, Gauri; Patole, Milind S.; Risbud, Arun; Pokharkar, Varsha B.

    2014-01-01

    Background: Oral therapy for pulmonary tuberculosis (TB) treatment suffers from the limitation of hepatic metabolism leading insufficient concentration of antitubercular (anti-TB) drugs in alveolar macrophage which harbors Mycobacterium tuberculosis (MTB). Targeted aerosol delivery of antituberculous drug to lung is efficient for treating local lung TB infection. Objective: The present study was aimed to evaluate rifapentine (RPT) loaded proliposomal dry powder for inhalation (RLDPI) for anti-TBactivity and cytotoxicity in vitro. In vivo toxicity study was also undertaken in Wistar rats to determine safe concentration of RLDPI for administration. Materials and Methods: Anti-TB activity of developed RLDPI was assessed using drug susceptibility testing (DST) on Mycobacteria growth indicator tube (MGIT) method. In vitro cytotoxicity was performed in A549 cell lines and IC50 values were used to compare the cytotoxicity of formulation with pure RPT. In vivo repeated dose toxicity study was undertaken using Wistar rats at three different doses for 28-days by intratracheal insufflations method. Results: The results of DST study revealed sensitivity of tubercle bacteria to RLDPI at concentration equivalent to 10 μg/mL of RPT. This study confirmed anti-TB potential of RPT in spray-dried RLDPI, though the spray drying method is reported to reduce activity of drugs. Cytotoxicity study in A549 cells demonstrated that RPT when encapsulated in liposomes as RLDPI was safe to cells as compared to pure RPT. In vivo toxicity study revealed that RPT in the form of RLDPI was safe at 1 and 5 mg/kg dose. However, mortality was seen at higher dose (10 mg/kg), possibly because of liver and kidney damage. Conclusion: Thus, these studies demonstrated safety of RLDPI for the treatment of pulmonary TB. PMID:25948966

  18. Aggregated Nanotransfersomal Dry Powder Inhalation of Itraconazole for Pulmonary Drug Delivery

    PubMed Central

    Hassanpour Aghdam, Mehdi; Ghanbarzadeh, Saeed; Javadzadeh, Yousef; Hamishehkar, Hamed

    2016-01-01

    Purpose: Local therapy is a valuable and strategic approach in the treatment of lung associated diseases and dry powder inhalation (DPI) formulations play the key role in this plan. Transfersome has been introduced as a novel biocompatible vesicular system with potential for administration in pulmonary drug delivery. The present study was designed to prepare Itraconazole-loaded nanotrantransfersomal DPI formulation. Methods: Itraconazole-loaded nanotransfersomes with three different types of surfactant in varying concentrations were prepared and characterized in the point of particle size distribution and morphology by laser light scattering and scanning electron microscopy (SEM) methods. The optimized transferosomal formulations were co-spray dried with mannitol and the aerosolization efficiency and aerodynamic properties of dry powders were determined by next generation impactor using a validated HPLC technique. Results: The volume mean diameter of optimized nanotransfersomal formulation with lecithin:Span® 60 in the ratio of 90:10 was 171 nm with narrow size distribution pattern which increased up to 518 nm after drug loading. Different types of surfactant did not influence the particle size significantly. SEM images confirmed the formation of aggregated nanoparticles in the suitable range (1-5 µm) for the pulmonary drug delivery. Aerosolization evaluation of co-spray dried formulations with different amounts of mannitol indicated that 2:1 ratio of mannitol:transfersome (w:w) showed the best aerosolization efficiency (fine particle fraction (FPF)=37%). Increasing of mannitol significantly decreased the FPF of the optimized formulations. Conclusion: The results of this study was introduced the potential application of nanotransfersomes in the formulation of DPIs for lung delivery of various drugs. PMID:27123418

  19. Inhalant Abuse and Dextromethorphan.

    PubMed

    Storck, Michael; Black, Laura; Liddell, Morgan

    2016-07-01

    Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeconomic boundaries, causing significant morbidity and mortality in school-aged and older children. This review presents current perspectives on epidemiology, detection, and clinical challenges of inhalant abuse and offers advice regarding the medical and mental health providers' roles in the prevention and management of this substance abuse problem. Also discussed is the misuse of a specific "over-the-counter" dissociative, dextromethorphan. PMID:27338970

  20. Estimation of the optimum ratio of standardized ileal digestible isoleucine to lysine for eight- to twenty-five-kilogram pigs in diets containing spray-dried blood cells or corn gluten feed as a protein source.

    PubMed

    Wiltafsky, M K; Bartelt, J; Relandeau, C; Roth, F X

    2009-08-01

    Two growth assays and 1 N balance trial were conducted to determine the standardized ileal digestible (SID) Ile:Lys ratio in 8- to 25-kg pigs using spray-dried blood cells or corn gluten feed as a protein source. In Exp. 1, 48 individually penned pigs (initial BW = 7.7 kg) were used in a 6-point SID Ile titration study (analyzed SID Ile of 0.36, 0.43, 0.50, 0.57, 0.64, and 0.72%) by addition of graded levels of L-Ile. The basal diet contained 1.00% SID Lys, 18.4% CP, and 13.6 MJ of ME/kg. Diets were based on wheat, barley, corn, and 7.5% spray-dried blood cells as a protein source. Dietary SID Leu and Val levels were 1.61 and 1.02%, respectively. For the 35-d period, ADG, ADFI, and G:F increased linearly (P < 0.01) and quadratically (P < 0.04) with increasing SID Ile:Lys. Estimates of optimal SID Ile:Lys ratios were 59% for ADG and ADFI. In Exp. 2, 24 N balances were conducted using the Exp. 1 diets (12 pigs; individually penned; average BW = 11.5 kg). Pigs were fed 3 times daily with an amount equal to 1.0 MJ of ME/kg of BW(0.75). Preparation and collection periods (7 d each) were repeated after rearranging the animals to treatments. Increasing the dietary SID Ile:Lys ratio increased N retention linearly (P < 0.01), and N utilization linearly (P < 0.01) and quadratically (P < 0.01). An optimal SID Ile:Lys ratio of 54% was estimated for N retention. In Exp. 3, 48 individually penned pigs (initial BW = 8.0 kg) were fed grain-based diets in a 6-point SID Ile titration (analyzed SID Ile of 0.35, 0.41, 0.49, 0.56, 0.62, and 0.69%). Dietary SID Ile was increased by graded addition of L-Ile. The basal diet contained 0.97% SID Lys, 16.8% CP, and 13.6 MJ of ME/kg. In contrast to Exp. 1 and 2, spray-dried blood cells were excluded and corn gluten feed was used as a protein source. Dietary SID Leu and Val were set to 1.05 and 0.66%. For the 42-d period, ADG, ADFI, and G:F increased linearly (P < 0.01) and quadratically (P < 0.01) with increasing SID Ile:Lys. Estimated

  1. Modeling Deposition of Inhaled Particles

    EPA Science Inventory

    The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeutic dose delivered by inhaled pharmacological drugs. Howeve...

  2. [Preparation of budesonide sustained-release dry powder for inhalation and influence of lactose content].

    PubMed

    Liang, Zheng-lin; Wang, Xiu-hua; Ni, Rui; Zhang, Lan; Muenster, Uwe; Mao, Shi-rui

    2015-09-01

    Using high pressure homogenization method combined with spray-drying, budesonide-loaded chitosan microparticles were prepared and the in vitro release profile was investigated. The microparticles were then blended with lactose using a vortex mixer, influence of mixing speed, mixing time on drug recovery rate and content homogeneity were investigated. Meanwhile, influence of lactose content on drug recovery rate, content homogeneity, powder flowability and in vitro deposition were studied. It turned out that budesonide was released from the microparicles in a sustained manner, with fine particle fraction as high as 46.0%, but the powder flowability was poor. After blending with 10 times of lactose, the drug recovery rate was 96.5%, with relative standard deviation of drug content 2.5%, and fine particle fraction of the formulation increased to 59.6% with good flowability. It's demonstrated that using a vortex mixer, budesonide sustained-release dry powder for inhalation with good recovery and content homogeneity could be prepared, the formulation had good flowability and was suitable for pulmonary inhaling. PMID:26757557

  3. TARGETED DELIVERY OF INHALED PHARMACEUTICALS USING AN IN SILICO DOSIMETRY MODEL

    EPA Science Inventory

    We present an in silico dosimetry model which can be used for inhalation toxicology (risk assessment of inhaled air pollutants) and aerosol therapy ( targeted delivery of inhaled drugs). This work presents scientific and clinical advances beyond the development of the original in...

  4. Inhalants in Peru.

    PubMed

    Lerner, R; Ferrando, D

    1995-01-01

    In Peru, the prevalence and consequences of inhalant abuse appear to be low in the general population and high among marginalized children. Inhalant use ranks third in lifetime prevalence after alcohol and tobacco. Most of the use appears to be infrequent. Among marginalized children, that is, children working in the streets but living at home or children living in the street, the problem of inhalant abuse is a serious problem. Among children working in the streets but living at home, the lifetime prevalence rate for inhalant abuse is high, ranging from 15 to 45 percent depending on the study being cited. For children living in the streets, the use of inhalant is even more severe. As mentioned earlier in this chapter, most of these street children use inhalants on a daily basis. The lack of research on the problem of inhalant abuse is a serious impediment to development of intervention programs and strategies to address this problem in Peru. Epidemiologic and ethnographic research on the nature and extent of inhalant abuse are obvious prerequisites to targeted treatment and preventive intervention programs. The urgent need for current and valid data is underscored by the unique vulnerability of the youthful population at risk and the undisputed harm that results from chronic abuse of inhalants. Nonetheless, it is important to mention several programs that work with street children. Some, such as the Information and Education Center for the Prevention of Drug Abuse, Generation, and Centro Integracion de Menores en Abandono have shelters where street children are offered transition to a less marginal lifestyle. Teams of street educators provide the children with practical solutions and gain their confidence, as well as offer them alternative socialization experiences to help them survive the streets and avoid the often repressive and counterproductive environments typical of many institutions. Most of the children who go through these programs tend to abandon

  5. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-05-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm‑3) as well as a gravimetric capacity of 161 mA h g‑1 and volumetric capacity of 281 mA h cm‑3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g‑1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate.

  6. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

    PubMed Central

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm−3) as well as a gravimetric capacity of 161 mA h g−1 and volumetric capacity of 281 mA h cm−3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g−1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate. PMID:27220812

  7. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries.

    PubMed

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-05-25

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm(-3)) as well as a gravimetric capacity of 161 mA h g(-1) and volumetric capacity of 281 mA h cm(-3) at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g(-1) at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate.

  8. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries.

    PubMed

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm(-3)) as well as a gravimetric capacity of 161 mA h g(-1) and volumetric capacity of 281 mA h cm(-3) at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g(-1) at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate. PMID:27220812

  9. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-05-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm-3) as well as a gravimetric capacity of 161 mA h g-1 and volumetric capacity of 281 mA h cm-3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g-1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate.

  10. ASSOCIATION BETWEEN THE INTRODUCTION OF A NEW CYSTIC FIBROSIS INHALED ANTIBIOTIC CLASS AND CHANGE IN PREVALENCE OF PATIENTS RECEIVING MULTIPLE INHALED ANTIBIOTIC CLASSES

    PubMed Central

    Dasenbrook, Elliott C.; Konstan, Michael W.; VanDevanter, Donald R.

    2014-01-01

    Background In 2010, aztreonam for inhalation solution joined aminoglycosides and colistimethate as a new cystic fibrosis (CF) chronic inhaled antimicrobial therapy. We studied how introduction of this new inhaled antibiotic class changed management of US CF patients. Methods Use of inhaled aminoglycosides, colistimethate, and aztreonam among patients followed in the CF Foundation Patient Registry was analyzed by age group, lung disease stage, and microbiologic status both annually, and at individual visits between 2009 and 2012. Results The overall prevalence of inhaled antibiotic use did not change during the period, but the prevalence of annual and any visit treatment with >1 inhaled antibiotic class more than doubled. Adults, those with advanced lung disease, and those with >1 Pseudomonas aeruginosa respiratory culture were more likely to receive >1 antibiotic class. Conclusions Inhaled antibiotic management of US CF patients has dramatically changed in association with the introduction of a third inhaled antibiotic class. PMID:25496726

  11. Effects of ramp-up of inspired airflow on in vitro aerosol dose delivery performance for certain dry powder inhalers.

    PubMed

    Ung, Keith T; Chan, Hak-Kim

    2016-03-10

    This study investigated the effect of airflow ramp-up on the dose delivery performance of seven dry powder inhalers, covering a broad range of powder formulations and powder dispersion mechanisms. In vitro performance tests were performed at a target pressure drop of 4kPa, using two inspiratory flow ramp-up conditions, representing slow and fast ramp-up of airflow, respectively. The fluidization of bulk powder and aerosol clearance from the inhaler was assessed by laser photometer evaluation of aerosol emission kinetics and measurement of the delivered dose (DD). The quality of aerosol dispersion (i.e. de-agglomeration) and associated lung targeting performance was assessed by measuring the total lung dose (TLD) using the Alberta idealized mouth-throat model. The ratio of DD and TLD under slow/fast ramp conditions was used as a metric to rank-order flow ramp effects. Test results show that the delivered dose is relatively unaffected by flow ramp (DD ratio ~1 for all dry powder inhalers). In contrast, the total lung dose showed significantly more variation as a function of flow ramp and inhaler type. Engineered (spray dried) powder formulations were associated with relatively high TLD (>50% of nominal dose) compared to lactose blend and agglomerate based formulations, which had a lower TLD (7-40% of nominal dose), indicative of less efficient targeting of the lung. The TLD for the Tobi Podhaler was the least influenced by flow ramp (TLD ratio ~1), while the TLD for the Asmanex Twisthaler was the most sensitive to flow ramp (TLD ratio ≪1). The relatively high sensitivity of the Asmanex Twisthaler to flow ramp is attributed to rapid aerosol clearance (from the inhaler) combined with a strong effect of flow-rate on particle de-agglomeration and resulting size distribution.

  12. Inhaled therapy in cystic fibrosis: agents, devices and regimens

    PubMed Central

    Parrott, Helen

    2015-01-01

    Key points There have been significant advances in both inhalation medicines and delivery devices with “intelligent nebulisers” and “dry-powder inhalers” becoming commonplace in CF care. Inhaled medicines generate high levels of a drug within the airways with limited systemic effects, offering safe and convenient antibiotic and mucolytic therapy for individuals with CF. Variations in adherence are not unique to CF; however, treatment burden is high and therefore fast inhaled drug delivery devices may assist individuals in completing the prescribed treatment regimes. Prescribers of inhaled medicines have a responsibility to consider, in addition to efficacy, the appropriated drug/device combination for each individual in order to promote adherence and achieve the desired clinical benefit. Summary The recognised mainstay daily treatments for cystic fibrosis (CF) focus on inhaled and oral medications, airway clearance and optimised nutrition. This review discusses recent advances in inhaled therapies for the management of CF, including devices such as intelligent nebulisers, drug formulations and supporting evidence for inhaled antibiotics (for the management of chronic Pseudomonas aeruginosa) and muco-active drugs. We include practical advice for clinicians regarding the optimisation of inhalation technique and education. The influence of adherence on the use of inhaled therapies in CF is also reviewed. Educational aims To inform readers about the history and progression of inhaled therapies for people with CF with reference to the literature supporting current practice. To highlight the factors that may impact the success of inhaled therapies, including those which are device specific such as drug deposition and those which influence adherence. PMID:26306111

  13. Levalbuterol Oral Inhalation

    MedlinePlus

    ... inhaler or nebulizer. Ask your doctor, pharmacist, or respiratory therapist to show you how to use it. ... propranolol (Inderal); digoxin (Digitek, Lanoxin); diuretics ('water pills'); epinephrine (Epipen, Primatene Mist); medications for colds; and other ...

  14. Albuterol Oral Inhalation

    MedlinePlus

    ... on the bottom and the inhaler pointing upwards, load the dose by opening the protective dust cap ... or face mask. Connect the nebulizer to the compressor. Place the mouthpiece in your mouth or put ...

  15. Substance use - inhalants

    MedlinePlus

    ... it has been sprayed or put into a paper or plastic bag Ballooning. Inhaling a gas from ... empty soda cans, empty perfume bottles, and toilet paper tubes stuffed with rags or toilet paper soaked ...

  16. Formoterol Oral Inhalation

    MedlinePlus

    ... shortness of breath, and breathing difficulties caused by chronic obstructive pulmonary disease (COPD; a group of lung diseases that includes chronic bronchitis and emphysema) in adults. Formoterol inhalation powder ...

  17. Olodaterol Oral Inhalation

    MedlinePlus

    ... of breath, coughing, and chest tightness caused by chronic obstructive pulmonary disease (COPD; a group of diseases that affect the lungs and airways, which includes chronic bronchitis and emphysema). Olodaterol oral inhalation is in ...

  18. Umeclidinium Oral Inhalation

    MedlinePlus

    ... of breath, coughing, and chest tightness caused by chronic obstructive pulmonary disease (COPD; a group of diseases that affect the lungs and airways, that includes chronic bronchitis and emphysema). Umeclidinium inhalation is in a ...

  19. Cromolyn Oral Inhalation

    MedlinePlus

    ... difficulties (bronchospasm) caused by exercise, cold and dry air, or by inhaling substances such as pet dander, ... of substances that cause inflammation (swelling) in the air passages of the lungs.

  20. Fluticasone Oral Inhalation

    MedlinePlus

    ... you are near an open flame or a heat source. The inhaler may explode if it is ... Nizoral); clarithromycin (Biaxin); HIV protease inhibitors such as atazanavir (Reyataz, in Evotaz), indinavir (Crixivan), nelfinavir (Viracept), ritonavir ( ...

  1. Pirbuterol Acetate Oral Inhalation

    MedlinePlus

    ... Pirbuterol is in a class of medications called beta-agonist bronchodilators. It works by relaxing and opening ... cleaning. Once a week, remove the mouthpiece cover, turn the inhaler upside down and wipe the mouthpiece ...

  2. Dry powder nitroimidazopyran antibiotic PA-824 aerosol for inhalation.

    PubMed

    Sung, Jean C; Garcia-Contreras, Lucila; Verberkmoes, Jarod L; Peloquin, Charles A; Elbert, Katharina J; Hickey, Anthony J; Edwards, David A

    2009-04-01

    We formulated PA-824, a nitroimidazopyran with promise for the treatment of tuberculosis, for efficient aerosol delivery to the lungs in a dry powder porous particle form. The objectives of this study were to prepare and characterize a particulate form of PA-824, assess the stability of this aerosol formulation under different environmental conditions, and determine the pharmacokinetic parameters for the powder after pulmonary administration. The drug was spray dried into porous particles containing a high drug load and possessing desirable aerosol properties for efficient deposition in the lungs. The physical, aerodynamic, and chemical properties of the dry powder were stable at room temperature for 6 months and under refrigerated conditions for at least 1 year. Pharmacokinetic parameters were determined in guinea pigs after the pulmonary administration of the PA-824 powder formulation at three doses (20, 40, and 60 mg/kg of body weight) and compared to those after the intravenous (20 mg/kg) and oral (40 mg/kg) delivery of the drug. Oral and inhaled delivery of PA-824 achieved equivalent systemic delivery at the same body dose within the first 12 h of dosing. However, animals dosed by the pulmonary route showed drug loads that remained locally in the lungs for 32 h postexposure, whereas those given the drug orally cleared the drug more rapidly. Therefore, we expect from these pharmacokinetic data that pulmonary delivery may achieve the same efficacy as oral delivery at the same body dose, with a potential improvement in efficacy related to pulmonary infection. This may translate into the ability to deliver lower body doses of this drug for the treatment of tuberculosis by aerosol.

  3. Novel Inhaled Combination Powder Containing Amorphous Colistin and Crystalline Rifapentine with Enhanced Antimicrobial Activities against Planktonic Cells and Biofilm of Pseudomonas aeruginosa for Respiratory Infections.

    PubMed

    Zhou, Qi Tony; Sun, Si-Ping; Chan, John Gar Yan; Wang, Ping; Barraud, Nicolas; Rice, Scott A; Wang, Jiping; Li, Jian; Chan, Hak-Kim

    2015-08-01

    Colistin has been increasingly used for the treatment of respiratory infections caused by Gram-negative bacteria. Unfortunately parenteral administration of colistin can cause severe adverse effects. This study aimed to develop an inhaled combination dry powder formulation of colistin and rifapentine for the treatment of respiratory infections. The combination formulation was produced by spray-drying rifapentine particles suspended in an aqueous colistin solution. The combination dry powder had enhanced antimicrobial activities against planktonic cells and biofilm cultures of Pseudomonas aeruginosa, with both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) values (2 and 4 mg/L, respectively) being half that of pure colistin (MIC 4 mg/L and MBIC 8 mg/L) and 1/16th that of pure rifapentine (MIC 32 mg/L and MBIC 64 mg/L). High aerosol performance, as measured via an Aerolizer device, was observed with emitted doses>89% and fine particle fraction (FPF) total>76%. The proportion of submicron particles of rifapentine particles was minimized by the attachment of colistin, which increased the overall particle mass and aerodynamic size distribution. Using the spray-drying method described here, stable particles of amorphous colistin and crystalline rifapentine were distributed homogeneously in each stage of the impinger. Unlike the colistin alone formulation, no deterioration in aerosol performance was found for the combination powder when exposed to a high relative humidity of 75%. In our previous study, surface coating by rifampicin contributed to the moisture protection of colistin. Here, a novel approach with a new mechanism was proposed whereby moisture protection was attributed to the carrier effect of elongated crystalline rifapentine particles, which minimized contact between hygroscopic colistin particles. This inhaled combination antibiotic formulation with enhanced aerosol dispersion efficiency and in vitro efficacy

  4. Production of nano-solid dispersions using a novel solvent-controlled precipitation process - Benchmarking their in vivo performance with an amorphous micro-sized solid dispersion produced by spray drying.

    PubMed

    Duarte, Íris; Corvo, M Luísa; Serôdio, Pedro; Vicente, João; Pinto, João F; Temtem, Márcio

    2016-10-10

    A novel solvent controlled precipitation (SCP) process based on microfluidization was assessed to produce solid dispersions of carbamazepine, a poorly water-soluble drug with dissolution-rate limited absorption. A half-factorial design (2(3-1)+2 central points) was conducted to study the effect of different formulation variables (viz. polymer type, drug load, and feed solids' concentration) on the particle size and morphology, drug's solid state and drug's molecular distribution within the carrier of the co-precipitated materials produced. Co-precipitated powders were isolated via spray drying (SD). Nano-composite aggregated particles were obtained among all the tests. The particle size of the aggregates was dependent on the feed solids' concentration, while the level of aggregation between nanoparticles was dependent on the drug-polymer ratio. Both amorphous and crystalline nano-solid dispersions were produced using the proposed SCP process. The solid dispersion produced was dependent on both the type of polymeric stabilizer chosen and the drug load. Controls of amorphous and crystalline nano-solid dispersions produced by SCP and an amorphous micro-solid dispersion produced by SD were tested for: in vitro dissolution, in vivo pharmacokinetics in mice, and long-term storage physical stability. Both nano-amorphous and nano-crystalline presented faster dissolution rates and enhanced bioavailabilities than the micro-sized amorphous powder. The reduction of particle size to the nano-scale was found to be more important than the amorphization of the drug. The long-term physical stability of the amorphous nano-solid dispersion and the amorphous micro-solid dispersion were comparable. PMID:27519665

  5. Production of nano-solid dispersions using a novel solvent-controlled precipitation process - Benchmarking their in vivo performance with an amorphous micro-sized solid dispersion produced by spray drying.

    PubMed

    Duarte, Íris; Corvo, M Luísa; Serôdio, Pedro; Vicente, João; Pinto, João F; Temtem, Márcio

    2016-10-10

    A novel solvent controlled precipitation (SCP) process based on microfluidization was assessed to produce solid dispersions of carbamazepine, a poorly water-soluble drug with dissolution-rate limited absorption. A half-factorial design (2(3-1)+2 central points) was conducted to study the effect of different formulation variables (viz. polymer type, drug load, and feed solids' concentration) on the particle size and morphology, drug's solid state and drug's molecular distribution within the carrier of the co-precipitated materials produced. Co-precipitated powders were isolated via spray drying (SD). Nano-composite aggregated particles were obtained among all the tests. The particle size of the aggregates was dependent on the feed solids' concentration, while the level of aggregation between nanoparticles was dependent on the drug-polymer ratio. Both amorphous and crystalline nano-solid dispersions were produced using the proposed SCP process. The solid dispersion produced was dependent on both the type of polymeric stabilizer chosen and the drug load. Controls of amorphous and crystalline nano-solid dispersions produced by SCP and an amorphous micro-solid dispersion produced by SD were tested for: in vitro dissolution, in vivo pharmacokinetics in mice, and long-term storage physical stability. Both nano-amorphous and nano-crystalline presented faster dissolution rates and enhanced bioavailabilities than the micro-sized amorphous powder. The reduction of particle size to the nano-scale was found to be more important than the amorphization of the drug. The long-term physical stability of the amorphous nano-solid dispersion and the amorphous micro-solid dispersion were comparable.

  6. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3.

    PubMed

    Du, Ke; Xie, Hongbin; Hu, Guorong; Peng, Zhongdong; Cao, Yanbing; Yu, Fan

    2016-07-13

    The electrochemical performance of Ni-rich cathode material at high temperature (>50 °C) and upper voltage operation (>4.3 V) is a challenge for next-generation lithium-ion batteries (LIBs) because of the rapid capacity degradation over cycling. Here we report improved performance of LiNi0.8Co0.15Al0.05O2 materials via a LiAlO2 coating, which was prepared from a Ni0.80Co0.15Al0.05(OH)2 precursor by spray-drying coating with nano-Al2O3. Investigations by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy revealed that an Al2O3 layer is uniformly distributed on the precursor and a LiAlO2 layer on the as-prepared cathode material. Such a coating shell acts as a scavenger to protect the cathode material from attack by HF and serious side reactions, which remarkably enhances the cycle performance at 55 °C and upper operating voltage (4.4 and 4.5 V). In particular, the sample with a 2% Al2O3 coating shows capacity retentions of 90.40%, 85.14%, 87.85%, and 81.1% after 150 cycles at a rate of 1.0C at room temperature, 55 °C, 4.4 V, and 4.5 V, respectively, which are significantly higher than those of the pristine one. This is mainly due to the significant improvement of the structural stability led by the effective coating technique, which could be extended to other cathode materials to obtain LIBs with enhanced safety and excellent cycling stability.

  7. Acute Inhalation Injury

    PubMed Central

    Gorguner, Metin; Akgun, Metin

    2010-01-01

    Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115

  8. Inhalation exposure methodology.

    PubMed Central

    Phalen, R F; Mannix, R C; Drew, R T

    1984-01-01

    Modern man is being confronted with an ever-increasing inventory of potentially toxic airborne substances. Exposures to these atmospheric contaminants occur in residential and commercial settings, as well as in the workplace. In order to study the toxicity of such materials, a special technology relating to inhalation exposure systems has evolved. The purpose of this paper is to provide a description of the techniques which are used in exposing laboratory subjects to airborne particles and gases. The various modes of inhalation exposure (whole body, head only, nose or mouth only, etc.) are described at length, including the advantages and disadvantages inherent to each mode. Numerous literature citations are included for further reading. Among the topics briefly discussed are the selection of appropriate animal species for toxicological testing, and the types of inhalation studies performed (acute, chronic, etc.). PMID:6383799

  9. Inhaled Antibiotics for Lower Airway Infections

    PubMed Central

    Quon, Bradley S.; Goss, Christopher H.

    2014-01-01

    Inhaled antibiotics have been used to treat chronic airway infections since the 1940s. The earliest experience with inhaled antibiotics involved aerosolizing antibiotics designed for parenteral administration. These formulations caused significant bronchial irritation due to added preservatives and nonphysiologic chemical composition. A major therapeutic advance took place in 1997, when tobramycin designed for inhalation was approved by the U.S. Food and Drug Administration (FDA) for use in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infection. Attracted by the clinical benefits observed in CF and the availability of dry powder antibiotic formulations, there has been a growing interest in the use of inhaled antibiotics in other lower respiratory tract infections, such as non-CF bronchiectasis, ventilator-associated pneumonia, chronic obstructive pulmonary disease, mycobacterial disease, and in the post–lung transplant setting over the past decade. Antibiotics currently marketed for inhalation include nebulized and dry powder forms of tobramycin and colistin and nebulized aztreonam. Although both the U.S. Food and Drug Administration and European Medicines Agency have approved their use in CF, they have not been approved in other disease areas due to lack of supportive clinical trial evidence. Injectable formulations of gentamicin, tobramycin, amikacin, ceftazidime, and amphotericin are currently nebulized “off-label” to manage non-CF bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Future inhaled antibiotic trials must focus on disease areas outside of CF with sample sizes large enough to evaluate clinically important endpoints such as exacerbations. Extrapolating from CF, the impact of eradicating organisms such as P. aeruginosa in non-CF bronchiectasis should also be evaluated. PMID:24673698

  10. [Inhalational or intravenous anesthesia?].

    PubMed

    Dahan, A; Aarts, L P H J

    2016-01-01

    The debate continues whether there is a difference in patient outcome following inhalational versus intravenous anesthesia. A recent meta-analysis showed improved outcome following inhalational anesthesia in patients undergoing cardiac surgery but not in patients undergoing non-cardiac procedures. In this article we discuss the meta-analysis and its caveats, taking into account additional comparative studies. Our overall conclusion is that it is too early to definitively claim that one anesthesia technique results in a better outcome than the other. PMID:27650024

  11. Inhaled extended-release microparticles of heparin elicit improved pulmonary pharmacodynamics against antigen-mediated airway hyper-reactivity and inflammation.

    PubMed

    Yildiz, Ayca; John, Elinor; Özsoy, Yildiz; Araman, Ahmet; Birchall, James C; Broadley, Kenneth J; Gumbleton, Mark

    2012-09-10

    Inhaled heparin appears to provide benefit in the management of airway hyper-reactivity and inflammation. The pharmacodynamics of inhaled heparin are however transient. Providing sustained heparin concentrations in the respiratory tract should provide for an extended duration of action. We examined the in-vivo efficacy of a nebulised controlled-release microparticle formulation of heparin in modifying antigen-induced airway hyper-reactivity (AHR) and lung inflammation. Heparin-loaded biodegradable poly (D,L-lactide-co-glycolide) microparticles were prepared by spray-drying. Aerosol properties for both nebulised heparin solution and heparin microparticles displayed characteristics consistent with heparin delivery to the respiratory tract. In vitro release assays showed heparin to be released from the microparticles over 8-12 h and for the heparin to remain functional. Temporal pharmacodynamic responses were studied in an ovalbumin-sensitised in vivo model exhibiting AHR and airway inflammation. Despite a reduced total dose of heparin deposited in the airways following nebulisation with heparin microparticles, this treatment led to a more sustained inhibitory effect upon AHR and airway inflammation than equivalent doses of nebulised heparin solution. The work supports extended-release heparin as an inhalation dosing strategy in experimental therapeutic applications aimed at improving the pharmacodynamics of heparin in the treatment of AHR and lung inflammation.

  12. MODELING DEPOSITION OF INHALED PARTICLES

    EPA Science Inventory

    Modeling Deposition of Inhaled Particles: ABSTRACT

    The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeut...

  13. New aspects of developing a dry powder inhalation formulation applying the quality-by-design approach.

    PubMed

    Pallagi, Edina; Karimi, Keyhaneh; Ambrus, Rita; Szabó-Révész, Piroska; Csóka, Ildikó

    2016-09-10

    The current work outlines the application of an up-to-date and regulatory-based pharmaceutical quality management method, applied as a new development concept in the process of formulating dry powder inhalation systems (DPIs). According to the Quality by Design (QbD) methodology and Risk Assessment (RA) thinking, a mannitol based co-spray dried formula was produced as a model dosage form with meloxicam as the model active agent. The concept and the elements of the QbD approach (regarding its systemic, scientific, risk-based, holistic, and proactive nature with defined steps for pharmaceutical development), as well as the experimental drug formulation (including the technological parameters assessed and the methods and processes applied) are described in the current paper. Findings of the QbD based theoretical prediction and the results of the experimental development are compared and presented. Characteristics of the developed end-product were in correlation with the predictions, and all data were confirmed by the relevant results of the in vitro investigations. These results support the importance of using the QbD approach in new drug formulation, and prove its good usability in the early development process of DPIs. This innovative formulation technology and product appear to have a great potential in pulmonary drug delivery.

  14. The production of 'aerodynamically equivalent' drug and excipient inhalable powders using a novel fractionation technique.

    PubMed

    Taki, Mohammed; Marriott, Christopher; Zeng, Xian-Ming; Martin, Gary P

    2011-02-01

    Inhalation particles can be produced by various techniques such as milling, controlled crystallisation and spray-drying, but current methods cannot, to-date, precisely control the aerodynamic size distribution of produced powders. The aim of this study was to develop and validate a novel preparative technique whereby the efficient and reproducible aerodynamic fractionation of drug and excipient powders could be achieved. Salmeterol xinafoate (SX), fluticasone propionate (FP) and fine α-lactose monohydrate (FL) were chosen as model compounds. Powders were aerosolised using a dry powder feeder into a Next Generation Impactor operated at 60 L min(-1). Powders deposited on NGI stages were then collected and analysed. The fractionation process was successful for all powders producing significant linear correlations between the pre-set aerodynamic cut-off limits and geometric size measurements. For each of SX, FP and FL, sufficient powder quantities were recovered from NGI stages 1-6 producing six fractions with sequential aerodynamic and geometric particle size distributions. The fractionation technique was efficient and reproducible for all powders studied. The method can be equally applied to various drugs and excipients regardless of their previous production/processing history. Therefore, the aerodynamic fractionation technique may be used to compare and contrast samples produced by different processes. PMID:21185373

  15. Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former.

    PubMed

    Yamasaki, Keishi; Kwok, Philip Chi Lip; Fukushige, Kaori; Prud'homme, Robert K; Chan, Hak-Kim

    2011-11-25

    This study aims to improve the dissolution of inhalable cyclosporine A nanoparticles by formulating the drug with mannitol as a hydrophilic nano-matrix former. The effect of mannitol content on the aerosol performance of the nano-matrix particles was also examined. Cyclosporine A nanosuspensions were produced by anti-solvent precipitation using a multi-inlet vortex mixer. Various amounts of mannitol were dissolved into the suspensions before spray drying to obtain micron-sized aggregates (nano-matrix powders). Dissolution properties of the powders in an aqueous medium, with the drug content, aggregate size distribution, surface roughness, physicochemical properties and aerosol performance were determined. The powders contained amorphous cyclosporine A and α-crystalline mannitol, with drug content being very close to the theoretical doses. Inclusion of mannitol enhanced the dissolution rate of the drug, without significantly affecting the aggregate size distribution, surface roughness and aerosol performance. This formulation approach may be applicable to improving the dissolution rate and bioavailability of hydrophobic drugs. PMID:21864662

  16. Gentamicin and leucine inhalable powder: what about antipseudomonal activity and permeation through cystic fibrosis mucus?

    PubMed

    Russo, Paola; Stigliani, Mariateresa; Prota, Lucia; Auriemma, Giulia; Crescenzi, Carlo; Porta, Amalia; Aquino, Rita P

    2013-01-20

    The aim of this study was to evaluate the permeation properties of gentamicin (G) in a novel dry powder form for inhalation through an artificial mucus model. Moreover, since respiratory infections sustained by Pseudomonas are a major cause of sickness and death in CF patients, the susceptibility of P. aeruginosa to engineered G powders was investigated. Micronized G and G/leucine (85:15) formulations were produced by co-spray-drying, using process parameters and conditions previously set. Powders were characterized in terms of yield, drug content and aerodynamic profiles, analyzed by Andersen Cascade Impactor. Different mucus models were prepared, showing composition and viscosity similar to those of the native CF mucus. To investigate the impact on drug permeation, Franz-type vertical diffusion cells were used; the powders were applied directly on a synthetic membrane with or without the interposition of the artificial mucus layer. In buffer, gentamicin showed a diffusion controlled release; the presence of leucine reduced powder wettability and, consequently, the permeation rate. Otherwise, mucus delayed drug permeation from both G and G/leucine formulations, with a faint influence of the aminoacid. Antimicrobial tests revealed that G/leu engineered particles are able to preserve the antipseudomonal activity, even in presence of the mucus.

  17. New aspects of developing a dry powder inhalation formulation applying the quality-by-design approach.

    PubMed

    Pallagi, Edina; Karimi, Keyhaneh; Ambrus, Rita; Szabó-Révész, Piroska; Csóka, Ildikó

    2016-09-10

    The current work outlines the application of an up-to-date and regulatory-based pharmaceutical quality management method, applied as a new development concept in the process of formulating dry powder inhalation systems (DPIs). According to the Quality by Design (QbD) methodology and Risk Assessment (RA) thinking, a mannitol based co-spray dried formula was produced as a model dosage form with meloxicam as the model active agent. The concept and the elements of the QbD approach (regarding its systemic, scientific, risk-based, holistic, and proactive nature with defined steps for pharmaceutical development), as well as the experimental drug formulation (including the technological parameters assessed and the methods and processes applied) are described in the current paper. Findings of the QbD based theoretical prediction and the results of the experimental development are compared and presented. Characteristics of the developed end-product were in correlation with the predictions, and all data were confirmed by the relevant results of the in vitro investigations. These results support the importance of using the QbD approach in new drug formulation, and prove its good usability in the early development process of DPIs. This innovative formulation technology and product appear to have a great potential in pulmonary drug delivery. PMID:27386791

  18. Liposomal formulations for inhalation.

    PubMed

    Cipolla, David; Gonda, Igor; Chan, Hak-Kim

    2013-08-01

    No marketed inhaled products currently use sustained release formulations such as liposomes to enhance drug disposition in the lung, but that may soon change. This review focuses on the interaction between liposomal formulations and the inhalation technology used to deliver them as aerosols. There have been a number of dated reviews evaluating nebulization of liposomes. While the information they shared is still accurate, this paper incorporates data from more recent publications to review the factors that affect aerosol performance. Recent reviews have comprehensively covered the development of dry powder liposomes for aerosolization and only the key aspects of those technologies will be summarized. There are now at least two inhaled liposomal products in late-stage clinical development: ARIKACE(®) (Insmed, NJ, USA), a liposomal amikacin, and Pulmaquin™ (Aradigm Corp., CA, USA), a liposomal ciprofloxacin, both of which treat a variety of patient populations with lung infections. This review also highlights the safety of inhaled liposomes and summarizes the clinical experience with liposomal formulations for pulmonary application. PMID:23919478

  19. Inhalants. Specialized Information Service.

    ERIC Educational Resources Information Center

    Do It Now Foundation, Phoenix, AZ.

    The document presents a collection of articles about inhalant abuse. Article 1 presents findings on the psychophysiological effects related to the use of amyl or butyl nitrate as a "recreational drug." Article 2 suggests a strong association between chronic sniffing of the solvent toulene and irreversible brain damage. Article 3 warns about the…

  20. Fabrication and electrochemical performance of 0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 microspheres by two-step spray-drying process

    NASA Astrophysics Data System (ADS)

    Son, Mun Yeong; Lee, Jung-Kul; Kang, Yun Chan

    2014-08-01

    0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 composite microspheres with dense structures are prepared by a two-step spray-drying process. Precursor powders with hollow and porous structures prepared by the spray-drying process are post-treated at a low temperature of 400°C and then wet-milled to obtain a slurry with high stability. The slurry of the mixture of metal oxides is spray-dried to prepare precursor aggregate powders several microns in size. Post-treatment of these powders at high temperatures (>700°C) produces 0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 composite microspheres with dense structures and high crystallinity. The mean size and geometric standard deviation of the composite microspheres post-treated at 900°C are 4 μm and 1.38, respectively. Further, the initial charge capacities of the aggregated microspheres post-treated at 700, 800, 900, and 1000°C are 336, 349, 383, and 128 mA h g-1, respectively, and the corresponding discharge capacities are 286, 280, 302, and 77 mA h g-1, respectively. The discharge capacity of the composite microspheres post-treated at an optimum temperature of 900°C after 100 cycles is 242 mA h g-1, and the corresponding capacity retention is 80%.

  1. Fabrication and electrochemical performance of 0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 microspheres by two-step spray-drying process

    PubMed Central

    Son, Mun Yeong; Lee, Jung-Kul; Kang, Yun Chan

    2014-01-01

    0.6Li2MnO3–0.4Li(Ni1/3Co1/3Mn1/3)O2 composite microspheres with dense structures are prepared by a two-step spray-drying process. Precursor powders with hollow and porous structures prepared by the spray-drying process are post-treated at a low temperature of 400°C and then wet-milled to obtain a slurry with high stability. The slurry of the mixture of metal oxides is spray-dried to prepare precursor aggregate powders several microns in size. Post-treatment of these powders at high temperatures (>700°C) produces 0.6Li2MnO3–0.4Li(Ni1/3Co1/3Mn1/3)O2 composite microspheres with dense structures and high crystallinity. The mean size and geometric standard deviation of the composite microspheres post-treated at 900°C are 4 μm and 1.38, respectively. Further, the initial charge capacities of the aggregated microspheres post-treated at 700, 800, 900, and 1000°C are 336, 349, 383, and 128 mA h g−1, respectively, and the corresponding discharge capacities are 286, 280, 302, and 77 mA h g−1, respectively. The discharge capacity of the composite microspheres post-treated at an optimum temperature of 900°C after 100 cycles is 242 mA h g−1, and the corresponding capacity retention is 80%. PMID:25168912

  2. Efficient Nose-to-Lung (N2L) Aerosol Delivery with a Dry Powder Inhaler

    PubMed Central

    Golshahi, Laleh; Behara, Srinivas R.B.; Tian, Geng; Farkas, Dale R.; Hindle, Michael

    2015-01-01

    Abstract Purpose: Delivering aerosols to the lungs through the nasal route has a number of advantages, but its use has been limited by high depositional loss in the extrathoracic airways. The objective of this study was to evaluate the nose-to-lung (N2L) delivery of excipient enhanced growth (EEG) formulation aerosols generated with a new inline dry powder inhaler (DPI). The device was also adapted to enable aerosol delivery to a patient simultaneously receiving respiratory support from high flow nasal cannula (HFNC) therapy. Methods: The inhaler delivered the antibiotic ciprofloxacin, which was formulated as submicrometer combination particles containing a hygroscopic excipient prepared by spray-drying. Nose-to-lung delivery was assessed using in vitro and computational fluid dynamics (CFD) methods in an airway model that continued through the upper tracheobronchial region. Results: The best performing device contained a 2.3 mm flow control orifice and a 3D rod array with a 3-4-3 rod pattern. Based on in vitro experiments, the emitted dose from the streamlined nasal cannula had a fine particle fraction <5 μm of 95.9% and mass median aerodynamic diameter of 1.4 μm, which was considered ideal for nose-to-lung EEG delivery. With the 2.3-343 device, condensational growth in the airways increased the aerosol size to 2.5–2.7 μm and extrathoracic deposition was <10%. CFD results closely matched the in vitro experiments and predicted that nasal deposition was <2%. Conclusions: The developed DPI produced high efficiency aerosolization with significant size increase of the aerosol within the airways that can be used to enable nose-to-lung delivery and aerosol administration during HFNC therapy. PMID:25192072

  3. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis

    PubMed Central

    Duret, Christophe; Wauthoz, Nathalie; Sebti, Thami; Vanderbist, Francis; Amighi, Karim

    2012-01-01

    Purpose Itraconazole (ITZ) dry powders for inhalation (DPI) composed of nanoparticles (NP) embedded in carrier microparticles were prepared and characterized. Methods DPIs were initially produced by reducing the ITZ particle size to the nanometer range using high-pressure homogenization with tocopherol polyethylene 1000 succinate (TPGS, 10% w/w ITZ) as a stabilizer. The optimized nanosuspension and the initial microsuspension were then spray-dried with different proportions of or in the absence of mannitol and/or sodium taurocholate. DPI characterization was performed using scanning electron microscopy for morphology, laser diffraction to evaluate the size-reduction process, and the size of the dried NP when reconstituted in aqueous media, impaction studies using a multistage liquid impactor to determine the aerodynamic performance and fine-particle fraction that is theoretically able to reach the lung, and dissolution studies to determine the solubility of ITZ. Results Scanning electron microscopy micrographs showed that the DPI particles were composed of mannitol microparticles with embedded nano- or micro-ITZ crystals. The formulations prepared from the nanosuspension exhibited good flow properties and better fine-particle fractions, ranging from 46.2% ± 0.5% to 63.2% ± 1.7% compared to the 23.1% ± 0.3% that was observed with the formulation produced from the initial microsuspension. Spray-drying affected the NP size by inducing irreversible aggregation, which was able to be minimized by the addition of mannitol and sodium taurocholate before the drying procedure. The ITZ NP-based DPI considerably increased the ITZ solubility (58 ± 2 increased to 96 ± 1 ng/mL) compared with that of raw ITZ or an ITZ microparticle-based DPI (<10 ng/mL). Conclusion Embedding ITZ NP in inhalable microparticles is a very effective method to produce DPI formulations with optimal aerodynamic properties and enhanced ITZ solubility. These formulations could be applied to other

  4. Insulin inhalation--Pfizer/Nektar Therapeutics: HMR 4006, inhaled PEG-insulin--Nektar, PEGylated insulin--Nektar.

    PubMed

    2004-01-01

    type 1 and type 2 diabetes mellitus in 120 centres worldwide, and will use a fourth prototype inhaler device that is half the size of the first prototype, and has reduced manufacturing costs. Pfizer and its partner, Aventis Pharma, are conducting additional long-term pulmonary safety data studies in patients with type 1 and type 2 diabetes. Pfizer is also conducting phase III clinical trials with inhaled insulin in paediatric patients aged 6-17 years. Nektar Therapeutics is using its Advanced PEGylation technology to develop a dry powder-inhaled polyethylene glycol (PEG) formulation for delivering peptides efficiently across the lungs and to promote prolonged serum concentration of the peptide. PEG is a neutral, water-soluble, nontoxic polymer comprising any number of repeating units of ethylene oxide. PEGylation is designed to increase the size of the active molecule and ultimately improve drug performance by optimising pharmacokinetics, increasing bioavailability, and decreasing immunogenicity and dosing frequency. The investigation has begun with inhaled, long-acting (PEGylated) insulin [inhaled PEG-insulin, PEGylated insulin--Nektar], and is funded by Pfizer. Preclinical results of a dry powder formulation of inhaled PEG-insulin presented at the 63rd Scientific Sessions of the American Diabetes Association (ADA-2003) [June 2003, New Orleans, LA, USA] demonstrated prolonged systemic activity of insulin in dogs. Nektar Therapeutics was granted US patent 5,997,848 on a method for delivering inhalable insulin. The patent covers a method for delivering of 0.5-15 mg of aerosol dry powder insulin per dosing session in 1-4 individual dosages into the deep lung for systemic absorption. The patent does not specify the formulation of insulin or aerosol delivery device. Nektar Therapeutics estimated in June 2002 that Exubera could earn the company potential revenues of >200 million US dollars. PMID:15139780

  5. Toward Repositioning Niclosamide for Antivirulence Therapy of Pseudomonas aeruginosa Lung Infections: Development of Inhalable Formulations through Nanosuspension Technology.

    PubMed

    Costabile, Gabriella; d'Angelo, Ivana; Rampioni, Giordano; Bondì, Roslen; Pompili, Barbara; Ascenzioni, Fiorentina; Mitidieri, Emma; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Miro, Agnese; Quaglia, Fabiana; Imperi, Francesco; Leoni, Livia; Ungaro, Francesca

    2015-08-01

    Inhaled antivirulence drugs are currently considered a promising therapeutic option to treat Pseudomonas aeruginosa lung infections in cystic fibrosis (CF). We have recently shown that the anthelmintic drug niclosamide (NCL) has strong quorum sensing (QS) inhibiting activity against P. aeruginosa and could be repurposed as an antivirulence drug. In this work, we developed dry powders containing NCL nanoparticles that can be reconstituted in saline solution to produce inhalable nanosuspensions. NCL nanoparticles were produced by high-pressure homogenization (HPH) using polysorbate 20 or polysorbate 80 as stabilizers. After 20 cycles of HPH, all formulations showed similar properties in the form of needle-shape nanocrystals with a hydrodynamic diameter of approximately 450 nm and a zeta potential of -20 mV. Nanosuspensions stabilized with polysorbate 80 at 10% w/w to NCL (T80_10) showed an optimal solubility profile in simulated interstitial lung fluid. T80_10 was successfully dried into mannitol-based dry powder by spray drying. Dry powder (T80_10 DP) was reconstituted in saline solution and showed optimal in vitro aerosol performance. Both T80_10 and T80_10 DP were able to inhibit P. aeruginosa QS at NCL concentrations of 2.5-10 μM. NCL, and these formulations did not significantly affect the viability of CF bronchial epithelial cells in vitro at microbiologically active concentrations (i.e., ≤10 μM). In vivo acute toxicity studies in rats confirmed no observable toxicity of the NCL T80_10 DP formulation upon intratracheal administration at a concentration 100-fold higher than the anti-QS activity concentration. These preliminary results suggest that NCL repurposed in the form of inhalable nanosuspensions has great potential for the local treatment of P. aeruginosa lung infections as in the case of CF patients.

  6. How to Use Metered-Dose Inhalers

    MedlinePlus

    ... methods really work, and people who use these methods may continue to use their inhalers after the inhalers are empty.Some inhalers come with a counter that shows the number of sprays that remain in the inhaler. If your inhaler ...

  7. About Steroids (Inhaled and Oral Corticosteroids)

    MedlinePlus

    ... dose-inhalers ( inhaled steroids ), oral forms (pills or syrups) , injections (shots) and intravenous (IV) solutions. Healthcare providers ... slowly decreased. Inhaled steroids and steroid pills and syrups are often prescribed for people with a chronic ...

  8. Parent's Guide to Preventing Inhalant Abuse

    MedlinePlus

    ... conditioning coolants. How can you tell if a young person is an inhalant abuser? If someone is ... youths involved with inhalant abuse. How does a young person who abuses inhalants die? There are many ...

  9. Inhalation exposure of animals.

    PubMed Central

    Phalen, R F

    1976-01-01

    Relative advantages and disadvantages and important design criteria for various exposure methods are presented. Five types of exposures are discussed: whole-body chambers, head-only exposures, nose or mouth-only methods, lung-only exposures, and partial-lung exposures. Design considerations covered include: air cleaning and conditioning; construction materials; losses of exposure materials; evenness of exposure; sampling biases; animal observation and care; noise and vibration control, safe exhausts, chamber loading, reliability, pressure fluctuations; neck seals, masks, animal restraint methods; and animal comfort. Ethical considerations in use of animals in inhalation experiments are also discussed. PMID:1017420

  10. Asymptomatic inhaled foreign body

    PubMed Central

    Salim, Muhammad U.; Asghar, Asif; Tareen, Irum; Azhar, Muhammad

    2016-01-01

    It is very rare to have a big foreign body in the lungs without any complications or symptoms for 2 years. A 14-year-old male with episodes of minor hemoptysis for 4 weeks had a history of inhalation of a bullet 2 years earlier. He had asymptomatic for lung complications for 2 years. The bullet was removed by right thoracotomy and non-anatomical wedge stapled resection, and he followed an uneventful recovery. An aspirated foreign body although big can remain asymptomatic for a long time, especially if it has migrated to the periphery. PMID:27652366

  11. Inhaled formulations and pulmonary drug delivery systems for respiratory infections.

    PubMed

    Zhou, Qi Tony; Leung, Sharon Shui Yee; Tang, Patricia; Parumasivam, Thaigarajan; Loh, Zhi Hui; Chan, Hak-Kim

    2015-05-01

    Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.

  12. Insulin inhalation: NN 1998.

    PubMed

    2004-01-01

    Aradigm Corporation has developed an inhaled form of insulin using its proprietary AERx drug delivery system. The system uses liquid insulin that is converted into an aerosol containing very small particles (1-3 micro in diameter), and an electronic device suitable for either the rapid transfer of molecules of insulin into the bloodstream or localised delivery within the lung. The AERx insulin Diabetes Management System (iDMS), AERx iDMS, instructs the user on breathing technique to achieve the best results. Aradigm Corporation and Novo Nordisk have signed an agreement to jointly develop a pulmonary delivery system for insulin [AERx iDMS, NN 1998]. Under the terms of the agreement, Novo Nordisk has exclusive rights for worldwide marketing of any products resulting from the development programme. Aradigm Corporation will initially manufacture the product covered by the agreement, and in return will receive a share of the overall gross profits from Novo Nordisk's sales. Novo Nordisk will cover all development costs incurred by Aradigm Corporation while both parties will co-fund final development of the AERx device. Both companies will explore the possibilities of the AERx platform to deliver other compounds for the regulation of blood glucose levels. Additionally, the agreement gives Novo Nordisk an option to develop the technology for delivery of agents outside the diabetes area. In April 2001, Aradigm Corporation received a milestone payment from Novo Nordisk related to the completion of certain clinical and product development stages of the AERx drug delivery system. Profil, a CRO in Germany, is cooperating with Aradigm and Novo Nordisk in the development of inhaled insulin. Aradigm and Novo Nordisk initiated a pivotal phase III study with inhaled insulin formulation in September 2002. This 24-month, 300-patient trial is evaluating inhaled insulin in comparison with insulin aspart. Both medications will be given three times daily before meals in addition to basal

  13. Inhaled matters of the heart

    PubMed Central

    Zaky, Ahmed; Ahmad, Aftab; Dell’Italia, Louis J; Jahromi, Leila; Reisenberg, Lee Ann; Matalon, Sadis; Ahmad, Shama

    2015-01-01

    Inhalations of atmospheric pollutants, especially particulate matters, are known to cause severe cardiac effects and to exacerbate preexisting heart disease. Heart failure is an important sequellae of gaseous inhalation such as that of carbon monoxide. Similarly, other gases such as sulphur dioxide are known to cause detrimental cardiovascular events. However, mechanisms of these cardiac toxicities are so far unknown. Increased susceptibility of the heart to oxidative stress may play a role. Low levels of antioxidants in the heart as compared to other organs and high levels of reactive oxygen species produced due to the high energetic demand and metabolic rate in cardiac muscle are important in rendering this susceptibility. Acute inhalation of high concentrations of halogen gases is often fatal. Severe respiratory injury and distress occurs upon inhalation of halogens gases, such as chlorine and bromine; however, studies on their cardiac effects are scant. We have demonstrated that inhalation of high concentrations of halogen gases cause significant cardiac injury, dysfunction, and failure that can be critical in causing mortalities following exposures. Our studies also demonstrated that cardiac dysfunction occurs as a result of a direct insult independent of coexisting hypoxia, since it is not fully reversed by oxygen supplementation. Therefore, studies on offsite organ effects of inhaled toxic gases can impact development of treatment strategies upon accidental or deliberate exposures to these agents. Here we summarize the knowledge of cardiovascular effects of common inhaled toxic gases with the intent to highlight the importance of consideration of cardiac symptoms while treating the victims. PMID:26665179

  14. New dry powders for inhalation containing temozolomide-based nanomicelles for improved lung cancer therapy.

    PubMed

    Rosière, Rémi; Gelbcke, Michel; Mathieu, Véronique; Van Antwerpen, Pierre; Amighi, Karim; Wauthoz, Nathalie

    2015-09-01

    Besides the numerous advantages of a chemotherapy administered by the inhalation route for lung cancer therapy, dry powder for inhalation (DPI) offers many advantages compared to other techniques and seems to be a technique that is well-adapted to an anticancer treatment. DPI formulations were developed using the cytotoxic drug temozolomide and a new folate-grafted self-assembling copolymer, a conjugate of three components, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD). F-PEG-HMD was synthesized using carbodiimide-mediated coupling chemistry in three main steps. F-PEG-HMD was characterized by 1H-NMR, mass spectrometry and thermal analysis. F-PEG-HMD presented a critical micellar concentration in water of 4x10-7 M. F-PEG-HMD nanomicelles were characterized by a trimodal particle size distribution with Z-average diameter of 83±1 nm in water. Temozolomide-loaded nanomicelles were prepared by solubilization of F-PEG-HMD in the presence of temozolomide. Temozolomide solubility in water was increased in the presence of F-PEG-HMD (2-fold increase in molar solubility) which could potentially lead to increased local concentrations in the tumor site. The temozolomide-loaded F-PEG-HMD nanomicelles were characterized by a Z-average diameter of ~50 to ~60 nm, depending on the F-PEG-HMD concentration used. The nanomicelles were then spray-dried to produce dry powders. Temozolomide remained stable during all the formulation steps, confirmed by similar in vitro anticancer properties for the DPI formulations and a raw temozolomide solution. Two of the developed DPI formulations were characterized by good aerodynamic properties (with a fine particle fraction of up to 50%) and were able to release the F-PEG-HMD nanomicelles quickly in aqueous media. Moreover, in vitro, the two DPI formulations showed wide pulmonary deposition in the lower respiratory tract where adenocarcinomas are more often found. The present study, therefore, shows that F

  15. New dry powders for inhalation containing temozolomide-based nanomicelles for improved lung cancer therapy.

    PubMed

    Rosière, Rémi; Gelbcke, Michel; Mathieu, Véronique; Van Antwerpen, Pierre; Amighi, Karim; Wauthoz, Nathalie

    2015-09-01

    Besides the numerous advantages of a chemotherapy administered by the inhalation route for lung cancer therapy, dry powder for inhalation (DPI) offers many advantages compared to other techniques and seems to be a technique that is well-adapted to an anticancer treatment. DPI formulations were developed using the cytotoxic drug temozolomide and a new folate-grafted self-assembling copolymer, a conjugate of three components, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD). F-PEG-HMD was synthesized using carbodiimide-mediated coupling chemistry in three main steps. F-PEG-HMD was characterized by 1H-NMR, mass spectrometry and thermal analysis. F-PEG-HMD presented a critical micellar concentration in water of 4x10-7 M. F-PEG-HMD nanomicelles were characterized by a trimodal particle size distribution with Z-average diameter of 83±1 nm in water. Temozolomide-loaded nanomicelles were prepared by solubilization of F-PEG-HMD in the presence of temozolomide. Temozolomide solubility in water was increased in the presence of F-PEG-HMD (2-fold increase in molar solubility) which could potentially lead to increased local concentrations in the tumor site. The temozolomide-loaded F-PEG-HMD nanomicelles were characterized by a Z-average diameter of ~50 to ~60 nm, depending on the F-PEG-HMD concentration used. The nanomicelles were then spray-dried to produce dry powders. Temozolomide remained stable during all the formulation steps, confirmed by similar in vitro anticancer properties for the DPI formulations and a raw temozolomide solution. Two of the developed DPI formulations were characterized by good aerodynamic properties (with a fine particle fraction of up to 50%) and were able to release the F-PEG-HMD nanomicelles quickly in aqueous media. Moreover, in vitro, the two DPI formulations showed wide pulmonary deposition in the lower respiratory tract where adenocarcinomas are more often found. The present study, therefore, shows that F

  16. Inhalation delivery of asthma drugs.

    PubMed

    Matthys, H

    1990-01-01

    In the immediate future, metered-dose inhalers (MDIs) with spacers remain the aerosol application of choice for topical steroids, mainly to reduce side effects. For beta 2-agonist, anticholinergics and prophylactic drugs, MDI (with or without demand valve), dry powder inhalers (multidose inhalers), ultrasonic or jet aerosol generators (with or without mechanical breathing assistance [IPPB]) are chosen according to the preference or the ability of the patients to perform the necessary breathing maneuvers as well as the availability of different products in different countries.

  17. Novolizer: how does it fit into inhalation therapy?

    PubMed

    Magnussen, Helgo

    2005-01-01

    Inhalation therapy is the preferred route of administration of anti-asthmatic drugs to the lungs. However, the vast majority of patients cannot use their inhalers correctly, particularly pressurised metered dose inhalers (pMDIs). The actual proportion of patients who do not use their inhalers correctly may even be under-estimated as GPs tend to over-estimate correct inhalation technique. Dry powder inhalers (DPIs) have many advantages over pMDIs. Unlike pMDIs, they are environmentally-friendly, contain no propellant gases and, more importantly, they are breath-activated, so that the patient does not need to coordinate actuation of the inhaler with inspiration. Three key parameters for correct inhaler use should be considered when evaluating existing or future DPI devices and especially when choosing the appropriate device for the patient: (1) usability, (2) particle size distribution of the emitted drug and (3) intrinsic airflow resistance of the device. The Novolizer is a breath-activated, multidose, refillable DPI. It is easy to use correctly, has multiple feedback and control mechanisms which guide the patient through the correct inhalation manoeuvre. In addition, the Novolizer has an intelligent dose counter, which resets only after a correct inhalation and may help to monitor patient compliance. The Novolizer has a comparable or better lung deposition than the Turbuhaler at similar or higher peak inspiratory flow (PIF) rates. A flow trigger valve system ensures a clinically effective fine particle fraction (FPF) and sufficient drug delivery, which is important for a good lung deposition. The FPF produced through the Novolizer is also relatively independent of flow rate and the device shows better reproducibility of metering and delivery performance compared to the Turbuhaler. The low-to-medium airflow resistance means that the Novolizer is easy for patients to use correctly. Even children, patients with severe asthma and patients with moderate

  18. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model.

    PubMed

    Garcia-Contreras, L; Fiegel, J; Telko, M J; Elbert, K; Hawi, A; Thomas, M; VerBerkmoes, J; Germishuizen, W A; Fourie, P B; Hickey, A J; Edwards, D

    2007-08-01

    Capreomycin is used for the treatment of multidrug-resistant tuberculosis (MDR-TB), but it is limited therapeutically by its severe side effects. The objectives of the present studies were (i) to design low-density porous capreomycin sulfate particles for efficient pulmonary delivery to improve local and systemic drug bioavailability and capacity to reduce the bacillary load in the lungs in a manner similar to that achieved with intramuscular injections; (ii) to determine pharmacokinetic parameters after pulmonary administration of these capreomycin particles; and (iii) to evaluate the efficacy of these particles in treating animals in a small-aerosol-inoculum guinea pig model of TB. Capreomycin particles were manufactured by spray drying and characterized in terms of size and drug content. Pharmacokinetic parameters were determined by noncompartmental methods with healthy guinea pigs after administration of capreomycin particles by insufflation. The efficacy of the particles was evaluated by histopathological analysis and in terms of wet organ weight and bacterial burden in TB-infected animals. Lungs of animals receiving a 14.5-mg/kg dose of capreomycin particles showed significantly lower wet weights and smaller bacterial burdens than those of animals receiving any other treatment. These results were supported by histopathological analysis. The feasibility of inhaling capreomycin in a novel powder form, with the ultimate objective of the treatment of MDR-TB, is demonstrated by pharmacokinetic and pharmacodynamic studies with guinea pigs. If applied to humans with MDR-TB, such a therapeutic approach might simplify drug delivery by eliminating injections and might reduce adverse effects through lowering the dose.

  19. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization.

    PubMed

    Parumasivam, Thaigarajan; Leung, Sharon S Y; Quan, Diana Huynh; Triccas, Jamie A; Britton, Warwick J; Chan, Hak-Kim

    2016-06-10

    Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake. PMID:27049049

  20. Potent Inhalational Anesthetics for Dentistry.

    PubMed

    Satuito, Mary; Tom, James

    2016-01-01

    Nitrous oxide and the volatile inhalational anesthetics have defined anxiety and pain control in both dentistry and medicine for over a century. From curious experimentation to spectacular public demonstrations, the initial work of 2 dentists, Horace Wells and William T. G. Morton, persists to this day in modern surgery and anesthesia. This article reviews the history, similarities, differences, and clinical applications of the most popular inhalational agents used in contemporary dental surgical settings. PMID:26866411

  1. Potent Inhalational Anesthetics for Dentistry.

    PubMed

    Satuito, Mary; Tom, James

    2016-01-01

    Nitrous oxide and the volatile inhalational anesthetics have defined anxiety and pain control in both dentistry and medicine for over a century. From curious experimentation to spectacular public demonstrations, the initial work of 2 dentists, Horace Wells and William T. G. Morton, persists to this day in modern surgery and anesthesia. This article reviews the history, similarities, differences, and clinical applications of the most popular inhalational agents used in contemporary dental surgical settings.

  2. Potent Inhalational Anesthetics for Dentistry

    PubMed Central

    Satuito, Mary; Tom, James

    2016-01-01

    Nitrous oxide and the volatile inhalational anesthetics have defined anxiety and pain control in both dentistry and medicine for over a century. From curious experimentation to spectacular public demonstrations, the initial work of 2 dentists, Horace Wells and William T. G. Morton, persists to this day in modern surgery and anesthesia. This article reviews the history, similarities, differences, and clinical applications of the most popular inhalational agents used in contemporary dental surgical settings. PMID:26866411

  3. Physical Characterization of Tobramycin Inhalation Powder: I. Rational Design of a Stable Engineered-Particle Formulation for Delivery to the Lungs.

    PubMed

    Miller, Danforth P; Tan, Trixie; Tarara, Thomas E; Nakamura, John; Malcolmson, Richard J; Weers, Jeffry G

    2015-08-01

    A spray-dried engineered particle formulation, Tobramycin Inhalation Powder (TIP), was designed through rational selection of formulation composition and process parameters. This PulmoSphere powder comprises small, porous particles with a high drug load. As a drug/device combination, TOBI Podhaler enables delivery of high doses of drug per inhalation, a feature critical for dry powder delivery of anti-infectives for treatment of cystic fibrosis. The objective of this work was to characterize TIP on both the particle and molecular levels using multiple orthogonal physical characterization techniques. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), electron spectroscopy for chemical analysis (ESCA), and Raman measurements show that a TIP particle consists of two phases: amorphous, glassy tobramycin sulfate with a glass transition temperature of about 100 °C and a gel-phase phospholipid (DSPC) with a gel-to-liquid-crystal transition temperature of about 80 °C. This was by design and constituted a rational formulation approach to provide Tg and Tm values that are well above the temperatures used for long-term storage of TIP. Raman and ESCA data provide support for a core/shell particle architecture of TIP. Particle surfaces are enriched with a porous, hydrophobic coating that reduces cohesive forces, improving powder fluidization and dispersibility. The excellent aerosol dispersibility of TIP enables highly efficient delivery of fine particles to the respiratory tract. Collectively, particle engineering has enabled development of TOBI Podhaler, an approved inhaled drug product that meaningfully reduces the treatment burden to cystic fibrosis patients worldwide.

  4. Development of inhalable hyaluronan/mannitol composite dry powders for flucytosine repositioning in local therapy of lung infections.

    PubMed

    Costabile, G; d'Angelo, I; d'Emmanuele di Villa Bianca, R; Mitidieri, E; Pompili, B; Del Porto, P; Leoni, L; Visca, P; Miro, A; Quaglia, F; Imperi, F; Sorrentino, R; Ungaro, F

    2016-09-28

    Flucytosine (5-fluorocytosine, 5-FC) is a fluorinated analogue of cytosine currently approved for the systemic treatment of fungal infections, which has recently demonstrated a very promising antivirulence activity against the bacterial pathogen Pseudomonas aeruginosa. In this work, we propose novel inhalable hyaluronic acid (HA)/mannitol composite dry powders for repositioning 5-FC in the local treatment of lung infections, including those affecting cystic fibrosis (CF) patients. Different dry powders were produced in one-step by spray-drying. Powder composition and process conditions were selected after in depth formulation studies aimed at selecting the 5-FC/HA/mannitol formulation with convenient aerosolization properties and drug release profile in simulated lung fluids. The optimized 5-FC/HA/mannitol powder for inhalation (HyaMan_FC#3) was effectively delivered from different breath-activated dry powder inhalers (DPI) already available to CF patients. Nevertheless, the aerodynamic assessment of fine particles suggested that the developed formulation well fit with a low-resistance DPI. HyaMan_FC#3 inhibited the growth of the fungus Candida albicans and the production of the virulence factor pyoverdine by P. aeruginosa at 5-FC concentrations that did not affect the viability of both wild type (16HBE14o-) and CF (CFBE41o-) human bronchial epithelial cells. Finally, pharmacokinetics of HyaMan_FC#3 inhalation powder and 5-FC solution after intratracheal administration in rats were compared. In vivo results clearly demonstrated that, when formulated as dry powder, 5-FC levels in both bronchoalveolar lavage fluid and lung tissue were significantly higher and sustained over time as compared to those obtained with the 5-FC solution. Of note, when the same 5-FC amount was administered intravenously, no significant drug amount was found in the lung at each time point from the injection. To realize a 5-FC lung concentration similar to that obtained by using HyaMan_FC#3

  5. Development of inhalable hyaluronan/mannitol composite dry powders for flucytosine repositioning in local therapy of lung infections.

    PubMed

    Costabile, G; d'Angelo, I; d'Emmanuele di Villa Bianca, R; Mitidieri, E; Pompili, B; Del Porto, P; Leoni, L; Visca, P; Miro, A; Quaglia, F; Imperi, F; Sorrentino, R; Ungaro, F

    2016-09-28

    Flucytosine (5-fluorocytosine, 5-FC) is a fluorinated analogue of cytosine currently approved for the systemic treatment of fungal infections, which has recently demonstrated a very promising antivirulence activity against the bacterial pathogen Pseudomonas aeruginosa. In this work, we propose novel inhalable hyaluronic acid (HA)/mannitol composite dry powders for repositioning 5-FC in the local treatment of lung infections, including those affecting cystic fibrosis (CF) patients. Different dry powders were produced in one-step by spray-drying. Powder composition and process conditions were selected after in depth formulation studies aimed at selecting the 5-FC/HA/mannitol formulation with convenient aerosolization properties and drug release profile in simulated lung fluids. The optimized 5-FC/HA/mannitol powder for inhalation (HyaMan_FC#3) was effectively delivered from different breath-activated dry powder inhalers (DPI) already available to CF patients. Nevertheless, the aerodynamic assessment of fine particles suggested that the developed formulation well fit with a low-resistance DPI. HyaMan_FC#3 inhibited the growth of the fungus Candida albicans and the production of the virulence factor pyoverdine by P. aeruginosa at 5-FC concentrations that did not affect the viability of both wild type (16HBE14o-) and CF (CFBE41o-) human bronchial epithelial cells. Finally, pharmacokinetics of HyaMan_FC#3 inhalation powder and 5-FC solution after intratracheal administration in rats were compared. In vivo results clearly demonstrated that, when formulated as dry powder, 5-FC levels in both bronchoalveolar lavage fluid and lung tissue were significantly higher and sustained over time as compared to those obtained with the 5-FC solution. Of note, when the same 5-FC amount was administered intravenously, no significant drug amount was found in the lung at each time point from the injection. To realize a 5-FC lung concentration similar to that obtained by using HyaMan_FC#3

  6. Pneumoconiosis after sericite inhalation

    PubMed Central

    Algranti, E; Handar, A; Dumortier, P; Mendonca, E; Rodrigues, G; Santos, A; Mauad, T; Dolhnikoff, M; De Vuyst, P; Saldiva, P; Bussacos, M

    2005-01-01

    Aims: To investigate and describe the radiological, clinical, and pathological changes in miners and millers exposed to sericite dust with mineralogical characteristics of inhaled dust. Methods: The working premises were visited to examine the sericite processing and to classify the jobs according to make qualitative evaluation. Respirable dust was collected and the amount of crystalline silica and particle size distribution were measured. Forty four workers were examined by a standard questionnaire for respiratory symptoms, spirometry, and chest x ray. Material from an open lung biopsy was reviewed for histopathological and mineralogical analysis, together with sericite samples from the work site to compare the mineral characteristics in lung lesions and work area. Results: Respirable dust contained 4.5–10.0% crystalline silica. Particle size distribution showed a heavy burden of very fine particles (23–55%) with a mean diameter of <0.5 µm. Mean age of sericite miners was 41.0 (11.9) and mean number of years of exposure was 13.5 (10.1). In 52.3% of workers (23/44), chest radiographs presented a median category of 1/0 or above, and 18.2% (8/44) had a reduced FEV1. There was a significant association between exposure indices and x ray category. Histological studies of the lung biopsy showed lesions compatible with mixed dust fibrosis with no silicotic nodules. x Ray diffraction analysis of the lung dust residue and the bulk samples collected from work area showed similar mineralogical characteristics. Muscovite and kaolinite were the major mineral particle inclusions in the lung. Conclusion: Exposure to fine sericite particles is associated with the development of functional and radiological changes in workers inducing mixed dust lesions, which are distinct histologically from silicosis. PMID:15723874

  7. Active and intelligent inhaler device development.

    PubMed

    Tobyn, Mike; Staniforth, John N; Morton, David; Harmer, Quentin; Newton, Mike E

    2004-06-11

    The dry powder inhaler, which has traditionally relied on the patient's inspiratory force to deaggregate and deliver the active agent to the target region of the lung, has been a successful delivery device for the provision of locally active agents for the treatment of conditions such as asthma and chronic obstructive pulmonary disease (COPD). However, such devices can suffer from poor delivery characteristics and/or poor reproducibility. More recently, drugs for systemic delivery and more high value compounds have been put into DPI devices. Regulatory, dosing, manufacturing and economic concerns have demanded that a more efficient and reproducible performance is achieved by these devices. Recently strategies have been put in place to produce a more efficient DPI device/formulation combination. Using one novel device as an example the paper will examine which features are important in such a device and some of the strategies required to implement these features. All of these technological advances are invisible, and may be irrelevant, to the patient. However, their inability to use an inhaler device properly has significant implications for their therapy. Use of active device mechanisms, which reduce the dependence on patient inspiratory flow, and sensible industrial design, which give the patient the right clues to use, are important determinants of performance here.

  8. Zinc toxicology following particulate inhalation.

    PubMed

    Cooper, Ross G

    2008-04-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl(2) inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  9. Zinc toxicology following particulate inhalation

    PubMed Central

    Cooper, Ross G.

    2008-01-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection. PMID:20040991

  10. Anaphylaxis induced by lentil inhalation.

    PubMed

    Ayşenur, Kaya; Akan, Ayşegül; Mustafa, Erkoçoğlu; Müge, Toyran; Kocabaş, Can Naci

    2012-06-01

    Anaphylaxis is a rapid onset serious allergic reaction which may be fatal. Foods are the most common allergens leading to anaphylaxis especially for childhood. Most of the food-induced anaphylactic reactions take place after ingestion of the allergic food and only a few cases exist with anaphylactic reactions induced by inhalation of foods such as peanut, soybean and lupine. The case we present is unusual in that an 8 1/2-year-old boy developed anaphylaxis with the inhalation of steam from boiling lentils.

  11. TARGETED DELIVERY OF INHALED PROTEINS

    EPA Science Inventory

    ETD-02-047 (Martonen) GPRA # 10108

    TARGETED DELIVERY OF INHALED PROTEINS
    T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

  12. Inhalant Use in Florida Youth

    ERIC Educational Resources Information Center

    Siqueira, Lorena; Crandall, Lee A.

    2006-01-01

    Purpose: To determine (1) the prevalence of use, (2) risk and protective factors for use of inhalants in Florida youth. Methods: The Florida Youth Substance Abuse Survey 2004 is a comprehensive assessment of youth substance abuse attitudes and practices obtained by sampling youth from sixty-five counties. Results: The sample consisted of 60,345…

  13. Parental Influence on Inhalant Use

    ERIC Educational Resources Information Center

    Baltazar, Alina; Hopkins, Gary; McBride, Duane; Vanderwaal, Curt; Pepper, Sara; Mackey, Sarah

    2013-01-01

    The purpose of this article is to examine the dynamics of the relationship between parents and their adolescent children and their association with lifetime and past-month inhalant usage. The population studied was seventh- through ninth-grade students in rural Idaho (N = 570). The authors found a small, but consistent, significant inverse…

  14. INHALATION EXPOSURE-RESPONSE METHODOLOGY

    EPA Science Inventory

    The Inhalation Exposure-Response Analysis Methodology Document is expected to provide guidance on the development of the basic toxicological foundations for deriving reference values for human health effects, focusing on the hazard identification and dose-response aspects of the ...

  15. Pressurised aerosol inhalers: the cost of misuse.

    PubMed

    King, D; Earnshaw, S M; Delaney, J C

    1991-01-01

    Bronchodilator aerosols, if used correctly, have many advantages over other therapies in patients with chronic airflow limitation caused by asthma or chronic bronchitis. The use of pressurized aerosol inhalers was examined in a district general hospital: of 57 patients on these inhalers, 39 were unable to use the inhaler effectively, and 23 had never received any advice on inhaler technique. A single demonstration of correct technique decreased the failures to 21 patients and, after two demonstrations, to ten. The cost of the misused inhalers in this relatively small population was 450 pounds, and obviously this figure escalates when the prescription for these inhalers is repeated monthly. It is also increased when the total numbers of misused inhalers in the country are accounted for. The cost in terms of finance, in these days of medical audit and drug budgets, and, more importantly, in terms of patient health, is unacceptable and can be avoided by repeated tuition of technique.

  16. From inhaler to lung: clinical implications of the formulations of ciclesonide and other inhaled corticosteroids

    PubMed Central

    Nave, Ruediger; Mueller, Helgert

    2013-01-01

    Asthma continues to be a global health problem and currently available treatments such as corticosteroids can cause unwanted side effects. Inhaled corticosteroids (ICS) are recommended as first-line therapy for reducing airway inflammation and have a distinct advantage over oral preparations as they provide a direct route of delivery to the lungs. However, local deposition of ICS in the oropharynx can lead to oral candidiasis, dysphonia, and pharyngitis. The pharmaceutical quality is a primary concern of any ICS asthma treatment, with a higher quality product resulting in improved efficacy and safety profiles. The particle size distribution and the spray force velocity of an ICS may directly influence lung deposition, and the spray duration of a device is another important factor when coordinating inhalation. Recent advances in ICS device and formulation technology have resulted in significant improvements in the efficacy of available asthma treatments. In particular, hydrofluoroalkane (HFA) solution technology and the development of smaller particle sizes have resulted in the production of new ICS formulations that have the ability to directly target drug delivery to the site of airway inflammation. Both the ICS formulation and the pressurized metered-dose inhaler device used to administer ciclesonide (CIC) HFA have been developed to treat the underlying chronic inflammation associated with asthma. CIC is administered as a prodrug which is activated in the lungs, leading to minimal oropharyngeal deposition. The small particle size of CIC results in the delivery of a high fraction of respirable particles to the small airways of the lungs, resulting in high lung deposition and continual dose consistency. This review summarizes how CIC administered as an HFA formulation is an effective treatment for asthma. PMID:23516175

  17. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  18. Recognition and prevention of inhalant abuse.

    PubMed

    Anderson, Carrie E; Loomis, Glenn A

    2003-09-01

    Inhalant abuse is a prevalent and often overlooked form of substance abuse in adolescents. Survey results consistently show that nearly 20 percent of children in middle school and high school have experimented with inhaled substances. The method of delivery is inhalation of a solvent from its container, a soaked rag, or a bag. Solvents include almost any household cleaning agent or propellant, paint thinner, glue, and lighter fluid. Inhalant abuse typically can cause a euphoric feeling and can become addictive. Acute effects include sudden sniffing death syndrome, asphyxia, and serious injuries (e.g., falls, burns, frostbite). Chronic inhalant abuse can damage cardiac, renal, hepatic, and neurologic systems. Inhalant abuse during pregnancy can cause fetal abnormalities. Diagnosis of inhalant abuse is difficult and relies almost entirely on a thorough history and a high index of suspicion. No specific laboratory tests confirm solvent inhalation. Treatment is generally supportive, because there are no reversal agents for inhalant intoxication. Education of young persons and their parents is essential to decrease experimentation with inhalants. PMID:13678134

  19. Inhalation toxicology methods: the generation and characterization of exposure atmospheres and inhalational exposures.

    PubMed

    Chen, Lung-Chi; Lippmann, Morton

    2015-01-01

    In this unit, the need for laboratory-based inhalation toxicology studies, the historical background on adverse health effects of airborne toxicants, and the benefits of advance planning for the building of analytic options into the study design to maximize the scientific gains to be derived from the investments in the study are outlined. The following methods are described: (1) the generation and characterization of exposure atmospheres for inhalation exposures in humans and laboratory animals; (2) the delivery and distribution into and within whole-body exposure chambers, head-only exposure chambers, face-masks, and mouthpieces or nasal catheters; (3) options for on-line functional assays during and between exposures; and (4) options for serial non-invasive assays of response. In doing so, a description beyond exposures to single agents and simple mixtures is presented, and included are methods for evaluating biological responses to complex environmental mixtures. It is also emphasized that great care should be taken in the design and execution of such studies so that the scientific returns can be maximized both initially, and in follow-up utilization of archived samples of the exposure atmospheres, excreta, and tissues collected for histology. PMID:25645246

  20. INHALATION TOXICOLOGY METHODS: The Generation and Characterization of Exposure Atmospheres and Inhalational Exposures

    PubMed Central

    Chen, Lung-Chi; Lippmann, Morton

    2015-01-01

    In this review, we outline the need for laboratory-based inhalation toxicology studies, the historical background on adverse health effects of airborne toxicants, and the benefits of advance planning for the building of analytic options into the study design to maximize the scientific gains to be derived from the investments in the study. We then discuss methods for: 1) the generation and characterization of exposure atmospheres for inhalation exposures in humans and laboratory animals; 2) their delivery and distribution into and within whole-body exposure chambers, head-only exposure chambers, face-masks, and mouthpieces or nasal catheters; 3) options for on-line functional assays during and between exposures; and 4) options for serial non-invasive assays of response. In doing so, we go beyond exposures to single agents and simple mixtures, and include methods for evaluating biological responses to complex environmental mixtures. We also emphasize that great care should be taken in the design and execution of such studies so that the scientific returns can be maximized both initially, and in follow-up utilization of archived samples of the exposure atmospheres, excreta, and tissues collected for histology. PMID:25645246

  1. Inhalational anaesthetics in the ICU: theory and practice of inhalational sedation in the ICU, economics, risk-benefit.

    PubMed

    Meiser, Andreas; Laubenthal, H

    2005-09-01

    ICU sedation poses many problems. The action and side-effects of intravenous drugs in the severely ill patient population of an ICU are difficult to control. The incidence of post-traumatic stress disorder after long-term sedation is high. The recent focus on propofol infusion syndrome entails restrictions in the use of this drug. On the other hand, volatile anaesthetics very selectively suppress consciousness but leave many autonomic functions intact. In the absence of perception and disturbed information processing the number of adverse experiences should be lower, leading to a better psychological outcome. Respiration and intestinal motility are not depressed, facilitating modern therapeutic concepts such as early enteral feeding and augmentation of spontaneous breathing. Awakening after inhalational ICU sedation is quick and predictable, extubation can be planned and organized, and the time during which the patient needs very close observation will be short. Technological advances have greatly simplified the application of inhalational anaesthetics. New anaesthesia ventilators offer ventilatory modes and high flow generation comparable to ICU ventilators. However, they are not yet licensed for stand-alone use. The introduction of a volatile anaesthetic reflection filter for the first time enables the concept of inhalational sedation to be performed with very little effort by many ICUs. This 'anaesthetic conserving device' (AnaConDa) is connected between the patient and a normal ICU ventilator, and it retains 90% of the volatile anaesthetic inside the patient just like a heat and moisture exchanger. In this chapter possible advantages of the new concept and the choice of the inhalational agent are discussed. The technical prerequisites are explained, and the practice and pitfalls of inhalational ICU sedation in general and when using the AnaConDa are described in detail.

  2. Inhalation therapy: technological milestones in asthma treatment.

    PubMed

    Dalby, Richard; Suman, Julie

    2003-07-18

    The humble origins of the propellant driven metered dose inhaler, as a response to a child's enquiry, initiated an industry which supplies approximately a half billion inhalers globally for the treatment of asthma. These inhalers fall into three major groups: nebulizers; propellant driven metered dose inhalers and dry powder inhalers. Each requires drug formulation, metering and device technology to be successful. In recent years there have been several new developments in the field including auxiliary systems to improve drug delivery from the device to the patient and new categories of device, notably single breath aqueous systems. As device technology improves and our understanding of the disease leads to new drugs the only barrier to therapy is the patient. Patient training and compliance will continue to be important factors in the success, or failure, of inhaled therapy and the role of health care professionals will depend on who sponsors their intervention.

  3. Misuse of xylometazoline nasal drops by inhalation.

    PubMed

    Anand, Jacek Sein; Salamon, Marek; Habrat, Boguslaw; Scinska, Anna; Bienkowski, Przemyslaw

    2008-12-01

    Six male prisoners who misused xylometazoline nasal drops by inhalation were interviewed by a prison physician in 2006. The prisoners received xylometazoline drops during regular visits in the prison ambulatory service. In order to get the medication, the subjects reported false symptoms of rhinosinusitis and allergic reactions. Psychoactive effects of inhaled xylometazoline were described as "stimulation," "excitation," and "feeling of strength." Although preliminary, our findings suggest that topical adrenergic decongestants can produce rewarding effects when administered by inhalation. PMID:19085441

  4. Allergic reactions to foods by inhalation.

    PubMed

    James, John M; Crespo, Jesús Fernández

    2007-06-01

    Although allergic reactions to foods occur most commonly after ingestion, inhalation of foods can also be an underlying cause of these reactions. For example, published reports have highlighted the inhalation of allergens from fish, shellfish, seeds, soybeans, cereal grains, hen's egg, cow's milk, and many other foods in allergic reactions. Symptoms have typically included respiratory manifestations such as rhinoconjunctivitis, coughing, wheezing, dyspnea, and asthma. In some cases, anaphylaxis has been observed. In addition, there have been many investigations of occupational asthma following the inhalation of relevant food allergens. This report reviews the current literature focusing on allergic reactions to foods by inhalation.

  5. The Evolution of Pressurized Metered-Dose Inhalers from Early to Modern Devices.

    PubMed

    Roche, Nicolas; Dekhuijzen, P N Richard

    2016-08-01

    Pressurized metered-dose inhalers (pMDIs) are sometimes viewed as old-fashioned and as having been superseded by dry powder inhalers (DPIs). Here, we review the technological advances that characterize modern pMDIs, and consider how they can influence the effectiveness of drug delivery for patients with asthma and chronic obstructive pulmonary disease. Compared with old chlorofluorocarbon (CFC)-based inhalers, many hydrofluoroalkane (HFA)-driven pMDIs have more favorable plume characteristics such as a reduced velocity and a higher fine particle fraction; together, these advances have resulted in the development of pMDIs with reduced oropharyngeal deposition and increased lung deposition. In addition, the plume from many HFA-pMDIs is warmer, which may facilitate their use by patients; moreover, devices are equipped with dose counters, which improves their reliability. As well as reviewing the technological advances of pMDIs, we also discuss the importance of individualizing inhaler therapies to each patient by accounting for their personal preferences and natural breathing patterns. Because pMDIs and DPIs differ considerably in their handling characteristics, matching the right inhaler to the right patient is key to ensuring effective therapy and good compliance. Finally, the majority of patients can be trained successfully in the correct use of their pMDI; training and regular monitoring of inhalation technique are essential prerequisites for effective therapy. While the 'ideal inhaler' may not exist, pMDIs are an effective device option suitable for many patients. pMDIs, together with other types of devices, offer opportunities for the effective individualization of treatments. PMID:26824873

  6. Inhaled magnesium fluoride reverse bronchospasma.

    PubMed

    Gandia, Fedoua; Rouatbi, Sonia; Latiri, Imed; Guénard, Hervé; Tabka, Zouhair

    2010-01-01

    Asthma is a global health problem. Asthma attacks are becoming more severe and more resistant to usual treatment by beta(2) agonists nebulisation. The search for a new product that could reduce the morbidity of asthmatic disease seems necessary. The objective of this study was to compare the effectiveness of inhaled magnesium fluoride (MgF(2)) with that of magnesium sulphate (MgSO(4)) 15% alone and sodium fluoride (NaF) 0.5 M alone in rats pre-contracted by methacholine (MeCh). Fifty six adult male Wistar rats of medium weight 259 +/- 15 g were divided randomly into five groups. They inhaled respectively: MeCh, MgF(2) + NaCl 0.9%, MgF(2) + acetic acid, MgSO(4) 15% single and NaF (0.5 M) single. Airway resistances were measured after each dose of MeCh by pneumomultitest equipment. Results indicated that (1) MgF(2) + NaCl 0.9%, MgF(2) + acetic acid and MgSO(4) reversed significantly the methacholine-induced bronchial constriction in rats and had a bronchodilating effect at the moment of its administration (2) MgF(2) + acetic acid led to a greater decrease (P<0.05) of bronchial resistances when compared to that obtained from MgF(2) + NaCl 0.9%, NaF exclusively and MgSO(4) alone (3) inhaled NaF alone led to a significant bronchorelaxing effect (P<0.05) that starts at the sixth dose of MeCh (17 mg/L). As a matter of fact, MgF(2) dissolved in acetic acid and delivered in aerosol form reduces significantly bronchial spasm. In conclusion, MgF(2) can be used as a bronchodilator for diseases with bronchospasma such as asthma and chronic obstructive pulmonary disease (COPD).

  7. Inhalant abuse: youth at risk.

    PubMed

    Ahern, Nancy R; Falsafi, Nasrin

    2013-08-01

    Inhalant abuse is a significant problem affecting many people, particularly youth. The easy availability of products containing volatile substances (e.g., aerosol sprays, cleaning products, paint) provides opportunity for mind-altering experiences. Unfortunately, serious complications such as brain, cardiovascular, liver, and renal damage or even death may ensue. Adolescents perceive the risk as low, and parents may be unaware of the risks. Health care providers, particularly psychiatric nurses, should undertake strategies of prevention, assessment, and treatment of this challenging problem. PMID:23786241

  8. Dry powder inhalers and the right things to remember: a concept review.

    PubMed

    Dal Negro, Roberto W

    2015-01-01

    Dry powder inhalers (DPIs) are widely and increasingly used in clinical practice because they represent a substantial advancement in inhalation technology. The effectiveness of a powdered drug to inhale depends on the inspiratory flow rate generated by the patient and on the turbulence produced by the intrinsic resistance of the DPI. While the inspiratory flow is variable with the patient's ability and conditions, the turbulence is differently sized within each device because depending of its technical design. There are higher - medium-, and low-resistance devices. With low-resistance DPIs, the disaggregation and the microdispersion of the drug highly depend on the patient's inhalation airflow rate, because the role of the resistance-induced turbulence is obviously negligible in these cases. This flow-rate dependency is minimized in the presence of a sufficient regimen of turbulence as in the case of medium-resistance DPIs. Both the disaggregation and the micro-dispersion of the powdered drug are optimized in these circumstances even in the absence of a maximal inspiratory flow rate. The low resistance DPIs should not be regarded as the best performer DPIs because their intrinsic low-resistance regimen requires a higher inspiratory airflow rate and effort, which frequently cannot be achieved by subjects suffering from a disease-induced airflow limitation. Only when the ratio between the inhalation flow rate and the DPI intrinsic resistance is balanced, the speed of the particulate, the distribution of the drug within the lung, and the variability of the effective inhaled dose are optimized.

  9. Inhalants

    MedlinePlus

    ... for the wide variety of substances—including solvents, aerosols, gases, and nitrites—that are rarely, if ever, ... a glue bottle or a marking pen), spray aerosols (such as computer cleaning dusters) directly into their ...

  10. Inhalants

    MedlinePlus

    ... electronic contact cleaner Aerosols are sprays that contain propellants and solvents. They include: Spray paint, hair spray, ... burn injuries Freon (difluoroethane substitutes) Refrigerant and aerosol propellant Sudden sniffing death Breathing problems and death (from ...

  11. Toxicological Assessment of Noxious Inhalants

    PubMed Central

    Kleinsasser, N. H.; Sassen, A. W.; Wallner, B. W.; Staudenmaier, R.; Harréus, U. A.; Richter, E.

    2004-01-01

    In the past centuries mankind has been exposed to various forms of air pollution not only at his occupational but also in his social environment. He mainly gets exposed with these pollutants through the respiratory organs and partially absorbs them into the body. Many of these airborne substances can be harmful for humans and some of them may account for tumorigenic effects. The following essay describes the main features of toxicological assessment of inhalative environmental and workplace xenobiotics. The essay also explains relevant characteristics and limit values of noxious compounds and gases and depicts modern testing methods. To this end, emphasis is given on methods characterizing the different stages of tumorigenic processes. Various test systems have been developed which can be used in vivo, ex vivo or in vitro. They are to a great part based on the evidence of changes in DNA or particular genes of cells. Among others they have highlighted the impact of interindividual variability on enzymatic activation of xenobiotics and on susceptibility of the host to tumor diseases. Unfortunately, for many inhalative environmental noxious agents no sufficient risk profiles have been developed. The completion of these profiles should be the goal of toxicological assessment in order to allow reasonable socioeconomic or individual-based risk reduction. PMID:22073045

  12. Tips for Teens: The Truth about Inhalants

    MedlinePlus

    ... site at www. whitehousedrugpolicy. gov. No.Even though household products like glue and air freshener have legal,useful ... A. A. Q.Since inhalants are found in household products,aren’t they safe? Q.Can inhalants make ...

  13. Investigation of inhalation anthrax case, United States.

    PubMed

    Griffith, Jayne; Blaney, David; Shadomy, Sean; Lehman, Mark; Pesik, Nicki; Tostenson, Samantha; Delaney, Lisa; Tiller, Rebekah; DeVries, Aaron; Gomez, Thomas; Sullivan, Maureen; Blackmore, Carina; Stanek, Danielle; Lynfield, Ruth

    2014-02-01

    Inhalation anthrax occurred in a man who vacationed in 4 US states where anthrax is enzootic. Despite an extensive multi-agency investigation, the specific source was not detected, and no additional related human or animal cases were found. Although rare, inhalation anthrax can occur naturally in the United States.

  14. [Dry powder inhalers in cystic fibrosis].

    PubMed

    Steinkamp, G

    2014-06-01

    Inhaled medications play an important role in the daily treatment of patients with cystic fibrosis (CF). The classic route of administration was nebulisation via jet nebulisers. Respiratory delivery of fluid particles should loosen the viscid respiratory secretions, making airway clearance via cough or physiotherapy more efficient. Until recently, only jet nebulisers allowed to administer high doses of aerosolised antipseudomonal antibiotics. Powder inhalers for the treatment of cystic fibrosis have recently been made available. The newly developed powders and inhalers differ considerably from conventional dry powder inhalers used for the treatment of chronic obstructive airway disease. The present article will review two inhaled antibiotics, i. e. tobramycin and colistin, and the hyperosmotic agent mannitol, which increases the hydration of the airways. Topics are particle engineering, efficacy and tolerability results from clinical trials, as well as functional and practical aspects related to these new drugs. PMID:24664997

  15. The ozone layer and metered dose inhalers.

    PubMed

    Boulet, L P

    1998-01-01

    The stratospheric ozone layer plays a crucial role in protecting living organisms against ultraviolet radiation. Chlorofluorocarbons (CFC) contained in metered-dose inhalers (MDIs) contribute to ozone depletion and in accordance with the Montreal Protocol on Substances That Deplete the Ozone Layer established 10 years ago, phase-out strageies have been developed worldwide for this category of agents. Alternatives to CFC-containing inhalers have been developed, such as powder inhalers and those using hydrofluoroalkanes (HFAs) as propellants, which have been shown to be as safe and effective as CFC-containing inhalers and even offer interesting advantages over older inhalers. The transition to non-CFC MDIs requires a major effort to make the new products available and to ensure adequate comparision with the previous ones. It also requires a harmonization of actions taken by industry, government, licencing bodies and patients or health professional associations to ensure adequate information and education to the public and respiratory care providers.

  16. Advances in device and formulation technologies for pulmonary drug delivery.

    PubMed

    Chan, John Gar Yan; Wong, Jennifer; Zhou, Qi Tony; Leung, Sharon Shui Yee; Chan, Hak-Kim

    2014-08-01

    Inhaled pharmaceuticals are formulated and delivered differently according to the therapeutic indication. However, specific device-formulation coupling is often fickle, and new medications or indications also demand new strategies. The discontinuation of chlorofluorocarbon propellants has seen replacement of older metered dose inhalers with dry powder inhaler formulations. High-dose dry powder inhalers are increasingly seen as an alternative dosage form for nebulised medications. In other cases, new medications have completely bypassed conventional inhalers and been formulated for use with unique inhalers such as the Staccato® device. Among these different devices, integration of software and electronic assistance has become a shared trend. This review covers recent device and formulation advances that are forming the current landscape of inhaled therapeutics. PMID:24728868

  17. Assessment of inhaler techniques employed by patients with respiratory diseases in southern Brazil: a population-based study*

    PubMed Central

    de Oliveira, Paula Duarte; Menezes, Ana Maria Baptista; Bertoldi, Andréa Dâmaso; Wehrmeister, Fernando César; Macedo, Silvia Elaine Cardozo

    2014-01-01

    OBJECTIVE: To identify incorrect inhaler techniques employed by patients with respiratory diseases in southern Brazil and to profile the individuals who make such errors. METHODS: This was a population-based, cross-sectional study involving subjects ≥ 10 years of age using metered dose inhalers (MDIs) or dry powder inhalers (DPIs) in 1,722 households in the city of Pelotas, Brazil. RESULTS: We included 110 subjects, who collectively used 94 MDIs and 49 DPIs. The most common errors in the use of MDIs and DPIs were not exhaling prior to inhalation (66% and 47%, respectively), not performing a breath-hold after inhalation (29% and 25%), and not shaking the MDI prior to use (21%). Individuals ≥ 60 years of age more often made such errors. Among the demonstrations of the use of MDIs and DPIs, at least one error was made in 72% and 51%, respectively. Overall, there were errors made in all steps in 11% of the demonstrations, whereas there were no errors made in 13%.Among the individuals who made at least one error, the proportion of those with a low level of education was significantly greater than was that of those with a higher level of education, for MDIs (85% vs. 60%; p = 0.018) and for DPIs (81% vs. 35%; p = 0.010). CONCLUSIONS: In this sample, the most common errors in the use of inhalers were not exhaling prior to inhalation, not performing a breath-hold after inhalation, and not shaking the MDI prior to use. Special attention should be given to education regarding inhaler techniques for patients of lower socioeconomic status and with less formal education, as well as for those of advanced age, because those populations are at a greater risk of committing errors in their use of inhalers. PMID:25410839

  18. Emerging inhaled bronchodilators: an update.

    PubMed

    Cazzola, M; Matera, M G

    2009-09-01

    Bronchodilators remain central to the symptomatic management of chronic obstructive pulmonary disease and asthma, and, for this reason and also because the patent protection of many bronchodilators has expired, several companies have reinitiated research into the field. The only limits set for the development of a long-lasting bronchodilator with a new product profile are medical needs and marketing opportunities. The incorporation of once-daily dose administration is an important strategy for improving adherence and is a regimen preferred by most patients. A variety of beta(2)-agonists and antimuscarinic agents with longer half-lives and inhalers containing a combination of several classes of long-acting bronchodilator are currently under development. The present article reviews all of the most important compounds under development, describing what has been done and discussing their genuine advantage.

  19. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation... machine as described in § 84.88. (b) The inhalation resistance of open-circuit apparatus shall not...

  20. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation... machine as described in § 84.88. (b) The inhalation resistance of open-circuit apparatus shall not...

  1. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation... machine as described in § 84.88. (b) The inhalation resistance of open-circuit apparatus shall not...

  2. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation... machine as described in § 84.88. (b) The inhalation resistance of open-circuit apparatus shall not...

  3. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation... machine as described in § 84.88. (b) The inhalation resistance of open-circuit apparatus shall not...

  4. Hematotoxicity and carcinogenicity of inhaled benzene.

    PubMed

    Cronkite, E P; Drew, R T; Inoue, T; Hirabayashi, Y; Bullis, J E

    1989-07-01

    CBA/Ca male mice have been exposed to benzene in air at 10, 25, 100, 300, 400, and 3000 ppm for variable intervals 6 hr/day, 5 days/week for up to 16 weeks. Two weeks of inhaling 10 ppm produced no hematologic effects; 25 ppm induced a significant lymphopenia. Inhalation of 100, 300, and 400 ppm produced dose-dependent decreases in blood lymphocytes, bone marrow cellularity, marrow content of spleen colony-forming units (CFU-S) and an increased fraction of CFU-S in DNA synthesis. Exposure of mice to 300 ppm for 2, 4, 8, and 16 weeks produced severe lymphopenia and decrease in marrow CFU-S. Recovery was rapid and complete after 2 and 4 weeks of exposure. After 8 and 16 weeks of exposure, recovery of lymphocytes was complete within 8 weeks. It took 16 weeks for the CFU-S to recover to that of the age-matched controls after 8 weeks of exposure and 25 weeks to recover to age-matched after 16 weeks of exposure. Inhalation of 3000 ppm for 8 days was less damaging than inhalation of 300 ppm for 80 days (same integral amount of benzene inhaled). The inhalation of 3000 ppm has not increased the incidence of leukemia or shortened its latency for development. Inhalation of 300 ppm 6 hr/day for 16 weeks significantly increases the incidence of myelogenous neoplasms in male CBA/Ca mice. Inhalation of 100 ppm for same interval does not influence incidence of myelogenous neoplasms but does increase incidence of solid neoplasms particularly in female CBA/Ca mice. Benzene is a potent carcinogen in CBA/Ca mice.

  5. Inhaling to mitigate exhaled bioaerosols.

    PubMed

    Edwards, David A; Man, Jonathan C; Brand, Peter; Katstra, Jeffrey P; Sommerer, K; Stone, Howard A; Nardell, Edward; Scheuch, Gerhard

    2004-12-14

    Humans commonly exhale aerosols comprised of small droplets of airway-lining fluid during normal breathing. These "exhaled bioaerosols" may carry airborne pathogens and thereby magnify the spread of certain infectious diseases, such as influenza, tuberculosis, and severe acute respiratory syndrome. We hypothesize that, by altering lung airway surface properties through an inhaled nontoxic aerosol, we might substantially diminish the number of exhaled bioaerosol droplets and thereby provide a simple means to potentially mitigate the spread of airborne infectious disease independently of the identity of the airborne pathogen or the nature of any specific therapy. We find that some normal human subjects expire many more bioaerosol particles than other individuals during quiet breathing and therefore bear the burden of production of exhaled bioaerosols. Administering nebulized isotonic saline to these "high-producer" individuals diminishes the number of exhaled bioaerosol particles expired by 72.10 +/- 8.19% for up to 6 h. In vitro and in vivo experiments with saline and surfactants suggest that the mechanism of action of the nebulized saline relates to modification of the physical properties of the airway-lining fluid, notably surface tension.

  6. [Evoked potentials and inhalation anesthetics].

    PubMed

    Thiel, A; Russ, W; Hempelmann, G

    1988-01-01

    Intraoperative monitoring of evoked potentials can be affected by various factors including volatile anaesthetics. These effects have to be considered in order to give correct interpretations of the obtained data. Visual evoked potentials (VEP) and auditory evoked potentials (AEP) will show strong alterations under general anaesthesia whereas brainstem auditory evoked potentials (BAEP) are slightly affected. The effects of nitrous oxide, halothane, enflurane, and isoflurane on somatosensory evoked potentials (SEP) after median nerve stimulation were studied in 35 healthy adult patients. pCO2 and tympanic membrane temperature were held constant. Simultaneous cervical and cortical SEP recording was performed using surface electrodes. After induction of anaesthesia SEP were recorded during normoventilation with 100% oxygen and after inhalation of 66.6% nitrous oxide. 10 patients received halothane at inspired concentrations of 0.5, 1.0, 1.5, and 2.0%. After nitrous oxide had been replaced by oxygen, halothane was reduced in steps of 0.5%. SEP were recorded at the end of each period (15 min). Equipotent doses of enflurane or isoflurane were administered to 15 and 10 patients, respectively. Nitrous oxide depressed early cortical SEP amplitude. Halothane, enflurane, and isoflurane caused dose dependent increases of latencies. Reduction of amplitude was most pronounced with isoflurane. Using high doses of enflurane in oxygen cortical SEP showed unusual high amplitudes associated with marked increases of latencies. Even under high concentrations of volatile anaesthetics cervical SEP were minimally affected. The effects of anaesthetic gases have to be considered when SEP are recorded intraoperatively.

  7. Intestinal circulation during inhalation anesthesia

    SciTech Connect

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-04-01

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of /sub 86/Rb and 9-microns spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO/sub 2/) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines.

  8. Inhaling to mitigate exhaled bioaerosols

    PubMed Central

    Edwards, David A.; Man, Jonathan C.; Brand, Peter; Katstra, Jeffrey P.; Sommerer, K.; Stone, Howard A.; Nardell, Edward; Scheuch, Gerhard

    2004-01-01

    Humans commonly exhale aerosols comprised of small droplets of airway-lining fluid during normal breathing. These “exhaled bioaerosols” may carry airborne pathogens and thereby magnify the spread of certain infectious diseases, such as influenza, tuberculosis, and severe acute respiratory syndrome. We hypothesize that, by altering lung airway surface properties through an inhaled nontoxic aerosol, we might substantially diminish the number of exhaled bioaerosol droplets and thereby provide a simple means to potentially mitigate the spread of airborne infectious disease independently of the identity of the airborne pathogen or the nature of any specific therapy. We find that some normal human subjects expire many more bioaerosol particles than other individuals during quiet breathing and therefore bear the burden of production of exhaled bioaerosols. Administering nebulized isotonic saline to these “high-producer” individuals diminishes the number of exhaled bioaerosol particles expired by 72.10 ± 8.19% for up to 6 h. In vitro and in vivo experiments with saline and surfactants suggest that the mechanism of action of the nebulized saline relates to modification of the physical properties of the airway-lining fluid, notably surface tension. PMID:15583121

  9. Inhaled Corticosteroids in Lung Diseases

    PubMed Central

    Raissy, Hengameh H.; Kelly, H. William; Harkins, Michelle

    2013-01-01

    Inhaled corticosteroids (ICSs) are used extensively in the treatment of asthma and chronic obstructive pulmonary disease (COPD) due to their broad antiinflammatory effects. They improve lung function, symptoms, and quality of life and reduce exacerbations in both conditions but do not alter the progression of disease. They decrease mortality in asthma but not COPD. The available ICSs vary in their therapeutic index and potency. Although ICSs are used in all age groups, younger and smaller children may be at a greater risk for adverse systemic effects because they can receive higher mg/kg doses of ICSs compared with older children. Most of the benefit from ICSs occurs in the low to medium dose range. Minimal additional improvement is seen with higher doses, although some patients may benefit from higher doses. Although ICSs are the preferred agents for managing persistent asthma in all ages, their benefit in COPD is more controversial. When used appropriately, ICSs have few adverse events at low to medium doses, but risk increases with high-dose ICSs. Although several new drugs are being developed and evaluated, it is unlikely that any of these new medications will replace ICSs as the preferred initial long-term controller therapy for asthma, but more effective initial controller therapy could be developed for COPD. PMID:23370915

  10. Inhalant Initiation and the Relationship of Inhalant Use to the Use of Other Substances

    ERIC Educational Resources Information Center

    Shamblen, Stephen R.; Miller, Ted

    2012-01-01

    Conventional wisdom suggests that inhalant use is primarily isolated to youthful experimentation; however, a growing body of evidence suggests that inhalant use (a) occurs after use of common substances of experimentation (e.g., alcohol, marijuana), (b) can persist into later life, and (c) is associated with severe consequences. The current study…

  11. Influence of peak inspiratory flow rates and pressure drops on inhalation performance of dry powder inhalers.

    PubMed

    Hira, Daiki; Okuda, Tomoyuki; Ichihashi, Mika; Mizutani, Ayano; Ishizeki, Kazunori; Okada, Toyoko; Okamoto, Hirokazu

    2012-01-01

    The aim of this study was to reveal the relationship between human inspiratory flow patterns and the concomitant drops in pressure in different inhalation devices, and the influence of the devices on inhalation performance. As a model formulation for inhalers, a physically mixed dry powder composed of salbutamol sulfate and coarse lactose monohydrate was selected. The drops in pressure at 28.3 L/min of three inhalation devices, Single-type, Dual-type, and Reverse-type, was 1.0, 5.1, and 8.7 kPa, respectively. Measurements of human inspiratory patterns revealed that although the least resistant device (Single) had large inter- and intra-individual variation of peak flow rate (PFR), the coefficients of variation of PFR of the three devices were almost the same. In tests with a human inspiratory flow simulator in vitro, inhalation performance was higher, but the variation in inhalation performance in the range of human flow patterns was wider, for the more resistant device. To minimize the intra- and inter-individual variation in inhalation performance for the model formulation in this study, a formulation design that allows active pharmaceutical ingredient to detach from the carrier with a lower inhalation flow rate is needed.

  12. Metered-dose inhalers and dry powder inhalers in aerosol therapy.

    PubMed

    Hess, Dean R

    2005-10-01

    Inhaled drug delivery is an important part of the armamentarium of clinicians caring for patients with pulmonary disease. An increasing variety of metered-dose inhalers and dry powder inhalers are becoming available. This has been driven by the development of new formulations and the impending ban on chlorofluorocarbon propellants. The result is a proliferation of devices, resulting in a confusing number of choices for the clinician, as well as confusion for patients trying to use these devices correctly. The presenters at this conference included many of the world's authorities on metered-dose inhalers and dry powder inhalers, and were an appropriate mix of academic aerosol scientists, clinician researchers with an interest in aerosol therapy, and aerosol scientists working for industry. Improper inhaler technique is common among patients. One of the important take-home messages of this conference is the importance of clinicians knowledgeable in the use of aerosol delivery devices and clinicians' ability to teach patients how to use these devices correctly. Respiratory therapists are uniquely positioned to provide this service, and there is evidence that respiratory therapists may do this better than others. The proceedings of this conference provide the current state of the art of metered-dose inhalers and dry powder inhalers.

  13. Conference report: 2nd Medicon Valley Inhalation Symposium.

    PubMed

    Lastow, Orest

    2014-02-01

    2nd Medicon Valley Inhalation Symposium 16 October 2013, Lund, Sweden The 2nd Medicon Valley Inhalation Symposium was arranged by the Medicon Valley Inhalation Consortium. It was held at the Medicon Village, which is the former AstraZeneca site in Lund, Sweden. It was a 1 day symposium focused on inhaled drug delivery and inhalation product development. 120 delegates listened to 11 speakers. The program was organized to follow the value chain of an inhalation product development. This year there was a focus on inhaled biomolecules. The inhaled delivery of insulin was covered by two presentations and a panel discussion. The future of inhaled drug delivery was discussed together with an overview of the current market situation. Two of the inhalation platforms, capsule inhalers and metered-dose inhalers, were discussed in terms of the present situation and the future opportunities. Much focus was on the regulatory and intellectual aspects of developing inhalation products. The manufacturing of a dry powder inhaler requires precision filling of powder, and the various techniques were presented. The benefits of nebulization and nasal delivery were illustrated with some case studies and examples. The eternal challenge of poor compliance was addressed from an industrial design perspective and some new approaches were introduced.

  14. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  15. Extracellular killing of inhaled pneumococci in rats

    SciTech Connect

    Coonrod, J.D.; Marple, S.; Holmes, G.P.; Rehm, S.R.

    1987-12-01

    Early clearance of inhaled Staphylococcus aureus is believed to be caused by phagocytosis by alveolar macrophages. In murine models inhaled pneumococci are cleared even more rapidly than S. aureus. Conventional opsonins appear to play no role in this clearance, and recently it has been shown that murine alveolar lining material contains free fatty acids and other soluble factors that are directly bactericidal for pneumococci. To determine whether non-phagocytic factors are involved in pneumococcal clearance, we compared the site of killing of inhaled pneumococci and S. aureus in rats using histologic methods and bronchoalveolar lavage. Spontaneous lysis of pneumococci was prevented by use of autolysin-defective pneumococci or by substitution of ethanolamine for choline in the cell wall. Histologic studies showed that the percent of inhaled staphylococci associated with alveolar macrophages always exceeded the percent of staphylococci cleared, whereas there was little association of pneumococci with macrophages during clearance. Analysis of the intracellular or extracellular location of iron 59 in bronchoalveolar lavage fluid of rats that had inhaled aerosols of /sup 59/Fe-labeled bacteria suggested that staphylococci were killed predominantly in macrophages and pneumococci in the extracellular space. When /sup 59/Fe-labeled pneumococci or staphylococci were ingested and killed by macrophages in vitro, the /sup 59/Fe remained with the macrophages, suggesting that the extracellular location of /sup 59/Fe during pneumococcal killing in vivo was not caused by rapid turnover of /sup 59/Fe in macrophages. Studies of the site of killing of inhaled type 25 pneumococci labeled exclusively in the cell wall with carbon 14-ethanolamine confirmed the results obtained with /sup 59/Fe-labeled pneumococci. Thus, early killing of inhaled pneumococci, unlike staphylococci, appears to take place outside of macrophages.

  16. Effect of Disease Severity in Asthma and Chronic Obstructive Pulmonary Disease on Inhaler-Specific Inhalation Profiles Through the ELLIPTA® Dry Powder Inhaler

    PubMed Central

    de Backer, Wilfried; Hamilton, Melanie; Cahn, Anthony; Preece, Andrew; Kelleher, Dennis; Baines, Amanda; Moore, Alison; Brealey, Noushin; Moynihan, Jackie

    2015-01-01

    Abstract Background: Two studies were undertaken to characterize the maximal effort inhalation profiles of healthy subjects and patients with asthma or chronic obstructive pulmonary disease (COPD) through a moderate-resistance dry powder inhaler (DPI). Correlations between inhaler-specific inhalation characteristics and inhaler-independent lung function parameters were investigated. Methods: Healthy subjects (n = 15), patients with mild, moderate, or severe asthma (n = 45), and patients with mild, moderate, severe, or very-severe COPD (n = 60) were included in the studies. Inhalation pressure drop versus time profiles were recorded using an instrumented ELLIPTA® DPI or bespoke resistor component with equivalent resistivity. Inhaler-independent lung function assessments included pharyngometry, spirometry, plethysmography, and diffusion. Results: For the inhaler-specific inhalation profiles, the mean maximal effort peak inspiratory flow rates (PIFRs) varied across the subgroups from 65.8–110.6 L/min (range: 41.6–142.9). Peak pressure drop, PIFR, inhaled volume, and average inhalation flow rate (primary endpoints) did not differ markedly between healthy subjects and patients with asthma or mild COPD. Moderate, severe, and very-severe COPD patients demonstrated lower mean peak pressure drops, PIFRs and inhaled volumes, which tended to decrease with increasing COPD severity. Severe and very-severe COPD patients demonstrated shorter mean inhalation times compared with all other participants. Inhaler-independent lung function parameters were consistent with disease severity, and statistically significant (p < 0.05) strong correlations (R > 0.7) with components of the inhaler-specific inhalation profiles were observed in the COPD cohort; correlations in the asthma cohort tended to be weaker. Conclusions: All participants achieved a maximal effort PIFR ≥ 41.6 L/min through the moderate resistance of the ELLIPTA inhaler. Patients with asthma

  17. The toxicology of inhaled woodsmoke.

    PubMed

    Zelikoff, Judith T; Chen, Lung Chi; Cohen, Mitchell D; Schlesinger, Richard B

    2002-01-01

    In addition to developing nations relying almost exclusively upon biomass fuels, such as wood for cooking and home heating, North Americans, particularly in Canada and the northwestern and northeastern sections of the United States, have increasingly turned to woodburning as an alternate method for domestic heating because of increasing energy costs. As a result, the number of households using woodburning devices has increased dramatically. This has resulted in an increase in public exposure to indoor and outdoor woodsmoke-associated pollutants, which has prompted widespread concern about the adverse human health consequences that may be associated with prolonged woodsmoke exposure. This mini-review article brings together many of the human and animal studies performed over the last three decades in an attempt to better define the toxicological impact of inhaled woodsmoke on exposed children and adults; particular attention is given to effects upon the immune system. General information regarding occurrence and woodsmoke chemistry is provided so as to set the stage for a better understanding of the toxicological impact. It can be concluded from this review that exposure to woodsmoke, particularly for children, represents a potential health hazard. However, despite its widespread occurrence and apparent human health risks, relatively few studies have focused upon this particular area of research. More laboratory studies aimed at understanding the effects and underlying mechanisms of woodsmoke exposure, particularly on those individuals deemed to be at greatest risk, are badly needed, so that precise human health risks can be defined, appropriate regulatory standards can be set, and accurate decisions can be made concerning the use of current and new woodburning devices.

  18. Propellant-driven metered-dose inhalers for pulmonary drug delivery.

    PubMed

    Smyth, Hugh D C

    2005-01-01

    The current market for pulmonary drug delivery is at a bottleneck. The therapeutic advantages of inhalation aerosols, and the potential for the lungs as a route for systemically acting drugs, vaccines and gene therapeutic agents, have resulted in a rapid growth of the industry. Alongside this, the environment of inhaler design and formulation has changed markedly in recent years. Environmental concerns over propellants, the commercial success of dry powder inhalers, and the apparent lack of advancement of propellant-driven metered-dose inhalers (pMDIs) has led to a less clear future for these devices. This review critically assesses these pressures and also potential opportunities for the pMDI. It is proposed that the future role of pMDIs will be determined by several important forces that can be classified under 'technology development' or 'market climate' categories. Technology development forces will be strengthened by the ability of the industry to have a systematic understanding of mechanisms of spray formation, perform subsequent and continued device and formulation advances, and a focus on all patient groups: particularly paediatric and geriatric populations. The ability to succeed in these areas will be largely determined by the willingness to invest in fundamental research of pMDI technologies.

  19. Deposition and biokinetics of inhaled nanoparticles

    PubMed Central

    2010-01-01

    Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones. The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles. We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures. PMID:20205860

  20. Inhalation exposure systems: design, methods and operation.

    PubMed

    Wong, Brian A

    2007-01-01

    The respiratory system, the major route for entry of oxygen into the body, provides entry for external compounds, including pharmaceutic and toxic materials. These compounds (that might be inhaled under environmental, occupational, medical, or other situations) can be administered under controlled conditions during laboratory inhalation studies. Inhalation study results may be controlled or adversely affected by variability in four key factors: animal environment; exposure atmosphere; inhaled dose; and individual animal biological response. Three of these four factors can be managed through engineering processes. Variability in the animal environment is reduced by engineering control of temperature, humidity, oxygen content, waste gas content, and noise in the exposure facility. Exposure atmospheres are monitored and adjusted to assure a consistent and known exposure for each animal dose group. The inhaled dose, affected by changes in respiration physiology, may be controlled by exposure-specific monitoring of respiration. Selection of techniques and methods for the three factors affected by engineering allows the toxicologic pathologist to study the reproducibility of the fourth factor, the biological response of the animal. PMID:17325967

  1. Inhaler devices: what remains to be done?

    PubMed

    Smith, Ian J; Bell, John; Bowman, Nic; Everard, Mark; Stein, Stephen; Weers, Jeffry G

    2010-12-01

    The 1000 Years of Pharmaceutical Aerosols Conference convened posing the question; "what remains to be done?" When applying this question to the topic of inhaler devices, two hugely different perspectives could be taken. On the one hand, it could be argued that because there is an array of delivery systems available and the industry, prescribing physicians and patients alike have considerable choice, why would we believe it necessary to do anything further? On the other hand, as an industry, we are constantly reminded by our "customers" that the inhaler devices available are less than adequate, and in some cases woefully inadequate, that they are not "patient" friendly, not intuitive to use and importantly do nothing to encourage the patient to take the medication as intended and as prescribed. So, taking the second point of view as more reflective of reality--the Voice of the Customer--our starting point must be that there is still much to do in the field of inhaler devices. The purpose of this article is to outline some key basic requirements for inhaler design and perhaps to question some of the entrenched thinking that has pervaded inhaler product design for too many years.

  2. Influence of small amorphous amounts in hydrophilic and hydrophobic APIs on storage stability of dry powder inhalation products.

    PubMed

    Müller, Thorsten; Krehl, Regina; Schiewe, Jörg; Weiler, Claudius; Steckel, Hartwig

    2015-05-01

    The effects of different manufacturing methods to induce formation of amorphous content, changes of physico-chemical characteristics of powder blends and changes of aerodynamic properties over storage time (6months) analyzed with the Next Generation Impactor (NGI) are investigated. Earlier studies have shown that standard pharmaceutical operations lead to structural disorders which may influence drug delivery and product stability. In this investigation, fully amorphous drug samples produced by spray-drying (SD) and ball-milling (BM) as well as semi-crystalline samples (produced by blending and micronization) are studied and compared to fully crystalline starting material. The amorphous content of these hydrophilic and hydrophobic active pharmaceutical ingredients (APIs) was determined using a validated one-step DVS-method. For the conducted blending and micronization tests, amorphous amounts up to a maximum of 5.1% for salbutamol sulfate (SBS) and 17.0% for ciclesonide (CS) were measured. In order to investigate the impact of small amorphous amounts, inhalable homogenous powder mixtures with very high and low amorphous content and a defined particle size were prepared with a Turbula blender for each API. These blends were stored (6months, 45% RH, room temperature) to evaluate the influence of amorphous amounts on storage stability. The fine particle fraction (FPF: % of emitted dose<5μm) was determined with the NGI at defined time points. The amorphous amounts showed a major effect on dispersion behavior, the mixtures of the two APIs showed differences at the beginning of the study and significant differences in storage stability. The FPF values for SBS decreased during storage (FPF: from 35% to <27%) for the blend with high amorphous amounts, in contrast the initially re-crystallized sample achieved a comparable constant level of about 25%. For the hydrophobic CS a constantly increasing FPF (from 6% to >15%) over storage time for both types of blends was

  3. The dispersion behaviour of dry powder inhalation formulations cannot be assessed at a single inhalation flow rate.

    PubMed

    Grasmeijer, Floris; de Boer, Anne H

    2014-04-25

    The dispersion performances of inhalation powders are often tested at only one inhalation flow rate in mechanistic formulation studies. This limited approach is challenged by studies showing that interactions exist between inhalation flow rate and the effects on dispersion performance of several formulation variables. In this note we explain that such interactions with inhalation flow rate are, in fact, always to be expected. Because these interactions may greatly affect conclusions concerning the effects of formulation variables and their underlying mechanisms, the utility of future dry powder inhalation formulation studies may benefit from an approach in which dispersion performance is by default tested over a range of inhalation flow rates.

  4. Vapor Inhalation of Alcohol in Rats

    PubMed Central

    Gilpin, Nicholas W.; Richardson, Heather N.; Cole, Maury; Koob, George F.

    2008-01-01

    Alcohol dependence constitutes a neuroadaptive state critical for understanding alcoholism, and various methods have been utilized to induce alcohol dependence in animals, one of which is alcohol vapor exposure. Alcohol vapor inhalation provides certain advantages over other chronic alcohol exposure procedures that share the ultimate goal of producing alcohol dependence in rats. Chronic alcohol vapor inhalation allows the experimenter to control the dose, duration, and pattern of alcohol exposure. Also, this procedure facilitates testing of somatic and motivational aspects of alcohol dependence. Chronic exposure to alcohol vapor produces increases in alcohol-drinking behavior, increases in anxiety-like behavior, and reward deficits in rats. Alcohol vapor inhalation as a laboratory protocol is flexible, and the parameters of this procedure can be adjusted to accommodate the specific aims of different experiments. This unit describes the options available to investigators using this procedure for dependence induction, when different options are more or less appropriate, and the implications of each. PMID:18634001

  5. The pathophysiology of smoke inhalation injury.

    PubMed Central

    Stephenson, S F; Esrig, B C; Polk, H C; Fulton, R L

    1975-01-01

    The consequences of near-lethal smoke inhalation in dogs were studied for a 72-hour period following injury. Progressive hypoxemia and decrease in compliance developed. Severe respiratory distress and frank pulmonary edema were not encountered. Respiratory insufficiecy was related more to alterations in ventilation perfusion ratios than to alveolar destruction. These data were related to clinical observations made by others. No deterioration of lung function was seen with crystalloid overload imposed upon smoke inhalation. The presence of bacterial infection in dogs surviving beyond 24 hours appears pathogenically significant. Images Fig. 8. Fig. 10. PMID:242281

  6. Cow Dung Ingestion and Inhalation Dependence: A Case Report

    ERIC Educational Resources Information Center

    Khairkar, Praveen; Tiple, Prashant; Bang, Govind

    2009-01-01

    Although abuse of several unusual inhalants had been documented, addiction to cow dung fumes or their ashes has not been reported in medical literature as yet. We are reporting a case of cow dung dependence in ingestion and inhalational form.

  7. INHALATION EXPOSURE-RESPONSE ASSESSMENTS FOR FIVE CHEMICALS

    EPA Science Inventory

    Inhalation exposure-response assessments for five chemicals (acrolein, ethylene oxide, hexachlorocyclopentadiene, hydrogen sulfide, and phosgene) for less-than-lifetime durations are being developed to inform the development of the Inhalation Exposure-Response Analysis Methodolog...

  8. Effects of Surface Composition on the Aerosolisation and Dissolution of Inhaled Antibiotic Combination Powders Consisting of Colistin and Rifampicin.

    PubMed

    Wang, Wenbo; Zhou, Qi Tony; Sun, Si-Ping; Denman, John A; Gengenbach, Thomas R; Barraud, Nicolas; Rice, Scott A; Li, Jian; Yang, Mingshi; Chan, Hak-Kim

    2016-03-01

    Colistin is often the only effective antibiotic against the respiratory infections caused by multidrug-resistant Gram-negative bacteria. However, colistin-resistant multidrug-resistant isolates have been increasingly reported and combination therapy is preferred to combat resistance. In this study, five combination formulations containing colistin (COL) and rifampicin (RIF) were prepared by spray drying. The lowest minimum inhibitory concentration (MIC) value against Pseudomonas aeruginosa PAO1 was measured for the formulation of COL/RIF = 4:1 with relatively high emitted doses (over 80%) and satisfactory fine particle fractions (over 60%). Data from X-ray photoelectron spectroscopy (XPS) and nano-time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed the surfaces of particles were mainly covered by rifampicin even for the formulation with a mass ratio of COL/RIF = 4:1. Because colistin is hygroscopic and rifampicin is hydrophobic, moisture absorption of combination formulations was significantly lower than the pure colistin formulation in the dynamic vapour sorption results. To investigate the dissolution characteristics, four dissolution test methods (diffusion Franz cell, modified Franz cell, flow-through and beaker methods) were employed and compared. The modified Franz cell method was selected to test the dissolution behaviour of aerosolised powder formulations to eliminate the effect of membrane on dissolution. The results showed that surface enrichment of hydrophobic rifampicin neither affected aerosolisation nor retarded dissolution rate of colistin in the combination formulations. For the first time, advanced surface characterisation techniques of XPS and ToF-SIMS have shown their capability to understand the effect of surface composition on the aerosolisation and dissolution of combination powders.

  9. Physical Symptoms and Psychological Distress among Inhalant Users.

    ERIC Educational Resources Information Center

    Joe, George W.; And Others

    1991-01-01

    Among 110 Mexican-American adolescents with varying drug use histories, self-reported physical health problems were not related to inhalant use history, but blood analyses indicated a relationship between extensive inhalant use and liver problems. Psychological distress symptoms were related to inhalant use and physical symptoms. Contains 23…

  10. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to...

  11. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to...

  12. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to...

  13. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to...

  14. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition...

  15. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition...

  16. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition...

  17. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition...

  18. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition...

  19. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to...

  20. Mathematics Achievement and Inhalant Allergy in Middle School Children.

    ERIC Educational Resources Information Center

    Burchfield, Patricia Crosby; Easterday, Kenneth E.

    1991-01-01

    This study of 137 students in grades 6 through 8 found no significant differences between the mean scores of sixth and seventh grade students with and without inhalant allergies on a mathematics concepts subtest, but found that eighth grade students with inhalant allergies performed better than eighth grade students without inhalant allergies.…