System studies for quasi-steady-state advanced physics tokamak
Reid, R.L.; Peng, Y.K.M.
1983-11-01
Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated.
NASA Astrophysics Data System (ADS)
Hu, J. S.; Sun, Z.; Guo, H. Y.; Li, J. G.; Wan, B. N.; Wang, H. Q.; Ding, S. Y.; Xu, G. S.; Liang, Y. F.; Mansfield, D. K.; Maingi, R.; Zou, X. L.; Wang, L.; Ren, J.; Zuo, G. Z.; Zhang, L.; Duan, Y. M.; Shi, T. H.; Hu, L. Q.; East Team
2015-02-01
A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H -mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.
Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation
NASA Astrophysics Data System (ADS)
Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team
2014-10-01
It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER
NASA Astrophysics Data System (ADS)
Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.
2015-06-01
This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.
Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State
Casper, T.A.; Lodestro, L.L.; Pearlstein, L.D.; Porter, G.D.; Murakami, M.; Lao, L.L.; Lin-Lui, Y.R.; St. John, H.E.
2000-06-06
A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized {beta}, {beta}{sub n} = {beta}/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.
On the possibility of a steady state tokamak
NASA Astrophysics Data System (ADS)
Dawson, J. M.; Nunan, W. J.; Ma, S.
1994-08-01
It is a great pleasure for me to speak at this symposium in honor of Tom Stix. I have had the privilege of knowing Tom ever since I started working in plasma physics and fusion at the Princeton Plasma Physics Lab almost 36 years ago. He was a leader of the fusion effort when I arrived and has remained so up to the present time. I vividly remember our interesting discussions on plasma physics. Particularly, I remember how many new and original ideas came from Tom, his ideas for ICRH: the Stix coil, the magnetic beach, and many, many others. Tom not only originated ideas but he built and carried out experiments to these ideas, as well as many other fundamental concepts in plasma physics. Tom's experiments were always firsts, and many pioneering advances were made by him. Tom's enthusiasm for plasma physics and fusion is infectious; it stimulates and inspires his co-workers and has touched all of Princeton's plasma students. Tom has had a deep interest in teaching plasma physics from the beginning. His excellent course on plasma waves launched many careers. His book on plasma waves, which came from this course, is the standard on the subject, and is an invaluable reference for everyone working in plasma physics. Tom is a generous and caring person which made him an ideal person to lead the Princeton Plasma Physics Graduate Program. It is my great good fortune to have known and worked with Tom, and to have him as a friend. This symposium is particularly honoring Tom for his guiding of the graduate program in plasma physics at Princeton. For this reason I thought it would be appropriate for me to speak about some work a graduate student of mine, Bill Nunan, is doing, at UCLA. In a real sense the UCLA graduate program in Plasma Physics has many roots in the Princeton program which Tom so skillfully guided.
Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime
NASA Astrophysics Data System (ADS)
Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; Holcomb, C. T.; Lao, L. L.; McKee, G. R.; Meneghini, O.; Staebler, G. M.; Grierson, B. A.; Qian, J. P.; Solomon, W. M.; Turnbull, A. D.; Holland, C.; Guo, W. F.; Ding, S. Y.; Pan, C. K.; Xu, G. S.; Wan, B. N.
2016-06-01
Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of βp and βN , despite strong internal transport barriers. Good confinement has been achieved with reduced toroidal rotation. These high βp plasmas challenge the energy transport understanding, especially in the electron energy channel. A new turbulent transport model, named TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. More investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.
Investigation of component failure rates for pulsed versus steady state tokamak operation
Cadwallader, L.C.
1992-07-01
This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments.
Steady-state hollow electron temperature profiles in the Rijnhuizen Tokamak Project
Hogeweij, G.M.; Oomens, A.A.; Barth, C.J.; Beurskens, M.N.; Chu, C.C.; van Gelder, J.F.; Lok, J.; Lopes Cardozo, N.J.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.
1996-01-01
In the Rijnhuizen Tokamak Project steady-state hollow electron temperature ({ital T}{sub {ital e}}) profiles have been sustained with strong off-axis electron cyclotron heating, creating a region of reversed magnetic shear. In this region the effective electron thermal diffusivity ({chi}{sub {ital e}}{sup {ital pb}}) is close to neoclassical in high density plasmas. For medium density, {chi}{sub {ital e}}{sup {ital pb}} is lower than neoclassical and may even be negative, indicating that off-diagonal elements in the transport matrix drive an electron heat flux up the {ital T}{sub {ital e}} gradient. {copyright} {ital 1996 The American Physical Society.}
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine
2016-10-01
The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?
DIII-D research towards resolving key issues for ITER and steady-state tokamaks
NASA Astrophysics Data System (ADS)
Hill, D. N.; the DIII-D Team
2013-10-01
The DIII-D research program is addressing key ITER research needs and developing the physics basis for future steady-state tokamaks. Pellet pacing edge-localized mode (ELM) control in the ITER configuration reduces ELM energy loss in proportion to 1/fpellet by inducing ELMs at up to 12× the natural ELM rate. Complete suppression of ELMs with resonant magnetic perturbations has been extended to the q95 expected for ITER baseline scenario discharges, and long-duration ELM-free QH-mode discharges have been produced with ITER-relevant co-current neutral-beam injection (NBI) using external n = 3 coils to generate sufficient counter-Ip torque. ITER baseline discharges at βN ˜ 2 and scaled NBI torque have been maintained in stationary conditions for more than four resistive times using electron cyclotron current drive (ECCD) for tearing mode suppression and disruption avoidance; active tracking with steerable launchers and feedback control catch these modes at small amplitude, reducing the ECCD power required to suppress them. Massive high-Z gas injection into disruption-induced 300-600 kA 20 MeV runaway electron (RE) beams yield dissipation rates ˜10× faster than expected from e-e collisions and demonstrate the possibility of benign dissipation of such REs should they occur in ITER. Other ITER-related experiments show measured intrinsic plasma torque in good agreement with a physics-based model over a wide range of conditions, while first-time main-ion rotation measurements show it to be lower than expected from neoclassical theory. Core turbulence measurements show increased temperature fluctuations correlated with sharply enhanced electron transport when \
Advanced tokamak operating modes in TPX and ITER
Nevins, W.M.
1994-12-31
A program is described to develop the advanced tokamak physics required for an economic steady-state fusion reactor on existing (short-pulse) tokamak experiments; to extend these operating modes to long-pulse on TPX; and finally to demonstrate them in a long-pulse D-T plasma on ITER.
Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors
Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.
1983-11-01
Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles.
NASA Astrophysics Data System (ADS)
Sonnino, G.
2011-03-01
Fully ionized L-mode tokamak plasmas in the fully collisional (Pfirsch-Schlüter) and in the low-collisional (banana) nonlinear transport regimes are analyzed. We derive the expressions for particles and heat losses together with the steady-state particle distribution functions in the several collisional transport regimes. The validity of the nonlinear closure equations, previously derived, has been indirectly tested by checking that the obtained particle distribution functions are indeed solutions of the nonlinear, steady-state, Vlasov-Landau gyro-kinetic equations. A quite encouraging result is the fact that, for L-mode tokamak plasmas a dissymmetry appears between the ion and electron transport coefficients: the latter submits to a nonlinear correction, which makes the radial electron coefficients much larger than the former. In particular we show that when the L-mode JET plasma is out of the linear region, the Pfirsch-Schlüter electron transport coefficients are corrected by an amplification factor, which may reach values of order 102. Such a correction is absent for ions. On the contrary, in the banana regime, the ion transport coefficients are increased by a factor 2 and the nonlinear corrections for electrons are negligible. These results are in line with experiments.
Diagnostics and control for the steady state and pulsed tokamak DEMO
NASA Astrophysics Data System (ADS)
Orsitto, F. P.; Villari, R.; Moro, F.; Todd, T. N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Duran, I.; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.
2016-02-01
The present paper is devoted to a first assessment of the DEMO diagnostics systems and controls in the context of pulsed and steady state reactor design under study in Europe. In particular, the main arguments treated are: (i) The quantities to be measured in DEMO and the requirements for the measurements; (ii) the present capability of the diagnostic and control technology, determining the most urgent gaps, and (iii) the program and strategy of the research and development (R&D) needed to fill the gaps. Burn control, magnetohydrodynamic stability, and basic machine protection require improvements to the ITER technology, and moderated efforts in R&D can be dedicated to infrared diagnostics (reflectometry, electron cyclotron emission, polarimetry) and neutron diagnostics. Metallic Hall sensors appear to be a promising candidate for magnetic measurements in the high neutron fluence and long/steady state discharges of DEMO.
Steady-State Analysis Model for Advanced Fuel Cycle Schemes.
SARTORI, ENRICO
2008-03-17
Version 00 SMAFS was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down cost analysis results. All the fuel cycle schemes considered in the model are represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can easily modify values of mass flows and/or cost parameters and see corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs.
Steady-state Analysis Model for Advanced Fuelcycle Schemes
2006-05-12
The model was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 20032005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down the cost analysis results. All the fuel cycle schemes considered in the model are represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and highlevel waste along time are included in the model and can be displayed. The user can modify easily the values of mass flows and/or cost parameters and see the corresponding changes in the results. The model calculates: frontend fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs. It performs Monte Carlo simulations with changing the values of all unit costs within their respective ranges (from lower to upper bounds).
A ``Stepladder'' Approach to a Steady State Tokamak Fusion Power Plant
NASA Astrophysics Data System (ADS)
Zohm, Hartmut; Bock, Alexander; Fable, Emiliano; Stober, Joerg; Traeuble, Frederik
2016-10-01
In the EU strategy to an FPP, DEMO is the single step between ITER and an FPP. It is not obvious how to arrive at a DEMO design point in this strategy. We propose to avoid large scenario development steps in an ITER-DEMO-FPP step-ladder, since no other machines can qualify the scenarios. Thus, DEMO becomes a technology demonstrator, not a plasma physics experiment. We characterize the plasma scenario in terms of the quantities βN, q, H and fGW. To ensure adequate divertor performance, constant ne is chosen. Different from previous approaches, ρ* and ν* will vary throughout the stepladder based on physics arguments that below minimum values, their variation is no longer important. This leaves open the choice of machine parameters A, R and B. Fixing A to the ITER value, constant fGW and absolute ne lead to B/R = const. At constant q, βN and A, B and R increase proportional to Pfus1 / 7 in the stepladder. The power needed to drive the current in steady state varies similarly, so from DEMO to an FPP a significant decrease in recirculating power fraction occurs. A viable divertor solution and access to H-mode are considered explicitly. An example for such a stepladder is discussed, based on recent ASDEX Upgrade results in steady state. Also at Faculty of Physics, Ludwig-Maximilians-Universität, D-80799 München, Germany.
Advanced operation scenarios toward high-beta, steady-state plasmas in KSTAR
NASA Astrophysics Data System (ADS)
Yoon, Si-Woo; Jeon, Y. M.; Woo, M. H.; Bae, Y. S.; Kim, H. S.; Oh, Y. K.; Park, J. M.; Park, Y. S.; Kstar Team
2016-10-01
For the realization of the fusion reactor, solving issues for high-beta steady-state operation is one of the essential topics for the present superconducting tokamaks and in this regard, KSTAR has been focusing on maximizing performance and increasing pulse length simultaneously. Typically, study on high beta operation has been focusing on advanced scenario limited at relatively short pulse discharge and partial success has been reported previously. However, it must be stressed that it is critical to verify compatibility of the developed scenario to long-pulse operation and compared with that of the short-pulse, it is turned out stable long-pulse operation is possible only with a reduced level of beta. In this work, the results of recent approaches in long-pulse operation are presented focusing respectively on high betaN, high betap and high li scenarios. For high betaN, the achieved level is close to 3 with Ip =0.4 MA, BT =1.4T and Pext 6MW and it is found to be limited by m/n =2/1 tearing mode and is also sensitive on the internal inductance. For high betap, conditions of the maximum betap is investigated mainly by parametric scans of plasma current (Ip =0.4-0.7 MA) and also neutral beam injection power (3-5MW). The achieved betap is also close to 3 with Ip =0.4 MA, BT =2.9T and Pext 6MW and it is found to be limited by heating power and without indication of MHD activities. Finally, attempt for high li discharge will be addressed on scenario development and transient results.
Woolley, R.D.
1996-12-31
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Woolley, Robert D.
1998-01-01
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Woolley, R.D.
1998-09-08
A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.
Sengupta, A.; Ranjan, P
2001-01-15
In this paper, we examine the possibility of using a multilayered feedforward neural network to extract tokamak plasma parameters from magnetic measurements as an improvement over the traditional methodology of function parametrization. It is also used to optimize the number and locations of the magnetic diagnostics designed for the tokamak. This work has been undertaken with the specific purpose of application of the neural network technique to the newly designed (and currently under fabrication) Superconducting Steady-State Tokamak-1 (SST-1). The magnetic measurements will be utilized to achieve real-time control of plasma shape, position, and some global profiles. A trained neural network is tested, and the results of parameter identification are compared with function parametrization. Both techniques appear well suited for the purpose, but a definite improvement with neural networks is observed. Although simulated measurements are used in this work, confidence regarding the network performance with actual experimental data is ensured by testing the network's noise tolerance with Gaussian noise of up to 10%. Finally, three possible methods of ranking the diagnostics in decreasing order of importance are suggested, and the neural network is used to optimize the number and locations of the magnetic sensors designed for SST-1. The results from the three methods are compared with one another and also with function parametrization. Magnetic probes within the plasma-facing side of the outboard limiter have been ranked high. Function parametrization and one of the neural network methods show a distinct tendency to favor the probes in the remote regions of the vacuum vessel, proving the importance of redundancy. Fault tolerance of the optimized network is tested. The results obtained should, in the long run, help in the decision regarding the final effective set of magnetic diagnostics to be used in SST-1 for reconstruction of the control parameters.
Steady state off-axis sawtoothing in the Rijnhuizen Tokamak project
NASA Astrophysics Data System (ADS)
Meulenbroeks, R. F. G.; de Baar, M. R.; Beurskens, M. N. A.; de Blank, H. J.; Deng, B. H.; Donné, A. J. H.; Hogeweij, G. M. D.; Lopes Cardozo, N. J.; Montvai, A.; Oyevaar, Th.
1999-10-01
A family of off-axis, or annular, instabilities has been studied using Thomson scattering, soft X-ray emission, and two electron cyclotron emission diagnostic systems. In the Rijnhuizen tokamak (RTP) [N. J. Lopes Cardozo et al., Plasma Physics and Controlled Nuclear Fusion Research 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 1, p. 271] these phenomena are invoked in a controlled way in discharges with specific (off-axis) deposition of electron cyclotron heating (ECH) and persist during most of the heating period, or during many current diffusion times. Based on coherent mode analysis at the crash time, the instabilities are associated with resonant surfaces near simple rational values of q (3/2, 2, and 3). A parameter study shows an increase of reheat rate and a decrease of sawtooth period with increasing ECH power and — in contrast to observations in other experiments — with increASING density as well.
Advanced commercial tokamak study
Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.
1985-12-01
Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.
Simulation of the hybrid and steady state advanced operating modes in ITER
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.
2007-09-01
Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW
Advanced development of the boundary element method for steady-state heat conduction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, Prasanta K.
1989-01-01
Considerable progress has been made in recent years toward advancing the state-of-the-art in solid mechanics boundary element technology. In the present work, much of this new technology is applied in the development of a general-purpose boundary element method (BEM) for steady-state heat conduction. In particular, the BEM implementation involves the use of higher-order conforming elements, self-adaptive integration and multi-region capability. Two- and three-dimensional, as well as axisymmetric analysis, are incorporated within a unified framework. In addition, techniques are introduced for the calculation of boundary flux, and for the inclusion of thermal resistance across interfaces. As a final extension, an efficient formulation is developed for the analysis of solid three-dimensional bodies with embedded holes. For this last class of problems, the new BEM formulation is particularly attractive, since use of the alternatives (i.e. finite element or finite difference methods) is not practical. A number of detailed examples illustrate the suitability and robustness of the present approach for steady-state heat conduction.
NASA Astrophysics Data System (ADS)
Tani, K.; Shinohara, K.; Oikawa, T.; Tsutsui, H.; McClements, K. G.; Akers, R. J.; Liu, Y. Q.; Suzuki, M.; Ide, S.; Kusama, Y.; Tsuji-Iio, S.
2016-11-01
As part of the verification and validation of a newly developed non-steady-state orbit-following Monte-Carlo code, application studies of time dependent neutron rates have been made for a specific shot in the Mega Amp Spherical Tokamak (MAST) using 3D fields representing vacuum resonant magnetic perturbations (RMPs) and toroidal field (TF) ripples. The time evolution of density, temperature and rotation rate in the application of the code to MAST are taken directly from experiment. The calculation results approximately agree with the experimental data. It is also found that a full orbit-following scheme is essential to reproduce the neutron rates in MAST.
Advanced tokamak scenario developments for the next step
NASA Astrophysics Data System (ADS)
Joffrin, E.
2007-12-01
The objective of advanced tokamak scenario research is to provide a candidate plasma scenario for continuous operation in a fusion power plant. The optimization of the self-generated non-inductive current by the bootstrap mechanism up to a level of 50% and above using high plasma pressure and improved confinement are the necessary conditions to achieve this goal. The two main candidate scenarios for continuous operation, the steady state scenario and long duration (up to 3000 s) high neutron fluency scenario (the hybrid scenario), both face physics challenges in terms of confinement, stability, power exhaust and plasma control. Resistive wall modes and Alfvénic fast ion driven instabilities are the main limitations for operating the steady state scenario at high pressure and low magnetic shear. In addition, this scenario demands a high degree of control over the plasma current and pressure profile and the steady state heat load on in-vessel plasma facing components. Understanding the confinement properties of hybrid scenario is still an outstanding issue as well as its modelling for ITER in particular with regard to the H-mode pedestal parameters. This scenario will also require active current profile control, although, less demanding than for the steady state scenario. To operate advanced tokamak scenario, broad current and pressure profile control appears as a necessary requirement on ITER actuators, in addition to the tools required for instability control such as error field coils or electron cyclotron current drive.
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
Saturated internal instabilities in advanced-tokamak plasmas
NASA Astrophysics Data System (ADS)
Hua, M.-D.; Chapman, I. T.; Pinches, S. D.; Hastie, R. J.; MAST Team
2010-06-01
"Advanced tokamak" (AT) scenarios were developed with the aim of reaching steady-state operation in future potential tokamak fusion power plants. AT scenarios exhibit non-monotonic to flat safety factor profiles (q, a measure of the magnetic field line pitch), with the minimum q (qmin) slightly above an integer value (qs). However, it has been predicted that these q profiles are unstable to ideal magnetohydrodynamic instabilities as qmin approaches qs. These ideal instabilities, observed and diagnosed as such for the first time in MAST plasmas with AT-like q profiles, have far-reaching consequences like confinement degradation, flattening of the toroidal core rotation or enhanced fast ion losses. These observations motivate the stability analysis of advanced-tokamak plasmas, with a view to provide guidance for stability thresholds in AT scenarios. Additionally, the measured rotation damping is compared to the self-consistently calculated predictions from neoclassical toroidal viscosity theory.
NASA Astrophysics Data System (ADS)
Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S. K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.; Mishra, K.
2015-08-01
Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention-release) rate of 1-6 × 1018 H/s is dominant and 70-80% of injected H2 can be retained in PFMs. However, immediately after plasma termination the H2 release rate enhances to ∼1019 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.
Technology Transfer Automated Retrieval System (TEKTRAN)
Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...
NASA Astrophysics Data System (ADS)
Juhl, Mattias; Chan, Catherine; Abbott, Malcolm D.; Trupke, Thorsten
2013-12-01
Quasi-Steady-State Photoconductance is widely used in photovoltaics industry to measure the effective minority carrier lifetime of silicon wafers, a key material parameter affecting final solar cell efficiency. When interpreting photoconductance based lifetime measurements, it is important to account for various artefacts that can cause an over-estimation of the carrier lifetime, such as minority carrier trapping. This paper provides experimental evidence for another artefact in photoconductance lifetime measurements, affecting samples that have a conductive layer that is interrupted by lines of the opposite polarity doping, forming laterally alternating regions of p/n doping. This structure often appears in the emitter region of samples used to monitor the lifetime of interdigitated back contact cells. The cause of this artefact is linked to a reduction in the measured dark conductance. Experimental data are presented that suggest this is due to the formation of a phototransistor type structure on the samples surface, resulting in variations in conductivity under different illumination levels.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.
Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces
NASA Astrophysics Data System (ADS)
Abu-Alqumsan, Mohammad; Peer, Angelika
2016-06-01
Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.
Isayama, A.
2005-05-15
Recent results from steady-state sustainment of high-{beta} plasma experiments in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) tokamak [A. Kitsunezaki et al., Fusion Sci. Technol. 42, 179 (2002)] are described. Extension of discharge duration to 65 s (formerly 15 s) has enabled physics research with long time scale. In long-duration high-{beta} research, the normalized beta {beta}{sub N}=2.5, which is comparable to that in the steady-state operation in International Thermonuclear Experimental Reactor (ITER) [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)], has been sustained for about 15 s with confinement enhancement factor H{sub 89PL} above 2, where the duration is about 80 times energy confinement time and {approx}10 times current diffusion time ({tau}{sub R}). In the scenario aiming at longer duration with {beta}{sub N}{approx}1.9, which is comparable to that in the ITER standard operation scenario, duration has been extended to 24 s ({approx}15{tau}{sub R}). Also, from the viewpoint of collisionality and Larmor radius of the plasmas, these results are obtained in the ITER-relevant regime with a few times larger than the ITER values. No serious effect of current diffusion on instabilities is observed in the region of {beta}{sub N} < or approx. 2.5, and in fact neoclassical tearing modes (NTMs), which limit the achievable {beta} in the stationary high-{beta}{sub p} H-mode discharges, are suppressed throughout the discharge. In high-{beta} research with the duration of several times {tau}{sub R}, a high-{beta} plasma with {beta}{sub N}{approx}2.9-3 has been sustained for 5-6 s with two scenarios for NTM suppression: (a) NTM avoidance by modification of pressure and current profiles, and (b) NTM stabilization with electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH). NTM stabilization with the second harmonic X-mode ECCD/ECH has been performed, and it is found that EC current
Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.
1996-10-01
This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.
LONG PULSE ADVANCED TOKAMAK DISCHARGES IN THE DIII-D TOKAMAK
P.I. PETERSEN
2002-06-01
One of the main goals for the DIII-D research program is to establish an advanced tokamak plasma with high bootstrap current fraction that can be sustained in-principle steady-state. Substantial progress has been made in several areas during the last year. The resistive wall mode stabilization has been done with spinning plasmas in which the plasma pressure has been extended well above the no-wall beta limit. The 3/2 neoclassical tearing mode has been stabilized by the injection of ECH into the magnetic islands, which drives current to substitute the missing bootstrap current. In these experiments either the plasma was moved or the toroidal field was changed to overlap the ECCD resonance with the location of the NTMs. Effective disruption mitigation has been obtained by massive noble gas injection into shots where disruptions were deliberately triggered. The massive gas puff causes a fast and clean current quench with essentially all the plasma energy radiated fairly uniformly to the vessel walls. The run-away electrons that are normally seen accompanying disruptions are suppressed by the large density of electrons still bound on the impurity nuclei. Major elements required to establish integrated, long-pulse, advanced tokamak operations have been achieved in DIII-D: {beta}{sub T} = 4.2%, {beta}{sub p} = 2, f{sub BS} = 65%, and {beta}{sub N}H{sub 89} = 10 for 600 ms ({approx} 4{tau}{sub E}). The next challenge is to integrate the different elements, which will be the goal for the next five years when additional control will be available. Twelve resistive wall mode coils are scheduled to be installed in DIII-D during the summer of 2003. The future plans include upgrading the tokamak pulse length capability and increasing the ECH power, to control the current profile evolution.
Ogata, R.; Liu, H. Q.; Ishiguro, M.; Ikeda, T.; Hanada, K.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nishino, N.; Collaboration: QUEST Group
2011-09-15
A study of radial propagation and electric fields induced by charge separation in blob-like structures has been performed in a non-confined cylindrical electron cyclotron resonance heating plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak using a fast-speed camera and a Langmuir probe. The radial propagation of the blob-like structures is found to be driven by E x B drift. Moreover, these blob-like structures were found to have been accelerated, and the property of the measured radial velocities agrees with the previously proposed model [C. Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)]. Although the dependence of the radial velocity on the connection length of the magnetic field appeared to be different, a plausible explanation based on enhanced short-circuiting of the current path can be proposed.
Modelling of pulsed and steady-state DEMO scenarios
NASA Astrophysics Data System (ADS)
Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.
2015-07-01
Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.
NASA Astrophysics Data System (ADS)
Lee, G. S.; Na, Yong-Su; Becoulet, A.; Ide, S.; Kessel, C. E.; Komori, A.; Kuteev, B. V.; Mank, G.; Olstad, R. A.; Sarkar, B.; Sips, A. C. C.; van Houtte, D.; Vdovin, V. L.
2008-08-01
This report summarizes the contributions presented at the 5th IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices, held in Daejeon, Republic of Korea, 14-17 May 2007. The main topics of the meeting were overview and superconducting devices, long pulse operation and advanced tokamak, steady state fusion technology, heating and current drive, particle control and power exhaust and ITER-related issues.
Overview of the National Centralized Tokamak programme
NASA Astrophysics Data System (ADS)
Kikuchi, M.; Tamai, H.; Matsukawa, M.; Fujita, T.; Takase, Y.; Sakurai, S.; Kizu, K.; Tsuchiya, K.; Kurita, G.; Morioka, A.; Hayashi, N.; Miura, Y.; Itoh, S.; Bialek, J.; Navratil, G.; Ikeda, Y.; Fujii, T.; Kurihara, K.; Kubo, H.; Kamada, Y.; Miya, N.; Suzuki, T.; Hamamatsu, K.; Kawashima, H.; Kudo, Y.; Masaki, K.; Takahashi, H.; Takechi, M.; Akiba, M.; Okuno, K.; Ishida, S.; Ichimura, M.; Imai, T.; Hashizume; Miura, Y. M.; Horiike, H.; Kimura, A.; Tsutsui, H.; Matsuoka, M.; Uesugi, Y.; Sagara, A.; Nishimura, A.; Shimizu, A.; Sakamoto, M.; Nakamura, K.; Sato, K.; Okano, K.; Ida, K.; Shimada, H. R.; Kishimoto, Y.; Azechi, H.; Tanaka, S.; Yatsu, K.; Yoshida, N.; Inutake, M.; Fujiwara, M.; Inoue, N.; Hosogane, N.; Kuriyama, M.; Ninomiya, H.
2006-03-01
An overview is given of the National Centralized Tokamak (NCT) programme as a research programme for advanced tokamak research to succeed JT-60U. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility is pursued in aspect ratio and shape controllability for the demonstration of the high-β steady-state, feedback control of resistive wall modes, wide current and pressure profile control capability and also very long pulse steady-state operation. Existing JT-60 infrastructure such as the heating and current drive system, power supplies and cooling systems will be best utilized for this modification.
NASA Astrophysics Data System (ADS)
Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.
2015-11-01
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η > 60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.
Steady state thermal radiometers
NASA Technical Reports Server (NTRS)
Loose, J. D. (Inventor)
1974-01-01
A radiometer is described operating in a vacuum under steady state conditions. The front element is an aluminum sheet painted on the outer side with black or other absorptive material of selected characteristics. A thermocouple is bonded to the inner side of the aluminum sheet. That is backed by highly insulative layers of glass fiber and crinkled, aluminized Mylar polyester. Those layers are backed with a sturdy, polyester sheet, and the entire lamination is laced together by nylon cords. The device is highly reliable in that it does not drift out of calibration, and is significantly inexpensive.
Simulations of KSTAR high performance steady state operation scenarios
NASA Astrophysics Data System (ADS)
Na, Yong-Su; Kessel, C. E.; Park, J. M.; Yi, Sumin; Becoulet, A.; Sips, A. C. C.; Kim, J. Y.
2009-11-01
We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; βN above 3, H98(y, 2) up to 2.0, fBS up to 0.76 and fNI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of qmin is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally
Simulations of KSTAR high performance steady state operation scenarios
Na, Y S; Kessel, C. E.; Park, Jin Myung; Yi, Sumin; Becoulet, A.; Sips, A C C; Kim, J Y
2009-01-01
We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; beta(N) above 3, H-98(y, 2) up to 2.0, f(BS) up to 0.76 and f(NI) equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q(min) is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work
NASA Astrophysics Data System (ADS)
Ishida, S.; JT-60 Team, JFT-2M Group
2004-05-01
In the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U), a high- β p ELMy H-mode (high-poloidal-beta high-confinement-mode with edge localized mode) plasma was sustained with β N ˜2.7 for 7.4 s. Real-time neoclassical tearing mode (NTM) stabilization system was established and effective NTM suppression by early electron cyclotron (EC) wave injection was demonstrated. High fusion triple product of n i (0)τ E T i (0)=3.1×10 20 keVṡsṡm -3 was achieved using the negative-ion based neutral beam current drive with β N ˜2.5 and the bootstrap current fraction f BS ˜50%. In a hot electron regime, a high electron cyclotron current drive efficiency of 4.2×10 18 A/W/m 2 was achieved at T e ˜21 keV . Innovative current start-up scenario produced a current hole plasma with a very high f BS ˜90%. No accumulation of helium and carbon impurities was observed for internal transport barrier (ITB) plasmas. While argon impurity was accumulated, EC injection effectively exhausted it across ITB. In a regime of ELM disappearance, a clear correlation between the ELM frequency and the toroidal velocity at pedestal was observed. In the Japan Atomic Energy Research Institute Fusion Torus-2 Modified (JFT-2M), high beta plasmas were produced with full ferritic inside wall up to β N =3.3, where high recycling steady H-mode discharges were developed up to β N H 89 P ˜6 at n e /n GW ˜0.7-1.0 with ITB. JT-60U started long pulse experiment in late 2003 and JFT-2M will conduct wall stabilization experiment in early 2004. The modification of JT-60 to a fully superconducting coil tokamak is regarded as the national centralized tokamak facility program to accomplish the high beta steady-state research in a collisionless regime.
CONTROL OF MHD STABILITY IN DIII-D ADVANCED TOKAMAK DISCHARGES
STRAIT,EJ; BIALEK,J; CHANCE,MS; CHU,MS; EDGELL,DH; FERRON,JR; GREENFIELD,CM; GAROFALO,AM; HUMPHREYS,DA; JACKSON,GL; JAYAKUMAR,RJ; JERNIGAN,TC; KIM,JS; LA HAYE,RJ; LAO,LL; LUCE,TC; MAKOWSKI,MA; MURAKAMI,M; NAVRATIL,GA; OKABAYASHI,M; PETTY,CC; REIMERDES,H; SCOVILLE,JT; TURNBULL,AD; WADE,MR; WALKER,ML; WHYTE,DG; DIII-D TEAM
2003-06-01
OAK-B135 Advanced tokamak research in DIII-D seeks to optimize the tokamak approach for fusion energy production, leading to a compact, steady state power source. High power density implies operation at high toroidal beta, {beta}{sub T}=
2{micro}{sub 0}/B{sub T}{sup 2}, since fusion power density increases roughly as the square of the plasma pressure. Steady-state operation with low recirculating power for current drive implies operation at high poloidal beta, {beta}{sub P} =
2{micro}{sub 0}/{sup 2}, in order to maximize the fraction of self-generated bootstrap current. Together, these lead to a requirement of operation at high normalized beta, {beta}{sub N} = {beta}{sub T}(aB/I), since {beta}{sub P}{beta}{sub T} {approx} 25[(1+{kappa}{sup 2})/2] ({beta}{sub N}/100){sup 2}. Plasmas with high normalized beta are likely to operate near one or more stability limits, so control of MHD stability in such plasmas is crucial.
Summary discussion: An integrated advanced tokamak reactor
Sauthoff, N.R.
1994-12-31
The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ``figures of merit`` for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept.
Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak
Luce, T C
2004-12-01
Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.
Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak
Luce, T C
2004-10-18
Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.
Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu
2015-02-15
The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Z{sub eff} as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Z{sub eff} can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Z{sub eff} with electron density and the relations between Z{sub eff} and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters.
Einstein's steady-state cosmology
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac
2014-09-01
Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.
Development of a free-boundary tokamak equilibrium solver for advanced study of tokamak equilibria
NASA Astrophysics Data System (ADS)
Jeon, Young Mu
2015-09-01
A free-boundary Tokamak equilibrium solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered in all equilibrium calculations with a freeboundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence of variations in the computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by using a direct comparison with an analytic equilibrium known as a generalized Solov'ev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As an application of an advanced equilibrium study, a snow-flake divertor configuration that requires a second-order zero of the poloidal magnetic flux is discussed in the circumstance of the Korea superconducting tokamak advanced research (KSTAR) coil system.
Gravitational steady states of solar coronal loops
NASA Astrophysics Data System (ADS)
Sugiyama, Linda E.; Asgari-Targhi, M.
2017-02-01
Coronal loops on the surface of the sun appear to consist of curved, plasma-confining magnetic flux tubes or "ropes," anchored at both ends in the photosphere. Toroidal loops carrying current are inherently unstable to expansion in the major radius due to toroidal-curvature-induced imbalances in the magnetic and plasma pressures. An ideal MHD analysis of a simple isolated loop with density and pressure higher than the surrounding corona, based on the theory of magnetically confined toroidal plasmas, shows that the radial force balance depends on the loop internal structure and varies over parameter space. It provides a unified picture of simple loop steady states in terms of the plasma beta βo, the inverse aspect ratio ɛ =a /Ro , and the MHD gravitational parameter G ̂≡g a /vA2 , all at the top of the loop, where g is the acceleration due to gravity, a the average minor radius, and vA the shear Alfvén velocity. In the high and low beta tokamak orderings, βo=2 noT /(Bo2/2 μo)˜ɛ1 and ɛ2 , that fit many loops, the solar gravity can sustain nonaxisymmetric steady states at G ̂˜ɛ βo that represent the maximum stable height. At smaller G ̂≤ɛ2βo , the loop is axisymmetric to leading order and stabilized primarily by the two fixed loop ends. Very low beta, nearly force-free, steady states with βo˜ɛ3 may also exist, with or without gravity, depending on higher order effects. The thin coronal loops commonly observed in solar active regions have ɛ ≃0.02 and fit the high beta steady states. G ̂ increases with loop height. Fatter loops in active regions that form along magnetic neutral lines and may lead to solar flares and Coronal Mass Ejections have ɛ ≃0.1 -0.2 and may fit the low beta ordering. Larger loops tend to have G ̂>ɛ βo and be unstable to radial expansion because the exponential hydrostatic reduction in the density at the loop-top reduces the gravitational force -ρG ̂ R ̂ below the level that balances expansion, in agreement with
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Qfus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; DeBoo, J. C.; Doyle, E. J.; Ferron, J. R.; Garofalo, A. M.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Murakami, M.; Politzer, P. A.; Reimerdes, H.
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearly equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q_{fus} ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.
High-beta, steady-state hybrid scenario on DIII-D
NASA Astrophysics Data System (ADS)
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; DeBoo, J. C.; Doyle, E. J.; Ferron, J. R.; Garofalo, A. M.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Murakami, M.; Politzer, P. A.; Reimerdes, H.
2016-01-01
The potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ⩾1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearly equal electron and ion temperatures at low collisionality. A 0D physics model shows that steady-state hybrid operation with Qfus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an advanced tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.
Resistive wall mode stabilization by plasma rotation in advanced tokamaks
NASA Astrophysics Data System (ADS)
Eriksson, G.
1996-03-01
By combining previous results of Betti and Freidberg [Phys. Rev. Lett. 74, 2949 (1995)] and Eriksson [Phys. Plasmas 2, 3095 (1995)], a fully analytical description is obtained for the stabilizing effect of toroidal plasma rotation in a large aspect ratio tokamak surrounded by a resistive wall. As in advanced tokamak configurations with a large fraction of bootstrap current, it is assumed that the current gradient near the plasma edge is large. This assumption enables an analytical analysis of external kink modes with low poloidal mode numbers. An expression is obtained, showing explicitly how the window of stable wall distances depends on the current profile.
Inconsistencies in steady state thermodynamics
NASA Astrophysics Data System (ADS)
Dickman, Ronald; Motai, Ricardo
2014-03-01
We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
Progress Towards High-Performance, Steady-State Spherical Torus
Lawrence Livermore National Laboratory
2004-01-04
Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fastwave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX
LIDAR Thomson scattering for advanced tokamaks. Final report
Molvik, A.W.; Lerche, R.A.; Nilson, D.G.
1996-03-18
The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.
Irreversible processes at nonequilibrium steady states
Fox, Ronald Forrest
1979-01-01
It is shown that a Liapunov criterion exists for the stability of nonequilibrium steady states. This criterion is based upon the fluctuation-dissipation relation, as was first pointed out by Keizer. At steady states, the Liapunov function is constructed from the covariance matrix for the thermodynamic variables. Unlike the situation around equilibrium, at steady states the covariance matrix and the “excess entropy” matrix are not equivalent. The excess entropy, which serves as the Liapunov function around equilibrium, does not work in this capacity at steady states. Keizer's Liapunov function must be viewed as the first correct candidate for a proper Liapunov function for steady states. PMID:16592649
NASA Astrophysics Data System (ADS)
Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts
2013-06-01
The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Ψ(x), (b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.
Halo current diagnostic system of experimental advanced superconducting tokamak
NASA Astrophysics Data System (ADS)
Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.
2015-10-01
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.
Halo current diagnostic system of experimental advanced superconducting tokamak
Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.
2015-10-15
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.
Halo current diagnostic system of experimental advanced superconducting tokamak.
Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J
2015-10-01
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.
NASA Astrophysics Data System (ADS)
Seo, Seong-Heon; Park, Jinhyung; Wi, H. M.; Lee, W. R.; Kim, H. S.; Lee, T. G.; Kim, Y. S.; Kang, Jin-Seob; Bog, M. G.; Yokota, Y.; Mase, A.
2013-08-01
Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 1019 m-3 when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.
Seo, Seong-Heon; Park, Jinhyung; Wi, H M; Lee, W R; Kim, H S; Lee, T G; Kim, Y S; Kang, Jin-Seob; Bog, M G; Yokota, Y; Mase, A
2013-08-01
Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 10(19) m(-3) when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.
ERIC Educational Resources Information Center
Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George
2014-01-01
A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…
Prospects for Tokamak Fusion Reactors
Sheffield, J.; Galambos, J.
1995-04-01
This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.
NASA Astrophysics Data System (ADS)
Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.
2011-08-01
As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.
Tokamak Physics Experiment (TPX) power supply design and development
Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.
1995-04-01
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.
Plasma models for real-time control of advanced tokamak scenarios
NASA Astrophysics Data System (ADS)
Moreau, D.; Mazon, D.; Walker, M. L.; Ferron, J. R.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Hyatt, A. W.; La Haye, R. J.; Lohr, J.; Turco, F.; Schuster, E.; Ou, Y.; Xu, C.; Takase, Y.; Sakamoto, Y.; Ide, S.; Suzuki, T.; ITPA-IOS Group members; experts
2011-06-01
An integrated plasma profile control strategy, ARTAEMIS, is being developed for extrapolating present-day advanced tokamak (AT) scenarios to steady-state operation. The approach is based on semi-empirical modelling and was initially explored on JET (Moreau et al 2008 Nucl. Fusion 48 106001). This paper deals with the general applicability of this strategy for simultaneous magnetic and kinetic control on various tokamaks. The determination of the device-specific, control-oriented models that are needed to compute optimal controller matrices for a given operation scenario is discussed. The methodology is generic and can be applied to any device, with different sets of heating and current drive actuators, controlled variables and profiles. The system identification algorithms take advantage of the large ratio between the magnetic and thermal diffusion time scales and have been recently applied to both JT-60U and DIII-D data. On JT-60U, an existing series of high bootstrap current (~70%), 0.9 MA non-inductive AT discharges was used. The actuators consisted of four groups of neutral beam injectors aimed at perpendicular injection (on-axis and off-axis), and co-current tangential injection (also on-axis and off-axis). On DIII-D, dedicated system identification experiments were carried out in the loop voltage (Vext) control mode (as opposed to current control) to avoid feedback in the response data from the primary circuit. The reference plasma state was that of a 0.9 MA AT scenario which had been optimized to combine non-inductive current fractions near unity with 3.5 < βN < 3.9, bootstrap current fractions larger than 65% and H98(y,2) = 1.5. Actuators other than Vext were co-current, counter-current and balanced neutral beam injection, and electron cyclotron current drive. Power and loop voltage modulations resulted in dynamic variations of the plasma current between 0.7 and 1.2 MA. It is concluded that the response of essential plasma parameter profiles to specific
Non-Markovianity-assisted steady state entanglement.
Huelga, Susana F; Rivas, Ángel; Plenio, Martin B
2012-04-20
We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.
Design of vibration compensation interferometer for Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, G. S.; Liu, H. Q.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zhu, X.; Wang, Z. X.; Zeng, L.; Zou, Z. Y.; Wei, X. C.; Lan, T.
2014-11-01
A vibration compensation interferometer (wavelength at 0.532 μm) has been designed and tested for Experimental Advanced Superconducting Tokamak (EAST). It is designed as a sub-system for EAST far-infrared (wavelength at 432.5 μm) poloarimeter/interferometer system. Two Acoustic Optical Modulators have been applied to produce the 1 MHz intermediate frequency. The path length drift of the system is lower than 2 wavelengths within 10 min test, showing the system stability. The system sensitivity has been tested by applying a periodic vibration source on one mirror in the system. The vibration is measured and the result matches the source period. The system is expected to be installed on EAST by the end of 2014.
Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.
Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X
2013-10-01
A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated.
Status of neutron diagnostics on the experimental advanced superconducting tokamak
NASA Astrophysics Data System (ADS)
Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.
2016-11-01
Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.
Small angle slot divertor concept for long pulse advanced tokamaks
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.
2017-04-01
SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.
Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST).
Xu, Z; Wu, Z W; Gao, W; Chen, Y J; Wu, C R; Zhang, L; Huang, J; Chang, J F; Yao, X J; Gao, W; Zhang, P F; Jin, Z; Hou, Y M; Guo, H Y
2016-11-01
A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.
Status of neutron diagnostics on the experimental advanced superconducting tokamak.
Zhong, G Q; Hu, L Q; Pu, N; Zhou, R J; Xiao, M; Cao, H R; Zhu, Y B; Li, K; Fan, T S; Peng, X Y; Du, T F; Ge, L J; Huang, J; Xu, G S; Wan, B N
2016-11-01
Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using (252)Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.
Steady State Vapor Bubble in Pool Boiling
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.
2016-01-01
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464
Steady State Vapor Bubble in Pool Boiling.
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C
2016-02-03
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.
Magnetic confinement experiment. I: Tokamaks
Goldston, R.J.
1995-08-01
Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.
Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)
Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.
1994-07-01
Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.
The ARIES Advanced and Conservative Tokamak Power Plant Study
Kessel, C. E; Tillak, M. S; Najmabadi, F.; ...
2015-12-22
Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, anmore » n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less
The ARIES Advanced and Conservative Tokamak Power Plant Study
Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; EL-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Rader, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.
2015-12-22
Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦ^{total} _{N} of 5.75, an H98 of 1.65, an n/n_{Gr} of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦ^{total}_{N} of 2.5, an H₉₈ of 1.25, an n/n_{Gr} of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.
The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study
Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.
2014-03-05
Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.
Dust remobilization in fusion plasmas under steady state conditions
NASA Astrophysics Data System (ADS)
Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-02-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.
Practical steady-state enzyme kinetics.
Lorsch, Jon R
2014-01-01
Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described.
Network inference in the nonequilibrium steady state
NASA Astrophysics Data System (ADS)
Dettmer, Simon L.; Nguyen, H. Chau; Berg, Johannes
2016-11-01
Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.
Steady state response of unsymmetrically laminated plates
Hosokawa, Kenji; Kawashima, Katsuya; Sakata, Toshiyuki
1995-11-01
A numerical approach for analyzing the forced vibration problem of a symmetrically laminated FRP (fiber reinforced plastic) composite plate was proposed by the authors. In the present paper, this approach is modified for application to an unsymmetrically laminated FRP composite plate. Numerical calculations are carried out for the clamped antisymmetrically laminated rectangular and elliptical plates which are a kind of unsymmetrically laminated plate. Then,, the effects of the lamina material and the fiber orientation angle on the steady state response are discussed. Furthermore, it is investigated that what structural damping factor is most influenced on the steady state response of an antisymmetrically laminated plate.
Firestone, M.A.; Mau, T.K.; Conn, R.W.
1985-04-01
A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak
Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang
2015-08-15
An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.
Diamagnetic loop measurement in Korea Superconducting Tokamak Advanced Research machine.
Bak, J G; Lee, S G; Kim, H S
2011-06-01
Diamagnetic loop (DL), which consists of two poloidal loops inside the vacuum vessel, is used to measure the diamagnetic flux during a plasma discharge in the Korea Superconducting Tokamak Advanced Research (KSTAR) machine. The vacuum fluxes in the DL signal can be compensated up to 0.1 mWb by using the coefficients, which are obtained from experimental investigations, in the vacuum flux measurements during vacuum shots under same operational conditions of magnetic coils for plasma experiment in the KSTAR machine. The maximum error in the diamagnetic flux measurement due to the errors of the coefficients was estimated as ∼0.22 mWb. From the diamagnetic flux measurements for the ohmically heated circular plasmas in the KSTAR machine, the stored energy agrees well with the estimated kinetic energy within the discrepancy of 25%. When the electron cyclotron heating, the neutral beam injection, and the ion cyclotron resonance heating are added to the ohmically heated limiter plasmas, the additional heating effects can be clearly observed from the increase of the stored energy evaluated in the DL measurement.
Diamagnetic loop measurement in Korea Superconducting Tokamak Advanced Research machine
Bak, J. G.; Lee, S. G.; Kim, H. S.
2011-06-15
Diamagnetic loop (DL), which consists of two poloidal loops inside the vacuum vessel, is used to measure the diamagnetic flux during a plasma discharge in the Korea Superconducting Tokamak Advanced Research (KSTAR) machine. The vacuum fluxes in the DL signal can be compensated up to 0.1 mWb by using the coefficients, which are obtained from experimental investigations, in the vacuum flux measurements during vacuum shots under same operational conditions of magnetic coils for plasma experiment in the KSTAR machine. The maximum error in the diamagnetic flux measurement due to the errors of the coefficients was estimated as {approx}0.22 mWb. From the diamagnetic flux measurements for the ohmically heated circular plasmas in the KSTAR machine, the stored energy agrees well with the estimated kinetic energy within the discrepancy of 25%. When the electron cyclotron heating, the neutral beam injection, and the ion cyclotron resonance heating are added to the ohmically heated limiter plasmas, the additional heating effects can be clearly observed from the increase of the stored energy evaluated in the DL measurement.
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.
Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang
2015-08-01
An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.
The Politics of the Steady State
ERIC Educational Resources Information Center
Taylor, Charles
1978-01-01
A steady state society has limits pertaining to population size, non-renewable resources, and production which emits heat or substances into soil, water, or the atmosphere. Respecting these limits means renouncing exponential quantitative growth and accepting a universally available consumption standard. (SW)
Steady-state inductive spheromak operation
Janos, A.C.; Jardin, S.C.; Yamada, M.
1985-02-20
The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.
Steady-state inductive spheromak operation
Janos, Alan C.; Jardin, Stephen C.; Yamada, Masaaki
1987-01-01
The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.
Steady-state spheromak reactor studies. Revision
Krakowski, R.A.; Hagenson, R.L.
1985-01-01
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Variational methods in steady state diffusion problems
Lee, C.E.; Fan, W.C.P.; Bratton, R.L.
1983-01-01
Classical variational techniques are used to obtain accurate solutions to the multigroup multiregion one dimensional steady state neutron diffusion equation. Analytic solutions are constructed for benchmark verification. Functionals with cubic trial functions and conservational lagrangian constraints are exhibited and compared with nonconservational functionals with respect to neutron balance and to relative flux and current at interfaces. Excellent agreement of the conservational functionals using cubic trial functions is obtained in comparison with analytic solutions.
On Typicality in Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto
2016-08-01
From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.
Theory of Steady-State Superradiance
NASA Astrophysics Data System (ADS)
Xu, Minghui
In this thesis, I describe the theoretical development of the superradiant laser, or laser in the extreme bad-cavity regime. In this regime, the cavity decay rate is much greater than the atomic dynamics. The atoms emit photons into the cavity mode superradiantly in steady state. We develop group-theoretic methods that enable us to exactly solve mesoscopic systems with hundreds of atoms. We demonstrate the synchronization of atomic dipoles in steady-state superradiance. With this synchronized system, we propose conditional Ramsey spectroscopy which allows us to observe Ramsey fringes indefinitely, even in the presence of atomic decoherence. Furthermore, we explore manifestations of synchronization in the quantum realm with two superradiant atomic ensembles. We show that two such ensembles exhibit a dynamical phase transition from two disparate oscillators to quantum phase-locked dynamics. Finally, we study the mechanical eect of the light-atom interaction in the steady-state superradiance. We find efficient many-body cooling of atoms. The work described in this thesis lays the theoretical foundation for the superradiant laser and for a potential future of active optical frequency standards.
On the use of steady-state signal equations for 2D TrueFISP imaging.
Coolen, Bram F; Heijman, Edwin; Nicolay, Klaas; Strijkers, Gustav J
2009-07-01
To explain the signal behavior in 2D-TrueFISP imaging, a slice excitation profile should be considered that describes a variation of effective flip angles and magnetization phases after excitation. These parameters can be incorporated into steady-state equations to predict the final signal within a pixel. The use of steady-state equations assumes that excitation occurs instantaneously, although in reality this is a nonlinear process. In addition, often the flip angle variation within the slice excitation profile is solely considered when using steady-state equations, while TrueFISP is especially known for its sensitivity to phase variations. The purpose of this study was therefore to evaluate the precision of steady-state equations in calculating signal intensities in 2D TrueFISP imaging. To that end, steady-state slice profiles and corresponding signal intensities were calculated as function of flip angle, RF phase advance and pulse shape. More complex Bloch simulations were considered as a gold standard, which described every excitation within the sequence until steady state was reached. They were used to analyze two different methods based on steady-state equations. In addition, measurements on phantoms were done with corresponding imaging parameters. Although the Bloch simulations described the steady-state slice profile formation better than methods based on steady-state equations, the latter performed well in predicting the steady-state signal resulting from it. In certain cases the phase variation within the slice excitation profile did not even have to be taken into account.
Steady state plasma operation in RF dominated regimes on EAST
Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N. Li, J. G.
2015-12-10
Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.
Steady state plasma operation in RF dominated regimes on EAST
NASA Astrophysics Data System (ADS)
Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N.; Li, J. G.
2015-12-01
Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H98˜1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te˜4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-15
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.
Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook
2015-12-01
Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.
Non-steady-state aerosol filtration in nanostructured fibrous media.
Przekop, Rafal; Gradoń, Leon
2011-06-28
The filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method for the effective separation of nanoparticles from gases. A multi-scale physical system describing the flow pattern and particle deposition at a non-steady-state condition requires an advanced method of modelling. The combination of lattice Boltzmann and Brownian dynamics was used for analysis of the particle deposition pattern in a fibrous system. The dendritic structures of deposits for neutral and charged fibres and particles are present. The efficiency of deposition, deposit morphology, porosity and fractal dimension were calculated for a selected operational condition of the process.
Intensity fluctuations in steady-state superradiance
Meiser, D.; Holland, M. J.
2010-06-15
Alkaline-earth-metal-like atoms with ultranarrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology applications, it is crucial to understand the noise properties of this device. In this paper, we present a detailed analysis of the intensity fluctuations by means of Monte Carlo simulations and semiclassical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.
Steady state stresses in ribbon parachute canopies
NASA Technical Reports Server (NTRS)
Garrard, W. L.; Wu, K. Y.; Muramoto, K. K.
1984-01-01
An experimental study of the steady state stresses in model ribbon parachute canopies is presented. The distribution of circumferential stress was measured in the horizontal ribbons of two parachutes using Omega sensors. Canopy pressure distributions and overall drag were also measured. Testing was conducted in the University of Minnesota Low-Speed Wind Tunnel at dynamic pressures ranging from 1.0 to 1.5 inches of water. The stresses in the parachute canopies were calculated using the parachute structural analysis code, CANO. It was found that the general shape of the measured and calculated stress distributions was fairly similar; however, the measured stresses were somewhat less than the calculated stresses.
Intense steady state electron beam generator
Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto
1990-01-01
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.
Energy repartition in the nonequilibrium steady state
NASA Astrophysics Data System (ADS)
Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu
2017-01-01
The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.
Statistical steady state in turbulent droplet condensation
NASA Astrophysics Data System (ADS)
Siewert, Christoph; Bec, Jérémie; Krstulovic, Giorgio
2017-01-01
Motivated by systems in which droplets grow and shrink in a turbulence-driven supersaturation field, we investigate the problem of turbulent condensation in a general manner. Using direct numerical simulations we show that the turbulent fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. Based on that, we propose a Lagrangian stochastic model for condensation and evaporation of small droplets in turbulent flows. It consists of a set of stochastic integro-differential equations for the joint evolution of the squared radius and the supersaturation along the droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution. These results reconcile those of earlier numerical studies, once these various regimes are considered.
An Intuitive Approach to Steady-State Kinetics.
ERIC Educational Resources Information Center
Raines, Ronald T.; Hansen, David E.
1988-01-01
Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)
Steady State Turbulent Transport in Magnetic Fusion Plasmas
Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.
2007-12-20
For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.
Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak
Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan
2014-05-15
Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.
Advances on modelling of ITER scenarios: physics and computational challenges
NASA Astrophysics Data System (ADS)
Giruzzi, G.; Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Imbeaux, F.; Peysson, Y.; Schneider, M.
2011-12-01
Methods and tools for design and modelling of tokamak operation scenarios are discussed with particular application to ITER advanced scenarios. Simulations of hybrid and steady-state scenarios performed with the integrated tokamak modelling suite of codes CRONOS are presented. The advantages of a possible steady-state scenario based on cyclic operations, alternating phases of positive and negative loop voltage, with no magnetic flux consumption on average, are discussed. For regimes in which current alignment is an issue, a general method for scenario design is presented, based on the characteristics of the poloidal current density profile.
Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks
Scharer, J.E.
1992-01-01
The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.
Economic analyses of alpha channeling in tokamak power plants.
Ehst, D.A.
1998-09-17
The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.
Steady-state models of photosynthesis.
von Caemmerer, Susanne
2013-09-01
In the challenge to increase photosynthetic rate per leaf area mathematical models of photosynthesis can be used to help interpret gas exchange measurements made under different environmental conditions and predict underlying photosynthetic biochemistry. To do this successfully it is important to improve the modelling of temperature dependencies of CO₂ assimilation and gain better understanding of internal CO₂ diffusion limitations. Despite these shortcomings steady-state models of photosynthesis provide simple easy to use tools for thought experiments to explore photosynthetic pathway changes such as redirecting photorespiratory CO₂, inserting bicarbonate pumps into C₃ chloroplasts or inserting C₄ photosynthesis into rice. Here a number of models derived from the C₃ model by Farquhar, von Caemmerer and Berry are discussed and compared.
ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS
Campos, A.; Skinner, C.H.
2009-01-01
Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.
Steady-state and non-steady state operation of counter-current chromatography devices.
Kostanyan, Artak E; Ignatova, Svetlana N; Sutherland, Ian A; Hewitson, Peter; Zakhodjaeva, Yulya A; Erastov, Andrey A
2013-11-01
Different variants of separation processes based on steady-state (continuous sample loading) and non-steady state (batch) operating modes of CCC columns have been analyzed and compared. The analysis is carried out on the basis of the modified equilibrium cell model, which takes into account both mechanisms of band broadening - interphase mass transfer and axial mixing. A full theoretical treatment of the intermittent counter-current chromatography with short sample loading time is performed. Analytical expressions are presented allowing the simulation of the intermittent counter-current chromatography separations for various experimental conditions. Chromatographic and extraction separations have been compared and advantages and disadvantages of the two methods have been evaluated. Further technical development of the CCC machines to implement counter-current extraction separations is considered.
Baker, C.C.
1981-01-01
This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features.
OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM
BURRELL,KH
2002-11-01
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet
Inconsistencies in steady-state thermodynamics
NASA Astrophysics Data System (ADS)
Dickman, Ronald; Motai, Ricardo
2014-03-01
We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. μ and Te are determined via coexistence, i.e., zero flux of particles and energy between the driven system and a reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas both μ and Te need to be defined. We show analytically that in this case the zeroth law is violated for Metropolis exchange rates, and determine the size of the violations numerically. The zeroth law appears to be violated for generic exchange rates. Remarkably, the system-reservoir coupling proposed by Sasa and Tasaki [J. Stat. Phys. 125, 125 (2006), 10.1007/s10955-005-9021-7] is free of inconsistencies, and the zeroth law holds. This is because the rate depends only on the state of the donor system, and is independent of that of the acceptor.
Maximal lactate steady state in Judo
de Azevedo, Paulo Henrique Silva Marques; Pithon-Curi, Tania; Zagatto, Alessandro Moura; Oliveira, João; Perez, Sérgio
2014-01-01
Summary Background: the purpose of this study was to verify the validity of respiratory compensation threshold (RCT) measured during a new single judo specific incremental test (JSIT) for aerobic demand evaluation. Methods: to test the validity of the new test, the JSIT was compared with Maximal Lactate Steady State (MLSS), which is the gold standard procedure for aerobic demand measuring. Eight well-trained male competitive judo players (24.3 ± 7.9 years; height of 169.3 ± 6.7cm; fat mass of 12.7 ± 3.9%) performed a maximal incremental specific test for judo to assess the RCT and performed on 30-minute MLSS test, where both tests were performed mimicking the UchiKomi drills. Results: the intensity at RCT measured on JSIT was not significantly different compared to MLSS (p=0.40). In addition, it was observed high and significant correlation between MLSS and RCT (r=0.90, p=0.002), as well as a high agreement. Conclusions: RCT measured during JSIT is a valid procedure to measure the aerobic demand, respecting the ecological validity of Judo. PMID:25332923
Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes
NASA Technical Reports Server (NTRS)
Wadge, G.
1982-01-01
Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.
Profile control of advanced tokamak plasmas in view of continuous operation
NASA Astrophysics Data System (ADS)
Mazon, D.
2015-07-01
The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reducesmore » the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; Collins, C.; Park, J. M.; Kim, K.; Luce, T. C.; Turco, F.; Pace, D. C.; Ren, Q.; Podesta, M.
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β_{N} and the noninductive current drive. However, in scenarios with q_{min}>2 that target the typical range of q_{95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β_{N}. Conversely similar plasmas except with q_{min} just above 1 have approximately classical fast-ion transport. Experiments that take q_{min}>3 plasmas to higher β_{P} with q_{95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q_{min} scenario, the high β_{P} cases have shorter slowing-down time and lower ∇β_{fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β_{N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q_{95}, high-q_{min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.
Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.
2014-09-15
This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.
ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS
WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E
2004-10-01
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.
ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS
WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE
2004-10-01
A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.
Silva, J P; Almeida, Y B; Pinheiro, I O; Knoelchelmann, A; Silva, J M F
2015-02-01
In recent decades, the production of compounds from microorganisms has increased significantly. Glycerol as a source of substrate appears to have great potential, due to its large supply because of the increase in biodiesel production. This paper will discuss the multiplicity of steady states for the production of 1,3-propanediol from glycerol by Clostridium butyricum, employing a model that takes into account inhibition by fermentation products. The theoretical study of bifurcation enabled us to make a qualitative adjustment to the various experimental steady states, using the theoretical steady states obtained from the AUTO2007 program. The theoretical model parameters were varied to fit qualitatively the values of the experimental steady states. In addition, this work is a qualitative study, using experimental steady states that can be used as an initial study for more advanced work on optimizing the production of 1,3-propanediol.
Defining Features of Steady-State Timbres
NASA Astrophysics Data System (ADS)
Hall, Michael D.
1995-01-01
Three experiments were conducted to define steady -state features of timbre for a group of well-trained musicians. Experiment 1 evaluated whether or not pairs of three critical dimensions of timbre--spectral slope (6 or 12 dB/octave), formant structure (/a/ or /i/ vowel), and inharmonicity of partials (harmonic or inharmonic)--were processed in a separable or integral fashion. Accuracy and speed for classification of values along one dimension were examined under different conditions of variability along a second dimension (fixed, correlated, or orthogonal). Spectral slope and formant structure were integral, with classification speed for the target dimension depending upon variability along the orthogonal dimension. In contrast, evidence of asymmetric separability was obtained for inharmonicity. Classification speed for slope and formant structure did not depend on inharmonicity, whereas RT for the target dimension of inharmonicity was strongly influenced by variability along either slope or formant structure. Since the results of Experiment 1 provided a basis for manipulating spectral slope and formant structure as a single feature, these dimensions were correlated in Experiment 2. Subjects searched for targets containing potential features of timbre within arrays of 1-4 inharmonic distractor pitches. Distractors were homogeneous with respect to the dimensions of timbre. When targets had /a/ formants with shallow spectral slopes, search time increased nonlinearly with array size in a manner consistent with the parallel processing of items, and thus feature search. Feature search was not obtained for targets with /i/ formants and steep slopes. Thus, the feature was coded as the presence or absence of /a/ formants with shallow spectral slopes. A search task using heterogeneous distractor values along slope/formant structure was used in Experiment 3 to evaluate whether or not the feature of timbre and pitch were automatically conjoined (integral). Search times for
NASA Astrophysics Data System (ADS)
Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.
2009-05-01
Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.
The steady-state assumption in oscillating and growing systems.
Reimers, Alexandra-M; Reimers, Arne C
2016-10-07
The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods.
Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes
R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng
2004-10-21
Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.
Steady states of solar coronal loops as nonaxisymmetric toroidal flux ropes
NASA Astrophysics Data System (ADS)
Sugiyama, Linda; Asgari-Targhi, M.
2016-10-01
Consistent MHD steady states for coronal loops on the surface of the sun, modeled as magnetic flux ropes, are derived for the first time, based on the equilibrium and stability of toroidal magnetically confined fusion plasmas. Coronal loops, like magnetic tori, are unstable to expansion in major radius. The solar gravity and plasma beta, previously ignored, are crucual parameters in the steady state. For loops with a predominantly axisymmetric magnetic axis, three analytical steady states exist in terms of beta and the normalized solar gravity parameter Ĝ = ga /vA2 , where g is the acceleration due to gravity, ordered in inverse aspect ratio: high beta (β ɛ) and small gravity Ĝ ɛ3 , which resembles a nearly axisymmetric high-beta tokamak, and high beta with larger Ĝ ɛ2 , and low beta (β ɛ2) with Ĝ ɛ3 , which are more strongly nonaxisymmetric. Comparison with observations shows that the two high beta states bracket the range of thin coronal loops in solar active regions ɛ 0.02 and Ĝ orders the loops by height. The low beta solution may describe certain thicker loops ɛ 0.1 that grow to solar flares or Coronal Mass Ejections. Work partially supported by the U.S. DOE OFES under Award DE-SC-0007883.
A new hybrid inductive scenario for a nearly steady-state Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Sarff, J. S.
2007-11-01
Steady-state current sustainment is challenging for the Reversed Field Pinch (RFP). The current magnitude is large, while the pressure-driven (bootstrap) current is small, even at the RFP's high beta >20%. In the TITAN (RFP) system study [1], the current was designed steady-state using Oscillating Field Current Drive (OFCD), i.e., steady magnetic helicity injection using phased AC induction. Experiments and theory for OFCD are so far promising, but OFCD's reliance on magnetic relaxation could turn out incompatible with energy confinement requirements. Meanwhile inductive current profile control has demonstrated tokamak-like confinement in the RFP. Such control is inherently not steady-state. A hybrid scheme is proposed using OFCD to ramp the current, followed by a pulsed-burn during which inductive profile control maintains high confinement. The current is not constant but never goes to zero (sawtooth-like waveform). The current drive (and profile control) is efficient induction, simply applied at the plasma surface. The pulsed-burn phases could be separated by only a few seconds. Optimization of the hybrid cycle and other issues will be discussed. [1] http://aries.ucsd.edu/LIB/REPORT/TITAN/final.shtml
NASA Astrophysics Data System (ADS)
Nam, Y. U.; Chung, J.
2010-10-01
A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.
Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations
Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.
1986-06-01
Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.
Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
An advanced plasma control system for the DIII-D tokamak
Ferron, J.R.; Kellman, A.; McKee, E.; Osborne, T.; Petrach, P.; Taylor, T.S.; Wight, J. ); Lazarus, E. )
1991-11-01
An advanced plasma control system is being implemented for the DIII-D tokamak utilizing digital technology. This system will regulate the position and shape of tokamak discharges that range from elongated limiter to single-null divertor and double-null divertor with elongation as high as 2.6. Development of this system is expected to lead to control system technology appropriate for use on future tokamaks such as ITER and BPX. The digital system will allow for increased precision in shape control through real time adjustment of the control algorithm to changes in the shape and discharge parameters such as {beta}{sub p}, {ell}{sub i} and scrape-off layer current. The system will be used for research on real time optimization of discharge performance for disruption avoidance, current and pressure profile control, optimization of rf antenna loading, or feedback on heat deposition patterns through divertor strike point position control, for example. Shape control with this system is based on linearization near a target shape of the controlled parameters as a function of the magnetic diagnostic signals. This digital system is unique in that it is designed to have the speed necessary to control the unstable vertical motion of highly elongated tokamak discharges such as those produced in DIII-D and planned for BPX and ITER. a 40 MHz Intel i860 processor is interfaced to up to 112 channels of analog input signals. The commands to the poloidal field coils can be updated at 80 {mu}s intervals for the control of vertical position with a delay between sampling of the analog signal and update of the command of less than 80 {mu}s.
A Note on Equations for Steady-State Optimal Landscapes
Liu, H.H.
2010-06-15
Based on the optimality principle (that the global energy expenditure rate is at its minimum for a given landscape under steady state conditions) and calculus of variations, we have derived a group of partial differential equations for describing steady-state optimal landscapes without explicitly distinguishing between hillslopes and channel networks. Other than building on the well-established Mining's equation, this work does not rely on any empirical relationships (such as those relating hydraulic parameters to local slopes). Using additional constraints, we also theoretically demonstrate that steady-state water depth is a power function of local slope, which is consistent with field data.
Steady-state decoupling and design of linear multivariable systems
NASA Technical Reports Server (NTRS)
Thaler, G. J.
1974-01-01
A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.
Bootstrap current in a tokamak
Kessel, C.E.
1994-03-01
The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.
OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM
BURRELL,HK
2002-11-01
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet
NASA Astrophysics Data System (ADS)
Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.
2016-11-01
As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.
Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak
Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.
2014-11-15
To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.
Liu, D M; Li, J; Wan, B N; Lu, Z; Wang, L S; Jiang, L; Lu, C H; Huang, J
2016-11-01
As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.
A new low drift integrator system for the Experiment Advanced Superconductor Tokamak.
Liu, D M; Wan, B N; Wang, Y; Wu, Y C; Shen, B; Ji, Z S; Luo, J R
2009-05-01
A new type of the integrator system with the low drift characteristic has been developed to accommodate the long pulse plasma discharges on Experiment Advanced Superconductor Tokamak (EAST). The integrator system is composed of the Ethernet control module and the integral module which includes one integrator circuit, followed by two isolation circuits and two program-controlled amplifier circuits. It compensates automatically integration drift and is applied in real-time control. The performance test and the experimental results in plasma discharges show that the developed integrator system can meet the requirements of plasma control on the accuracy and noise level of the integrator in long pulse discharges.
An Operational Definition of the Steady State in Enzyme Kinetics.
ERIC Educational Resources Information Center
Barnsley, E. A.
1990-01-01
The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)
The Enlisted Steady State-Simulation (ESS-SIM) Tool
2014-07-01
The Enlisted Steady State-Simulation ( ESS -SIM) Tool David M. Rodney • Peggy A. Golfin • Molly F. McIntosh DIM-2014-U-007587-Final July 2014 This...situation. We built and made use of a simulation model, ESS -Sim (Enlisted Steady- State Simulation), to obtain insights into attainable levels of...fleet manning and estimate the impact of policy changes on fleet man- ning. This information memorandum describes this model. Model overview We built ESS
Multiple steady states in coupled flow tank reactors
NASA Astrophysics Data System (ADS)
Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John
1992-05-01
Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide
On the time to steady state: insights from numerical modeling
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.
2013-12-01
How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations
Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.
1981-10-01
Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.
NASA Astrophysics Data System (ADS)
Zhang, J. Z.; Zhu, Y. B.; Zhao, J. L.; Wan, B. N.; Li, J. G.; Heidbrink, W. W.
2016-11-01
Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.
Zhang, J Z; Zhu, Y B; Zhao, J L; Wan, B N; Li, J G; Heidbrink, W W
2016-11-01
Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Xie, H.; Chen, Z. X.
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
Lampert, M.; Anda, G.; Réfy, D.; Zoletnik, S.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Nam, Y. U.
2015-07-15
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
NASA Astrophysics Data System (ADS)
Xu, Liqing; Zhang, Jizong; Chen, Kaiyun; Hu, Liqun; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao
2015-12-01
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey-predator model was found to reproduce the fishbone nonlinear process well.
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
Xu, Liqing; Zhang, Jizong; Chen, Kaiyun E-mail: lqhu@ipp.cas.cn; Hu, Liqun E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao
2015-12-15
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.
Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S
2015-07-01
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.
2015-02-15
A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
NASA Astrophysics Data System (ADS)
Lampert, M.; Anda, G.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Réfy, D.; Nam, Y. U.; Zoletnik, S.
2015-07-01
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.
Structural simplification of chemical reaction networks in partial steady states.
Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa
2016-11-01
We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology.
Poissonian steady states: from stationary densities to stationary intensities.
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
Analysis and Simulation of ITER Steady-State Discharges on DIII-D
NASA Astrophysics Data System (ADS)
Diem, S. J.; Murakami, M.; Park, J. M.; Sontag, A. C.
2013-10-01
One of the primary goals of the ITER project is to demonstrate a reactor scale steady-state operation for future tokamaks. This is a challenging task which requires simultaneous operation with fully noninductive current drive, a fusion gain of Q >= 5 and IBS for discharges approximately 3000s in length. Previously, DIII-D has demonstrated fully noninductive scenario in ITER-like shaped plasmas at relatively high q95 ~ 6 . 5 and moderate βN ~ 3 but with low fusion performance (G =βNH89 /q952 ~ 0 . 15). Recent high qmin experiment and modeling indicate that the goal of G = 0 . 3 predicted for Q = 5 operation on ITER can be achieved noninductively at reduced q95 and at higher βN. An optimum choice of q95 and βN for the ITER steady-state mission will be discussed based on the experimental scaling from ITER demonstration discharges on DIII-D, as well as predictive FASTRAN scenario modeling using TGLF coupled to the Integrated Plasma Simulator. FASTRAN is a new iterative numerical procedure that integrates a variety of models (transport, heating, CD, equilibrium and stability) and has been shown to reproduce most features of DIII-D high beta discharges with a stationary current profile. ORNL is managed by UT-Battelle, LLC for the US DOE under DE-AC02-05ER22725 and DE-FC02-04ER54698.
A simplified approach to estimating the maximal lactate steady state.
Snyder, A C; Woulfe, T; Welsh, R; Foster, C
1994-01-01
The exercise intensity associated with an elevated but stable blood lactate (HLa) concentration during constant load work (the maximal steady state, MSS) has received attention as a candidate for the "optimal" exercise intensity for endurance training. Identification of MSS ordinarily demands direct measurement of HLa or respiratory metabolism. The purpose of this study was to test the ability of heart rate (HR) to identify MSS during steady state exercise, similar to that used in conventional exercise prescription. Trained runners (n = 9) and cyclists (n = 12) performed incremental and steady state exercise. MSS was defined as the highest intensity in which blood lactate concentration increased < 1.0 mM from minutes 10 to 30. The next higher intensity workbout completed was defined as > MSS. HR models related to the presence or absence of steady state conditions were developed from the upper 95% confidence interval of MSS and the lower 95% confidence interval of > MSS. Cross validation of the model to predict MSS was performed using 21 running and 45 cycling exercise bouts in a separate group. Using the MSS upper 95% confidence interval model 84% and 76% of workbouts were correctly predicted in cyclists and runners, respectively. Using the > MSS lower 95% confidence interval model, 76% and 81% of workbouts were correctly predicted in cyclists and runners, respectively. Prediction errors tended to incorrectly predict non-steady state conditions when steady state had occurred (16/26) (62%). We conclude that use of these simple HR models may predict MSS with sufficient accuracy to be useful when direct HLa measurement is not available.
Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H
2014-11-01
The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.
Steady-state error of a system with fuzzy controller.
Butkiewicz, B S
1998-01-01
We consider the problem of control error of a fuzzy system with feedback. The system consists of a plant, linear or nonlinear, fuzzy controller, and feedback loop. As controller we use both PD and PI fuzzy type controllers. We apply different t-norm and co-norm: logic, algebraic, Yager, Hamacher, bounded, drastic, etc. in the process of fuzzy reasoning. Triangular shape of membership functions is supposed, but we generalize the results obtained. Steady-state error of a system is calculated. We have obtained very interesting results. The steady-state error is identical for pairs of triangular t- and co-norms.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states
NASA Astrophysics Data System (ADS)
Rotskoff, Grant M.
2017-03-01
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.
Descriptive Linear modeling of steady-state visual evoked response
NASA Technical Reports Server (NTRS)
Levison, W. H.; Junker, A. M.; Kenner, K.
1986-01-01
A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.
Scharer, J.E.
1992-12-31
The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.
Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.
2013-10-15
We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.
NASA Astrophysics Data System (ADS)
Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong
2010-03-01
The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.
Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics
Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.
2007-04-15
An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.
Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics
NASA Astrophysics Data System (ADS)
Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.
2007-04-01
An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.
Shi Yuejiang; Fu Jia; Li Jiahong; Yang Yu; Wang Fudi; Li Yingying; Zhang Wei; Wan Baonian; Chen Zhongyong
2010-03-15
The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.
Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong
2010-03-01
The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.
Liu, D. M. Zhao, W. Z.; He, Y. G.; Chen, B.; Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q.
2014-11-15
A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.
Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics.
Bak, J G; Lee, S G; Son, D; Ga, E M
2007-04-01
An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.
NASA Astrophysics Data System (ADS)
Sund, Richard; Scharer, John
2002-11-01
We examine a new method for generating sheared flows in advanced tokamak D-T reactors with the goal of creating and controlling internal transport barriers. Ion-Bernstein waves (IBWs) have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. Under reactor conditions, the IBW can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side (HFS) on the second harmonic resonance of a minority hydrogen component, with near 100200 MHz) minimizes parasitic absorption and permits the converted IBW to approach the fifth tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. Placement of the 5T absorption layer on the HFS is advantageous for shear production. The scheme is applicable to reactors with aspect ratio < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Various factors (adequate separation of the mode conversion layer from the magnetic axis, concentration of the fast wave near the midplane, large machine size, and plasma elongation) minimize poloidal field effects in the conversion zone and permit a slab analysis. We use a 1-D full-wave code to analyze the conversion and absorption. A 2-D ray-tracing code incorporating poloidal magnetic fields is used to follow the IBW for various equilibria. Within this analysis a weak bean shape appears most favorable. This is an attractive scheme for future advanced tokamak reactors. *Research supported by the Univ. of Wisconsin, Madison
Pre-Steady-State Decoding of the Bicoid Morphogen Gradient
Bergmann, Sven; Sandler, Oded; Sberro, Hila; Shnider, Sara; Schejter, Eyal; Shilo, Ben-Zion; Barkai, Naama
2007-01-01
Morphogen gradients are established by the localized production and subsequent diffusion of signaling molecules. It is generally assumed that cell fates are induced only after morphogen profiles have reached their steady state. Yet, patterning processes during early development occur rapidly, and tissue patterning may precede the convergence of the gradient to its steady state. Here we consider the implications of pre-steady-state decoding of the Bicoid morphogen gradient for patterning of the anterior–posterior axis of the Drosophila embryo. Quantitative analysis of the shift in the expression domains of several Bicoid targets (gap genes) upon alteration of bcd dosage, as well as a temporal analysis of a reporter for Bicoid activity, suggest that a transient decoding mechanism is employed in this setting. We show that decoding the pre-steady-state morphogen profile can reduce patterning errors caused by fluctuations in the rate of morphogen production. This can explain the surprisingly small shifts in gap and pair-rule gene expression domains observed in response to alterations in bcd dosage. PMID:17298180
Steady-State Multiplicity Features of Chemically Reacting Systems.
ERIC Educational Resources Information Center
Luss, Dan
1986-01-01
Analyzes steady-state multiplicity in chemical reactors, focusing on the use of two mathematical tools, namely, the catastrophe theory and the singularity theory with a distinguished parameter. These tools can be used to determine the maximum number of possible solutions and the different types of bifurcation diagrams. (JN)
Pressure updating methods for the steady-state fluid equations
NASA Technical Reports Server (NTRS)
Fiterman, A.; Turkel, E.; Vatsa, V.
1995-01-01
We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of speeds we must consider the equations in conservation form. For transonic speeds these equations are of mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then march these equations in time. One then adds a time derivative of the density to the continuity equation, a derivative of the momentum to the momentum equation and a derivative of the total energy to the energy equation. This choice is dictated by the time consistent equations. However, since we are only interested in the steady state this is not necessary. Thus we shall consider the possibility of adding a time derivative of the pressure to the continuity equation and similar modifications for the energy equation. This can then be generalized to adding combinations of time derivatives to each equation since these vanish in the steady state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations for low speeds.
CONTROL OF CRYPTOSPORIDIUM OOCYSTS BY STEADY-STATE CONVENTIONAL TREATMENT
Pilot-scale experiments have been performed to assess the ability of conventional treatment to control Cryptosporidium oocysts under steady-state conditions. The work was performed with a pilot plant that was designed to minimize flow rates and, as a result, the number of oocyst...
Steady-State Pharmacokinetics of Bupropion SR in Juvenile Patients
ERIC Educational Resources Information Center
Daviss, W. Burleson; Perel, James M.; Rudolph, George R.; Axelson, David A.; Gilchrist, Richard; Nuss, Sharon; Birmaher, Boris; Brent, David A.
2005-01-01
Objective: To examine the steady-state pharmacokinetic properties of bupropion sustained release (SR) and their potential developmental differences in youths. Method: Eleven boys and eight girls aged 11 to 17 years old were prescribed bupropion SR monotherapy for attention-deficit/hyperactivity disorder (n = 16) and/or depressive disorders (n =…
The concave river long profile: a morphodynamic steady state?
NASA Astrophysics Data System (ADS)
Blom, A.
2011-12-01
By definition, a morphodynamic steady state is governed by a spatially constant sediment transport rate. As the sediment transport rate is a function of shear stress associated with skin friction, the morphodynamic steady state has been considered to be governed by a spatially constant bed slope. For this reason, the typical concave river long profile has been considered to be a quasi-steady state. The river's steady state has been considered to be one with a spatially constant bed slope, with tributaries inducing a stepwise decrease in bed slope in streamwise direction. Yet, for the sediment transport rate to be spatially constant, it rather is the product of water surface slope and water depth associated with skin friction that needs to be constant. This implies that physical mechanisms that induce streamwise variation in the sediment transport rate can be compensated by a streamwise variation in bed slope so as to guarantee a spatially constant sediment transport rate. Following the river course, such physical mechanisms can be bedrock exposure, partial transport, and a spatially lagging bedform growth. At locations where tributaries increase the water discharge, the above mechanisms cause the river bed profile to be upward concave over a significant reach. At bifucations or at locations where river widening prevails, the river bed profile is upward convex.
Combined Steady-State and Dynamic Heat Exchanger Experiment
ERIC Educational Resources Information Center
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Equilibrium Binding and Steady-State Enzyme Kinetics.
ERIC Educational Resources Information Center
Dunford, H. Brian
1984-01-01
Points out that equilibrium binding and steady-state enzyme kinetics have a great deal in common and that related equations and error analysis can be cast in identical forms. Emphasizes that if one type of problem solution is taught, the other is also taught. Various methods of data analysis are evaluated. (JM)
Identification of enzyme inhibitory mechanisms from steady-state kinetics.
Fange, David; Lovmar, Martin; Pavlov, Michael Y; Ehrenberg, Måns
2011-09-01
Enzyme inhibitors are used in many areas of the life sciences, ranging from basic research to the combat of disease in the clinic. Inhibitors are traditionally characterized by how they affect the steady-state kinetics of enzymes, commonly analyzed on the assumption that enzyme-bound and free substrate molecules are in equilibrium. This assumption, implying that an enzyme-bound substrate molecule has near zero probability to form a product rather than dissociate, is valid only for very inefficient enzymes. When it is relaxed, more complex but also more information-rich steady-state kinetics emerges. Although solutions to the general steady-state kinetics problem exist, they are opaque and have been of limited help to experimentalists. Here we reformulate the steady-state kinetics of enzyme inhibition in terms of new parameters. These allow for assessment of ambiguities of interpretation due to kinetic scheme degeneracy and provide an intuitively simple way to analyze experimental data. We illustrate the method by concrete examples of how to assess scheme degeneracy and obtain experimental estimates of all available rate and equilibrium constants. We suggest simple, complementary experiments that can remove ambiguities and greatly enhance the accuracy of parameter estimation.
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Steady State Load Characterization Fact Sheet: 2012 Chevy Volt
Scoffield, Don
2015-03-01
This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.
Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions
Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun
2015-01-01
We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case. PMID:26472080
Steady-State Squeezing in the Micromaser Cavity Field
NASA Technical Reports Server (NTRS)
Nayak, N.
1996-01-01
It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).
NASA Astrophysics Data System (ADS)
Si, H.; Guo, H. Y.; Xu, G. S.; Xiao, B. J.; Luo, Z. P.; Guo, Y.; Wang, L.; Ding, R.
2016-03-01
Heat exhaust is one of the most challenging issues to be addressed for tokamak magnetic confinement fusion research. Detailed modeling with SOLPS5.0/B2.5-Eirene code package is carried out to examine an alternative advanced divertor configuration, i.e., quasi snowflake (QSF), for long pulse operation in EAST. Comparison is also made with the lower single null (LSN) divertor configuration. SOLPS predicts that the quasi snowflake configuration significantly reduces the peak heat flux at the lower divertor outer target, by a factor of 2-3, owing to the magnetic flux expansion. Furthermore, the density threshold for detachment is much lower for QSF, compared to LSN under the same upstream conditions. This indicates that QSF provides a promising tool for controlling heat flux at divertor target while maintaining a lower separatrix density, which is highly desirable for current drive, thus greatly facilitating long-pulse operation in EAST.
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
NASA Astrophysics Data System (ADS)
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2015-11-01
The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.
Steady state volcanism: Evidence from eruption histories of polygenetic volcanoes
Wadge, G.
1982-05-10
Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in terms of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.
A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants
NASA Astrophysics Data System (ADS)
Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi
2014-10-01
Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.
A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants
Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi
2014-01-01
Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths. PMID:25335512
A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.
Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi
2014-10-22
Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.
Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James
2016-01-01
Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period.
Extending Molecular Theory to Steady-State Diffusing Systems
FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.
1999-10-22
Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.
Multiplying steady-state culture in multi-reactor system.
Erm, Sten; Adamberg, Kaarel; Vilu, Raivo
2014-11-01
Cultivation of microorganisms in batch experiments is fast and economical but the conditions therein change constantly, rendering quantitative data interpretation difficult. By using chemostat with controlled environmental conditions the physiological state of microorganisms is fixed; however, the unavoidable stabilization phase makes continuous methods resource consuming. Material can be spared by using micro scale devices, which however have limited analysis and process control capabilities. Described herein are a method and a system combining the high throughput of batch with the controlled environment of continuous cultivations. Microorganisms were prepared in one bioreactor followed by culture distribution into a network of bioreactors and continuation of independent steady state experiments therein. Accelerostat cultivation with statistical analysis of growth parameters demonstrated non-compromised physiological state following distribution, thus the method effectively multiplied steady state culture of microorganisms. The theoretical efficiency of the system was evaluated in inhibitory compound analysis using repeated chemostat to chemostat transfers.
Optimal Control of Transitions between Nonequilibrium Steady States
Zulkowski, Patrick R.; Sivak, David A.; DeWeese, Michael R.
2013-01-01
Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines. PMID:24386112
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
NASA Astrophysics Data System (ADS)
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Nonequilibrium Steady States of a Stochastic Model System.
NASA Astrophysics Data System (ADS)
Zhang, Qiwei
We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.
Turnover of messenger RNA: Polysome statistics beyond the steady state
NASA Astrophysics Data System (ADS)
Valleriani, A.; Ignatova, Z.; Nagar, A.; Lipowsky, R.
2010-03-01
The interplay between turnover or degradation and ribosome loading of messenger RNA (mRNA) is studied theoretically using a stochastic model that is motivated by recent experimental results. Random mRNA degradation affects the statistics of polysomes, i.e., the statistics of the number of ribosomes per mRNA as extracted from cells. Since ribosome loading of newly created mRNA chains requires some time to reach steady state, a fraction of the extracted mRNA/ribosome complexes does not represent steady state conditions. As a consequence, the mean ribosome density obtained from the extracted complexes is found to be inversely proportional to the mRNA length. On the other hand, the ribosome density profile shows an exponential decrease along the mRNA for prokaryotes and becomes uniform in eukaryotic cells.
Harmonic coupling of steady-state visual evoked potentials.
Krusienski, Dean J; Allison, Brendan Z
2008-01-01
Steady-state visual evoked potentials (SSVEPs) are oscillating components of the electroencephalogram (EEG) that are detected over the occipital areas, having frequencies corresponding to visual stimulus frequencies. SSVEPs have been demonstrated to be reliable control signals for operating a brain-computer interface (BCI). This study uses offline analyses to investigate the characteristics of SSVEP harmonic amplitude and phase coupling and the impact of using this information to construct a matched filter for continuously tracking the signal.
Analytic Steady-State Accuracy of a Spacecraft Attitude Estimator
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2000-01-01
This paper extends Farrenkopf's analysis of a single-axis spacecraft attitude estimator using gyro and angle sensor data to include the angle output white noise of a rate-integrating gyro. Analytic expressions are derived for the steady-state pre-update and post-update angle and drift bias variances and for the state update equations. It is shown that only part of the state update resulting from the angle sensor measurement is propagated to future times.
The approach to steady state using homogeneous and Cartesian coordinates.
Gochberg, D F; Ding, Z
2013-01-01
Repeating an arbitrary sequence of RF pulses and magnetic field gradients will eventually lead to a steady-state condition in any magnetic resonance system. While numerical methods can quantify this trajectory, analytic analysis provides significantly more insight and a means for faster calculation. Recently, an analytic analysis using homogeneous coordinates was published. The current work further develops this line of thought and compares the relative merits of using a homogeneous or a Cartesian coordinate system.
Intense steady state neutron source. The CNR reactor
Difilippo, F.C.; Moon, R.M.; Gambill, W.R.; Moon, R.M.; Primm, R.T. III; West, C.D.
1986-01-01
The Center for Neutron Research (CNR) has been proposed in response to the needs - neutron flux, spectrum, and experimental facilities - that have been identified through workshops, studies, and discussions by the neutron-scattering, isotope, and materials irradiation research communities. The CNR is a major new experimental facility consisting of a reactor-based steady state neutron source of unprecedented flux, together with extensive facilities and instruments for neutron scattering, isotope production, materials irradiation, and other areas of research.
MUTATION RATES OF BACTERIA IN STEADY STATE POPULATIONS
Fox, Maurice S.
1955-01-01
The breeder and the chemostat have been used to measure mutation rates for two mutations under a variety of steady state growth conditions. These rates have been found to be higher in complex medium than in minimal (F) medium. The effects of changes in nutritional conditions on these high rates have been described. In addition, the mutation rates at short generation times, in complex medium, have been shown to decrease with increasing generation time. PMID:13271726
Steady state equivalence among autocatalytic peroxidase-oxidase reactions.
Méndez-González, José; Femat, Ricardo
2016-12-14
Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.
Steady state equivalence among autocatalytic peroxidase-oxidase reactions
NASA Astrophysics Data System (ADS)
Méndez-González, José; Femat, Ricardo
2016-12-01
Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.
A correspondence principle for steady-state wave problems
NASA Technical Reports Server (NTRS)
Schmerr, L. W.
1976-01-01
A correspondence principle was developed for treating the steady state propagation of waves from sources moving along a plane surface or interface. This new principle allows one to obtain, in a unified manner, explicit solutions for any source velocity. To illustrate the correspondence principle in a particular case, the problem of a load moving at an arbitrary constant velocity along the surface of an elastic half-space is considered.
Multiple Color Stimulus Induced Steady State Visual Evoked Potentials
2007-11-02
MULTIPLE COLOR STIMULUS INDUCED STEADY STATE VISUAL EVOKED POTENTIALS M. Cheng, X. Gao, S. Gao, D. Xu Institute of Biomedical Engineering...characteristics of high SNR and effectiveness in short-term identification of evoked responses. In most of the SSVEP experiments, single high...frequency stimuli are used. To characterize the complex rhythms in SSVEP, a new multiple color stimulus pattern is proposed in this paper. FFT and
Multiple steady states for characteristic initial value problems
NASA Technical Reports Server (NTRS)
Salas, M. D.; Abarbanel, S.; Gottlieb, D.
1984-01-01
The time dependent, isentropic, quasi-one-dimensional equations of gas dynamics and other model equations are considered under the constraint of characteristic boundary conditions. Analysis of the time evolution shows how different initial data may lead to different steady states and how seemingly anamolous behavior of the solution may be resolved. Numerical experimentation using time consistent explicit algorithms verifies the conclusions of the analysis. The use of implicit schemes with very large time steps leads to erroneous results.
Transition of unsteady flows of evaporation to steady state
NASA Astrophysics Data System (ADS)
d'Almeida, Amah
2008-07-01
We investigate the half-space problem of evaporation and condensation in the scope of discrete kinetic theory. Exact solutions are found to the boundary value problem and the initial boundary value problems of the flow in the half space for a discrete velocity model. The results are used to analyze the transition of the unsteady solutions towards steady states. To cite this article: A. d'Almeida, C. R. Mecanique 336 (2008).
Steady-state superradiance with alkaline-earth-metal atoms
Meiser, D.; Holland, M. J.
2010-03-15
Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.
Steady state magnetic field configurations for the earth's magnetotail
NASA Technical Reports Server (NTRS)
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
Adaptive control of unknown unstable steady states of dynamical systems.
Pyragas, K; Pyragas, V; Kiss, I Z; Hudson, J L
2004-08-01
A simple adaptive controller based on a low-pass filter to stabilize unstable steady states of dynamical systems is considered. The controller is reference-free; it does not require knowledge of the location of the fixed point in the phase space. A topological limitation similar to that of the delayed feedback controller is discussed. We show that the saddle-type steady states cannot be stabilized by using the conventional low-pass filter. The limitation can be overcome by using an unstable low-pass filter. The use of the controller is demonstrated for several physical models, including the pendulum driven by a constant torque, the Lorenz system, and an electrochemical oscillator. Linear and nonlinear analyses of the models are performed and the problem of the basins of attraction of the stabilized steady states is discussed. The robustness of the controller is demonstrated in experiments and numerical simulations with an electrochemical oscillator, the dissolution of nickel in sulfuric acid; a comparison of the effect of using direct and indirect variables in the control is made. With the use of the controller, all unstable phase-space objects are successfully reconstructed experimentally.
Cavitation modeling for steady-state CFD simulations
NASA Astrophysics Data System (ADS)
Hanimann, L.; Mangani, L.; Casartelli, E.; Widmer, M.
2016-11-01
Cavitation in hydraulic turbomachines is an important phenomenon to be considered for performance predictions. Correct analysis of the cavitation onset and its effect on the flow field while diminishing the pressure level need therefore to be investigated. Even if cavitation often appears as an unsteady phenomenon, the capability to compute it in a steady state formulation for the design and assessment phase in the product development process is very useful for the engineer. In the present paper the development and corresponding application of a steady state CFD solver is presented, based on the open source toolbox OpenFOAM®. In the first part a review of different cavitation models is presented. Adopting the mixture-type cavitation approach, various models are investigated and developed in a steady state CFD RANS solver. Particular attention is given to the coupling between cavitation and turbulence models as well as on the underlying numerical procedure, especially the integration in the pressure- correction step of pressure-based solvers, which plays an important role in the stability of the procedure. The performance of the proposed model is initially assessed on simple cases available in the open literature. In a second step results for different applications are presented, ranging from airfoils to pumps.
STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED
Yoon, Peter H.; Kim, Sunjung; Choe, G. S.
2015-10-20
In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.
Steady state statistical correlations predict bistability in reaction motifs.
Chakravarty, Suchana; Barik, Debashis
2017-03-01
Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.
Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior.
Zoski, Cynthia G; Yang, Nianjun; He, Peixin; Berdondini, Luca; Koudelka-Hep, Milena
2007-02-15
An addressable nanoelectrode membrane array (ANEMA) based on a Au-filled track-etched polycarbonate membrane was fabricated. The Au-filled membrane was secured to a lithographically fabricated addressable ultramicroelectrode (UME) array patterned with 25 regularly spaced (100 microm center to center spacing), 10 microm diameter recessed Pt UMEs to create 25 microregions of 10 microm diameter nanoelectrode ensembles (NEEs) on the membrane. The steady-state voltammetric behavior of 1.0 mM Ru(NH(3))(6)Cl(3) and 1.0 mM ferrocene methanol in 0.1 M KCl on each of the micro NEEs resulted in sigmoidal-shaped voltammograms which were reproducible across the ANEMA. This reproducibility of the steady-state current was attributed to the overlapping hemispherical diffusion layers at the Au-filled nanopores of each 10 microm diameter NEE of a ANEMA. The track-etched polycarbonate membranes were filled using a gold electroless deposition procedure into the 30 nm diameter pores in the membrane. Electrical connection between the Au-filled template array and the lithographic UME platform array was achieved by potentiostatic electrodeposition of Cu from an acidic copper solution into each of the 25 recessed Pt UMEs on the UME array platform. A multiplexer unit capable of addressing 64 individual micro NEEs on an ANEMA is described. ANEMAs have advantages of high reproducibility, facile fabrication, multitime reuse of lithographically fabricated UME arrays, and purely steady-state behavior.
Numerical computation of steady-state acoustic disturbances in flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Myers, M. K.
1992-01-01
Two time domain methods for computing two dimensional steady-state acoustic disturbances propagating through internal subsonic viscous flow fields in the presence of variable area are investigated. The first method solves the Navier-Stokes equations for the combined steady and acoustic field together and subtracts the steady flow to obtain the acoustic field. The second method solves a system of perturbation equations to obtain the acoustic disturbances, making use of a separate steady flow computation as input to the system. In each case the periodic steady-state acoustic fluctuations are obtained numerically on a supercomputer using a second order unsplit explicit MacCormack predictor-corrector method. Results show that the first method is not very effective for computing acoustic disturbances of even moderate amplitude. It appears that more accurate steady flow algorithms are required for this method to succeed. On the other hand, linear and nonlinear acoustic disturbances extracted from the perturbation approach are shown to exhibit expected behavior for the problems considered. It is also found that inflow boundary conditions for an equivalent uniform duct can be successfully applied to a nonuniform duct to obtain steady-state acoustic disturbances.
Nonequilibrium Steady State Thermodynamics and Fluctuations for Stochastic Systems
NASA Astrophysics Data System (ADS)
Taniguchi, Tooru; Cohen, E. G. D.
2008-02-01
We use the work done on and the heat removed from a system to maintain it in a nonequilibrium steady state for a thermodynamic-like description of such a system as well as of its fluctuations. Based on an extended Onsager-Machlup theory for nonequilibrium steady states we indicate two ambiguities, not present in an equilibrium state, in defining such work and heat: one due to a non-uniqueness of time-reversal procedures and another due to multiple possibilities to separate heat into work and an energy difference in nonequilibrium steady states. As a consequence, for such systems, the work and heat satisfy multiple versions of the first and second laws of thermodynamics as well as of their fluctuation theorems. Unique laws and relations appear only to be obtainable for concretely defined systems, using physical arguments to choose the relevant physical quantities. This is illustrated on a number of systems, including a Brownian particle in an electric field, a driven torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.
Basin stability measure of different steady states in coupled oscillators
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-01-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis. PMID:28378760
Kang, C. S.; Lee, S. G.
2014-07-15
The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].
Not Available
1988-01-01
Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.
Steady-State and Pre-Steady-State Kinetic Analysis of Mycobacterium smegmatis Cysteine Ligase (MshC)
Fan, Fan; Luxenburger, Andreas; Painter, Gavin F.; Blanchard, John S
2008-01-01
Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-D-myo-inosityl-2-(N-acetyl-L-cysteinyl)amido-2-deoxy-α-D-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth, and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-D. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady state and pre-steady state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady state kinetic parameters were determined to be: kcat equal to 3.15 s−1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analog, 5′-O-[N-(L-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and non-competitive inhibition versus cysteine, with an inhibition constant of ~306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid quench techniques, giving rates of ~9.4 s−1 and ~5.2 s−1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC. PMID:17848100
Experiments on steady state particle control in Tore Supra and DIII-D
Mioduszewski, P.K.; Hogan, J.T.; Owen, L.W.
1994-12-31
Particle control is playing an increasingly important role in tokamak plasma performance. The present paper discusses particle control of hydrogen/deuterium by wall pumping on graphite or carbonized surfaces, as well as by external exhaust with pumped limiters and pumped divertors. Wall pumping is ultimately a transient effect and by itself not suitable for steady state particle exhaust. Therefore, external exhaust techniques with pumped divertors and limiters are being developed. How wall pumping phenomena interact and correlate with these inherently steady state, external exhaust techniques, is not well known to date. In the present paper, the processes involved in wall pumping and in external pumping are investigated in an attempt to evaluate the effect of external exhaust on wall pumping. Some of the key elements of this analysis are: (1) charge-exchange fluxes to the wall play a crucial role in the core-wall particle dynamics, (2) the recycling fluxes of thermal molecules have a high probability of ionization in the scrape-off layer, (3) thermal particles originating from the wall, which are ionized within the scrape-off layer, can be directly exhausted, thus providing a direct path between wall and exhaust which can be used to control the wall inventory. This way, the wall can be kept in a continuous pumping state in the sense that it continuously absorbs energetic particles and releases thermal molecules which are then removed by the external exhaust mechanism. While most of the ingredients of this analysis have been observed individually before, the present evaluation is an attempt to correlate effects of wall recycling and external exhaust.
Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak
Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.
2015-12-15
A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.
Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.
2012-10-15
Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.
Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.
2013-09-15
The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.
Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak
NASA Astrophysics Data System (ADS)
Qu, H.; Zhang, T.; Han, X.; Xiang, H. M.; Wen, F.; Geng, K. N.; Wang, Y. M.; Kong, D. F.; Cai, J. Q.; Huang, C. B.; Gao, Y.; Gao, X.; Zhang, S.
2016-11-01
A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.
Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT
C.E. Kessel; T.K. Mau; S.C. Jardin; and F. Najmabadi
2001-06-05
An advanced tokamak plasma configuration is developed based on equilibrium, ideal-MHD stability, bootstrap current analysis, vertical stability and control, and poloidal-field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current-drive profiles from ray-tracing calculations in combination with optimized pressure profiles, beta(subscript N) values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower beta(subscript N) of 5.4. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal-field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field.
Improved Confinement in Highly Powered Advanced Tokamak Scenarios on DIII-D
NASA Astrophysics Data System (ADS)
Petrie, T. W.; Leonard, A.; Luce, T.; Osborne, T.; Solomon, W.; Turco, F.; Fenstermacher, M. E.; Holcomb, C.; Lasnier, C.; Makowski, M.
2016-10-01
DIII-D has recently demonstrated improved energy confinement by injecting neutral gas into high performance Advanced Tokamak (AT) plasmas during high power operation. Representative parameters are: q95 = 6, PIN up to 15 MW, H98 = 1.4-1.8, and βN = 2.8-4.2. Unlike in lower and moderate powered AT plasmas, τE and βN increased (and νELM decreased) as density was increased by deuterium gas puffing. We discuss how the interplay between pedestal density and temperature with fueling can lead to higher ballooning stability and a peeling/kink current limit that increasers as the pressure gradient increases. Comparison of neon, nitrogen, and argon as ``seed'' impurities in high PIN ATs in terms of their effects on core dilution, τE, and heat flux (q⊥) reduction favors argon. In general, the puff-and-pump radiating divertor was not as effective in reducing q⊥ while maintaining density control at highest PIN than it was at lower PIN. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-FG02-07ER54917.
Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.
2015-12-01
A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.
NASA Astrophysics Data System (ADS)
Wang, H. Q.; Xu, G. S.; Guo, H. Y.; Wan, B. N.; Wang, L.; Chen, R.; Ding, S. Y.; Yan, N.; Gong, X. Z.; Liu, S. C.; Shao, L. M.; Chen, L.; Zhang, W.; Liang, Y. F.; Hu, G. H.; Liu, Y. L.; Li, Y. L.; Zhao, N.
2014-09-01
High-confinement regime with high-frequency and low-energy-loss small edge localized modes (ELMs) was achieved in Experimental Advanced Superconducting Tokamak by using the lower hybrid current drive and ion cyclotron resonance heating with lithium wall conditioning. The small ELMs are usually accompanied with a quasi-coherent mode at frequency around 30 kHz, as detected by the Langmuir probes near the separatrix. The coherent mode, with weak magnetic perturbations different from the precursor of conventional ELMs, propagates in the electron diamagnetic drift direction in the lab frame with the poloidal wavelength λθ ˜ 14 cm, corresponding to both high poloidal and toroidal mode numbers (m > 60 and n > 12). This coherent mode, carrying high-temperature high-density filament-like plasma, drives considerable transport from the pedestal region into the scrape-off layer towards divertor region. The co-existence of small ELMs and quasi-coherent modes is beneficial for the sustainment of long pulse H-mode regime without significant confinement degradation.
Multi-channel poloidal correlation reflectometry on experimental advanced superconducting tokamak.
Qu, H; Zhang, T; Han, X; Xiang, H M; Wen, F; Geng, K N; Wang, Y M; Kong, D F; Cai, J Q; Huang, C B; Gao, Y; Gao, X; Zhang, S
2016-11-01
A new multi-channel poloidal correlation reflectometry is developed at Experimental Advanced Superconducting Tokamak. Eight dielectric resonator oscillators with frequencies of 12.5 GHz, 13.5 GHz, 14.5 GHz, 15 GHz, 15.5 GHz, 16 GHz, 17 GHz, and 18 GHz are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together. The output waves are launched by one single antenna after passing through a 20 dB directional coupler which can provide the reference signal. Two poloidally separated antennae are installed to receive the reflected waves from plasma. The reference and reflected signals are down-converted by mixing with a quadrupled signal from a phase-locked source with a frequency of 14.2 GHz and the IF signals pass through the filter bank. The resulting signals from the mixers are detected by I/Q demodulators. The setup enables the measurement of density fluctuation at 8 (radial) × 2 (poloidal) spatial points. A coherent mode with an increasing velocity from 50 kHz to 100 kHz is observed by using the system. The mode is located in the steep gradient region of the pedestal.
Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.
Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L
2015-12-01
A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.
Bootstrapped tokamak with oscillating field current drive
Weening, R.H. )
1993-07-01
A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.
Posaconazole Plasma Concentrations on Days Three to Five Predict Steady-State Levels
Prattes, Jürgen; Duettmann, Wiebke
2016-01-01
Low posaconazole plasma concentrations (PPCs) have been associated with breakthrough invasive fungal infections. We assessed the correlation between pre-steady-state PPCs (obtained between days 3 and 5) and PPCs obtained during steady state in 48 patients with underlying hematological malignancies receiving posaconazole oral-solution prophylaxis. Pre-steady-state PPCs correlated significantly with PPCs obtained at steady state (Spearman r = 0.754; P < 0.001). Receiver operating characteristic (ROC) curve analysis of pre-steady-state PPCs revealed an area under the curve (AUC) of 0.884 (95% confidence interval [CI], 0.790 to 0.977) for predicting satisfactory PPCs at steady state. PMID:27324763
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
NASA Astrophysics Data System (ADS)
Raz, O.; Subaşı, Y.; Jarzynski, C.
2016-04-01
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.
Typical pure nonequilibrium steady states and irreversibility for quantum transport.
Monnai, Takaaki; Yuasa, Kazuya
2016-07-01
It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.
Stabilizing unstable steady states using multiple delay feedback control.
Ahlborn, Alexander; Parlitz, Ulrich
2004-12-31
Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.
Nonequilibrium steady-state circulation and heat dissipation functional.
Qian, H
2001-08-01
A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.
Steady-State-Preserving Simulation of Genetic Regulatory Systems
Hou, Xilin
2017-01-01
A novel family of exponential Runge-Kutta (expRK) methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature. PMID:28203268
Thermodynamic formalism and linear response theory for nonequilibrium steady states.
Speck, Thomas
2016-08-01
We study the linear response in systems driven away from thermal equilibrium into a nonequilibrium steady state with nonvanishing entropy production rate. A simple derivation of a general response formula is presented under the condition that the generating function describes a transformation that (to lowest order) preserves normalization and thus describes a physical stochastic process. For Markov processes we explicitly construct the conjugate quantities and discuss their relation with known response formulas. Emphasis is put on the formal analogy with thermodynamic potentials and some consequences are discussed.
Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.
2000-01-01
NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.
Quantum-classical correspondence in steady states of nonadiabatic systems
Fujii, Mikiya; Yamashita, Koichi
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Steady State Creep of Zirconium at High and Intermediate Temperatures
Rosen, R.S.; Hayes, T.A.
2000-04-08
Creep of zirconium and zirconium alloys has been labeled ''anomalous.'' Researchers often report that zirconium and its alloys never reach true steady state creep and have stress exponents that continuously change with stress and temperature. Many varied interpretations have been offered explaining the creep behavior of zirconium. Some have suggested that creep is diffusion controlled, while others maintain that creep is dislocation glide controlled. Cumulative zirconium creep data will be presented based on an extensive literature review. An interpretation of results will be presented and compared to previous interpretations.
Steady-State Solution of a Flexible Wing
NASA Technical Reports Server (NTRS)
Karkehabadi, Reza; Chandra, Suresh; Krishnamurthy, Ramesh
1997-01-01
A fluid-structure interaction code, ENSAERO, has been used to compute the aerodynamic loads on a swept-tapered wing. The code has the capability of using Euler or Navier-Stokes equations. Both options have been used and compared in the present paper. In the calculation of the steady-state solution, we are interested in knowing how the flexibility of the wing influences the lift coefficients. If the results of a flexible wing are not affected by the flexibility of the wing significantly, one could consider the wing to be rigid and reduce the problem from fluid-structure interaction to a fluid problem.
Steady-state grain growth in UO{sub 2}
Galinari, C.M.; Lameiras, F.S.
1998-06-05
The authors have observed steady-state grain growth in sintered UO{sub 2} pellets of nuclear purity at 2,003 K under H{sub 2}. The behavior of the grain size distribution at different instants is consistent with the grain growth model proposed by one of the authors. The total number of grains was estimated using the Saltykov`s method, and the evolution is in accordance with the model proposed by Rhines and Craig. The parabolic growth law was observed for the mean intercept length with n = 0.4.
Linear modeling of steady-state behavioral dynamics.
Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert
2002-01-01
The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782
Steady-state operation of spheromaks by inductive techniques
Janos, A.
1984-04-01
A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation.
Steady-State ALPS for Real-Valued Problems
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2009-01-01
The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.
Ecological Implications of Steady State and Nonsteady State Bioaccumulation Models.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2016-10-18
Accurate predictions on the bioaccumulation of persistent organic pollutants (POPs) are critical for hazard and ecosystem health assessments. Aquatic systems are influenced by multiple stressors including climate change and species invasions and it is important to be able to predict variability in POP concentrations in changing environments. Current steady state bioaccumulation models simplify POP bioaccumulation dynamics, assuming that pollutant uptake and elimination processes become balanced over an organism's lifespan. These models do not consider the complexity of dynamic variables such as temperature and growth rates which are known to have the potential to regulate bioaccumulation in aquatic organisms. We contrast a steady state (SS) bioaccumulation model with a dynamic nonsteady state (NSS) model and a no elimination (NE) model. We demonstrate that both the NSS and the NE models are superior at predicting both average concentrations as well as variation in POPs among individuals. This comparison demonstrates that temporal drivers, such as environmental fluctuations in temperature, growth dynamics, and modified food-web structure strongly determine contaminant concentrations and variability in a changing environment. These results support the recommendation of the future development of more dynamic, nonsteady state bioaccumulation models to predict hazard and risk assessments in the Anthropocene.
New models for fast steady state magnetic reconnection
NASA Technical Reports Server (NTRS)
Priest, E. R.; Forbes, T. G.
1986-01-01
A new unified family of models for incompressible, steady-state magnetic reconnection in a finite region is presented. The models are obtained by expanding in powers of the Alfven Mach number and may be used to elucidate some of the puzzling properties of numerical experiments on reconnection which are not present in the classical models. The conditions imposed on the inflow boundary of the finite region determine which member of the family occurs. Petscheklien and Sonnerup like solutions are particular members. The Sonneruplike regime is a special case of a weak slow mode expansion in the inflow region, and it separates two classes of members with reversed currents. The Petscheklike regime is a singular case of a weak fast mode expansion, and it separates the hybrid regime from a regime of slow mode compressions. Care should be taken in deciding which type of reconnection is operating in a numerical experiment. Indeed, no experiment to date has used boundary conditions appropriate for demonstrating steady state Petschek reconnection.
Steady-state mushy layers: Experiments and theory
NASA Astrophysics Data System (ADS)
Peppin, S.; Aussillous, P.; Huppert, Herbert E.; Grae Worster, M.
2006-11-01
A new facility has been developed to investigate mushy layers formed during the steady directional solidification of transparent aqueous solutions in a quasi-two-dimensional system. Experiments have been conducted on NaCl--H20 solutions by translating a Hele-Shaw cell at prescribed rates between fixed heat exchangers providing a temperature gradient of approximately 1,^0C/mm. Ice formed the primary solid phase and the dense residual fluid ponded within the mushy layer at the base of the system. Mathematical predictions of the steady-state temperature profile and mushy layer thickness as functions of freezing rate are in excellent agreement with experimental results. Experiments have also been performed on aqueous NH4Cl solutions, with the salt forming the primary solid phase, yielding buoyancy-driven convection in the mushy layer and the development of chimneys. The lifetime of the chimneys increased with decreasing freezing rate; however, no steady-state chimneys have been observed. Rather, a convecting chimney appears to deplete the surrounding solution and is eventually extinguished. At freezing rates larger than about 5.5,μm/s a uniform mushy layer develops with no chimneys. However, at rates larger than about 5,μm/s a second mode of behaviour is observed in which the mushy layer is thin and there is significant supercooling and nucleation above it. There is hysteresis between the two modes.
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.
2010-01-01
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840
Zonal Flow Growth Rates: Modulational Instability vs Statistical Steady States.
NASA Astrophysics Data System (ADS)
Krommes, J. A.; Kolesnikov, R. A.
2002-11-01
The nonlinear growth rate of zonal flows has been the subject of various investigations. The calculations can be grouped into two major classes: those based on modulational instability of a fixed pump wave;(L. Chen et al., Phys. Plasmas 7), 3129 (2000); P. N. Guzdar et al., Phys. Rev. Lett. 87, 015001 (2001); C. N. Lashmore-Davies et al., Phys. Plasmas 8, 5121 (2001). and those employing statistical formalism to describe a self-consistent, energy-conserving steady state.(J. A. Krommes and C.--B. Kim, Phys. Rev. E 62), 8508 (2000), and references therein. The results from these two approaches do not necessarily agree either in their dependence on parameters like the plasma pressure β, on the threshold for instability, or even, in some cases, on the sign. The reasons for such disagreements are isolated, and it is shown to what extent the steady-state statistical approach can be reconciled with a generic modulational instability calculation. Generalizations of the statistical formalism to the multifield systems appropriate for finite β are described. Specific calculations based on model systems are used to illustrate the general arguments.
Steady States and Universal Conductance in a Quenched Luttinger Model
NASA Astrophysics Data System (ADS)
Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per
2017-01-01
We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to ∞}, after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'}. Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)}, has a universal value equal to the conductance quantum {e^2/h} for the spinless case.
Modeling steady-state methanogenic degradation of phenols in groundwater
Bekins, Barbara A.; Godsy, E. Michael; Goerlitz, Donald F.
1993-01-01
Field and microcosm observations of methanogenic phenolic compound degradation indicate that Monod kinetics governs the substrate disappearance but overestimates the observed biomass. In this paper we present modeling results from an ongoing multidisciplinary study of methanogenic biodegradation of phenolic compounds in a sand and gravel aquifer contaminated by chemicals and wastes used in wood treatment. Field disappearance rates of four phenols match those determined in batch microcosm studies previously performed by E.M. Godsy and coworkers. The degradation process appears to be at steady-state because even after a sustained influx over several decades, the contaminants still are disappearing in transport downgradient. The existence of a steady-state degradation profile of each substrate together with a low biomass density in the aquifer indicate that the bacteria population is exhibiting no net growth. This may be due to the oligotrophic nature of the biomass population in which utilization and growth are approximately independent of concentration for most of the concentration range. Thus a constant growth rate should exist over much of the contaminated area which may in turn be balanced by an unusually high decay or maintenance rate due to hostile conditions or predation.
Steady-state wear and friction in boundary lubrication studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1980-01-01
A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.
Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...
2015-01-01
Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less
Charles Kessel, et al
2014-03-05
The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.
Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.
2015-01-01
Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized β_{N} ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches β_{N} = 5.28 with B_{T} = 6.75, while the peaked pressure case reaches β_{N} < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×10^{20}/m^{3}, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/n_{Gr} = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.
2005-12-01
choice of a steady state control is completely independent from the choice of a stabilizing control law. This separation is key for the methods we will...develop for steady state optimization in later sections. Combining the steady state with the stabilizing control , we can express the control law as u...for stabilizing control and optimization methods for steady state control, both unconstrained and constrained, we were able to produce promising results
40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition. 2a Steady-state 173 A 100 2b Transition 20 Linear Transition Linear Transition. 3a Steady-state 219 B 50 3b Transition 20 B Linear Transition. 4a Steady-state 217 B 75 4b Transition 20 Linear...
NASA Astrophysics Data System (ADS)
Nam, Y. U.; Cheon, M. S.; Kwon, M.; Hwang, Y. S.
2003-03-01
A simple single-channel horizontal millimeter-wave interferometer has been designed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR). To measure line integrated plasma densities of 2×1019 m-2 in the initial phase of the KSTAR, Gunn oscillator frequency of 280 GHz has been chosen to optimize errors due to both vibration on the beam path and refraction in the plasma. To reduce the free propagation length of the probing beam and to obtain small beam width on the vacuum windows, a retractable cassette system for deep positioning of the diagnostic system has been designed, where microwave parts are located as close as possible to the tokamak with a shielding box. A beam focusing system with concave reflecting mirrors has been designed on the cassette and on the inner wall of the tokamak to reduce beam losses and to minimize beam width in the plasma. The estimated total transmission loss is about 25 dB, and beam widths are reduced significantly in the range of 20-50 mm.
Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT
S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West
2003-10-07
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2014 CFR
2014-07-01
...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2010 CFR
2010-07-01
...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2013 CFR
2013-07-01
...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...
Son of IXION: A Steady State Centrifugally Confined Plasma for Fusion*
NASA Astrophysics Data System (ADS)
Hassam, Adil
1996-11-01
A magnetic confinement scheme in which the inertial, u.grad(u), forces effect parallel confinement is proposed. The basic geometry is mirror-like as far as the poloidal field goes or, more simply, multipole (FM-1) type. The rotation is toroidal in this geometry. A supersonic rotation can effect complete parallel confinement, with the usual magnetic mirror force rendered irrelevant. The rotation shear, in addition, aids in the suppression of the flute mode. This suppression is not complete which indicates the addition of a toroidal field, at maximum of the order of the poloidal field. We show that at rotation in excess of Mach 3, the parallel particle and heat losses can be minimized to below the Lawson breakeven point. The crossfield transport can be expected to be better than tokamaks on account of the large velocity shear. Other advantages of the scheme are that it is steady state and disruption free. An exploratory experiment that tests equilibrium, parallel detachment, and MHD stability is proposed. The concept resembles earlier (Geneva, 1958) experiments on "homopolar generators" and a mirror configuration called IXION. Ixion, Greek mythological king, was forever strapped to a rotating, flaming wheel. *Work supported by DOE
Exploration of steady-state scenarios for the Fusion Development Facility (FDF)
NASA Astrophysics Data System (ADS)
Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.; Choi, M.; Kinsey, J. E.; Lao, L. L.; Snyder, P. B.; St. John, H. E.; Turnbull, A. D.
2011-10-01
A Fusion Nuclear Science Facility (FNSF) has to operate at 105 times longer duration than that of present tokamak discharges. The scalability of plasma sustainment to such a long time is an issue that needs to be resolved by scientific understanding. We carry out steady-state (SS) scenario development of the FDF (a candidate for FNSF-AT) using an iterative process toward a self-consistent solution via alternating temperature profiles and current profile evolution. The temperature profile evolves according to a physics-based transport model GLF23. SS requires large off-axis current drive (CD). To achieve this with no NBI is highly challenging. It however simplifies tritium containment, increases area for tritium breeding, and avoids costly negative-ion NBI technology. We find that with ECH/ECCD only, too much power is required. A SS baseline equilibrium is found by adding LHCD: Qfus ~ 4 , H98 y 2 ~ 1 . 2 , fBS ~ 70 %, Pfus ~ 260 MW, PEC = 35 MW, PLH = 21 MW. The GATO ideal MHD code finds the equilibrium stable to n = 1 internal kink at κ = 2 . 3 . Work supported by General Atomics internal funds.
Hybrid and Steady-State Operation on JET and Tore Supra
NASA Astrophysics Data System (ADS)
Bécoulet, A.
2003-12-01
Producing fusion energy requires to simultaneously sustain in a tokamak environment fully non inductive regimes at the highest Q-values and a "significant" fusion performance level under MHD-stable conditions, while insuring a satisfactory confinement of the fast alpha particles. This ambitious goal is being investigated on many devices worldwide, particularly focusing on the role played by the current density profile. The paper reports on the recent experimental progress of both the JET and Tore Supra devices towards i) long to very long pulse operation relying on a careful use of lower hybrid current drive under various current profile tailoring conditions (namely so-called "hybrid" peaked current density profiles and so-called "steady-state" hollow current density profiles) and ii) discharges performed with real-time controlled pressure and/or current density profiles. Such discharges are detailed and interpreted using the CRONOS integrated modelling suite. Its fully predictive capability, including real time control features, is used to provide keys to future experiments.
NASA Astrophysics Data System (ADS)
Fletcher, R. C.; Buss, H. L.; Brantley, S. L.
2006-04-01
Spheroidal weathering, a common mechanism that initiates the transformation of bedrock to saprolite, creates concentric fractures demarcating relatively unaltered corestones and progressively more altered rindlets. In the spheroidally weathering Rio Blanco quartz diorite (Puerto Rico), diffusion of oxygen into corestones initiates oxidation of ferrous minerals and precipitation of ferric oxides. A positive Δ V of reaction results in the build-up of elastic strain energy in the rock. Formation of each fracture is postulated to occur when the strain energy in a layer equals the fracture surface energy. The rate of spheroidal weathering is thus a function of the concentration of reactants, the reaction rate, the rate of transport, and the mechanical properties of the rock. Substitution of reasonable values for the parameters involved in the model produces results consistent with the observed thickness of rindlets in the Rio Icacos bedrock (≈ 2-3 cm) and a time interval between fractures (≈ 200-300 a) based on an assumption of steady-state denudation at the measured rate of 0.01 cm/a. Averaged over times longer than this interval, the rate of advance of the bedrock-saprolite interface during spheroidal weathering (the weathering advance rate) is constant with time. Assuming that the oxygen concentration at the bedrock-saprolite interface varies with the thickness of soil/saprolite yields predictive equations for how weathering advance rate and steady-state saprolite/soil thickness depend upon atmospheric oxygen levels and upon denudation rate. The denudation and weathering advance rates at steady state are therefore related through a condition on the concentration of porewater oxygen at the base of the saprolite. In our model for spheroidal weathering of the Rio Blanco quartz diorite, fractures occur every ˜ 250 yr, ferric oxide is fully depleted over a four rindlet set in ˜ 1000 yr, and saprolitization is completed in ˜ 5000 yr in the zone containing ˜ 20
NASA Lewis Steady-State Heat Pipe Code Architecture
NASA Technical Reports Server (NTRS)
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
[Auditory steady-state responses--the state of art].
Szymańska, Anna; Gryczyński, Maciej; Pajor, Anna
2010-01-01
The auditory steady-state responses (ASSR) is quite a new method of electrophysiological threshold estimation with no clinical standards. It was the aim of this study to review practical and theoretical thesis of ASSR and mention recent recommendations and achievements of this technique. The most common application of ASSR is diagnosis of hearing loss in children together with ABR test. In this paper we mentioned information about influence of physiological factors (age, sex, state of arousal, handedness) and type of recording technique (electrodes placement, air and bone stimulation, occlusion effect, amplitude and frequency stimulation, multiple or single frequency stimulation, dichotic and monotic recording technique and type of hearing loss) on ASSR. We conclude that putting ASSR in clinical use as an standardized method it is necessary to do research with numerous groups of patients using the same equipment and parameters of tests.
Characterization of a class of stellarator steady states
Weitzner, Harold
2011-01-15
A stellarator steady state is obtained for a specific class of magnetic fields by a formal expansion in the small Larmor radius parameters of the coupled ion-electron Fokker-Planck equations. A system of relatively simple ordinary differential equations is given to determine the plasma profile functions, the number density, the temperature, and the electrostatic potential. A particular low collisionality ordering is used. The magnetic field is assumed to have stellarator symmetry of N periods in the toroidal direction and is approximated by a closed magnetic line configuration with rotational transform N/R. The magnetic field is nearly quasisymmetric. The chosen magnetic field also includes a small additional component leading to a configuration without closed lines or closed flux surfaces. The theoretical logic behind this choice of magnetic fields is also presented.
Steady-state magma discharge at Etna 1971-81
NASA Technical Reports Server (NTRS)
Wadge, G.; Guest, J. E.
1981-01-01
Throughout the past decade Mount Etna has been in almost continuous activity and even during periods of repose incandescent lava has often been visible in at least one of the summit vents. Using observations by Italian, British and French volcanological teams, the volumes of lava produced by each eruption from 1971 to July 1981 have been estimated. The computed output of magma for this period approximates to a rate of 0.7 cu m/s. This is compared with the output rate estimates for Etna's historic past. The steady-state nature of the output during the past decade has implications for the interpretation of the volcano's internal plumbing and the petrology of its lavas, and the assumption that this state will be maintained allows a discussion of the timing and magnitude of future eruptions.
Extending the definition of entropy to nonequilibrium steady states
Ruelle, David P.
2003-01-01
We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces ξ and maintained at fixed kinetic energy (Hoover–Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti–Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state ρξ. When ξ is replaced by ξ + δξ, one can compute the change δρ of ρξ (linear response) and define an entropy change δS based on energy considerations. When ξ is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if ξ is a gradient) we show that the curvature is zero, and that the entropy S(ξ + δξ) near equilibrium is well defined to second order in δξ. PMID:12629215
Extending the definition of entropy to nonequilibrium steady states.
Ruelle, David P
2003-03-18
We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces xi and maintained at fixed kinetic energy (Hoover-Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti-Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state rho(xi). When xi is replaced by xi + deltaxi, one can compute the change deltarho of rho(xi) (linear response) and define an entropy change deltaS based on energy considerations. When xi is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if xi is a gradient) we show that the curvature is zero, and that the entropy S(xi + deltaxi) near equilibrium is well defined to second order in deltaxi.
Steady state asymmetric planetary electrical induction. [by solar wind
NASA Technical Reports Server (NTRS)
Horning, B. L.; Schubert, G.
1974-01-01
An analytic solution is presented for the steady state electric and magnetic fields induced by the motional electric field of the solar wind in the atmosphere or interior of a planet that is asymmetrically surrounded by solar wind plasma. The electrically conducting ionosphere or interior must be in direct electrical contact with the solar wind over the day side of the planet. The conducting region of the planet is modeled by a sphere or a spherical shell of arbitrarily stratified electrical conductivity. A monoconducting cylindrical cavity is assumed to extend downstream on the night side of the planet. The solar wind is assumed to be highly conducting so that the induced fields are confined to the planet and cavity. Induced currents close as sheet currents at the solar wind-cavity and solar wind-planet interfaces. Numerical evaluations of the analytic formulas are carried out for a uniformly conducting spherical model.
Steady-state mushy layers: experiments and theory
NASA Astrophysics Data System (ADS)
Peppin, S. S. L.; Aussillous, P.; Huppert, Herbert E.; Grae Worster, M.
A new facility has been developed to investigate the directional solidification of transparent aqueous solutions forming mushy layers in a quasi-two-dimensional system. Experiments have been conducted on NaCl H_{2}O solutions by translating a Hele-Shaw cell at prescribed rates between fixed heat exchangers providing a temperature gradient of approximately 1 (°) C mm(-1) . The mush liquid interface remained planar at all freezing velocities larger than 8 umum s(-1) , while steepling occurred at lower velocities. No significant undercooling of the mush liquid interface was detected at freezing velocities up to 12 umum s(-1) . Mathematical predictions of the steady-state temperature profile and mushy-layer thickness as functions of freezing rate are in excellent agreement with experimental measurements.
Entropy Production and Non-Equilibrium Steady States
NASA Astrophysics Data System (ADS)
Suzuki, Masuo
2013-01-01
The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-09
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.
Steady-state plasma transition in the Venus ionosheath
NASA Technical Reports Server (NTRS)
Perez-De-tejada, H.; Intriligator, D. S.; Strangeway, R. J.
1991-01-01
The results of an extended analysis of the plasma and electric field data of the Pioneer Venus Orbiter (PVO) are presented. The persistent presence of a plasma transition embedded in the flanks of the Venus ionosheath between the bow shock and the ionopause is reported. This transition is identified by the repeated presence of characteristic bursts in the 30 kHz channel of the electric field detector of the PVO. The observed electric field signals coincide with the onset of different plasma conditions in the inner ionosheath where more rarified plasma fluxes are measured. The repeated identification of this intermediate ionosheath transition in the PVO data indicates that it is present as a steady state feature of the Venus plasma environment. The distribution of PVO orbits in which the transition is observed suggests that it is more favorably detected in the vicinity of and downstream from the terminator.
Locating CVBEM collocation points for steady state heat transfer problems
Hromadka, T.V.
1985-01-01
The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.
A Steady-state Trio for Bretherton Equation
NASA Astrophysics Data System (ADS)
Niu, Zhao; Liu, Zeng; Cui, Jifeng
2016-12-01
To investigate if steady-state resonant solution exist for any system of weakly interacting waves in a dispersive medium, a trio is considered in the Bretherton equation based on the homotopy analysis method (HAM). Time-independent spectrum was found when all components were travelling in the same direction. Within the trio, the amplitude of longer component is larger than that of shorter one. As the difference of wave number between components in trio increases or the nonlinearity of whole system increases, the amplitudes of all components tends to increase simultaneously. These findings are helpful to enrich and deepen our understanding about resonant solutions in any dispersive medium, especially for a two-dimensional scenario.
Relativistic hydrodynamics and non-equilibrium steady states
NASA Astrophysics Data System (ADS)
Spillane, Michael; Herzog, Christopher P.
2016-10-01
We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under consideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.
Transient and steady state modelling of a coupled WECS
NASA Astrophysics Data System (ADS)
Nathan, G. K.; Tan, J. K.
The paper presents a method for simulation of a wind turbine using a dc motor. The armature and field voltages of the dc motor are independently regulated to obtain torque-speed characteristics which correspond to those of a wind turbine at different wind speeds. The mass moment of inertia of the wind turbine is represented by adding a rotating mass to a parallel shaft which is positively coupled to the motor shaft. To verify the method of simulation, an American multiblade wind turbine is chosen, loaded by coupling to a centrifugal pump. Using the principle of conservation of energy and characteristics of both constituent units, two mathematical models are proposed: one for steady state operation and another for the transient state. The close comparison between the theoretical and the experimental results validates the proposed models and the method of simulation. The experimental method is described and the results of the experimental and theoretical investigation are presented.
Petri nets for steady state analysis of metabolic systems.
Voss, Klaus; Heiner, Monika; Koch, Ina
2011-01-01
Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.
Steady state analysis of metabolic pathways using Petri nets.
Voss, Klaus; Heiner, Monika; Koch, Ina
2003-01-01
Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.
Steady-state thermodynamics for population growth in fluctuating environments
NASA Astrophysics Data System (ADS)
Sughiyama, Yuki; Kobayashi, Tetsuya J.
2017-01-01
We report that population dynamics in fluctuating environments is characterized by a mathematically equivalent structure to steady-state thermodynamics. By employing the structure, population growth in fluctuating environments is decomposed into housekeeping and excess parts. The housekeeping part represents the integral of the stationary growth rate for each condition during a history of the environmental change. The excess part accounts for the excess growth induced by environmental fluctuations. Focusing on the excess growth, we obtain a Clausius inequality, which gives the upper bound of the excess growth. The equality is shown to be achieved in quasistatic environmental changes. We also clarify that this bound can be evaluated by the "lineage fitness", which is an experimentally observable quantity.
A mathematical model of pan evaporation under steady state conditions
NASA Astrophysics Data System (ADS)
Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.
2016-09-01
In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.
Steady-state spectroscopy of new biological probes
NASA Astrophysics Data System (ADS)
Abou-Zied, Osama K.
2007-02-01
The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.
Chi, Yuan; Hu, Chundong; Zhuang, Ge
2014-02-15
Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.
NASA Astrophysics Data System (ADS)
Shi, N.; Gao, X.; Jie, Y. X.; Wang, E. H.
2011-02-01
A control system which can improve stabilization of laser power in long-term operation automatically is designed for a deuterium cyanide (DCN) far-infrared laser interferometer on the Experimental Advanced Superconducting Tokamak. It stabilizes the output power of the laser by a closed-loop control system aided by a programmable logic controller. The system has been applied to the DCN laser and it has been proven that it is effective in stabilizing the laser near the highest scope of the output power.
Human Dendritic Cell Functional Specialization in Steady-State and Inflammation
Boltjes, Arjan; van Wijk, Femke
2014-01-01
Dendritic cells (DC) represent a heterogeneous population of antigen-presenting cells that are crucial in initiating and shaping immune responses. Although all DC are capable of antigen-uptake, processing, and presentation to T cells, DC subtypes differ in their origin, location, migration patterns, and specialized immunological roles. While in recent years, there have been rapid advances in understanding DC subset ontogeny, development, and function in mice, relatively little is known about the heterogeneity and functional specialization of human DC subsets, especially in tissues. In steady-state, DC progenitors deriving from the bone marrow give rise to lymphoid organ-resident DC and to migratory tissue DC that act as tissue sentinels. During inflammation additional DC and monocytes are recruited to the tissues where they are further activated and promote T helper cell subset polarization depending on the environment. In the current review, we will give an overview of the latest developments in human DC research both in steady-state and under inflammatory conditions. In this context, we review recent findings on DC subsets, DC-mediated cross-presentation, monocyte-DC relationships, inflammatory DC development, and DC-instructed T-cell polarization. Finally, we discuss the potential role of human DC in chronic inflammatory diseases. PMID:24744755
Central difference TVD and TVB schemes for time dependent and steady state problems
NASA Technical Reports Server (NTRS)
Jorgenson, P.; Turkel, E.
1992-01-01
We use central differences to solve the time dependent Euler equations. The schemes are all advanced using a Runge-Kutta formula in time. Near shocks, a second difference is added as an artificial viscosity. This reduces the scheme to a first order upwind scheme at shocks. The switch that is used guarantees that the scheme is locally total variation diminishing (TVD). For steady state problems it is usually advantageous to relax this condition. Then small oscillations do not activate the switches and the convergence to a steady state is improved. To sharpen the shocks, different coefficients are needed for different equations and so a matrix valued dissipation is introduced and compared with the scalar viscosity. The connection between this artificial viscosity and flux limiters is shown. Any flux limiter can be used as the basis of a shock detector for an artificial viscosity. We compare the use of the van Leer, van Albada, mimmod, superbee, and the 'average' flux limiters for this central difference scheme. For time dependent problems, we need to use a small enough time step so that the CFL was less than one even though the scheme was linearly stable for larger time steps. Using a total variation bounded (TVB) Runge-Kutta scheme yields minor improvements in the accuracy.
Data system design considerations for a pseudo-steady-state device
Wing, W.R.
1981-01-01
The Advanced Toroidal Facility is being designed to run in a steady state. This places stringent requirements on a data system, since it must provide steady-state support that is equivalent to the support users are accustomed to from pulsed experiments; i.e., enough capacity to reduce diagnostic data for live presentation. Parameters such as density, position, and temperature must be presented live (i.e., within 0.1 s). Quantities such as plasma shape or internal structure should be available with a minimum of delay. The traditional solution to providing such capabilities is to use distributed processing to off-load data acquisition from the analysis computers. However, this suffers in a real-time environment because of the necessity of moving large quantities of data from acquisition to analysis. We expect to solve the problem by using a pipelined design that will acquire data directly into shared memory, where any one of four CPU's (VAX 11/780's) can proceed with analysis.
Runov, A.M.; Kasilov, S.V.; Helander, P.
2015-11-01
A kinetic Monte Carlo model suited for self-consistent transport studies is proposed and tested. The Monte Carlo collision operator is based on a widely used model of Coulomb scattering by a drifting Maxwellian and a new algorithm enforcing the momentum and energy conservation laws. The difference to other approaches consists in a specific procedure of calculating the background Maxwellian parameters, which does not require ensemble averaging and, therefore, allows for the use of single-particle algorithms. This possibility is useful in transport balance (steady state) problems with a phenomenological diffusive ansatz for the turbulent transport, because it allows a direct use of variance reduction methods well suited for single particle algorithms. In addition, a method for the self-consistent calculation of the electric field is discussed. Results of testing of the new collision operator using a set of 1D examples, and preliminary results of 2D modelling in realistic tokamak geometry, are presented.
The Budyko functions under non-steady-state conditions
NASA Astrophysics Data System (ADS)
Moussa, Roger; Lhomme, Jean-Paul
2016-12-01
The Budyko functions relate the evaporation ratio E / P (E is evaporation and P precipitation) to the aridity index Φ = Ep / P (Ep is potential evaporation) and are valid on long timescales under steady-state conditions. A new physically based formulation (noted as Moussa-Lhomme, ML) is proposed to extend the Budyko framework under non-steady-state conditions taking into account the change in terrestrial water storage ΔS. The variation in storage amount ΔS is taken as negative when withdrawn from the area at stake and used for evaporation and positive otherwise, when removed from the precipitation and stored in the area. The ML formulation introduces a dimensionless parameter HE = -ΔS / Ep and can be applied with any Budyko function. It represents a generic framework, easy to use at various time steps (year, season or month), with the only data required being Ep, P and ΔS. For the particular case where the Fu-Zhang equation is used, the ML formulation with ΔS ≤ 0 is similar to the analytical solution of Greve et al. (2016) in the standard Budyko space (Ep / P, E / P), a simple relationship existing between their respective parameters. The ML formulation is extended to the space [Ep / (P - ΔS), E / (P - ΔS)] and compared to the formulations of Chen et al. (2013) and Du et al. (2016). The ML (or Greve et al., 2016) feasible domain has a similar upper limit to that of Chen et al. (2013) and Du et al. (2016), but its lower boundary is different. Moreover, the domain of variation of Ep / (P - ΔS) differs: for ΔS ≤ 0, it is bounded by an upper limit 1 / HE in the ML formulation, while it is only bounded by a lower limit in Chen et al.'s (2013) and Du et al.'s (2016) formulations. The ML formulation can also be conducted using the dimensionless parameter HP = -ΔS / P instead of HE, which yields another form of the equations.
Mantle Sulfur Cycle: A Case for Non-Steady State ?
NASA Astrophysics Data System (ADS)
Cartigny, Pierre; Labidi, Jabrane
2016-04-01
Data published over the last 5 years show that the early inference that mantle is isotopically homogeneous is no more valid. Instead, new generation data on lavas range over a significant 34S/32S variability of up to 5‰ with δ 34S values often correlated to Sr- and Nd-isotope compositions. This new set of data also reveals the Earth's mantle to have a sub-chondritic 34S/32S ratio, by about ˜ 1‰. We will present at the conference our published and unpublished data on samples characterizing the different mantle components (i.e. EM1, EM2, HIMU and LOMU). All illustrate 34S-enrichments compared to MORB with Δ 33S and Δ 36S values indistinguishable from CDT or chondrites at the 0.03‰ level. These data are consistent with the recycling of subducted components carrying sulfur with Δ 33S and Δ 36S-values close to zero. Archean rocks commonly display Δ 33S and Δ 36S values deviating from zero by 1 to 10 ‰. The lack of variations for Δ 33S and Δ 36S values in present day lava argue against the sampling of any subducted protolith of Archean age in their mantle source. Instead, our data are consistent with the occurrence of Proterozoic subducted sulfur in the source of the EM1, EM2, LOMU and HIMU endmember at the St-Helena island. This is in agreement with the age of those components early derived through the use of the Pb isotope systematic. Currently, the negative δ 34S-values of the depleted mantle seem to be associated with mostly positive values of enriched components. This would be inconsistent with the concept a steady state of sulfur. Assuming that the overall observations of recycled sulfur are not biased, the origin of such a non-steady state remains unclear. It could be related to the relatively compatible behavior of sulfur during partial melting, as the residue of present-day melting can be shown to always contain significant amounts of sulfide (50{%} of what is observed in a fertile source). This typical behavior likely prevents an efficient
Critical Concavity of a Drainage Basin for Steady-State
NASA Astrophysics Data System (ADS)
Byun, Jongmin; Paik, Kyungrock
2015-04-01
Longitudinal profiles of natural streams are known to show concave forms. Saying A as drainage area, channel gradient S can be expressed as the power-law, S≈A-θ (Flint, 1974), which is one of the scale-invariant features of drainage basin. According to literature, θ of most natural streams falls into a narrow range (0.4 < θ < 0.7) (Tucker and Whipple, 2002). It leads to fundamental questions: 'Why does θ falls into such narrow range?' and 'How is this related with other power-law scaling relationships reported in natural drainage basins?' To answer above questions, we analytically derive θ for a steady-state drainage basin following Lane's equilibrium (Lane, 1955) throughout the corridor and named this specific case as the 'critical concavity'. In the derivation, sediment transport capacity is estimated by unit stream power model (Yang, 1976), yielding a power function of upstream area. Stability of channel at a local point occurs when incoming flux equals outgoing flux at the point. Therefore, given the drainage at steady-state where all channel beds are stable, the exponent of the power function should be zero. From this, we can determine the critical concavity. Considering ranges of variables associated in this derivation, critical concavity cannot be resolved as a single definite value, rather a range of critical concavity is suggested. This range well agrees with the widely reported range of θ (0.4 < θ < 0.7) in natural streams. In this theoretical study, inter-relationships between power-laws such as hydraulic geometry (Leopold and Maddock, 1953), dominant discharge-drainage area (Knighton et al., 1999), and concavity, are coupled into the power-law framework of stream power sediment transport model. This allows us to explore close relationships between their power-law exponents: their relative roles and sensitivity. Detailed analysis and implications will be presented. References Flint, J. J., 1974, Stream gradient as a function of order, magnitude
Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou
2015-07-01
Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.
Steady state solutions to dynamically loaded periodic structures
NASA Technical Reports Server (NTRS)
Kalinowski, A. J.
1980-01-01
The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.
Steady state quantum discord for circularly accelerated atoms
Hu, Jiawei; Yu, Hongwei
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.
Grand canonical steady-state simulation of nucleation
NASA Astrophysics Data System (ADS)
Horsch, Martin; Vrabec, Jadran
2009-11-01
Grand canonical molecular dynamics (GCMD) is applied to the nucleation process in a metastable phase near the spinodal, where nucleation occurs almost instantaneously and is limited to a very short time interval. With a variant of Maxwell's demon, proposed by McDonald [Am. J. Phys. 31, 31 (1963)], all nuclei exceeding a specified size are removed. In such a steady-state simulation, the nucleation process is sampled over an arbitrary time span and all properties of the metastable state, including the nucleation rate, can be obtained with an increased precision. As an example, a series of GCMD simulations with McDonald's demon is carried out for homogeneous vapor to liquid nucleation of the truncated-shifted Lennard-Jones (tsLJ) fluid, covering the entire relevant temperature range. The results are in agreement with direct nonequilibrium MD simulation in the canonical ensemble. It is confirmed for supersaturated vapors of the tsLJ fluid that the classical nucleation theory underpredicts the nucleation rate by two orders of magnitude.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
NASA Astrophysics Data System (ADS)
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Steady-state and dynamic network modes for perceptual expectation
Choi, Uk-Su; Sung, Yul-Wan; Ogawa, Seiji
2017-01-01
Perceptual expectation can attenuate repetition suppression, the stimulus-induced neuronal response generated by repeated stimulation, suggesting that repetition suppression is a top-down modulatory phenomenon. However, it is still unclear which high-level brain areas are involved and how they interact with low-level brain areas. Further, the temporal range over which perceptual expectation can effectively attenuate repetition suppression effects remains unclear. To elucidate the details of this top-down modulatory process, we used two short and long inter-stimulus intervals for a perceptual expectation paradigm of paired stimulation. We found that top-down modulation enhanced the response to the unexpected stimulus when repetition suppression was weak and that the effect disappeared at 1,000 ms prior to stimulus exposure. The high-level areas involved in this process included the left inferior frontal gyrus (IFG_L) and left parietal lobule (IPL_L). We also found two systems providing modulatory input to the right fusiform face area (FFA_R): one from IFG_L and the other from IPL_L. Most importantly, we identified two states of networks through which perceptual expectation modulates sensory responses: one is a dynamic state and the other is a steady state. Our results provide the first functional magnetic resonance imaging (fMRI) evidence of temporally nested networks in brain processing. PMID:28079163
Visual steady state in relation to age and cognitive function.
Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris; Horwitz, Henrik; Klemp, Marc; Nikolic, Miki; Rask, Lene; Lauritzen, Martin; Benedek, Krisztina
2017-01-01
Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV) with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01). Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05). In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01). Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age.
Visual steady state in relation to age and cognitive function
Dyhr Thomsen, Mia; Wiegand, Iris; Horwitz, Henrik; Klemp, Marc; Nikolic, Miki; Rask, Lene; Lauritzen, Martin; Benedek, Krisztina
2017-01-01
Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV) with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01). Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05). In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01). Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age. PMID:28245274
Attentional Modulation of Auditory Steady-State Responses
Mahajan, Yatin; Davis, Chris; Kim, Jeesun
2014-01-01
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021
Maximally reliable spatial filtering of steady state visual evoked potentials.
Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M
2015-04-01
Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".
Quasi-steady state aerodynamics of the cheetah tail.
Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily
2016-08-15
During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.
Quasi-steady state aerodynamics of the cheetah tail
Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily
2016-01-01
ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267
The Path of Carbon in Photosynthesis XX. The Steady State
DOE R&D Accomplishments Database
Calvin, M.; Massini, Peter
1952-09-01
The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.
Ising game: Nonequilibrium steady states of resource-allocation systems
NASA Astrophysics Data System (ADS)
Xin, C.; Yang, G.; Huang, J. P.
2017-04-01
Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.
Flavour fields in steady state: stress tensor and free energy
NASA Astrophysics Data System (ADS)
Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan
2016-02-01
The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1-background, for d = 2, 4, and is related to conformal anomaly. For the special case of d = 2, the universal factor has a striking resemblance to the well-known heat current formula in (1 + 1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d = 6.
Models of steady state cooling flows in elliptical galaxies
NASA Technical Reports Server (NTRS)
Vedder, Peter W.; Trester, Jeffrey J.; Canizares, Claude R.
1988-01-01
A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount.
Optomechanically induced transparency associated with steady-state entanglement
NASA Astrophysics Data System (ADS)
He, Yong
2015-01-01
We theoretically investigate a two-cavity optomechanical system in which a cavity (cavity a ) couples to a mechanical resonator via radiation pressure and to another cavity (cavity c ) via a common waveguide. In the excitation of a strong pump filed to cavity a , the steady-state entanglement between cavity a and c , as a quantum channel, can be generated, which provides an indirect optical pathway to excite cavity c by means of the pump filed. Quantum interference between the direct and indirect optical pathways gives rise to an optomechanically induced transparency appearing in the probe transmission of cavity c . Unlike in a typical optomechanically induced transparency effect, the electromagnetical control of the transmission is implemented by resorting to the quantum channel. Furthermore, the coupling strength of the two cavities is an important factor of the quantum channel, which can influence the width of the transparency window and the bistable behavior of the mean photon number in cavity a . We also illustrate that the electromagnetical control via quantum channel can be exploited to implement the optical switch and the slow light.
Steady-state and dynamic network modes for perceptual expectation.
Choi, Uk-Su; Sung, Yul-Wan; Ogawa, Seiji
2017-01-12
Perceptual expectation can attenuate repetition suppression, the stimulus-induced neuronal response generated by repeated stimulation, suggesting that repetition suppression is a top-down modulatory phenomenon. However, it is still unclear which high-level brain areas are involved and how they interact with low-level brain areas. Further, the temporal range over which perceptual expectation can effectively attenuate repetition suppression effects remains unclear. To elucidate the details of this top-down modulatory process, we used two short and long inter-stimulus intervals for a perceptual expectation paradigm of paired stimulation. We found that top-down modulation enhanced the response to the unexpected stimulus when repetition suppression was weak and that the effect disappeared at 1,000 ms prior to stimulus exposure. The high-level areas involved in this process included the left inferior frontal gyrus (IFG_L) and left parietal lobule (IPL_L). We also found two systems providing modulatory input to the right fusiform face area (FFA_R): one from IFG_L and the other from IPL_L. Most importantly, we identified two states of networks through which perceptual expectation modulates sensory responses: one is a dynamic state and the other is a steady state. Our results provide the first functional magnetic resonance imaging (fMRI) evidence of temporally nested networks in brain processing.
Modeling on the Steady State of Thwaites Glacier
NASA Astrophysics Data System (ADS)
Yu, H.; Rignot, E. J.; Morlighem, M.; Seroussi, H.
2013-12-01
Thwaites Glacier (TWG) is the second largest ice stream in West Antarctica in terms of ice discharge, and the broadest ice stream in Antarctica (120 km wide). Observations and theory suggest that its configuration is inherently unstable in a warming climate. Satellite observations have revealed grounding line retreat, ice thinning, ice stream broadening and in more recent years ice flow acceleration. The most important part of the glacier evolution involves its grounding line dynamics and the impact of ice-ocean interactions. In a region between the grounding line and the limit of the flexure zone, some 10 km downstream, however, the glacier is not in hydrostatic equilibrium. Proper treatment of the grounding line dynamics requires full Stokes solution. Here, we model the grounding line of TWG in 2D, full Stokes, with the goal to examine whether the glacier is in a steady state configuration or not. The model treats ice sheet and ice shelf as two fluids coupled through the ice mass flux (Nowicki, 2008). Water stress is used as a constraint on the ice shelf instead of hydrostatic equilibrium. We use radar interferometry (InSAR) measurements of ice velocity and grounding line position through time, Bedmap2 and IceBridge thickness, and surface mass balance from RACMO to constrain the model. The results are used to conclude on the state of dynamic balance of the glacier. This work is funded by NASA Cryospheric Science Program.
The inductive, steady-state sustainment of stable spheromaks
NASA Astrophysics Data System (ADS)
Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.
2016-10-01
Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.
Dynamic causal models of steady-state responses
Moran, R.J.; Stephan, K.E.; Seidenbecher, T.; Pape, H.-C.; Dolan, R.J.; Friston, K.J.
2009-01-01
In this paper, we describe a dynamic causal model (DCM) of steady-state responses in electrophysiological data that are summarised in terms of their cross-spectral density. These spectral data-features are generated by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source comprises three sub-populations. Under linearity and stationarity assumptions, the model's biophysical parameters (e.g., post-synaptic receptor density and time constants) prescribe the cross-spectral density of responses measured directly (e.g., local field potentials) or indirectly through some lead-field (e.g., electroencephalographic and magnetoencephalographic data). Inversion of the ensuing DCM provides conditional probabilities on the synaptic parameters of intrinsic and extrinsic connections in the underlying neuronal network. This means we can make inferences about synaptic physiology, as well as changes induced by pharmacological or behavioural manipulations, using the cross-spectral density of invasive or non-invasive electrophysiological recordings. In this paper, we focus on the form of the model, its inversion and validation using synthetic and real data. We conclude with an illustrative application to multi-channel local field potential data acquired during a learning experiment in mice. PMID:19000769
Fault Wear by Damage Evolution During Steady-State Slip
NASA Astrophysics Data System (ADS)
Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev
2014-11-01
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.
Steady-state and transient results on insulation materials
Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.; Fine, H.A.
1991-01-01
The Unguarded Thin-Heater Apparatus (UTHA, ASTM C 1114) was used to determine the thermal conductivity (k), specific heat (C), and thermal diffusivity ({alpha}) of selected building materials from 24 to 50{degree}C. Steady-state and transient measurements yielded data on four types of material: gypsum wall board containing 0, 15, and 30 wt % wax; calcium silicate insulations with densities ({rho}) of 307, 444, and 605 kg/m{sup 3}; three wood products: southern yellow pine flooring (575 kg/m{sup 3}), Douglas fir plywood (501 kg/m{sup 3}), and white spruce flooring (452 kg/m{sup 3}); and two cellular plastic foams: extruded polystyrene (30 kg/m{sup 3}) blown with HCFC-142b and polyisocyanurate rigid board (30.2 kg/m{sup 3}) blown with CFC-11. The extruded polystyrene was measured several times after production (25 days, 45 days, 74 days, 131 days, and 227 days). The UTHA is an absolute technique that yields k with an uncertainty of less than {plus minus}2% as determined by modeling, by determinate error analyses, and by use of Standard Reference Materials SRM-1450b and SRM-1451. 37 refs., 5 figs., 10 tabs.
Steady-state growth of the marine diatom Thalassiosira pseudonana
Olson, R.J.; SooHoo, J.B.; Kiefer, D.A.
1980-09-01
Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using /sup 15/N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which /sup 15/N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea.
Steady State Analysis of Small Molten Salt Reactor
NASA Astrophysics Data System (ADS)
Yamamoto, Takahisa; Mitachi, Koshi; Suzuki, Takashi
The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fuel flow. The model consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, transport equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and the graphite moderator. The following results are obtained: (1) in the rated operation condition, the peaks of the neutron fluxes slightly move toward the bottom from the center of the reactor and the delayed neutron precursors are significantly carried by the fuel salt flow, and (2) the extension of residence time in the external-loop system and the rise of the fuel inflow temperature show weak negative reactivity effects, which decrease the neutron multiplication factor of the small MSR system.
NASA Lewis steady-state heat pipe code users manual
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.
1992-01-01
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
Steady-state compartmentalization of lipid membranes by active proteins.
Sabra, M C; Mouritsen, O G
1998-01-01
Using a simple microscopic model of lipid-protein interactions, based on the hydrophobic matching principle, we study some generic aspects of lipid-membrane compartmentalization controlled by a dispersion of active integral membrane proteins. The activity of the proteins is simulated by conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer simulation that the activity of an integral membrane protein can lead to a compartmentalization of the lipid-bilayer membrane. The compartmentalization is related to the dynamical process of phase separation and lipid domain formation. PMID:9533687
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
NASA Astrophysics Data System (ADS)
Raz, Oren; Subasi, Yigit; Jarzynski, Christopher
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents: to generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters - also known as a stochastic pump (SP) - reaches a periodic state with non-vanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems we establish a mapping between NESS and SP. Given a NESS characterized by a particular set of stationary probabilities, currents and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: they show that SP are able to mimic the behavior of NESS, and vice-versa, within the theoretical framework of discrete-state stochastic thermodynamics.
Dynamic steady state of periodically driven quantum systems
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.
2016-01-01
Using the density matrix formalism, we prove the existence of the periodic steady state for an arbitrary periodically driven system described by linear dynamic equations. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution (t →+∞ ) due to relaxation processes. The presented derivation simultaneously contains a simple and effective computational algorithm (without using either the Floquet or Fourier formalisms), which automatically guarantees a full account of all frequency components. As a particular example, for three-level Λ system we calculate the line shape and field-induced shift of the dark resonance formed by the field with a periodically modulated phase. Also we have analytically solved a basic theoretical problem of the direct frequency comb spectroscopy, when the two-level system is driven by the periodic sequence of rectangular pulses. In this case, the radical dependence of the spectroscopy line shape on pulse area is found. Moreover, the existence of quasiforbidden spectroscopic zones, in which the Ramsey fringes are significantly reduced, is predicted. Our results have a wide area of applications in laser physics, spectroscopy, atomic clocks, and magnetometry. Also they can be useful for any area of quantum physics where periodically driven systems are considered.
Magnetocentrifugal Winds in 3D: Nonaxisymmetric Steady State
Anderson, Jeffrey M.; Li, Zhi-Yun; Krasnopolsky, Ruben; Blandford, Roger D.; /SLAC
2006-11-28
Outflows can be loaded and accelerated to high speeds along rapidly rotating, open magnetic field lines by centrifugal forces. Whether such magnetocentrifugally driven winds are stable is a longstanding theoretical problem. As a step towards addressing this problem, we perform the first large-scale 3D MHD simulations that extend to a distance {approx} 10{sup 2} times beyond the launching region, starting from steady 2D (axisymmetric) solutions. In an attempt to drive the wind unstable, we increase the mass loading on one half of the launching surface by a factor of {radical}10, and reduce it by the same factor on the other half. The evolution of the perturbed wind is followed numerically. We find no evidence for any rapidly growing instability that could disrupt the wind during the launching and initial phase of propagation, even when the magnetic field of the magnetocentrifugal wind is toroidally dominated all the way to the launching surface. The strongly perturbed wind settles into a new steady state, with a highly asymmetric mass distribution. The distribution of magnetic field strength is, in contrast, much more symmetric. We discuss possible reasons for the apparent stability, including stabilization by an axial poloidal magnetic field, which is required to bend field lines away from the vertical direction and produce a magnetocentrifugal wind in the first place.
Classical quasi-steady state reduction-A mathematical characterization
NASA Astrophysics Data System (ADS)
Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva
2017-04-01
We discuss parameter dependent polynomial ordinary differential equations that model chemical reaction networks. By classical quasi-steady state (QSS) reduction we understand the following familiar (heuristically motivated) mathematical procedure: Set the rate of change for certain (a priori chosen) variables equal to zero and use the resulting algebraic equations to obtain a system of smaller dimension for the remaining variables. This procedure will generally be valid only for certain parameter ranges. We start by showing that the reduction is accurate if and only if the corresponding parameter is what we call a QSS parameter value, and that the reduction is approximately accurate if and only if the corresponding parameter is close to a QSS parameter value. The QSS parameter values can be characterized by polynomial equations and inequations, hence parameter ranges for which QSS reduction is valid are accessible in an algorithmic manner. A defining characteristic of a QSS parameter value is that the algebraic variety defined by the QSS relations is invariant for the differential equation. A closer investigation of the associated systems shows the existence of further invariant sets; here singular perturbations enter the picture in a natural manner. We compare QSS reduction and singular perturbation reduction, and show that, while they do not agree in general, they do, up to lowest order in a small parameter, for a quite large and relevant class of examples. This observation, in turn, allows the computation of QSS reductions even in cases where an explicit resolution of the polynomial equations is not possible.
Steady state thermal-hydraulic analyses of the MITICA cooling circuits
Zaupa, M.; Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A.
2016-02-15
Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.
Steady-State Microbunching in a Storage Ring for Generating Coherent Radiation
Ratner, Daniel F.; Chao, Alexander W.; /SLAC
2011-05-19
Synchrotrons and storage rings deliver radiation across the electromagnetic spectrum at high repetition rates, and free electron lasers (FELs) produce radiation pulses with high peak brightness. However, at present few light sources can generate both high repetition rate and high brightness outside the optical range. We propose to create steady-state microbunching (SSMB) in a storage ring to produce coherent radiation at a high repetition rate or in continuous wave (CW) mode. In this paper we describe a general mechanism for producing SSMB and give sample parameters for EUV lithography and sub-millimeter sources. We also describe a similar arrangement to produce two pulses with variable spacing for pump-probe experiments. With technological advances, SSMB could reach the soft X-ray range (< 10 nm).
Steady state thermal-hydraulic analyses of the MITICA cooling circuits.
Zaupa, M; Sartori, E; Dalla Palma, M; Fellin, F; Marcuzzi, D; Pavei, M; Rizzolo, A
2016-02-01
Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m(2)), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.
Steady state thermal-hydraulic analyses of the MITICA cooling circuits
NASA Astrophysics Data System (ADS)
Zaupa, M.; Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A.
2016-02-01
Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m2), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.
RF-driven advanced modes of ITER operation
Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Giruzzi, G.; Hawkes, N.; Imbeaux, F.; Litaudon, X.; Mailloux, J.; Peysson, Y.; Schneider, M.; Brix, M.
2009-11-26
The impact of the Radio Frequency heating and current drive systems on the ITER advanced scenarios is analyzed by means of the CRONOS suite of codes for integrated tokamak modelling. As a first step, the code is applied to analyze a high power advanced scenario discharge of JET in order to validate both the heating and current drive modules and the overall simulation procedure. Then, ITER advanced scenarios, based on Radio Frequency systems, are studied on the basis of previous results. These simulations show that both hybrid and steady-state scenarios could be possible within the ITER specifications, using RF heating and current drive only.
RF-driven advanced modes of ITER operation
NASA Astrophysics Data System (ADS)
Garcia, J.; Artaud, J. F.; Basiuk, V.; Brix, M.; Decker, J.; Giruzzi, G.; Hawkes, N.; Imbeaux, F.; Litaudon, X.; Mailloux, J.; Peysson, Y.; Schneider, M.
2009-11-01
The impact of the Radio Frequency heating and current drive systems on the ITER advanced scenarios is analyzed by means of the CRONOS suite of codes for integrated tokamak modelling. As a first step, the code is applied to analyze a high power advanced scenario discharge of JET in order to validate both the heating and current drive modules and the overall simulation procedure. Then, ITER advanced scenarios, based on Radio Frequency systems, are studied on the basis of previous results. These simulations show that both hybrid and steady-state scenarios could be possible within the ITER specifications, using RF heating and current drive only.
2012-09-03
use of so-called probability-one methods [22]. The significant advantage of homotopy method to compute steady state solutions is free of Courant ...A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws Wenrui Hao∗ Jonathan D. Hauenstein† Chi...robustness of the new method . Keywords homotopy continuation, hyperbolic conservation laws, WENO scheme, steady state problems. ∗Department of Applied and
NASA Technical Reports Server (NTRS)
Angerer, James R.; Mccurdy, David A.; Erickson, Richard A.
1991-01-01
The purpose of this investigation was to develop a noise annoyance model, superior to those already in use, for evaluating passenger response to sounds containing tonal components which may be heard within current and future commercial aircraft. The sound spectra investigated ranged from those being experienced by passengers on board turbofan powered aircraft now in service to those cabin noise spectra passengers may experience within advanced propeller-driven aircraft of the future. A total of 240 sounds were tested in this experiment. Sixty-six of these 240 sounds were steady state, while the other 174 varied temporally due to tonal beating. Here, the entire experiment is described, but the analysis is limited to those responses elicited by the 66 steady-state sounds.
Assessment of the LH wave for demo in pulsed and steady state scenario
Cardinali, A.; Barbato, E.; Castaldo, C.; Cesario, R.; Marinucci, M.; Ravera, G. L.; Tuccillo, A. A.; Ceccuzzi, S.; Mirizzi, F.; Panaccione, L.; Santini, F.; Schettini, G.
2014-02-12
The Lower Hybrid Current Drive (LHCD) has been analysed in DEMO tokamak plasma in the 'pulsed and steady state regime' considering two plasma scenarios characterized, respectively, by flat density profile and peaked density profiles. We have obtained LH deposition profiles in cases of neglecting the effect of spectral broadening produced by PI at the edge. By comparing the Power Deposition Profiles for both DEMO scenarios ('flat' and 'peaked'), the SOL of DEMO does not play any role in the absorption of the LH wave. In all cases the deposition is localized inside the separatrix layer r/a≤1. By lowering the parallel wave-number peak of the power spectrum from 1.8 to 1.5, the accessibility condition in both case prevents the power from reaching the deposition layer apart from a small fraction which pertains to the higher n∥ of the power spectrum. The spectrum centred at 1.8 is suggested to be useful in DEMO. More realistically, as supported by available data of LHCD in a wide range of operating densities, the effect of parametric decay instability (PDI) can produce a spectral broadening which should be included in the simulations. Further studies would be necessary for assessing the temperature profiles in the SOL at reactor-graded conditions. This is because, if the SOL temperature is at least of the order of 50 to 100 eV, the effect of PDI broads the spectrum up to n∥≤10, and the deposition profile is slightly wider but not much shifted outwards.
Assessment of the LH wave for demo in pulsed and steady state scenario
NASA Astrophysics Data System (ADS)
Cardinali, A.; Barbato, E.; Castaldo, C.; Ceccuzzi, S.; Cesario, R.; Marinucci, M.; Mirizzi, F.; Panaccione, L.; Ravera, G. L.; Santini, F.; Schettini, G.; Tuccillo, A. A.
2014-02-01
The Lower Hybrid Current Drive (LHCD) has been analysed in DEMO tokamak plasma in the "pulsed and steady state regime" considering two plasma scenarios characterized, respectively, by flat density profile and peaked density profiles. We have obtained LH deposition profiles in cases of neglecting the effect of spectral broadening produced by PI at the edge. By comparing the Power Deposition Profiles for both DEMO scenarios ("flat" and "peaked"), the SOL of DEMO does not play any role in the absorption of the LH wave. In all cases the deposition is localized inside the separatrix layer r/a≤1. By lowering the parallel wave-number peak of the power spectrum from 1.8 to 1.5, the accessibility condition in both case prevents the power from reaching the deposition layer apart from a small fraction which pertains to the higher n∥ of the power spectrum. The spectrum centred at 1.8 is suggested to be useful in DEMO. More realistically, as supported by available data of LHCD in a wide range of operating densities, the effect of parametric decay instability (PDI) can produce a spectral broadening which should be included in the simulations. Further studies would be necessary for assessing the temperature profiles in the SOL at reactor-graded conditions. This is because, if the SOL temperature is at least of the order of 50 to 100 eV, the effect of PDI broads the spectrum up to n∥≤10, and the deposition profile is slightly wider but not much shifted outwards.
Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L
2013-08-01
A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.
There are no steady state processes in compaction
NASA Astrophysics Data System (ADS)
Dysthe, D. K.
2003-04-01
Compaction of sediments is normally thought to start with grain sliding and cataclastic grain crushing. Then the ductile dissolution-precipitation creep processes take over. Modeling of this process normally neglects all collective rearrangement processes and regard simple packings of grains that slowly deform by steady state pressure solution creep. From simple geometrical reasoning we know, however that imperfect packings of plastic grains must undergo rearrangement during compaction. Such rearrangement will drastically alter the microscopic, or "primitive processes" of compaction. Recent research has questioned the fundamental mechanisms ("primitive processes") of dissolution-precipitation creep. Do grain contacts heal or dissolve? Why is there asymmetric dissolution? Does pressure solution creep in single contacts ever reach steady state? Can transient free face dissolution feed back on pressure solution creep in the contacts? The emerging radical change in our understanding of dissolution-precipitation creep as a dynamic, transient process is driven by new experiments and reevaluation of the fundamental theory. The same change in viewpoint is necessary on all time and length scales. I will present experiments [1-8] and simulations [9-11] of complex compaction behaviour [1], transient primitive processes of pressure solution creep in the contacts [2-4], free face dissolution [5] and crack healing [6]. I will also show that macroscopic observation of compaction shows smooth, universal behaviour [7]. Microscopic observation of compaction shows transient collective behaviour at all scales. Evidence points in the direction that compaction is dominated by transient processes with interacting instabilities. The interaction causes intermittency or switching between processes. A new, more complex theory of compaction is necessary to explain how the cooperative microscopic phenomena contribute to the simple, universal, macroscopic behaviour. 1. Uri, L., et. al., in
Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya
2005-05-01
The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.
Hopf and steady state bifurcation analysis in a ratio-dependent predator-prey model
NASA Astrophysics Data System (ADS)
Zhang, Lai; Liu, Jia; Banerjee, Malay
2017-03-01
In this paper, we perform spatiotemporal bifurcation analysis in a ratio-dependent predator-prey model and derive explicit conditions for the existence of non-constant steady states that emerge through steady state bifurcation from related constant steady states. These explicit conditions are numerically verified in details and further compared to those conditions ensuring Turing instability. We find that (1) Turing domain is identical to the parametric domain where there exists only steady state bifurcation, which implies that Turing patterns are stable non-constant steady states, but the opposite is not necessarily true; (2) In non-Turing domain, steady state bifurcation and Hopf bifurcation act in concert to determine the emergent spatial patterns, that is, non-constant steady state emerges through steady state bifurcation but it may be unstable if the destabilising effect of Hopf bifurcation counteracts the stabilising effect of diffusion, leading to non-stationary spatial patterns; (3) Coupling diffusion into an ODE model can significantly enrich population dynamics by inducing alternative non-constant steady states (four different states are observed, two stable and two unstable), in particular when diffusion interacts with different types of bifurcation; (4) Diffusion can promote species coexistence by saving species which otherwise goes to extinction in the absence of diffusion.
Bieri, Oliver
2011-02-01
Conceptually, the only flaw in the standard steady-state free precession theory is the assumption of quasi-instantaneous radio-frequency pulses, and 10-20% signal deviations from theory are observed for common balanced steady-state free precession protocols. This discrepancy in the steady-state signal can be resolved by a simple T(2) substitution taking into account reduced transverse relaxation effects during finite radio-frequency excitation. However, finite radio-frequency effects may also affect the transient phase of balanced steady-state free precession, its contrast or its spin-echo nature and thereby have an adverse effect on common steady-state free precession magnetization preparation methods. As a result, an in-depth understanding of finite radio-frequency effects is not only of fundamental theoretical interest but also has direct practical implications. In this article, an analytical solution for balanced steady-state free precession with finite radio-frequency pulses is derived for the transient phase (under ideal conditions) and in the steady state demonstrating that balanced steady-state free precession key features are preserved but revealing an unexpected dependency of finite radio-frequency effects on relaxation times for the transient decay. Finally, the mathematical framework reveals that finite radio-frequency theory can be understood as a generalization of alternating repetition time and fluctuating equilibrium steady-state free precession sequence schemes.
Phencyclidine Disrupts the Auditory Steady State Response in Rats
Leishman, Emma; O’Donnell, Brian F.; Millward, James B.; Vohs, Jenifer L.; Rass, Olga; Krishnan, Giri P.; Bolbecker, Amanda R.; Morzorati, Sandra L.
2015-01-01
The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule. PMID:26258486
Steady state growth of E. Coli in low ammonium environment
NASA Astrophysics Data System (ADS)
Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry
2011-03-01
Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.
Steady-state and transient electronic dynamics in granular metals
NASA Astrophysics Data System (ADS)
Chen, Wei
In this thesis two very different approaches, steady state and transient, are taken to help understand the electronic dynamics in the nanogranular Cux(SiO2)1-x composite thin films. The electrical conductivity and thermopower are measured from 2 K to room temperature with the Cu volume fraction x varying from 1 down to 0.43. At low temperatures, a T dependence of the electrical conductivity is observed well above the percolation threshold due to the disorder-enhanced electron-electron interaction and as the metal-insulator transition is approached, the electrical conductivity assumes a T1/3 dependence. The thermopower is found to be small and rather insensitive to the degree of disorder in the system. It varies linearly with temperatures at both low and high temperatures. Annealing has considerable influence to the behavior of the electrical conductivity while introducing little changes to the thermopower. Femtosecond pump-probe experiments were performed on a series of Cu x(SiO2)1-x composite films with volume fraction x varying from 0.7 to 1.0 to study the reflectivity change DeltaR/R as a function of composition and temperature. It is discovered that DeltaR/R undergoes drastic changes as the metal content is lowered. Very small amount of SiO 2 inclusions can start to result in qualitatively different Delta R/R behavior from pure Cu. Changes in the dielectric constant of Cu are investigated and possible explanations for the DeltaR/R behaviors in the composite films are discussed.
A steady-state model of the lunar ejecta cloud
NASA Astrophysics Data System (ADS)
Christou, Apostolos
2014-05-01
Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.
Experimental Realization of Nearly Steady-State Toroidal Electron Plasmas
NASA Astrophysics Data System (ADS)
Stoneking, M. R.
2008-11-01
Non-neutral plasmas are routinely confined in the uniform magnetic field of a Penning-Malmberg trap for arbitrarily long times and approach thermal equilibrium. Theory predicts that dynamically stable and therefore long-lived equilibria exist for non-neutral plasmas confined in the curved, non-uniform field of a toroidal trap, but that ultimately thermal equilibrium states do not exist. On long timescales, the poloidal ExB rotation through the non-uniform toroidal magnetic field leads to magnetic pumping transport. A new experiment has, for the first time, demonstrated the existence of a stable, long-lived (i.e. nearly steady-state) toroidal equilibrium for pure electron plasmas and is poised to observe the magnetic pumping transport mechanism. Electron plasmas with densities of order 10^6 cm-3 are trapped in the Lawrence Non-neutral Torus II for several seconds. LNT II is a high aspect ratio (Ro/a 10), partially toroidal trap (a 270^o arc with Bo=670 G). The m=1 diocotron mode is launched and detected using isolated segments of a fully-sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( 3 s) approaches the theoretical limit ( 6 s) set by the magnetic pumping transport mechanism of Crooks and O'Neil. We also present equilibrium modeling and numerical simulation of the toroidal m=1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m=2 mode frequency, and development of a strategy for making a transition to fully toroidal confinement. J.P. Marler and M.R. Stoneking, Phys. Rev. Lett. 100, 155001 (2008). S.M. Crooks and T.M. O'Neil, Phys Plamas 3, 2533 (1996).
Nonequilibrium steady states in a model for prebiotic evolution
NASA Astrophysics Data System (ADS)
Wynveen, A.; Fedorov, I.; Halley, J. W.
2014-02-01
Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from computational studies. We postulate that the interesting "lifelike" states will be characterized by a nonequilibrium distribution of species and a time variable species self-correlation function. Selecting only such states from the population of final states produced by the model yields the probability of the appearance of such states as a function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike states which have a greater than random likelihood of resembling one another. Thus a form of "convergence" is observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically uncorrelated. In summary, the main results are (1) there is an optimal p or "sparseness" for production of lifelike states in our model—neither very dense nor very sparse networks are optimal—and (2) for a given p or sparseness, the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the origin of life.
Impact of aquifer desaturation on steady-state river seepage
NASA Astrophysics Data System (ADS)
Morel-Seytoux, Hubert J.; Miracapillo, Cinzia; Mehl, Steffen
2016-02-01
Flow exchange between surface and ground water is of great importance be it for beneficial allocation and use of the water resources or for the proper exercise of water rights. That exchange can take place under a saturated or unsaturated flow regime. Which regimes occur depend on conditions in the vicinity of the interactive area. Withdrawals partially sustained by seepage may not bring about desaturation but greater amounts eventually will. The problem considered in this paper deals only with the steady-state case. It is meant as a first step toward a simple, yet accurate and physically based treatment of the transient situation. The primary purpose of the article is to provide simple criteria for determination of the initiation of desaturation in an aquifer originally in saturated hydraulic connection with a river or a recharge area. The extent of the unsaturated zone in the aquifer will increase with increasing withdrawals while at the same time the seepage rate from the river increases. However the seepage increase will stop once infiltration takes place strictly by gravity in the aquifer and is no longer opposed by the capillary rise from the water table below the riverbed. Following desaturation simple criteria are derived and simple analytical formulae provided to estimate the river seepage based on the position of the water table mound below the clogging layer and at some distance away from the river bank. They fully account for the unsaturated flow phenomena, including the existence of a drainage entry pressure. Two secondary objectives were to verify that (1) the assumption of uniform vertical flow through a clogging layer and that (2) the approximation of the water table mound below the seepage area as a flat surface were both reasonably legitimate. This approach will be especially advantageous for the implementation of the methodology in large-scale applications of integrated hydrologic models used for management.
a Study on Design Optimization of Conical Bolt in the TF Coil Structure of the Kstar Tokamak
NASA Astrophysics Data System (ADS)
Kwon, Young-Doo; Lee, Dae-Suep
The goals of the KSTAR project are to develop a steady-state-capable advanced superconducting Tokamak and establish a scientific and technological basis for a Korean nuclear fusion power station. The KSTAR Tokamak comprises a magnet system, vacuum vessel, and cryostat, thereby facilitating vacuum conditions for plasma gas at high temperatures, along with low-temperature helium gas for cooling. The TF coil structure, a part of the magnet system, is constructed and jointed with 16 pieces at 22.5-degree intervals using a conical bolt and shear key. The main function of the conical bolt in the inner and outer inter-coil structures is to resist the in-plane and out-of-plane forces and increase the toroidal and intercoil shear stiffness. Therefore, the conical bolt must be dimensionally optimized to reduce the stresses at each connecting part. Accordingly, shape optimization of the conical bolt was carried out using SZGA, and the stresses were analyzed by ANSYS.
Deuterium-Tritium Simulations of the Enhanced Reversed Shear Mode in the Tokamak Fusion Test Reactor
Mikkelsen, D.R.; Manickam, J.; Scott, S.D.; Zarnstorff
1997-04-01
The potential performance, in deuterium-tritium plasmas, of a new enhanced con nement regime with reversed magnetic shear (ERS mode) is assessed. The equilibrium conditions for an ERS mode plasma are estimated by solving the plasma transport equations using the thermal and particle dif- fusivities measured in a short duration ERS mode discharge in the Tokamak Fusion Test Reactor [F. M. Levinton, et al., Phys. Rev. Letters, 75, 4417, (1995)]. The plasma performance depends strongly on Zeff and neutral beam penetration to the core. The steady state projections typically have a central electron density of {approx}2:5x10 20 m{sup -3} and nearly equal central electron and ion temperatures of {approx}10 keV. In time dependent simulations the peak fusion power, {approx} 25 MW, is twice the steady state level. Peak performance occurs during the density rise when the central ion temperature is close to the optimal value of {approx} 15 keV. The simulated pressure profiles can be stable to ideal MHD instabilities with toroidal mode number n = 1, 2, 3, 4 and {infinity} for {beta}{sub norm} up to 2.5; the simulations have {beta}{sub norm} {le} 2.1. The enhanced reversed shear mode may thus provide an opportunity to conduct alpha physics experiments in conditions imilar to those proposed for advanced tokamak reactors.
Kenneth M. Young
2010-02-22
A Demonstration tokamak (Demo) is an essential next step toward a magnetic-fusion based reactor. One based on advanced-tokamak (AT) plasmas is especially appealing because of its relative compactness. However, it will require many plasma measurements to provide the necessary signals to feed to ancillary systems to protect the device and control the plasma. This note addresses the question of how much intrusion into the blanket system will be required to allow the measurements needed to provide the information required for plasma control. All diagnostics will require, at least, the same shielding designs as planned for ITER, while having the capability to maintain their calibration through very long pulses. Much work is required to define better the measurement needs and the quantity and quality of the measurements that will have to be made, and how they can be integrated into the other tokamak structures.
Zou, Z. Y.; Liu, H. Q. Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X.; Ding, W. X.; Brower, D. L.; Lan, T.
2014-11-15
A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.
Zou, Z Y; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Wang, Z X; Shen, J S; An, Z H; Yang, Y; Zeng, L; Wei, X C; Li, G S; Zhu, X; Lan, T
2014-11-01
A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.
Han, X. Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.
2014-10-15
Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power P{sub ICRF}/P{sub total} exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = −3. Whereas when P{sub ICRF}/P{sub total} is less than 0.7, harmonic mode with frequency f = 40–300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.
NASA Astrophysics Data System (ADS)
Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang
2016-04-01
The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.
Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.
2014-07-15
A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.
Zhuang, H D; Zhang, X D
2015-05-01
A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.
Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K
2016-04-01
The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.
Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments
Spring, J.P.; McLaughlin, D.M.
2006-07-01
Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local
Page, Karen M.
2016-01-01
During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively
Simulations of the L-H transition on experimental advanced superconducting Tokamak
Weiland, Jan
2014-12-15
We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α{sub d} diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode than in L-mode.
40 CFR 92.130 - Determination of steady-state concentrations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...
40 CFR 92.130 - Determination of steady-state concentrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...
40 CFR 92.130 - Determination of steady-state concentrations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...
40 CFR 92.130 - Determination of steady-state concentrations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...
40 CFR 92.130 - Determination of steady-state concentrations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... concentrations. 92.130 Section 92.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state concentration measurement, measured after 300 seconds (or 840 seconds for notch 8) of testing shall be...
Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging.
Kulkarni, Makarand; Kulkami, Makarand
2011-04-01
High spatial resolution is one of the major problems in neuroimaging, particularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve pathologies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.
40 CFR 85.2230 - Steady state test dynamometer-EPA 91.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Steady state test dynamometer-EPA 91. 85.2230 Section 85.2230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Warranty Short Tests § 85.2230 Steady state test dynamometer—EPA 91. (a) Special calendar and model...
Phased Array Ghost Elimination (PAGE) for Segmented SSFP Imaging With Interrupted Steady-State
Kellman, Peter; Guttman, Michael A.; Herzka, Daniel A.; McVeigh, Elliot R.
2007-01-01
Steady-state free precession (SSFP) has recently proven to be valuable for cardiac imaging due to its high signal-to-noise ratio and blood-myocardium contrast. Data acquired using ECG-triggered, segmented sequences during the approach to steady-state, or return to steady-state after interruption, may have ghost artifacts due to periodic k-space distortion. Schemes involving several preparatory RF pulses have been proposed to restore steady-state, but these consume imaging time during early systole. Alternatively, the phased-array ghost elimination (PAGE) method may be used to remove ghost artifacts from the first several frames. PAGE was demonstrated for cardiac cine SSFP imaging with interrupted steady-state using a simple alpha/2 magnetization preparation and storage scheme and a spatial tagging preparation. PMID:12465121
Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2
Sundquist, E.T.
1991-01-01
Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.
Ray Tracing for Doppler Backscattering System in the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Zhou, Chu; Liu, Adi; Hu, Jianqiang; Wang, Mingyuan; Zhang, Xiaohui; Li, Hong; Yu, Changxuan; Liu, Wandong; Lan, Tao; Xie, Jinlin
2015-09-01
The Doppler backscattering system has been widely used for turbulence measurements, and the microwave beam will be backscattered near the cut-off layer when the Brag condition is fulfilled. In tokamak, the ray-tracing code is used to obtain the radial position and perpendicular wave number of the scattering layer for turbulence velocity measurement and the WKB (Wentzel-Kramers-Brillouin) approximation should be satisfied for optical propagation. To calculate the backscattering location and wave number at the cut-off layer only, a single ray tracing in the cross section is enough, while for spatial and wave number resolution calculation, multiple rays reflecting the microwave beam size should be used. Considering the angle between the wave vector and the magnetic field, a three-dimension quasi-optical Gaussian ray tracing is sometimes needed. supported by National Natural Science Foundation of China (Nos. 10990211 and 11105146) and the ITER-CN Project, 973 Program of China (No. 2013GB106002)
Advanced methods in global gyrokinetic full f particle simulation of tokamak transport
Ogando, F.; Heikkinen, J. A.; Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.
2006-11-30
A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.
Efficient Steady-State Solution Techniques for Variably Saturated Groundwater Flow
NASA Astrophysics Data System (ADS)
Farthing, M. W.; Kees, C. E.; Coffey, T. S.; Kelley, C. T.; Miller, C. T.
2002-12-01
We consider the simulation of steady-state variably saturated groundwater flow using Richards' equation. The difficulties associated with solving Richards' equation numerically are well known. Most discretization approaches for Richards' equation lead to nonlinear systems that are large and difficult to solve. The solution of nonlinear systems for steady-state problems can be particularly challenging, since a good initial guess for the steady-state solution is often hard to obtain, and the resulting linear systems may be poorly scaled. Common approaches like modified Picard iteration or variations of Newton's method have their advantages but perform poorly with standard globalization techniques under certain conditions. Pseudo-transient continuation has been used in computational fluid dynamics for some time to obtain steady-state solutions for problems in which Newton's method with standard line-search strategies fails. It combines aspects of backward Euler time integration and Newton's method to select intermediate estimates of the steady-state solution. In this work, we examine the use of pseudo-transient continuation methods for Richards' equation. We evaluate their performance for steady-state problems in heterogeneous domains by comparing them with Newton's method using standard globalization techniques. We investigate the methods' performance with both direct and preconditioned Krylov iterative linear solvers. We then make recommendations for robust and efficient approaches to obtain steady-state solutions for Richards' equation under a variety of conditions.
An overview of results from the TCV tokamak
NASA Astrophysics Data System (ADS)
Goodman, T. P.; Ahmed, S. M.; Alberti, S.; Andrèbe, Y.; Angioni, C.; Appert, K.; Arnoux, G.; Behn, R.; Blanchard, P.; Bosshard, P.; Camenen, Y.; Chavan, R.; Coda, S.; Condrea, I.; Degeling, A.; Duval, B. P.; Etienne, P.; Fasel, D.; Fasoli, A.; Favez, J.-Y.; Furno, I.; Henderson, M.; Hofmann, F.; Hogge, J.-P.; Horacek, J.; Isoz, P.; Joye, B.; Karpushov, A.; Klimanov, I.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Manini, A.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Martynov, An.; Mayor, J.-M.; Mlynar, J.; Moret, J.-M.; Nelson-Melby, E.; Nikkola, P.; Paris, P. J.; Perez, A.; Peysson, Y.; Pitts, R. A.; Pochelon, A.; Porte, L.; Raju, D.; Reimerdes, H.; Sauter, O.; Scarabosio, A.; Scavino, E.; Seo, S. H.; Siravo, U.; Sushkov, A.; Tonetti, G.; Tran, M. Q.; Weisen, H.; Wischmeier, M.; Zabolotsky, A.; Zhuang, G.
2003-12-01
The Tokamak à Configuration Variable (TCV) tokamak (R = 0.88 m, a < 0.25 m, B < 1.54 T) programme is based on flexible plasma shaping and heating for studies of confinement, transport, control and power exhaust. Recent advances in fully sustained off-axis electron cyclotron current drive (ECCD) scenarios have allowed the creation of plasmas with high bootstrap fraction, steady-state reversed central shear and an electron internal transport barrier. High elongation plasmas, kgr = 2.5, are produced at low normalized current using far off-axis electron cyclotron heating and ECCD to broaden the current profile. Third harmonic heating is used to heat the plasma centre where the second harmonic is in cut-off. Both second and third harmonic heating are used to heat H-mode plasmas, at the edge and centre, respectively. The ELM frequency is decreased by the additional power. In separate experiments, the ELM frequency can be affected by locking to an external perturbation current in the internal coils of TCV. Spatially resolved current profiles are measured at the inner and outer divertor targets by Langmuir probe arrays during ELMs. The strong, reasonably balanced currents are thought to be thermoelectric in origin.
Magnetic confinement experiment -- 1: Tokamaks
Goldston, R.J.
1994-12-31
This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.
The condensation of ampholytes in steady state moving boundaries - Analysis by computer simulation
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Thormann, Wolfgang
1986-01-01
A digital simulation of the behavior of amphoteric sample components in moving steady state boundaries is presented. Complete computer simulation data, including profiles of concentration, conductivity and pH as functions of time, are given for both cationic and anionic electrolyte configurations which incorporate one amphoteric sample constituent. The condensation of ampholytes in steady state moving boundaries is shown to proceed via an isotachophoretic mechanism and not by isoelectric focusing. Mobility (velocity) relationships necessary for sample components to form steady state zones are discussed.
Chirp and Click Evoked Auditory Steady State Responses
2007-11-02
state evoked potentials: A new tool for the accurate assessment of hearing in cochlear implant candidates. Advances in Otorhinolaryngology, 1993. 48...State Responses (ASSR) to 100 µsec clicks and 4 msec cochlear chirps are recorded in adult subjects at repetition rates of 20 to 100 Hz in 10 Hz...differences in the cochlea according to the DeBoer’s cochlear model [14] in order to determine if it will generate better ASSR. We also attempted to
Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.
Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A
2000-01-01
A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.
A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway.
Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K
2013-01-01
Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.
Spin-locked balanced steady-state free-precession (slSSFP).
Witschey, Walter R T; Borthakur, Ari; Elliott, Mark A; Magland, Jeremy; McArdle, Erin L; Wheaton, Andrew; Reddy, Ravinder
2009-10-01
A spin-locked balanced steady-state free-precession (slSSFP) pulse sequence is described that combines a balanced gradient-echo acquisition with an off-resonance spin-lock pulse for fast MRI. The transient and steady-state magnetization trajectory was solved numerically using the Bloch equations and was shown to be similar to balanced steady-state free-precession (bSSFP) for a range of T(2)/T(1) and flip angles, although the slSSFP steady-state could be maintained with considerably lower radio frequency (RF) power. In both simulations and brain scans performed at 7T, slSSFP was shown to exhibit similar contrast and signal-to-noise ratio (SNR) efficiency to bSSFP, but with significantly lower power.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Cardella, A; Erckmann, V.; Gantenbein, G; Hathiramani, D; Kasparek, W; Klinger, T.; Koenig, R; Kornejew, P; Laqua, H P; Lechte, C; Michel, G; Peacock, A.; Sunn Pedersen, T; Thumm, M; Turkin, Yu.; Wegener, Lutz; Werner, A.; Zhang, D; Beidler, C.; Bozhenkov, S.; Brown, T.; Geiger, J.; Harris, Jeffrey H; Heitzenroeder, P.; Lumsdaine, Arnold; Maassberg, H.; Marushchenko, N B; Neilson, G. H.; Otte, M; Rummel, Thomas; Spong, Donald A; Tretter, Jorg
2013-01-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
On the theory of steady-state crystallization with a non-equilibrium mushy layer
NASA Astrophysics Data System (ADS)
Alexandrov, D. V.; Alexandrova, I. V.; Ivanov, A. A.
2016-12-01
Complete analytical solutions of nonlinear equations describing the steady-state directional crystallization of binary melts with a nonequilibrium mushy layer, where the processes of nucleation and growth of crystals occur, are constructed.
Quasi steady-state aerodynamic model development for race vehicle simulations
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Decoding of the sound frequency from the steady-state neural activities in rat auditory cortex.
Shiramatsu, Tomoyo I; Noda, Takahiro; Kanzaki, Ryohei; Takahashi, Hirokazu
2013-01-01
In the auditory cortex, onset activities have been extensively investigated as a cortical representation of sound information such as sound frequency. Yet, less attention has been paid to date to steady-state activities following the onset activities. In this study, we used machine learning to investigate whether steady-state activities in the presence of continuous sounds represent the sound frequency. Sparse Logistic Regression (SLR) decoded the sound frequency from band specific power or phase locking value (PLV) of local field potentials (LFP) from the fourth layer of the auditory cortex of anesthetized rats. Consequently, we found that SLR was able to decode the sound frequency from steady-state neural activities as well as onset activities. This result demonstrates that the steady-state activities contain information about the sound such as sound frequency.
Steady-state existence of passive vector fields under the Kraichnan model.
Arponen, Heikki
2010-03-01
The steady-state existence problem for Kraichnan advected passive vector models is considered for isotropic and anisotropic initial values in arbitrary dimension. The models include the magnetohydrodynamic (MHD) equations, linear pressure model, and linearized Navier-Stokes (LNS) equations. In addition to reproducing the previously known results for the MHD model, we obtain the values of the Kraichnan model roughness parameter xi for which the LNS steady state exists.
Steady-state ab initio laser theory for N-level lasers.
Cerjan, Alexander; Chong, Yidong; Ge, Li; Stone, A Douglas
2012-01-02
We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state.
Bifurcation analysis of steady-state flows in the lid-driven cavity
NASA Astrophysics Data System (ADS)
Nuriev, A. N.; Egorov, A. G.; Zaitseva, O. N.
2016-12-01
The paper is devoted to the study of the non-uniqueness issues of a steady-state flow in the square lid-driven cavity. A range 0\\lt {Re} \\lt 20000 of Reynolds numbers is considered in which a numerical bifurcation analysis is carried out. The analysis allows us to localize several branches of the steady-state solution and also to investigate their stability.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator
Asjad, Muhammad; Saif, Farhan
2011-09-15
We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.
Steady-state 2. pi. pulses under conditions of passive locking of laser modes
Komarov, K.P.; Ugozhaev, V.D.
1984-06-01
A theoretical study is made of laser mode locking in the regime of self-induced transparency of a passive filter. It is shown that there is a solution in the form of ultrashort steady-state 2..pi.. pulses. The range of stability of this regime and its characteristics are determined. By way of example, estimates are obtained of parameters of a steady-state pulse emitted by an alexandrite laser with a potassium absorption cell.
The effect of oxygen on denitrification during steady-state growth of Paracoccus halodenitrificans
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Betlach, M.; Kritikos, G.
1984-01-01
Steady-state cultures of Paracoccus halodenitrificans were grown anaerobically prior to establishing steady states at different concentrations of oxygen. In the absence of oxygen, nitrate-limited cultures produced dinitrogen, and as the oxygen supply increased, these cultures produced nitrous oxide, then nitrite. These changes reflected two phenomena: the inactivation of nitrous oxide reductase by oxygen and the diversion of electrons from nitrite to oxygen.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Steady state effects in a two-pulse diffusion-weighted sequence
Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S.; Stilbs, Peter
2015-04-21
In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state.
Steady state multiplicity of two-step biological conversion systems with general kinetics.
Volcke, E I P; Sbarciog, M; Noldus, E J L; De Baets, B; Loccufier, M
2010-12-01
This study analyses the steady state behaviour of biological conversion systems with general kinetics, in which two consecutive reactions are carried out by two groups of micro-organisms. The model considered is a realistic description of wastewater treatment processes. A step-wise procedure is followed to reveal the mechanisms affecting the occurrence of steady states in terms of the process input variables. It is clearly demonstrated how taking into account inhibition effects by simply including additional inhibition terms to the kinetic expressions, a common practice, influences the model's long term behaviour. The overall steady state behaviour of the model has been summarized in easy-to-interpret operating diagrams, depicting the occurrence of steady states in terms of the reactor dilution rate and the influent substrate concentration, with well-defined boundaries between distinct operating regions. This knowledge is crucial for modelers as steady state multiplicity--in the sense that more than one steady state can be reached depending on the initial conditions--may remain undetected during simulation. The obtained results may also serve for experimental design and for model validation based on experimental findings.
Efficient steady-state solution techniques for variably saturated groundwater flow
NASA Astrophysics Data System (ADS)
Farthing, Matthew W.; Kees, Christopher E.; Coffey, Todd S.; Kelley, C. T.; Miller, Cass T.
We consider the simulation of steady-state variably saturated groundwater flow using Richards' equation (RE). The difficulties associated with solving RE numerically are well known. Most discretization approaches for RE lead to nonlinear systems that are large and difficult to solve. The solution of nonlinear systems for steady-state problems can be particularly challenging, since a good initial guess for the steady-state solution is often hard to obtain, and the resulting linear systems may be poorly scaled. Common approaches like Picard iteration or variations of Newton's method have their advantages but perform poorly with standard globalization techniques under certain conditions. Pseudo-transient continuation has been used in computational fluid dynamics for some time to obtain steady-state solutions for problems in which Newton's method with standard line-search strategies fails. Here, we examine the use of pseudo-transient continuation as well as Newton's method combined with standard globalization techniques for steady-state problems in heterogeneous domains. We investigate the methods' performance with direct and preconditioned Krylov iterative linear solvers. We then make recommendations for robust and efficient approaches to obtain steady-state solutions for RE under a range of conditions.
Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling
NASA Astrophysics Data System (ADS)
Günther, R.-M.; Salzer, K.; Popp, T.; Lüdeling, C.
2015-11-01
Actual problems in geotechnical design, e.g., of underground openings for radioactive waste repositories or high-pressure gas storages, require sophisticated constitutive models and consistent parameters for rock salt that facilitate reliable prognosis of stress-dependent deformation and associated damage. Predictions have to comprise the active mining phase with open excavations as well as the long-term development of the backfilled mine or repository. While convergence-induced damage occurs mostly in the vicinity of openings, the long-term behaviour of the backfilled system is dominated by the damage-free steady-state creep. However, because in experiments the time necessary to reach truly stationary creep rates can range from few days to years, depending mainly on temperature and stress, an innovative but simple creep testing approach is suggested to obtain more reliable results: A series of multi-step tests with loading and unloading cycles allows a more reliable estimate of stationary creep rate in a reasonable time. For modelling, we use the advanced strain-hardening approach of Günther-Salzer, which comprehensively describes all relevant deformation properties of rock salt such as creep and damage-induced rock failure within the scope of an unified creep ansatz. The capability of the combination of improved creep testing procedures and accompanied modelling is demonstrated by recalculating multi-step creep tests at different loading and temperature conditions. Thus reliable extrapolations relevant to in-situ creep rates (10^{-9} to 10^{-13} s^{-1}) become possible.
Analysis of PANDA Passive Containment Cooling Steady-State Tests with the Spectra Code
Stempniewicz, Marek M
2000-07-15
Results of post test simulation of the PANDA passive containment cooling (PCC) steady-state tests (S-series tests), performed at the PANDA facility at the Paul Scherrer Institute, Switzerland, are presented. The simulation has been performed using the computer code SPECTRA, a thermal-hydraulic code, designed specifically for analyzing containment behavior of nuclear power plants.Results of the present calculations are compared to the measurement data as well as the results obtained earlier with the codes MELCOR, TRAC-BF1, and TRACG. The calculated PCC efficiencies are somewhat lower than the measured values. Similar underestimation of PCC efficiencies had been obtained in the past, with the other computer codes. To explain this difference, it is postulated that condensate coming into the tubes forms a stream of liquid in one or two tubes, leaving most of the tubes unaffected. The condensate entering the water box is assumed to fall down in the form of droplets. With these assumptions, the results calculated with SPECTRA are close to the experimental data.It is concluded that the SPECTRA code is a suitable tool for analyzing containments of advanced reactors, equipped with passive containment cooling systems.
An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels.
Diamonti, A John; Guy, Pamela M; Ivanof, Caryn; Wong, Karen; Sweeney, Colleen; Carraway, Kermit L
2002-03-05
Despite numerous recent advances in our understanding of the molecular mechanisms underlying receptor tyrosine kinase down-regulation and degradation in response to growth factor binding, relatively little is known about ligand-independent receptor tyrosine kinase degradation mechanisms. In a screen for proteins that might regulate the trafficking or localization of the ErbB3 receptor, we have identified a tripartite or RBCC (RING, B-box, coiled-coil) protein that interacts with the cytoplasmic tail of the receptor in an activation-independent manner. We have named this protein Nrdp1 for neuregulin receptor degradation protein-1. Northern blotting reveals ubiquitous distribution of Nrdp1 in human adult tissues, but message is particularly prominent in heart, brain, and skeletal muscle. Nrdp1 interacts specifically with the neuregulin receptors ErbB3 and ErbB4 and not with epidermal growth factor receptor or ErbB2. When coexpressed in COS7 cells, Nrdp1 mediates the redistribution of ErbB3 from the cell surface to intracellular compartments and induces the suppression of ErbB3 and ErbB4 receptor levels but not epidermal growth factor receptor or ErbB2 levels. A putative dominant-negative form of Nrdp1 potentiates neuregulin-stimulated Erk1/2 activity in transfected MCF7 breast tumor cells. Our observations suggest that Nrdp1 may act to regulate steady-state cell surface neuregulin receptor levels, thereby influencing the efficiency of neuregulin signaling.
An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels
Diamonti, A. John; Guy, Pamela M.; Ivanof, Caryn; Wong, Karen; Sweeney, Colleen; Carraway, Kermit L.
2002-01-01
Despite numerous recent advances in our understanding of the molecular mechanisms underlying receptor tyrosine kinase down-regulation and degradation in response to growth factor binding, relatively little is known about ligand-independent receptor tyrosine kinase degradation mechanisms. In a screen for proteins that might regulate the trafficking or localization of the ErbB3 receptor, we have identified a tripartite or RBCC (RING, B-box, coiled–coil) protein that interacts with the cytoplasmic tail of the receptor in an activation-independent manner. We have named this protein Nrdp1 for neuregulin receptor degradation protein-1. Northern blotting reveals ubiquitous distribution of Nrdp1 in human adult tissues, but message is particularly prominent in heart, brain, and skeletal muscle. Nrdp1 interacts specifically with the neuregulin receptors ErbB3 and ErbB4 and not with epidermal growth factor receptor or ErbB2. When coexpressed in COS7 cells, Nrdp1 mediates the redistribution of ErbB3 from the cell surface to intracellular compartments and induces the suppression of ErbB3 and ErbB4 receptor levels but not epidermal growth factor receptor or ErbB2 levels. A putative dominant-negative form of Nrdp1 potentiates neuregulin-stimulated Erk1/2 activity in transfected MCF7 breast tumor cells. Our observations suggest that Nrdp1 may act to regulate steady-state cell surface neuregulin receptor levels, thereby influencing the efficiency of neuregulin signaling. PMID:11867753
NASA Astrophysics Data System (ADS)
Stacey, C.; Simpkin, A. J.; Jarrett, R. N.
2016-11-01
The National Physical Laboratory (NPL) has developed a new variation on the established guarded hot plate technique for steady-state measurements of thermal conductivity. This new guarded hot plate has been specifically designed for making measurements on specimens with a thickness that is practical for advanced industrial composite materials and applications. During the development of this new guarded hot plate, NPL carried out an experimental investigation into methods for minimising the thermal contact resistance between the test specimen and the plates of the apparatus. This experimental investigation included tests on different thermal interface materials for use in another NPL facility based on a commercial guarded heat flow meter apparatus conforming to standard ASTM E1530-11. The results show the effect of applying different quantities of the type of heat transfer compound suggested in ASTM E1530-11 (clause 10.7.3) and also the effect on thermal resistance of alternative types of thermal interface products. The optimum quantities of two silicone greases were determined, and a silicone grease filled with copper was found to offer the best combination of repeatability, small hysteresis effect and a low thermal contact resistance. However, two products based on a textured indium foil and pyrolytic graphite sheet were found to offer similar or better reductions in thermal contact resistance, but with quicker, easier application and the advantages of protecting the apparatus plates from damage and being useable with specimen materials that would otherwise absorb silicone grease.
Steady-State and Kinetics-Based Affinity Determination in Effector-Effector Target Interactions.
Reinhard, André; Nürnberger, Thorsten
2017-01-01
Dissecting the functional basis of pathogenicity and resistance in the context of plant innate immunity benefits greatly from detailed knowledge about biomolecular interactions, as both resistance and virulence depend on specific interactions between pathogen and host biomolecules. While in vivo systems provide biological context to host-pathogen interactions, these experiments typically cannot provide quantitative biochemical characterization of biomolecular interactions. However, in many cases, the biological function does not only depend on whether an interaction occurs at all, but rather on the "intensity" of the interaction, as quantified by affinity. Specifically, microbial effector proteins may bind more than one host target to exert virulence functions, and looking at these interactions more closely than would be possible in a purely black-and-white qualitative assay (as classically based on plant or yeast systems) can reveal new insights into the evolutionary arms race between host and pathogen. Recent advances in biomolecular interaction assays that can be performed in vitro allow quantification of binding events with ever greater fidelity and application range. Here, we describe assays based on microscale thermophoresis (MST) and surface plasmon resonance (SPR). Using these technologies allows affinity determination both in steady-state and in kinetic configurations, providing two conceptually independent pathways to arrive at quantitative affinity data describing the interactions of pathogen and host biomolecules.
NASA Astrophysics Data System (ADS)
Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.
2012-10-01
Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.
Estimation of the current driven by residual loop voltage in LHCD plasma on EAST Tokamak
NASA Astrophysics Data System (ADS)
Zhang, X. M.; Yu, L. M.; Wan, B. N.; Xue, E. B.; Fang, Y.; Shi, K. Y.; EAST Team
2016-02-01
The lower hybrid wave current drive (LHCD) is one of the efficient methods of driving the non-inductive current required for Tokamak operating in steady-state. Residual loop voltage exists in Tokamak when the non-inductive current is not fully driven. Residual loop voltage also accelerates the fast electrons generated by the lower hybrid wave (LHW), which can drive extra current and combine with the current driven by the LHW. It is generally difficult to separate these two different components of driven current in the experiment. In this paper, the currents driven by LHCD and residual loop voltage are separated directly by solving the Fokker-Plank equation numerically. The fraction of the current driven by residual loop voltage compared to the current driven by LHW is evaluated on the experimental advanced superconducting tokamak (EAST). The current driven by residual loop voltage is several percent of the currents driven by the LHCD when the residual loop voltage is small, but it increases with the residual loop voltage up to 25% when the residual loop voltage is about 2 V. The hot electrical conductivity is deduced from the net current driven by the residual loop voltage. Its distribution profile is related to the fast electron distribution driven by LHW.
Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.
2015-12-15
It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.
Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing
2016-02-01
Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.
NASA Astrophysics Data System (ADS)
Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Liu, F. K.; Shan, J. F.; Li, J. G.; Wan, B. N.; Wan
2017-02-01
Aiming at a fusion reactor, two issues must be solved for the lower hybrid current drive (LHCD), namely good lower hybrid wave (LHW)-plasma coupling and effective current drive at high density. For this goal, efforts have been made to improve LHW-plasma coupling and current drive capability at high density in experimental advanced superconducting tokamak (EAST). LHW-plasma coupling is improved by means of local gas puffing and gas puffing from the electron side is taken as a routine way for EAST to operate with LHCD. Studies of high density experiments suggest that low recycling and high lower hybrid (LH) frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. With the combination of 2.45 GHz and 4.6 GHz LH waves, a repeatable high confinement mode plasma with maximum density up to 19~\\text{m}-3$ was obtained by LHCD in EAST. In addition, in the first stage of LHCD cyclic operation, an alternative candidate for more economical fusion reactors has been demonstrated in EAST and further work will be continued.
NASA Astrophysics Data System (ADS)
Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing
2017-03-01
Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Rhodes, Terry; Dimits, Andris; Shumaker, Dan
2006-04-01
The PG3EQ_/NC module within the SUMMIT Gyrokinetic PIC FORTRAN90 Framework makes possible 3D nonlinear toroidal computations of ion turbulence in the real geometry of DIII-D discharges. This is accomplished with the use of local, field line following, quasi-ballooning coordinates and through a direct interface with DIII-D equilibrium data via the EFIT and ONETWO codes, as well as Holger Saint John's PLOTEQ code for the (R, Z) position of each flux surface. The effect of real geometry is being elucidated with CYCLONE shot 81499 by comparing results from PGEQ_/NC to those of its circular counterpart. The PG3EQ_/NC module is also being used to model ion channel turbulence in advanced tokamak discharges 118561 and 120327. Linear results will be compared to growth rate calculations with the GKS code. Nonlinear results will also be compared with scattering measurements of turbulence, as well as with accessible measurements of fluctuation amplitudes and spectra from other diagnostics.
ERIC Educational Resources Information Center
Kosman, Daniel J.
2009-01-01
The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…
Helicity content and tokamak applications of helicity
Boozer, A.H.
1986-05-01
Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities.
Development of high poloidal beta, steady-state scenario with ITER-like W divertor on EAST
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Lanctot, M.; Gong, X. Z.; Ding, S.; Li, G.; Liu, H.; Lyu, B.; Qian, J.; Bonoli, P. T.; Shiraiwa, S.; Holcomb, C.; McClenaghan, J.
2016-10-01
Experiments on EAST have started to adapt the fully-noninductive high poloidal beta scenario developed on DIII-D, in order to demonstrate steady state tokamak operation at high performance on metal walls. Unlike on DIII-D, where the creation of a broad current profile requires early heating at low density, on EAST a broad current profile can be obtained simply by increasing the electron density, when most of the current drive is provided by lower hybrid wave. Systematic scans yield lower internal inductance with higher density. The hypothesis is that the LHCD profile becomes more off-axis with higher density. With the newly commissioned POINT (polarimeter-interferometer) diagnostic for q-profile measurements, these experiments enable strict tests of LHCD deposition models. Supported by US DOE under DE-SC0010685, DE-SC0010492 DE-FC02-04ER54698, DE-AC02-09-CH11466, DE-AC52-07NA27344, DE-AC05-00OR22725, and the National Magnetic Confinement Fusion Program of China (No. 2015GB110001 and 2015GB102000).
Steady state, erosional continuity, and the topography of landscapes developed in layered rocks
NASA Astrophysics Data System (ADS)
Perne, Matija; Covington, Matthew D.; Thaler, Evan A.; Myre, Joseph M.
2017-01-01
The concept of topographic steady state has substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. In topographic steady state, erosion rates are equal everywhere, and steepness adjusts to enable equal erosion rates in rocks of different strengths. This conceptual model makes an implicit assumption of vertical contacts between different rock types. Here we hypothesize that landscapes in layered rocks will be driven toward a state of erosional continuity, where retreat rates on either side of a contact are equal in a direction parallel to the contact rather than in the vertical direction. For vertical contacts, erosional continuity is the same as topographic steady state, whereas for horizontal contacts it is equivalent to equal rates of horizontal retreat on either side of a rock contact. Using analytical solutions and numerical simulations, we show that erosional continuity predicts the form of flux steady-state landscapes that develop in simulations with horizontally layered rocks. For stream power erosion, the nature of continuity steady state depends on the exponent, n, in the erosion model. For n = 1, the landscape cannot maintain continuity. For cases where n ≠ 1, continuity is maintained, and steepness is a function of erodibility that is predicted by the theory. The landscape in continuity steady state can be quite different from that predicted by topographic steady state. For n < 1 continuity predicts that channels incising subhorizontal layers will be steeper in the weaker rock layers. For subhorizontal layered rocks with different erodibilities, continuity also predicts larger slope contrasts than in topographic steady state. Therefore, the relationship between steepness and erodibility within a sequence of layered rocks is a function of contact dip. For the subhorizontal limit, the history of layers exposed at base level also influences the steepness-erodibility relationship. If uplift rate
Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.
2015-06-15
The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.
Kondoh, Yoshiomi; Fukasawa, Toshinobu
2009-11-15
Generalized simultaneous eigenvalue equations derived from a generalized theory of self-organization are applied to a set of simultaneous equations for two-fluid model plasmas. An advanced active control by using theoretical time constants is proposed by predicting quantities to be controlled. Typical high beta numerical configurations are presented for the ultra low q tokamak plasmas and the reversed-field pinch (RFP) ones in cylindrical geometry by solving the set of simultaneous eigenvalue equations. Improved confinement with no detectable saw-teeth oscillations in tokamak experiments is reasonably explained by the shortest time constant of ion flow. The shortest time constant of poloidal ion flow is shown to be a reasonable mechanism for suppression of magnetic fluctuations by pulsed poloidal current drives in RFP experiments. The bifurcation from basic eigenmodes to mixed ones deduced from stability conditions for eigenvalues is shown to be a good candidate for the experimental bifurcation from standard RFP plasmas to their improved confinement regimes.
Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik
2015-01-01
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The
Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik
2015-01-01
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The
2014-01-01
Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate
NASA Astrophysics Data System (ADS)
Gedeon, M.; Mallants, D.
2012-04-01
Radionuclide concentration predictions in aquifers play an important role in estimating impact of planned surface disposal of radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF), who also coordinates and leads the corresponding research. Long-term concentration predictions are based on a steady-state flow solution obtained by a cascade of multi-scale models from the catchment to the detailed (site) scale performed in MODFLOW. To test the concept and accuracy of the groundwater flow solution and conservativeness of the concentration predictions obtained therewith, a transient model, considered more realistic, was set up in a sub-domain of the intermediate scale steady-state model. Besides the modelling domain reduction, the transient model was and exact copy of the steady-state model, having the infiltration as the only time-varying parameter. The transient model was run for a twenty-year period, whereas the results were compared to the steady-state results based on infiltration value and observations averaged over the same period. The comparison of the steady-state and transient flow solutions includes the analyses of the goodness of fit, the parameter sensitivities, relative importance of the individual observations and one-percent sensitivity maps. The steady-state and transient flow solutions were subsequently translated into a site-scale transport model, used to predict the radionuclide concentrations in a hypothetical well in the aquifers. The translation of the flow solutions between the models of distinct scales was performed using the Local grid refinement method available in MODFLOW. In the site-scale models, MT3DMS transport simulations were performed to obtain respective concentration predictions in a hypothetical well, situated at 70 meters from the disposal tumuli. The equilibrium concentrations based on a constant source flux achieved using a steady-state solution were then
Archelas, Alain; Zhao, Wei; Faure, Bruno; Iacazio, Gilles; Kotik, Michael
2016-02-01
A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in k(cat) and K(M) values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/K(S)) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate.
Synchronous machine steady-state stability analysis using an artificial neural network
Chen, C.R.; Hsu, Y.Y. . Dept. of Electrical Engineering)
1991-03-01
A new type of artificial neural network is proposed for the steady-state stability analysis of a synchronous generator. In the developed artificial neutral network, those system variables which play an important role in steady-state stability such as generator outputs and power system stabilizer parameters are employed as the inputs. The output of the neural net provides the information on steady-state stability. Once the connection weights of the neural network have been learned using a set of training data derived off-line, the neural net can be applied to analyze the steady-state stability of the system time. To demonstrate the effectiveness of the proposed neural net, steady-state stability analysis is performed on a synchronous generator connected to a large power system. It is found that the proposed neural net requires much less training time than the multilayer feedforward network with backpropagation-momentum learning algorithm. It is also concluded from the test results that correct stability assessment can be achieved by the neural network.
Perception of steady-state vowels and vowelless syllables by adults and children
NASA Astrophysics Data System (ADS)
Nittrouer, Susan
2005-04-01
Vowels can be produced as long, isolated, and steady-state, but that is not how they are found in natural speech. Instead natural speech consists of almost continuously changing (i.e., dynamic) acoustic forms from which mature listeners recover underlying phonetic form. Some theories suggest that children need steady-state information to recognize vowels (and so learn vowel systems), even though that information is sparse in natural speech. The current study examined whether young children can recover vowel targets from dynamic forms, or whether they need steady-state information. Vowel recognition was measured for adults and children (3, 5, and 7 years) for natural productions of /dæd/, /dUd/ /æ/, /U/ edited to make six stimulus sets: three dynamic (whole syllables; syllables with middle 50-percent replaced by cough; syllables with all but the first and last three pitch periods replaced by cough), and three steady-state (natural, isolated vowels; reiterated pitch periods from those vowels; reiterated pitch periods from the syllables). Adults scored nearly perfectly on all but first/last three pitch period stimuli. Children performed nearly perfectly only when the entire syllable was heard, and performed similarly (near 80%) for all other stimuli. Consequently, children need dynamic forms to perceive vowels; steady-state forms are not preferred.
A stability analysis of the power-law steady state of marine size spectra.
Datta, Samik; Delius, Gustav W; Law, Richard; Plank, Michael J
2011-10-01
This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.
Diehl, S; Zambrano, J; Carlsson, B
2016-01-01
A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.
Halász, Adám M; Lai, Hong-Jian; McCabe Pryor, Meghan; Radhakrishnan, Krishnan; Edwards, Jeremy S
2013-01-01
True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady-state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here, we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher-dimensional space. We show that the linearized version of the steady-state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1.
Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws
Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.
2014-01-01
True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389
Joseph, David; Schobelock, Michael J; Riesenberg, Robert R; Vince, Bradley D; Webster, Lynn R; Adeniji, Abidemi; Elgadi, Mabrouk; Huang, Fenglei
2015-01-01
The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC(0-24,ss)), the steady-state maximum concentration of the drug in plasma (C(max,ss)), and the steady-state concentration of the drug in plasma at 24 h (C(24,ss)) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This
NASA Astrophysics Data System (ADS)
Felici, Federico
2012-10-01
Recent experiments on TCV have demonstrated integrated control of the sawtooth and Neoclassical Tearing Mode (NTM) instabilities in a combined preemption-suppression strategy. This strategy is enabled by new sawtooth control methods (sawtooth pacing) in which modulation of sawtooth-stabilizing electron cyclotron power during the sawtooth cycle stimulates the advent of the crash. Rather than controlling the average sawtooth period, the precise timing of each individual crash can now be prescribed. Using this knowledge, efficient preemptive stabilization of NTMs becomes possible by applying power on the rational surface only at the instant of the crash-generating seed island. TCV experiments demonstrate that this approach, reinforced by NTM stabilization as a backup strategy, is effectively failsafe. This opens the road to inductive H-mode scenarios with long sawteeth providing longer inter-crash periods of high density and temperature. Also Edge Localized Modes are susceptible to EC modulation and it is shown that individual ELM events can be controlled using similar techniques. For advanced tokamak scenarios, MHD control is to be combined with optimization and control of the plasma kinetic and magnetic profile evolution in time. Real-time simulation of a physical model (RAPTOR) of current transport, including bootstrap current, neoclassical conductivity and auxiliary current drive, yields complete knowledge of the relevant profiles at any given time. The pilot implementation on TCV shows that these calculations can indeed be done in real-time and the resulting profiles have been included in feedback control schemes. Integration of this model with time-varying equilibria and internal current profile diagnostics provides a new framework for real-time interpretation of diagnostic data for plasma prediction, scenario monitoring, disruption prevention and feedback control.
Wang, Qian; Li, Bincheng
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.
The steady-state visual evoked potential in vision research: A review
Norcia, Anthony M.; Appelbaum, L. Gregory; Ales, Justin M.; Cottereau, Benoit R.; Rossion, Bruno
2015-01-01
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science. PMID:26024451
Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores
NASA Astrophysics Data System (ADS)
Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.
2003-12-01
Iron is an essential micronutrient for almost all known organisms. Bacteria, fungi, and graminaceous plants are capable of exuding siderophores as part of an iron acquisition strategy. The production of these strong iron chelating ligands is induced by iron limited conditions. Grasses under iron stress, for example, exude phytosiderophores into the rhizosphere in a special diurnal rhythm (Roemheld and Marschner 1986). A few hours after sunrise the exudation starts, culminates around noon and is shut down again until about 4 hours after noon. The phytosiderophores diffuse into the rhizosphere (Marschner et al. 1986) and are passively back transported to the plants by advective flow induced by high transpiration around noon. Despite a fairly short residence time of the phytosiderophores in the rhizosphere, it is a very effective strategy for iron acquisition. To investigate the effect of such pulse inputs of siderophores on iron acquisition, we studied the dissolution mechanism of goethite (alpha-FeOOH), a mineral phase common in soils, under non-steady state conditions. In consideration of the chemical complexity of the rhizosphere, we also investigated the effect of other organic ligands commonly found in the rhizosphere (e. g. oxalate) on the dissolution kinetics. The dissolution experiments were conducted in batch reactors with a constant goethite solids concentration of 2.5 g/l, an ionic strength of 0.01 M, a pH of 6 and 100 microM oxalate. To induce non-steady state conditions, 3 mM phytosiderophores were added to a batch after the goethite-oxalate suspension reacted for a certain time period. Before the siderophore was added to the goethite-oxalate suspension, no dissolution of iron was observed. But, with the addition of the siderophore, a high rate was observed for the iron mobilization under these non-steady state conditions that subsequently was followed by a slow steady state dissolution rate. The results of these non-steady state experiments are very
NASA Astrophysics Data System (ADS)
Jazaei, Farhad; Simpson, Matthew J.; Clement, T. Prabhakar
2017-01-01
The diffusion equation is one of the most commonly used models for describing environmental problems involving heat, solute, and water transport. A diffusive system can be either transient or steady state. When a system is transient, the dependent variable (e.g., temperature, concentration, or hydraulic head) varies with time; whereas at steady state, the temporal variations are negligible. Here we consider an intermediate state, called steady shape, corresponding to the situation where temporal variations in diffusive fluxes are negligible but the dependent variable may remain transient. We present a general theoretical framework for identifying steady shape conditions and propose a novel method for evaluating the time scale needed for a diffusive system to approach both steady shape and steady state conditions.
Exact steady state manifold of a boundary driven spin-1 Lai-Sutherland chain
NASA Astrophysics Data System (ADS)
Ilievski, Enej; Prosen, Tomaž
2014-05-01
We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai-Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl2 and a non-nilpotent radical) and hints to a novel Yang-Baxter integrability structure.
Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance.
Fernández, Adolfo A; Cabal, Carlos A; Lores, Manuel A; Losada, Jorge; Pérez, Enrique R
2009-01-01
The delay time of the Hb S polymerization process was investigated in 63 patients with sickle cell disease during steady state and 10 during painful crisis starting from spin-spin proton magnetic resonance (PMR) time behavior measured at 36 degrees C and during spontaneous deoxygenation. We found a significant decrease of delay time as a result of the crisis (36 +/- 10%) and two well-differentiated ranges of values for each state: 273-354 min for steady state and 166-229 min for crisis with an uncertainty region of 15%. It is possible to use PMR as an objective and quantitative method in order to differentiate both clinical conditions of the sickle cell patient, but a more clear differentiation can be established comparing the delay time (td) value of one patient during crisis with his own td value during steady state.
Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji
2015-01-01
The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.
Steady-state solutions of a diffusive energy-balance climate model and their stability
NASA Technical Reports Server (NTRS)
Ghil, M.
1975-01-01
A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.
Current Control in ITER Steady State Plasmas With Neutral Beam Steering
R.V. Budny
2009-09-10
Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.
Exact Nonequilibrium Steady State of a Strongly Driven Open XXZ Chain
NASA Astrophysics Data System (ADS)
Prosen, Tomaž
2011-09-01
An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair of Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator of a finite system of size n is—apart from a normalization constant—a polynomial of degree 2n-2 in the coupling constant. Efficient computation of physical observables is facilitated in terms of a transfer operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, 1/n2 scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)PRLTAO0031-900710.1103/PhysRevLett.106.217206].
Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.
2015-01-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271
Mass transport in salt repositories: Steady-state transport through interbeds
Hwang, Y.; Lee, W.W.-L.; Chambre, P.L.; Pigford, T.H. . Dept. of Nuclear Engineering)
1989-03-01
Salt has long been a candidate for geologic disposal of nuclear waste. Because salt is extremely soluble in water, the existence of rock salt in the ground atest to the long-term stability of the salt. Both bedded salt and salt domes have been considered for nuclear waste disposal in the United States and Europe. While the salt is known to be quite pure in salt domes, bedded salt is interlaced with beds of sediments. Traditionally rock salt has not been considered water-conducting, but sediments layers would be classical porous media, capable of conducting water. Therefore there is interest in determining whether interbeds in bedded salt constitute pathway for radionuclide migration. In this report we consider steady-state migration of radionuclides from a single waste cylinder into a single interbed. Two approaches are used. In 1982 Neretnieks proposed an approach for calculating the steady-state transport of oxidants to a copper container. We have adapted that approach for calculating steady-state radionuclide migration away from the waste package, as a first approximation. We have also analyzed the problem of time-dependent radionuclide diffusion from a container through a backfill layer into a fracture, and we used the steady-state solution from that problem for comparison. Section 2 gives a brief summary of the geology of interbeds in bedded salt. Section 3 presents the mass transfer resistances approach of Neretnieks, summarizing the formulation and giving numerical illustrations of the steady-state two-dimensional diffusion analysis. Section 4 gives a brief statement of the steady-state result from a related analysis. Conclusions are stated in Section 5. 13 refs., 5 figs., 2 tabs.
Online Use of Physically Based Plasticity Models for Steady State Cold Rolling Processes
NASA Astrophysics Data System (ADS)
Decroos, Koen; Seefeldt, Marc
2013-12-01
A procedure has been developed to incorporate computationally costly physically based crystal plasticity models to calculate texture and anisotropy for steady state forming processes online. When using these models, at every point in the deformed zone, an average and a nonlinear solution procedure for stresses and/or strains in all these grains is required. The online calculation cost is avoided by offline creating a database with texture and anisotropy data for all possible deformation modes of the process. The case studied is a cold rolling process, but can easily be extended to any type of forming process, when the deformation field is known in advance. Textures and anisotropy data are predicted using a viscoplastic self-consistent model, but the method is suitable for any kind of crystal plasticity model. Single crystal plastic parameters, such as the critical resolved shear stress, the single crystal hardening parameters, and the strain-rate sensitivity, have been calibrated based on mechanical tests by means of a direct search simplex algorithm. The online calculated deformation history is compared to the histories stored in the database and the best match is selected. The deformation history is divided in two zones, the one before the neutral point where forward shearing occurs and the one after the neutral point where backward shearing occurs. One online deformation generation and selection procedure requires 0.005 s of CPU time for a database with a division in deformation gradients fine enough to accurately cover all deformations. The method allows calculating yield surfaces at any point in space based on microstructural effects modeled by crystal plasticity, without incremental material updating and necessity to define a kinematic and isotropic hardening, which makes the method suitable for fast models to calculate rolling forces and torques online.
Research on steady-state visual evoked potentials in 3D displays
NASA Astrophysics Data System (ADS)
Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.
2015-05-01
Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
S3C: EBT Steady-State Shooting code description and user's guide
Downum, W.B.
1983-09-01
The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code.
A quaternionic map for the steady states of the Heisenberg spin-chain
NASA Astrophysics Data System (ADS)
Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu
2014-01-01
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
Mass-Radius Spirals for Steady State Families of the Vlasov-Poisson System
NASA Astrophysics Data System (ADS)
Ramming, Tobias; Rein, Gerhard
2017-02-01
We consider spherically symmetric steady states of the Vlasov-Poisson system, which describe equilibrium configurations of galaxies or globular clusters. If the microscopic equation of state, i.e., the dependence of the steady state on the particle energy (and angular momentum) is fixed, a one-parameter family of such states is obtained. In the polytropic case the mass of the state along such a one-parameter family is a monotone function of its radius. We prove that for the King, Woolley-Dickens, and related models this mass-radius relation takes the form of a spiral.
Steady-state creep of complexly reinforced shallow metal-composite shells
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2010-05-01
The problem of deformation of shallow shells of variable thickness reinforced with fibers of constant cross section, whose all phases operate under the conditions of steady-state creep, is formulated. The system of resolving equations and the corresponding boundary conditions are analyzed, and the procedure for solving this problem is developed. A way of approximate solution of such problems in the case of transient creep is indicated. The particular calculations performed show that the compliance of thin-walled structures, under the conditions of steady-state creep, greatly depends on the structure of reinforcement.
Three-state, steady-state Ising systems: Monte Carlo and Bragg-Williams treatments
Hill, Terrell L.; Chen, Yi-Der
1981-01-01
In two earlier papers, the steady-state critical and phase-transition properties of a lattice of three-state enzyme molecules were studied by using the “closed” Bragg-Williams (BW), or mean field, approximation. The “open” BW and Monte Carlo methods are applied to the same problem in this paper by using finite lattices. The open BW treatment provides a way of locating the cut across a van der Waals type of loop encountered in a phase transition in the closed BW system. Thermodynamic-like methods cannot be used for this purpose as they can with two-state, steady-state systems. PMID:16592956
Non-equilibrium steady states: fluctuations and large deviations of the density and of the current
NASA Astrophysics Data System (ADS)
Derrida, Bernard
2007-07-01
These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow us to calculate the fluctuations and large deviations of the density and the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example, non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.
Ng, P K
1980-07-01
This paper describes the use of a programmable calculator (HP-97) to determine the individualized Michaelis-Menten parameters of phenytoin by utilising the linear regression technique in fitting data of multiple doses and corresponding steady-state concentrations to a linear-transformed Michaelis-Menten equation and solving for the Michaelis-Menten parameters. In addition, the calculator program can predict the corresponding steady-state concentration of phenytoin for any given dose used in an individual by employing the derived Michaelis-Menten parameters and the Michaelis-Menten equation.
Spectral characteristics of steady-state Lévy flights in confinement potential profiles
NASA Astrophysics Data System (ADS)
Kharcheva, A. A.; Dubkov, A. A.; Dybiec, B.; Spagnolo, B.; Valenti, D.
2016-05-01
The steady-state correlation characteristics of superdiffusion in the form of Lévy flights in one-dimensional confinement potential profiles are investigated both theoretically and numerically. Specifically, for Cauchy stable noise we calculate the steady-state probability density function for an infinitely deep rectangular potential well and for a symmetric steep potential well of the type U(x)\\propto {{x}2m} . For these potential profiles and arbitrary Lévy index α, we obtain the asymptotic expression of the spectral power density.
Transient and steady-state velocity of domain walls for a complete range of drive fields
NASA Technical Reports Server (NTRS)
Bourne, H. C., Jr.; Bartran, D. S.
1974-01-01
Approximate analytic solutions for transient and steady-state 180 deg domain wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by a computer solution of the torque equation and those obtained with the assumption of a very large anisotropy field.
Characterization of polyester films used in capacitors. 1: Transient and steady-state conductivity
NASA Astrophysics Data System (ADS)
Thielen, A.; Niezette, J.; Feyder, G.; Vanderschueren, J.
1994-10-01
Charging and discharging currents flowing through polyethylene terephthalate (PET) ultrathin films (1.5 - 12 micrometers) were measured by the use of a two-electrode configuration involving opposite lateral contacts. A study of the influence of electrification time, applied electric field, film thickness, nature of electrodes, and water content was carried out on both transient and steady-state conduction. The transient behavior can be interpreted in terms of dipolar orientation and relaxation processes while steady-state conductivity can be mainly accounted for in terms of Schottky emission. A comparison between PET and polyethylene naphthalate films is also reported.
Robust control of long-pulse, high performance plasmas in KSTAR tokamak
NASA Astrophysics Data System (ADS)
Jeon, Youngmu; Hahn, S. H.; Han, H. S.; Woo, M. H.; Joung, M.; Kim, Jayhyun; Bae, Y. S.; Kim, H.-S.; Yoon, S. W.; Oh, Y. K.; Na, Y. S.; Eidietis, N. W.; Walker, M. L.; Lanctot, M. J.; Hyatt, A. W.; Mueller, D. A.; Kstar Team
2016-10-01
The goal of KSTAR is to achieve and demonstrate high performance, steady state tokamak operations in long pulse up to 300 s. In recent years, we made significant progresses on plasma control and performance for this advanced tokamak (AT) operation. First of all, the plasma equilibrium magnetic control has been substantially improved by applying fully decoupled multi-input-multi-output (MIMO) isoflux shape controllers [1]. The MIMO shape controllers were designed using a newly developed design method by taking the plasma equilibrium response into account self-consistently. More than eight shape control variables including plasma currents are controlled independently on each other with high accuracy (less than 1cm error on average) and with wide variations of plasma shape. By virtue of this robust control, various long pulse H-mode discharges have been operated up to 60 s, which was the maximum pulse length allowable in current KSTAR system. Also, plasma performance has been improved accordingly. A fully non-inductive H-mode operation [1] was achieved for the first time in KSTAR, through the so-called `high betap' operation with betap 3.0. In addition, various experimental attempts for advanced scenario development have been conducted such as the `hybrid' [2] and `high li' scenarios[3].
Transient and steady state photoelectronic analysis in TlInSe{sub 2} crystals
Qasrawi, A.F.; Gasanly, N.M.
2011-08-15
Highlights: {yields} The steady state and time dependent photoconductivity kinetics of the TlInSe{sub 2} crystals are investigated in the temperature region of 100-350 K. {yields} The photocurrent of the sample exhibited linear, sublinear, and supralinear recombination mechanisms, at, above and below 160 K, respectively. {yields} Steady state photoconductivity revealed two recombination centres located at 234 and 94 meV. {yields} The transient photoconductivity is limited by a trapping center located at 173 meV. {yields} The capture coefficient of the trap for holes was determined as 3.11 x 10{sup -22} cm{sup -2}. -- Abstract: The temperature and illumination effects on the transient and steady state photoconductivities of TlInSe{sub 2} crystals have been studied. Namely, two recombination centres located at 234 and at 94 meV and one trap center located at 173 meV were determined from the temperature-dependent steady state and transient photoconductivities, respectively. The illumination dependence of photoconductivity indicated the domination of sublinear and supralinear recombination mechanisms above and below 160 K, respectively. The change in the recombination mechanism is attributed to the exchange of roles between the linear recombination at the surface and trapping centres in the crystal, which become dominant as temperature decreases. The transient photoconductivity measurement allowed the determination of the capture coefficient of traps for holes as 3.11 x 10{sup -22} cm{sup -2}.
Quantifying biases in non-steady state chamber measurements of soil-atmosphere gas exchange
Technology Transfer Automated Retrieval System (TEKTRAN)
Limitations of non-steady state (NSS) chamber methods for determining soil-to-atmosphere trace gas exchange rates have been recognized for several decades. Of these limitations, the so-called “chamber effect” is one of the most challenging to overcome. The chamber effect can be defined as the inhere...
40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition..., command a linear progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine...
40 CFR 86.1362 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0. 1b Transition 20 Linear Transition Linear Transition... transition phase, command a linear progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at...
40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Torque(percent) 2,3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition... progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine speed. (c) During...
40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Torque(percent) 2,3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition... progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine speed. (c) During...
40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition..., command a linear progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine...
40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Torque(percent) 2,3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition... progression from the speed or torque setting of the current mode to the speed or torque setting of the next mode. 3 The percent torque is relative to maximum torque at the commanded engine speed. (c) During...
Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins
ERIC Educational Resources Information Center
Ingersoll, Christine M.; Strollo, Christen M.
2007-01-01
The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.
NASA Technical Reports Server (NTRS)
Giebler, K. N.
1966-01-01
Computer program evaluates heat transfer modes and calculates either the transient or steady-state temperature distributions throughout an object of complex shape when heat sources are applied to specified points on the object. It uses an electrothermal model to simulate the conductance, heat capacity, and temperature potential of the object.
User's instructions for the 41-node thermoregulatory model (steady state version)
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1974-01-01
A user's guide for the steady-state thermoregulatory model is presented. The model was modified to provide conversational interaction on a remote terminal, greater flexibility for parameter estimation, increased efficiency of convergence, greater choice of output variable and more realistic equations for respiratory and skin diffusion water losses.
Impurity shielding criteria for steady state hydrogen plasmas in the LHD, a heliotron-type device
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Kobayashi, M.; Yoshimura, S.; Tamura, N.; Yoshinuma, M.; Tanaka, K.; Suzuki, C.; Peterson, B. J.; Sakamoto, R.; Morisaki, T.; the LHD Experiment Group
2014-07-01
Impurity behavior has so far been investigated in steady state hydrogen plasmas in the Large Helical Device, which is a heliotron-type device and excellent for steady state operation. There was always found to be an impurity accumulation window, as observed before (Nakamura et al 2002 Plasma Phys. Control. Fusion 44 2121, Nakamura et al 2003 Nucl. Fusion 43 219). To clarify the boundary conditions, the dependences of impurity transport on edge plasma parameters are investigated with a database of steady state hydrogen discharges, and the boundary conditions for the impurity accumulation window are discussed. It is found that two different types of impurity screening effects are essential for preventing intrinsic impurities from entering the core plasma. One of them is due to positive radial electric field at the plasma edge on the low collisionality side and the other is impurity retention caused by friction force in the ergodic layer on the high collisionality side. The classification of steady state discharges on n-T space shows that the impurity behavior can be predicted by the impurity shielding criteria based on each empirical scaling.
Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems
Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.
2011-01-01
The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582
HU, T.A.
2005-10-27
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.
This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats
" NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.
" The pattern evok...
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Steady-State Duty Cycles II Appendix II to Part 1042 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt....
Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions
NASA Technical Reports Server (NTRS)
Teubert, Christopher; Daigle, Matthew J.
2014-01-01
Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.
TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP
The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...
Steady-State Clinical Pharmacokinetics of Bupropion Extended-Release In Youths
ERIC Educational Resources Information Center
Daviss, W. Burleson; Perel, James M.; Birmaher, Boris; Rudolph, George R.; Melhem, Imad; Axelson, David A.; Brent, David A.
2006-01-01
Objective: To examine in children and adolescents the 24-hour, steady-state clinical pharmacokinetics of an extended-release (XL) formulation of bupropion (Wellbutrin XL). Method: Subjects were six male and four female patients (ages 11.5-16.2 years) prescribed bupropion XL in morning daily doses of either 150 mg (n = 5) or 300 mg (n = 5) for at…