Science.gov

Sample records for advanced steam conditions

  1. ADVANCED STEAM GENERATORS

    SciTech Connect

    Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A.; Woike, Mark R.; Willis; Brian P.

    2001-11-06

    1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

  2. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  3. High Pressure Steam Oxidation of Alloys for Advanced Ultra-Supercritical Conditions

    SciTech Connect

    Holcomb, Gordon R.

    2014-08-05

    A steam oxidation test was conducted at 267 ± 17 bar and 670°C for 293 hr. A comparison test was run at 1 bar. All of the alloys showed an increase in scale thickness and oxidation rate with pressure, and TP304H and IN625 had very large increases. Fine-grained TP304H at 267 bar behaved like a coarse grained alloy, indicative of high pressure increasing the critical Cr level needed to form and maintain a chromia scale. At 267 bar H230, H263, H282, IN617 and IN740 had kp values a factor of one–to-two orders of magnitude higher than at 1 bar. IN625 had a four order of magnitude increase in kp at 267 bar compared to 1 bar. Possible causes for increased oxidation rates with increased pressure were examined, including increased solid state diffusion within the oxide scale and increased critical Cr content to establish and maintain a chromia scale.

  4. Oxidation of advanced steam turbine alloys

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  5. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  6. Steam conservation and boiler plant efficiency advancements

    SciTech Connect

    Fiorino, D.P.

    1999-07-01

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. They were: (1) Reheating of dehumidified clean room makeup air with heat extracted during precooling; (2) Preheating of deionization feedwater with refrigerant heat of condensation; (3) Preheating of boiler combustion air with heat extracted from boiler flue gas; (4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust; (5) Variable-speed operation of boiler feedwater pumps and forced-draft fans; and (6) Preheating of boiler makeup water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) saved about $1,010,000 per year by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the cost of steam produced by about 13%, or $293,500 per year, by reducing use of natural gas and electricity at the steam boiler plant. These advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

  7. Oxidation of Alloys for Advanced Steam Turbines

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.E.; Alman, D.E.

    2006-09-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam temperatures of up to 760°C. This research examines the steam oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  8. Oxidation of alloys for advanced steam turbines

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  9. Advanced Eddy current NDE steam generator tubing.

    SciTech Connect

    Bakhtiari, S.

    1999-03-29

    As part of a multifaceted project on steam generator integrity funded by the U.S. Nuclear Regulatory Commission, Argonne National Laboratory is carrying out research on the reliability of nondestructive evaluation (NDE). A particular area of interest is the impact of advanced eddy current (EC) NDE technology. This paper presents an overview of work that supports this effort in the areas of numerical electromagnetic (EM) modeling, data analysis, signal processing, and visualization of EC inspection results. Finite-element modeling has been utilized to study conventional and emerging EC probe designs. This research is aimed at determining probe responses to flaw morphologies of current interest. Application of signal processing and automated data analysis algorithms has also been addressed. Efforts have focused on assessment of frequency and spatial domain filters and implementation of more effective data analysis and display methods. Data analysis studies have dealt with implementation of linear and nonlinear multivariate models to relate EC inspection parameters to steam generator tubing defect size and structural integrity. Various signal enhancement and visualization schemes are also being evaluated and will serve as integral parts of computer-aided data analysis algorithms. Results from this research will ultimately be substantiated through testing on laboratory-grown and in-service-degraded tubes.

  10. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 × 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760°C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  11. Steam turbine development for advanced combined cycle power plants

    SciTech Connect

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  12. Development and application of steam turbines with advanced HLP single-cylinder rotors

    SciTech Connect

    Sakuma, A.; Tsuda, Y.; Suzuki, M.

    1996-12-31

    Recently, the Gas Turbine capacity has been increased step by step to improve initial cost of the Gas turbine and plant efficiency as well as to improve cycle conditions that is, temperature, pressure and cycle. In accordance with this improvement, the steam turbine capacity has been increased gradually in combined-cycle plants. In this application, the steam turbine became larger and the steam turbine is generally equipped with multiple rotors. When the rotor forging with a good combination of creep rupture strength in the HP section and toughness in the LP section is available, the steam turbine can be designed as a single rotor, instead of multiple rotors, which makes the steam turbine to be compact and to be simple. The authors have already developed an HLP rotor forging (first generation), which has been applied to turbine rotors of units having capacities up to around 100 MW with a last stage blade (LSB) of a maximum 26 inch (660 mm) class. Recently, the advanced HLP rotor forging has been developed, which can be applied to longer LSBs of 42 inch (1070 mm) for 50 Hz machines, and 40 inch (1016 mm) for 60 Hz machines. As a result of the development, the steam turbines of 100 to 250 MW capacity in thermal power plants and advanced combined-cycle plants can be made more compact through this single-cylinder design. This paper describes development and application of the steam turbine with the advanced HLP rotor for advanced combined-cycle plants as well as for conventional thermal plants.

  13. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  14. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    SciTech Connect

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  15. Condition and residual life assessment of seamless steam pipe bends

    SciTech Connect

    Dufour, L.B.

    1995-12-01

    The majority of steam pipe bends in Dutch power plants are seamless. Reliable assessment of the condition of seamless bends after {approximately}100,000 hours of operation and beyond is a very complex and sometime frustrating procedure. Complex because external pipe forces can influence the damage and/or strain distribution in the bend. Besides, metallurgical, wall thickness and ovality variations are present anyhow, making the damage distribution in fact unknown. In accordance with a Dutch authority rule, a seamless bend is tested using a magnetic particles and investigated metallurgically with the aid of five surface replicas. Sometime more replicas are investigated and wall thickness and diameter measurements are performed as well. Occasionally, strain measurements are executed by applying capacitive strain gauges and the speckle correlation technique. In rare cases samples are taken from the first bend near the boiler outlet in order to perform isostress creep tests, allowing the determination of the condition and the residual life of other bends in the pipe systems. Based on years of experience the authors have learned that there is no single method or technique capable of assessing the condition and residual life of seamless steam pipe bends. Some experiences will be highlighted, together with recent developments in the field of quantified creep (void) damage--in order to determine inspection intervals--and the field of the speckle correlation technique.

  16. Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

    2012-09-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

  17. A simplified mathematical model of a U-tube steam generator under variable load conditions

    NASA Astrophysics Data System (ADS)

    Laskowski, Rafał; Lewandowski, Janusz

    2013-09-01

    A steam generator in a nuclear power plant with a light water reactor is a heat exchanger, in which the heat is being transferred from the primary to the secondary loop (it links the primary and secondary loops). When the power plant is running, the inlet parameters (temperatures and mass flow rates) on both sides of the steam generator can change. It is important to know how the changes of these parameters affect the steam generator performance. The complexity of the processes taking place in the steam generator makes it difficult to create a simulator reflecting its performance under changed conditions. In order to simplify the task, the steam generator was considered as a `black box' with the aim of examining how the changes of the inlet parameters affect the changes of the outlet ones. On the basis of the system (steam generator) response, a simple mathematical model of the steam generator under variable load conditions was proposed. In the proposed model, there are two dimensionless parameters and three constant coefficients. A linear relation between these dimensionless parameters was obtained. The correctness of the model was verified against the data obtained with a steam generator simulator for European Pressured Reactor and AP-600 reactors. A good agreement between the proposed model and the simulator data was achieved.

  18. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    SciTech Connect

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  19. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  20. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    SciTech Connect

    G. R. Holcomb, P. D. Jablonski, and P. Wang

    2010-10-01

    Develop advanced coal-based power systems capable of 45–50 % efficiency at <$1,000/kW (in 2002 dollars). Develop technologies for capture and sequestration of CO2 that result in: • <10% increase in the cost of electricity in an IGCC-based plant • <35% increase in the cost of electricity for pulverized coal boilers Demonstrate coal-based energy plants that offer near-zero emissions (including CO2) with multiproduct production

  1. Comparison of steam sterilization conditions efficiency in the treatment of Infectious Health Care Waste.

    PubMed

    Maamari, Olivia; Mouaffak, Lara; Kamel, Ramza; Brandam, Cedric; Lteif, Roger; Salameh, Dominique

    2016-03-01

    Many studies show that the treatment of Infectious Health Care Waste (IHCW) in steam sterilization devices at usual operating standards does not allow for proper treatment of Infectious Health Care Waste (IHCW). Including a grinding component before sterilization allows better waste sterilization, but any hard metal object in the waste can damage the shredder. The first objective of the study is to verify that efficient IHCW treatment can occur at standard operating parameters defined by the contact time-temperature couple in steam treatment systems without a pre-mixing/fragmenting or pre-shredding step. The second objective is to establish scientifically whether the standard operation conditions for a steam treatment system including a step of pre-mixing/fragmenting were sufficient to destroy the bacterial spores in IHCW known to be the most difficult to treat. Results show that for efficient sterilization of dialysis cartridges in a pilot 60L steam treatment system, the process would require more than 20min at 144°C without a pre-mixing/fragmenting step. In a 720L steam treatment system including pre-mixing/fragmenting paddles, only 10min at 144°C are required to sterilize IHCW proved to be sterilization challenges such as dialysis cartridges and diapers in normal conditions of rolling. PMID:26803472

  2. Water/steam cycle conditioning in the Netherlands; an overview of common practice and perspective

    SciTech Connect

    Zeijseink, A.G.L.

    1995-01-01

    In this paper the common practice of water/steam conditioning in the Netherlands is discussed. All-Volatile Treatment and Oxygenated Treatment are the main conditioning techniques that are utilized for high pressure boilers. The results of recent years have been very satisfactory. One case is discussed, in which a small deviation from the (KEMA-)recommendations led to serious damage. Furthermore, new developments and optimization of operation, environmental impact and efficiency improvement are discussed, as they are developing in the Netherlands.

  3. Loads on steam generator tubes during simulated loss-of-coolant accident conditions. Final report. [PWR

    SciTech Connect

    Guerrero, H.N.; Hiestand, J.W.; Rossano, F.V.; Shah, P.K.; Thakkar, J.G.

    1982-11-01

    This report presents the work performed to verify the CEFLASH digital computer code modeling of the hydro-dynamic loads in a steam generator tube during a loss-of-coolant accident (LOCA). The test loop simulated the primary side thermal-hydraulic conditions in an operational nuclear steam generator. The loop consisted of 5 full size double 90/sup 0/ bend tubes and steam generator plena, a pressurizer, a reactor resistance simulator, a heater, a pump, and associated pipes and valves to complete the system. The tubes used were of typical length and the same outside diameter as those used in C-E steam generators. Prototypical supports were provided for the bundle of 5 tubes. Cold leg guillotine breaks were simulated using quick opening valve and rupture disks. Break opening times ranged from less than 1 msec to as much as 67 milliseconds. The loop instrumentation was designed to measure the transient pressure history at various locations and monitor the structural response of the tube to the LOCA hydrodynamic loading. A series of blowdown tests was performed for different operating and boundary conditions. Analytically predicted transient pressure histories and the differential pressure history across the tube span were compared with the experimental data.

  4. A hypothetical profile of ordinary steam turbines with reduced cost and enhanced reliability for contemporary conditions

    SciTech Connect

    Leyzerovich, A.S.

    1998-12-31

    Power steam turbines should be characterized with the reduced cost and enhanced reliability and designed on the basis of experience in steam turbine design and operation accumulated in the world`s practice for the latest years. Currently, such turbines have to be particularly matched with requirements of operation for deregulated power systems; so they should be capable of operating in both base-load and cycling modes. It seems reasonable to have such turbines with the single capacity about 250--400 MW, supercritical main steam pressure, and single steam reheat. This makes it possible to design such turbines with the minimum specific metal amount and length, with the integrated HP-IP and one two-flow LP cylinders. With existing ferritic and martensitic-class steels, the main and reheat steam temperatures can be chosen at the level of 565--580 C (1050--1075 F) without remarkable supplemental expenditures and a sacrifice of reliability. To reduce the capital cost and simplify operation and maintenance, the turbine`s regenerative system can be designed deaeratorless with motor-driven boiler-feed pumps. Such turbines could be used to replace existing old turbines with minimum expenditures. They can also be combined with large high-temperature gas-turbine sets to shape highly efficient combined-cycle units. There exist various design and technological decisions to enhance the turbine reliability and efficiency; they are well worked up and verified in long-term operation practice of different countries. For reliable and efficient operation, the turbine should be furnished with advanced automatic and automated control, diagnostic monitoring, and informative support for the operational personnel.

  5. Stability of isoflavone isomers in steamed black soybeans and black soybean koji stored under different conditions.

    PubMed

    Huang, Ru-Yue; Chou, Cheng-Chun

    2009-03-11

    Steamed black soybeans and black soybean koji, a potentially functional food additive, were stored at 4 or 25 degrees C with or without deoxidant and desiccant for 120 days. After storage, steamed black soybeans and koji showed various extents of reduction in isoflavone contents dependent on storage temperature, packaging condition, and the kind of isoflavone isomer. Generally, black soybeans and koji showed the highest residual of isoflavone when they were stored at 4 degrees C with deoxidant and desiccant. Under this storage condition, beta-glucosides (daidzin, glycitin, and genistein), acetyl glucosides (acetyldaidzin, acetylglycitin, and acetylgenistin), manlonyl glucosides (malonyldaidzin, malonglycitin, and malonylgenistin), and aglycones (daidzein, glycitein, and genistin) in steamed black soybeans exhibited residuals of 100.1-100.9, 92.0-99.4, 90.0-94.0, and 77.2-78.8%, respectively, of their original contents after 120 days of storage. Meanwhile, the residuals found in black soybean koji were 77.8-90.0, 13.1-88.9, 66.7-85.5, and 76.4-80.6%, respectively. PMID:19256558

  6. Predictions of structural integrity of steam generator tubes under normal operating, accident, and severe accident conditions

    SciTech Connect

    Majumdar, S.

    1996-09-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation is confirmed by further tests at high temperatures as well as by finite element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation is confirmed by finite element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure is developed and validated by tests under varying temperature and pressure loading expected during severe accidents.

  7. Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of the Tokyo Electric Power Company. The sensor uses laser beams focused on small stainless steel reflectors having bar-code patterns attached on the surface of the rotating shaft, and a technique of signal processing using a correlation function featuring high frequency. The plant that supplied steam was selected on the basis of diagnosis of each steam turbine performance of the plants. Heat balance program was developed to analyze steam turbine performance using data of turbine output measured by the torque sensor and data measured by existing instruments of the power station. The steam turbine that supplied steam was determined by the present method using the optical torque sensor. The accuracy of the method to determine the steam supply plant was analyzed. It was then confirmed that the accuracy was greatly improved as compared with that of existing method.

  8. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  10. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  11. Signal processing for determining water height in steam pipes with dynamic surface conditions

    NASA Astrophysics Data System (ADS)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-03-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.

  12. One-dimensional analysis of the behaviour of wet steam at different inlet conditions

    NASA Astrophysics Data System (ADS)

    Malek, Norhazwani Abd; Hasini, Hasril; Yusoff, Mohd Zamri

    2012-06-01

    The main aim of this paper is to estimate the likely behaviour of steam during an expansion process with the variation in the total inlet temperature. It is well-acknowledged that the position of limiting supersaturation was dependent on the steam conditions at inlet. Based on this hypothesis, an improved mathematical model is developed to observe the effect of changing the inlet total temperature to the flow properties. In the present work, a one-dimensional (1-D) time-marching compressible Euler solver that uses the second order cell-vertex finite volume spatial discretization and fourth orders Runge-Kutta temporal integration has been developed. Artificial viscosity is added by using Jameson's type 2nd and 4th. A single dimension is considered here as to demonstrate the main effects of spontaneous condensation without necessary complexity. The boundary conditions across the nozzle are imposed in the calculations. Based on the calculation, it is clear that the Mach number and pressure ratio is a good representation to the onset of condensation and are highly dependent on the total inlet temperature.

  13. Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst

    SciTech Connect

    Yung, M. M.; Cheah, S.; Magrini-Bair, K.; Kuhn, J. N.

    2012-07-06

    Sulfur K-edge XANES identified transformation of sulfides to sulfates during combined steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. This catalyst was tested over multiple reaction/regeneration/reduction cycles. Postreaction catalysts showed the presence of sulfides on H2S-poisoned sites. Although H2S was observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst, and a transformation from sulfides to sulfates was observed. Following the oxidative regeneration, the subsequent H2 reduction led to a partial reduction of sulfates back to sulfides, indicating the difficulty and sensitivity in achieving complete sulfur removal during regeneration for biomass-conditioning catalysts.

  14. Predictions of structural integrity of steam generator tubes under normal operating, accident, an severe accident conditions

    SciTech Connect

    Majumdar, S.

    1997-02-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmed by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.

  15. Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions

    SciTech Connect

    Pierce, Eric M.

    2007-09-16

    To predict the long-term fate of low- and high-level waste forms in the subsurface over geologic time scales, it is important to understand the behavior of the corroding waste forms under conditions the mimic to the open flow and transport properties of a subsurface repository. Fluidized bed steam reformation (FBSR), a supplemental treatment technology option, is being considered as a waste form for the immobilization of low-activity tank waste. To obtain the fundamental information needed to evaluate the behavior of the FBSR waste form under repository relevant conditions and to monitor the long-term behavior of this material, an accelerated weathering experiment is being conducted with the pressurized unsaturated flow (PUF) apparatus. Unlike other accelerated weathering test methods (product consistency test, vapor hydration test, and drip test), PUF experiments are conducted under hydraulically unsaturated conditions. These experiments are unique because they mimic the vadose zone environment and allow the corroding waste form to achieve its final reaction state. Results from this on-going experiment suggest the volumetric water content varied as a function of time and reached steady state after 160 days of testing. Unlike the volumetric water content, periodic excursions in the solution pH and electrical conductivity have been occurring consistently during the test. Release of elements from the column illustrates a general trend of decreasing concentration with increasing reaction time. Normalized concentrations of K, Na, P, Re (a chemical analogue for 99Tc), and S are as much as 1 × 104 times greater than Al, Cr, Si, and Ti. After more than 600 days of testing, the solution chemistry data collected to-date illustrate the importance of understanding the long-term behavior of the FBSR product under conditions that mimic the open flow and transport properties of a subsurface repository.

  16. High Temperature Oxidation of Silicon Carbide and Advanced Iron-Based Alloys in Steam-Hydrogen Environments

    SciTech Connect

    Terrani, Kurt A; Keiser, James R; Brady, Michael P; Cheng, Ting; Silva, G W Chinthaka M; Pint, Bruce A; Snead, Lance Lewis

    2012-01-01

    A side by side comparison of the oxidation behavior of zirconium alloys with SiC materials and advanced iron-based alloys is provided. Oxidation tests were conducted in steam and steam-hydrogen environments at 800-1350 C and 0.34-2MPa for durations up to 48 hours. Monolithic SiC specimens as well as SiC/SiC composites were examined during the study where the material recession mechanism appeared to be governed by silica layer volatilization at the surface for CVD SiC. A wide set of austenitic and ferritic steels were also examined where a critical Cr content (>20 wt.%) was shown to be necessary to achieve oxidation resistance at high temperatures. SiC materials and alumina-forming ferritic steels exhibited slowest oxidation kinetics; roughly two orders of magnitude lower than zirconium alloys.

  17. Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel

    SciTech Connect

    Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

    2006-02-01

    The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

  18. Bark essential oil of Cedrelopsis grevei from Madagascar: investigation of steam-distillation conditions.

    PubMed

    Rakotobe, Miarantsoa; Menut, Chantal; Andrianoelisoa, Hanitriniaina Sahondra; Rahajanirina, Voninavoko; Tsy, Jean Michel Leong Pock; Rakotoarimanana, Vonjison; Ramavovololona, Perle; Danthu, Pascal

    2014-02-01

    The effect of the distillation time on the yield and chemical composition of the bark essential oil of Cedrelopsis grevei Baill. was investigated. Distillation kinetics were determined for three batches of bark sampled from two sites, i.e., Itampolo (batches IT1 and IT2) and Salary (SAL), located in a region in the south of Madagascar with characteristically large populations of C. grevei. The bark samples were subjected to steam distillation, and the essential oil was collected at 3-h intervals. The total yield (calculated after 14 h of distillation) varied from 0.9 to 1.7%, according to the batch tested. Moreover, the essential oils obtained were characterized by GC-FID and GC/MS analyses. During the course of the distillation, the relative percentages of the most volatile components (monoterpenes and sesquiterpene hydrocarbons) diminished progressively, whereas the least volatile ones (oxygenated derivatives) increased at a consistent rate. Principal component analysis (PCA) and agglomerative hierarchical clustering analysis (AHC) of the results, performed on 13 principal components, allowed distinguishing three chemical groups, corresponding to the three batches, irrespective of the distillation time. This indicated that the chemical variability currently observed with commercial samples is not mainly linked to the experimental conditions of the extraction process, as the distillation time did not significantly alter the chemical composition of the essential oils. PMID:24591320

  19. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    SciTech Connect

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

  20. Susceptibility of steam generator tubes in secondary conditions: Effects of lead and sulphate

    SciTech Connect

    Gomez Briceno, D.; Garcia, M.S.; Castano, M.L.; Lancha, A.M.

    1997-02-01

    IGA/SCC on the secondary side of steam generators is increasing every year, and represents the cause of some steam generator replacements. Until recently, caustic and acidic environments have been accepted as causes of IGA/SCC, particulary in certain environments: in sludge pile on the tube sheet; at support crevices; in free span. Lead and sulfur have been identified as significant impurities. Present thoughts are that some IGA/SCC at support crevices may have occurred in nearly neutral or mildly alkaline environments. Here the authors present experimental work aimed at studying the influence of lead and sulfur on the behaviour of steam generator tube alloys in different water environments typical of steam generators. Most test results ran for at least 2000 hours, and involved visual and detailed surface analysis during and following the test procedures.

  1. Study of advanced radial outflow turbine for solar steam Rankine engines

    NASA Technical Reports Server (NTRS)

    Martin, C.; Kolenc, T.

    1979-01-01

    The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.

  2. Advances in LO2 Propellant Conditioning

    NASA Technical Reports Server (NTRS)

    Mehta, Gopal; Orth, Michael; Stone, William; Perry, Gretchen; Holt, Kimberly; Suter, John

    1994-01-01

    This paper describes the cryogenic testing and analysis that has recently been completed as part of a multi-year effort to develop a new, more robust and operable LO2 propellant conditioning system. Phase 1 of the program consisted of feasibility demonstrations ot four novel propellant conditioning concepts. A no-bleed, passive propellant conditioning option was shown for the first time to successfully provide desired propellant inlet conditions. The benefits of passive conditioning are reduced operations costs, decreased hardware costs, enhanced operability and increased reliability on future expendable launch vehicles In Phase 2 of the test program, effects of major design parameters were studied and design correlation for future vehicle design were developed. Simultaneously, analytical models were developed and validated. Over 100 tests were conducted with a full-scale feedline using LN2 as the test fluid. A circulation pump provided a range of pressure and flow conditions. The test results showed that the passive propellant conditioning system is insensitive to variations in many of the parameters. The test program provides the validation necessary to incorporate the passive conditioning system into the baseline of future vehicles. Modeling of these systems using computational fluid dynamics seems highly promising.

  3. Development and field validation of advanced array probes for steam generator inspection

    SciTech Connect

    Dodd, C.V.; Pate, J.R.

    1995-04-01

    The aging of the steam generators at the nation`s nuclear power plants has led to the appearance of new forms of degradation in steam generator tubes and an increase in the frequency of forced outages due to major tube leak events. The eddy-current techniques currently being used for the inspection of steam generator tubing are no longer adequate to ensure that flaws will be detected before they lead to a shutdown of the plant. To meet the need for a fast and reliable method of inspection, ORNL has designed a 16-coil eddy-current array probe which combines an inspection speed similar to that of the bobbin coil with a sensitivity to cracks of any orientation similar to the rotating pancake coil. In addition, neural network and least square methods have been developed for the automatic analysis of the data acquired with the new probes. The probes and analysis software have been tested at two working steam generators where we have found an increase in the signal-to-noise ratio of a factor of five an increase in the inspection speed of a factor of 75 over the rotating pancake coil which maintaining similar detection and characterization capabilities.

  4. Project DEEP STEAM

    NASA Astrophysics Data System (ADS)

    Marshall, B. W.

    Development of technology for thermally efficient downhole delivery of surface generated steam and for downhole steam generators are the major elements of Project DEEP STEAM. Specific activities include development of advanced concept thermal packers, evaluation of the thermal performance of insulated tubing designs in a test tower and in a field environment, and development of downhole steam generator concepts. Field tests were performed in both technology areas and the results and status are presented.

  5. Project DEEP STEAM

    SciTech Connect

    Marshall, B.W.

    1982-01-01

    Development of technology for thermally efficient downhole delivery of surface-generated steam and for downhole steam generators are the major elements of Project DEEP STEAM. Specific activities include development of advanced concept thermal packers, evaluation of the thermal performance of insulated tubing designs in a test tower and in a field environment, and development of downhole steam generator concepts. Field tests have been performed in both technology areas and the results and status are presented.

  6. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions.

    PubMed

    Neeway, James J; Qafoku, Nikolla P; Williams, Benjamin D; Rod, Kenton; Bowden, Mark E; Brown, Christopher F; Pierce, Eric M

    2014-05-01

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10(-6) g/(m(2) d) for the granular material and 10(-5) g/(m(2) d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two

  7. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions

    SciTech Connect

    Neeway, James J; Rod, Kenton A.; Bowden, Mark E; Pierce, Eric M; Qafoku, Nikolla; Williams, Benjamin D; Brown, Christopher F

    2014-01-01

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10 6 g/(m2 d) for the granular material and 10 5 g/(m2 d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two materials is

  8. Pouring on the steam

    SciTech Connect

    Valenti, M.

    1996-02-01

    Engineers at Solar Turbines Inc. in San Diego have achieved a breakthrough in steam power by using modern gas-turbine technology, high-temperature-resistant superalloys, advanced manufacturing technologies, and a new class of steam generators to build a high-performance steam system (HPSS). The system is a full-scale, 4-megawatt industrial prototype steam power plant that produces steam heated to 1,500 F and pressurized to 1,500 psig. In a cogeneration steam cycle, these temperatures and pressures can double the power generated using the same amount of steam, according to the US Department of Energy (DOE), which sponsored the project as part of the Advanced Turbine System Program.

  9. High Temperature and Pressure Steam-H2 Interaction with Candidate Advanced LWR Fuel Claddings

    SciTech Connect

    Pint, Bruce A

    2012-08-01

    This report summarizes the work completed to evaluate cladding materials that could serve as improvements to Zircaloy in terms of accident tolerance. This testing involved oxidation resistance to steam or H{sub 2}-50% steam environments at 800-1350 C at 1-20 bar for short times. A selection of conventional alloys, SiC-based ceramics and model alloys were used to explore a wide range of materials options and provide guidance for future materials development work. Typically, the SiC-based ceramic materials, alumina-forming alloys and Fe-Cr alloys with {ge}25% Cr showed the best potential for oxidation resistance at {ge}1200 C. At 1350 C, FeCrAl alloys and SiC remained oxidation resistant in steam. Conventional austenitic steels do not have sufficient oxidation resistance with only {approx}18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application and high Cr contents raise concern about {alpha}{prime} formation. Higher pressures (up to 20.7 bar) and H{sub 2} additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed in a H{sub 2}-50%H{sub 2}O environment at 10.3 bar. As some of the results regarding low-alloyed FeCrAl and Fe-Cr alloys were unexpected, further work is needed to fundamentally understand the minimum Cr and Al alloy contents needed for protective behavior in these environments in order to assist in alloy selection and guide alloy development.

  10. Materials for Advanced Ultrasupercritical Steam Turbines Task 3: Materials for Non-Welded Rotors, Buckets, and BoltingMaterials for Advanced Ultrasupercritical Steam Turbines

    SciTech Connect

    Saha, Deepak

    2015-09-15

    The primary objective of the task was to characterize the materials suitable for mechanically coupled rotor, buckets and bolting operating with an inlet temperature of 760°C (1400°F). A previous study DOE-FC26-05NT42442, identified alloys such as Haynes®282®, Nimonic 105, Inconel 740, Waspaloy, Nimonic 263, and Inconel 617 as potential alloys that met the requirements for the necessary operating conditions. Of all the identified materials, Waspaloy has been widely utilized in the aviation industry in the form of disk and other smaller forgings, and sufficient material properties and vendor experience exist, for the design and manufacture of large components. The European program characterizing materials for A-USC conditions are evaluating Nimonic 263 and Inconel 617 for large components. Inconel 740 has been studied extensively as a part of the boiler consortium and is code approved. Therefore, the consortium focused efforts in the development of material properties for Haynes®282® and Nimonic 105 to avoid replicative efforts and provide material choices/trade off during the detailed design of large components. Commercially available Nimonic 105 and Haynes®282® were evaluated for microstructural stability by long term thermal exposure studies. Material properties requisite for design such as tensile, creep / rupture, low cycle fatigue, high cycle fatigue, fatigue crack growth rate, hold-time fatigue, fracture toughness, and stress relaxation are documented in this report. A key requisite for the success of the program was a need demonstrate the successful scale up of the down-selected alloys, to large components. All property evaluations in the past were performed on commercially available bar/billet forms. Components in power plant equipment such as rotors and castings are several orders in magnitude larger and there is a real need to resolve the scalability issue. Nimonic 105 contains high volume fraction y’ [>50%], and hence the alloy is best suited

  11. Advanced power conditioning for maglev systems. Final report

    SciTech Connect

    Nerem, A.; Bowles, E.E.; Chapelle, S.; Callanan, R.J.

    1992-08-01

    The final report contains parametric scaling data and computer models of power conditioning equipment applicable to the design of an advanced maglev system. The power conditioning topologies were selected based on data from a literature search, on characteristics of present power semiconductor technology devices, and on actual performance characterization of designs using a circuit analysis program. The analyses show that GTOs are the best switches for traction drives, input power conditioning equipment, and the braking chopper. At lower power levels, as required for auxiliary power and superconducting coil power conditioning, the IGBT appeared to be the best switch.

  12. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  13. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. PMID:24926605

  14. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  15. High performance steam cogeneration (proof-of-concept phases). Phase 2, HRSG 500-hour test report: Final report

    SciTech Connect

    Campbell, A.H.

    1992-12-01

    Recent advances in small once-through Alloy 800 steam generators, improved materials technology, and application of small industrial gas turbine technology to steam turbine cogeneration offers the potential to make a step increase in steam temperature from around 1000{degree}F, where industry has been for almost fifty years, to 1500{degree}F. In small cogeneration systems, it is economically practical to introduce new technology and make a step change in temperature where it may not be possible (given the regulatory environment and economic risk) for a major change in steam temperature to be introduced in the hundreds of megawatt size of an electric utility. Increasing the peak steam temperature in a steam turbine cycle allows more work to be extracted or electrical power to be generated from a given quantity of heat input. Figure 1 plots steam efficiency as a function of superheat steam temperature and pressure for a turbine-back pressure of 166 psia. This figure clearly shows that increasing the steam conditions from the typical current practice of 900{degree}F and 900 psia to 1500{degree}F and 1500 psia will increase the steam cycle efficiency by 53%. The combination of higher cycle efficiency with an advanced high efficiency steam turbine design provides a substantial increase in turbine output power for a given steam flowrate. The output of this advanced high temperature steam turbine is approximately twice that of a current industrial practive turbine for the same turbine flowrate as seen in Figure 2.

  16. Engineering solutions related to the furnace arrangement of a boiler designed for operating at supercritical steam conditions

    NASA Astrophysics Data System (ADS)

    Shtegman, A. V.; Ryzhii, I. A.; Sosin, D. V.; Kotler, V. R.

    2014-04-01

    When developing a coal-fired power unit designed for operating at supercritical steam conditions (SSCs), it is necessary not only to achieve high economic performance and the high reliability of a new power unit, but also to tackle many problems related to the efficient combustion of the solid fuel without exceeding the future standards for limitations on emissions of harmful substances into the atmosphere. The technological methods of suppression of nitrogen oxides capable of providing the permissible NO x emissions are discussed. The results of calculations are given that demonstrate the feasibility of achieving the purpose in view by means of installation of new low-NO x burners and staged injection of the fuel even on combustion of the Ekibastuz black coal high in ash content.

  17. Advanced rotor forgings for high-temperature steam turbines. Volume 1. Ingot and forging production. Final report

    SciTech Connect

    Swaminathan, V.P.; Steiner, J.E.; Mitchell, A.

    1986-05-01

    Three advanced steel-melting processes - low-sulfur vacuum silicon deoxidation, electroslag remelting, and vacuum carbon deoxidation (VCD) - were applied to produce three CrMoV (ASTM A470, Class 8) steel forgings for steam turbine application. Ingots weighing about 100 t each were produced using these three processes, and rotors were forged with final weights of about 30 t each. Compared to the conventionally produced forgings, the advanced technology forgings show better tensile ductility and better uniformity along the radial and longitudinal directions. Charpy upper-shelf energy shows about 40% improvement, and no temper embrittlement was found using step-cooled and isothermal-aging treatments. Significant improvement in fracture toughness (K/sub IC/ and J/sub IC/) is realized for these forgings. Low-cycle fatigue life is better at high temperatures because of the absence of nonmetallic inclusions. Creep strength shows slight improvement. However, creep ductility is improved, probably because of low residual elements. The VCD forgings show excellent creep ductility, even with long lives. Both the toughness and creep properties are equal to or better than those of oil-quenched rotors produced by European practices. These improvements are attributed to cleaner steel, better control of ingot solidification, low residual elements (especially very low sulfur content), and the associated reduction of nonmetallic inclusions. These three rotors have been placed in service in three operating power plants in units rated at 520 MW each. Volume 1 of this report covers ingot and forging production, and volume 2 covers mechanical property evaluation.

  18. Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service

    SciTech Connect

    Swindeman, R.W.; Maziasz, P.J.

    1991-06-01

    The results are summarized for a task within a six-year activity to evaluate advanced austenitic alloys for heat recovery systems. Commercial, near-commercial, and development alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, mechanical properties, and corrosion in fireside and steamside environments. Alloys that were given special attention in the study were 800HT{reg sign}, NF709{reg sign}, HR3C{reg sign}, and a group of 20/25% chromium-30% nickel-iron alloys identified as HT- UPS (high-temperature, ultrafine-precipitation strengthened) alloys. Excellent metallurgical stability and creep strength were observed in the NF709 and HR3C steels that contained niobium and nitrogen. One group of HT-UPS alloys was strengthened by solution treating to temperatures above 1150{degrees}C and subsequent cold or warm working. Test data to beyond 35,000 h were collected. The ability to clad some of the alloys for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was a concern. Hot cracking and heat-affected-zone (HAZ) liquation cracking were potential problems in the HR3C stainless steel and HT-UPS alloys, and the use of dissimilar metal filler wire was required. By the reduction of phosphorous content and selection of either a nickel-base filler metal or alloy 556 filler metal, weldments were produced with minimum HAZ cracking. The major issues related to the development of the advanced alloys were identified and methods to resolve the issues suggested. 56 refs., 19 figs., 8 tabs.

  19. Advanced haptic sensor for measuring human skin conditions

    NASA Astrophysics Data System (ADS)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2009-12-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  20. Advanced haptic sensor for measuring human skin conditions

    NASA Astrophysics Data System (ADS)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  1. Design of a Test Loop for Performance Testing of Steam Turbines Under a Variety of Operating Conditions

    NASA Astrophysics Data System (ADS)

    Guerrette, Jonathan

    The steam turbine is one of the most widely used energy conversion devices in the world, providing shaft power for electricity production, chemical processing, and HVAC systems. There are new opportunities in growing renewable and combined cycle applications. End-users are asking for energy efficiency improvements that require manufacturers to renew their experimentally verified design methods. A structured design approach was carried out along three integrated research thrusts. The first two thrusts, Turbine Performance Prediction and Measurement Planning, were carried out with the aim of supporting the theoretical modeling required for the third thrust, System Modeling. The primary use of the steam turbine test loop will be to improve performance prediction techniques. Thus the primary focus of the first thrust was to describe empirical loss correlations found in the literature. For the second thrust, a preliminary review of measurement codes and standards was carried out to determine their impact on overall test loop design. For the third thrust, quasi-steady theoretical models were derived from first principles for the turbine, condenser, pump, boiler, and pipe components using control volume analyses. The theoretical models were implemented in a new open source simulation environment that carries out the calculation process over a range of up-to three turbine model inputs. A parametric study was undertaken with the goal of defining preliminary design specifications for the test loop components. The test loop was simulated across a wide range of steady states for three different turbine blade configurations, each at three different values of the blade row enthalpy-loss coefficient. The parametric study demonstrates full coverage of possible turbine operating conditions. The results of the simulations were analyzed to narrow the required operating range of the test loop to a series of turbine test paths. The final operational envelope yielded a set of test loop

  2. Steam Gasification Rates of Three Bituminous Coal Chars in an Entrained-Flow Reactor at Pressurized Conditions

    SciTech Connect

    Lewis, Aaron D.; Holland, Troy M.; Marchant, Nathaniel R.; Fletcher, Emmett G.; Henley, Daniel J.; Fuller, Eric G.; Fletcher, Thomas H.

    2015-02-26

    Three bituminous coal chars (Illinois #6, Utah Skyline, and Pittsburgh #8) were gasified separately at total pressures of 10 and 15 atm in an entrained-flow reactor using gas temperatures up to 1830 K and particle residence times <240 ms. The experiments were performed at conditions where the majority of particle mass release was due to H2O gasification, although select experiments were performed at conditions where significant mass release was due to gasification by both H2O and CO2. The measured coal data we recorded were fit to three char gasification models including a simple first-order global model, as well as the CCKNand CCK models that stem from the CBK model. The optimal kinetic parameters for each of the three models are reported, and the steam reactivity of the coal chars at the studied conditions is as follows: Pittsburgh #8 > Utah Skyline > Illinois #6.

  3. The Invisibility of Steam

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2014-11-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 °C (under standard conditions).

  4. Oxy-Combustion Environmental Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.; Meier, G. H.; Lutz, B. S.

    2013-06-20

    Steamside Oxidation: A first high pressure test was completed, 293 hr at 267 bar and 670�C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar. A comparison was made with longer-term literature data: Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points. Fireside Corrosion: 1. Conditions for most severe corrosion: Temperature: 700{degrees}C Deposit: Standard Corrosion Mix Duration: 160 hours Gas Atmosphere: O{sub 2} + 1000ppm SO{sub 2} Pt-catalyst placed in the hot zone next to the specimens 2. Possible SO{sub 2} threshold in gas atmosphere for corrosion; 3. Corrosion greater in steel alloys than Ni-based alloys; 4. Corrosion mechanism proposed for steel alloys and Ni-based alloys.

  5. Advanced liquid oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Suter, J. D.; Turner, S. G.

    1995-01-01

    Advanced methods of liquid oxygen (LO2) propellant conditioning were studied as part of an effort for increasing reliability and operability while reducing cost of future heavy lift launch vehicles. The most promising conditioning concept evaluated was no-bleed (passive recirculation) followed by low-bleed, helium injection, and use of a recirculation line. Full-scale cryogenic testing was performed with a sloped feedline test article to validate models of behavior of LO2 in the feedline and to prove no-bleed feasibility. Test data are also intended to help generate design guidelines for the development of a main propulsion system feed duct. A design-of-experiments matrix of over 100 tests was developed to test all four propellant conditioning concepts and the impact of design parameters on the concepts. Liquid nitrogen was used as the test fluid. The work for this project was conducted from October 1992 through January 1994 at the hydrogen cold flow facility of the west test area of MSFC. Test data have shown that satisfactory temperatures are being obtained for the no-bleed conditioning concept.

  6. Status report of advanced cladding modeling work to assess cladding performance under accident conditions

    SciTech Connect

    B.J. Merrill; Shannon M. Bragg-Sitton

    2013-09-01

    Scoping simulations performed using a severe accident code can be applied to investigate the influence of advanced materials on beyond design basis accident progression and to identify any existing code limitations. In 2012 an effort was initiated to develop a numerical capability for understanding the potential safety advantages that might be realized during severe accident conditions by replacing Zircaloy components in light water reactors (LWRs) with silicon carbide (SiC) components. To this end, a version of the MELCOR code, under development at the Sandia National Laboratories in New Mexico (SNL/NM), was modified by replacing Zircaloy for SiC in the MELCOR reactor core oxidation and material properties routines. The modified version of MELCOR was benchmarked against available experimental data to ensure that present SiC oxidation theory in air and steam were correctly implemented in the code. Additional modifications have been implemented in the code in 2013 to improve the specificity in defining components fabricated from non-standard materials. An overview of these modifications and the status of their implementation are summarized below.

  7. Wall conditioning and leak localization in the advanced toroidal facility

    SciTech Connect

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.

    1989-01-01

    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described; this technique was developed because access to the outside of the vessel is severely restricted by external components. 10 refs., 6 figs., 2 tabs.

  8. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline

    PubMed Central

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-01-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope–energy dispersive spectrometry (SEM-EDS), inductively coupled plasma–mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition. PMID:26608736

  9. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-11-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope-energy dispersive spectrometry (SEM-EDS), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition.

  10. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline.

    PubMed

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-01-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope-energy dispersive spectrometry (SEM-EDS), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition. PMID:26608736

  11. The thermal process diagram and equipment of the secondary coolant circuit of a nuclear power station unit based on the BREST-OD-300 reactor installation for subcritical steam conditions

    NASA Astrophysics Data System (ADS)

    Nesterov, Yu. V.; Lisyanskii, A. S.; Makarova, E. I.; Bal'Va, L. Ya.; Prikhod'Ko, P. Yu.

    2011-06-01

    The 300-MWe power unit based on an experimental-demonstration two-circuit 700-MWt reactor installation with lead coolant is briefly described. The thermal process diagram of the secondary coolant circuit for the subcritical steam conditions 17 MPa and 505°C at the outlet from steam generators is presented.

  12. Designing an ultrasupercritical steam turbine

    SciTech Connect

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  13. 12 CFR 950.5 - Terms and conditions for advances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... administrative and operating costs associated with making such advances to members. (2) Differential pricing. (i) Each Bank may, in pricing its advances, distinguish among members based upon its assessment of: (A) The... longer maturities consistent with the safe and sound operation of the Bank. (b) Advance...

  14. Harnessing steam

    SciTech Connect

    Petroski, H.

    1996-01-01

    This article describes the history of steam power, starting with the elements of the steam engine known to the Greeks. The story continues in the 17th century, goes through the late 18th century when steam engine use changed from use as pumps by Watt`s invention of a double acting cylinder which drove a piston, and followed both the way it shaped industry and society and the major questions posed by the hazards of steam energy. The article concludes with an explaination of the development and a summary of the Boiler and Pressure Vessel Code now in effect. 7 refs., 3 figs.

  15. Steam Properties Database

    National Institute of Standards and Technology Data Gateway

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  16. Procurement and screening test data for advanced austenitic alloys for 650/degree/C steam service: Part 2, final report

    SciTech Connect

    Swindeman, R.W.; Goodwin, G.M.; Maziasz, P.J.; Bolling, E.

    1988-08-01

    The results of screening tests on alloys from three compositional groups are summarized and compared to the alloy design and performance criteria identified as needed for austenitic alloys suitable as superheater/reheater tubing in advanced heat recovery systems. The three alloy groups included lean (nominally 14% Cr and 16% Ni) austenitic stainless steels that were modifications of type 316 stainless steel, 20Cr-30Ni-Fe alloys that were modifications of alloy 800H, and Ni-Cr aluminides, (Ni,Cr)/sub 3/Al. The screening tests covered fabricability, mechanical properties, weldability, and oxidation behavior. The lean stainless steels were found to possess excellent strength and ductility if cold-worked to an equivalent strain in the range 5 to 10% prior to testing. However, they possessed marginal weldability, poor oxidation resistance, and sensitivity to aging. The modified alloy 800H alloys also exhibited good strength and ductility in the cold-worked condition. The weldability was marginal, while the oxidation resistance was good. The aluminides were difficult to fabricate by methods typically used to produce superheater tubing alloys. The alloys that could be worked had marginal strength and ductility. An aluminide cast alloy, however, was found to be very strong and ductile. 23 refs., 19 figs., 13 tabs.

  17. Steaming Clean

    ERIC Educational Resources Information Center

    Hoverson, Rick

    2006-01-01

    Schools can provide a cleaner, more healthful school environment by simply combining heat and water. Steam vapor systems use only tap water with no chemicals added. Low-pressure (12 psi to 65 psi) steam vapor sanitizes and deodorizes. This process can then be used safely in many situations, but is especially suited for restrooms and food-service…

  18. Classical-Conditioning Demonstrations for Elementary and Advanced Courses.

    ERIC Educational Resources Information Center

    Abramson, Charles I.; And Others

    1996-01-01

    Describes two new exercises in classical conditioning that use earthworms and houseflies. The animals are available year-round and pose no risk to the students or instructor. The conditioned stimuli are odorants. These elicit a conditioned response of contraction in worms or proboscis extension in flies. (MJP)

  19. Conditional Inference and Advanced Mathematical Study: Further Evidence

    ERIC Educational Resources Information Center

    Inglis, Matthew; Simpson, Adrian

    2009-01-01

    In this paper, we examine the support given for the "theory of formal discipline" by Inglis and Simpson (Educational Studies Mathematics 67:187-204, "2008"). This theory, which is widely accepted by mathematicians and curriculum bodies, suggests that the study of advanced mathematics develops general thinking skills and, in particular, conditional…

  20. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  1. Steam Turbines

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  2. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE PAGESBeta

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  3. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    SciTech Connect

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome some of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.

  4. Advancements in the application of flue gas conditioning

    SciTech Connect

    Johnson, R.E.; Krigmont, H.V. )

    1992-01-01

    The benefits of Flue Gas Conditioning (FGC) are well known to the industry, especially as an integral part of an overall Phase I Clean Air Compliance Strategy. Conditioning with sulfur trioxide or dual FGC (sulfur trioxide and ammonia) has proven very effective in improving the operation of older, marginal electrostatic precipitators and new units that require optimum performance. This paper reports that dual FGC has recently proved effective in improving baghouse performance. Fine particle emissions and bathouse pressure drop can be reduced by changing the properties of the fly ash. Using dual FGC, the filter cake becomes more cohesive and more porous, thus promoting better cleaning and lower operating costs.

  5. Advanced liquid Oxygen (LO2) propellant conditioning concept testing. 2

    NASA Technical Reports Server (NTRS)

    Hasting, J. H.; Perry, G. L. E.; Mehta, G. K.

    1996-01-01

    Extensive testing was performed on the promising L02 propellant conditioning concept of passive recirculation (no-bleed). Data from the project is being used to further anchor models in L02 conditioning behavior and broaden the data base of no-bleed and low-bleed conditioning. Data base expansion includes results from testing the limits of no-bleed and low-bleed conditioning with various configuration changes to the test facility and designed test article. Configuration changes include low velocity effects in the recirculation loop above the test article, test article internal constriction impacts, test article out-of-plane effects, impact from an actual Titan L02 pump attachment, feed duct slope effects, and up-leg booster effects. LN2 was used as the test fluid. The testing was conducted between July 1994 and January 1995 at the west test area of Marshall Space Flight Center. Data have shown that in most cases passive recirculation was demonstrated when the aforementioned limits were applied.

  6. Materials Performance in USC Steam Portland

    SciTech Connect

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  7. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  8. Steam distillation of crude oils

    SciTech Connect

    Duerksen, J.H.; Hsueh, L.

    1983-04-01

    The objectives of this investigation were to generate crude oil steam distillation data for the prediction of phase behavior in steamflood simulation and to correlate the steam distillation yields for a variety of crude oils. Thirteen steam distillation tests were run on 10 crude oils ranging in gravity from 9.4 to 37/sup 0/API (1.004 to 0.840 g/cm/sup 3/). In each test the crude was steam distilled sequentially at about 220, 300, 400, and 500/sup 0/F (104, 149, 204, and 260/sup 0/C). The cumulative steam distillation yields at 400/sup 0/F (204/sup 0/C) ranged from about 20 to 55 vol%. Experimental results showed that crude oil steam distillation yields at steamflood conditions are significant, even for heavy oils. The effects of differences in steam volume throughput and steam temperature were taken into account when comparing yields for different crudes or repeat runs on the same crude. Steam distillation yields show a high correlation with crude oil API gravity and wax content.

  9. Advanced Wall Conditioning and Impurity Control for CDX-U*

    NASA Astrophysics Data System (ADS)

    Kugel, H.; Munsat, T.; Kaita, R.; Majeski, R.; Menard, J.; Stutman, D.

    1998-11-01

    The Current Drive Experiment-Upgrade (CDX-U) is investigating High Harmonic Fast Wave (HHFW) RF heating and current drive in a Spherical Torus (ST) in support of the National Spherical Torus Experiment (NSTX). To facilitate this work, several innovations are under development for wall conditioning, impurity control, and impurity transport studies. These include a boron micropellet injector, pure boron ablation, and decaborane chemical vapor deposition. Preliminary experiments have been performed with a simple Low Velocity Boron Micro-Pellet Injector for edge and core impurity transport measurements, and possibly wall conditioning. Studies of its effectiveness using boron powder particles ranging from 1 to 40 micron diameter in amounts ranging from 0.25 mg to more than 2 mg will be explored with diagnostics that include a filtered gated TV camera, bolometry, visible spectroscopy, and soft x-ray arrays. In addition, special biasable probes are being developed for real-time boronization using pure boron during plasma operations, and for boronization using decaborane chemical vapor deposition aided by either GDC during maintenance periods, or edge plasma heating during operations.

  10. Advanced rotor forgings for high-temperature steam turbines. Volume 2. Mechanical property evaluation. Final report. [CrMoV steels

    SciTech Connect

    Swaminathan, V.P.; Landes, J.D.

    1986-05-01

    Three advanced steel-melting processes - low-sulfur vacuum silicon deoxidation, electroslag remelting, and vacuum carbon deoxidation (VCD) - were applied to produce three CrMoV (ASTM A470, Class 8) steel forgings for steam turbine application. Ingots weighing about 100 t each were produced using these three processes, and rotors were forged with final weights of about 30 t each. Compared to the conventionally produced forgings, the advanced technology forgings show better tensile ductility and better uniformity along the radial and longitudinal directions. Charpy upper-shelf energy shows about 40% improvement, and no temper embrittlement was found using step-cooled and isothermal-aging treatments. Significant improvement in fracture toughness (K/sub IC/ and J/sub IC/) is realized for these forgings. Low-cycle fatigue life is better at high temperatures because of the absence of nonmetallic inclusions. Creep strength shows slight improvement. However, creep ductility is improved, probably because of low residual elements. The VCD forgings show excellent creep ductility, even with long lives. Both the toughness and creep properties are equal to or better than those of oil-quenched rotors produced by European practices. These improvements are attributed to cleaner steel, better control of ingot solidification, low residual elements (especially very low sulfur content), and the associated reduction of nonmetallic inclusions. These three rotors have been placed in service in three operating power plants in units rated at 520 MW each. Volume 1 of this report covers ingot and forging production, and volume 2 covers mechanical property evaluation. 40 refs., 84 figs., 15 tabs.

  11. A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler

    SciTech Connect

    Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

    2011-02-27

    Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and η phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

  12. ULTRA-SUPERCRITICAL STEAM CORROSION

    SciTech Connect

    Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

    2003-04-22

    Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

  13. Bioequivalent chemical steam sterilization indicators.

    PubMed

    Hirsch, A; Manne, S

    1984-01-01

    Biological indicators used to monitor steam sterilization cycles have two major shortcomings--the incubation period needed to determine if sterilization was accomplished, and the reliance on test packs for gathering information in each load. Chemical indicators do not suffer from these shortcomings. Chemical indicators can respond to time, temperature, and steam parameters to thus parallel the BI reaction. Nine commercially available chemical indicators and four biological indicators were evaluated under the conditions of dry heat, in a biological indicator-evaluator resistometer vessel, and in a hospital sterilizer. The results indicate that wider use of integrated chemical steam sterilization indicators is recommended. PMID:6493101

  14. Program assists steam drive design project

    SciTech Connect

    Mendez, A.A.

    1984-08-27

    A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

  15. A Computer Program for Simulating Transient Behavior in Steam Turbine Stage Pressure of AHWR

    SciTech Connect

    Dutta, Anu; Thangamani, I.; Chakraborty, G.; Ghosh, A.K.; Kushwaha, H.S.

    2006-07-01

    It is proposed to couple the Advanced Heavy water reactor (AHWR), which is being developed by Bhabha Atomic Research Centre, India, with a desalination plant. The objective of this coupling is to produce system make-up and domestic water. The proposed desalination plant needs about 1.9 kg/sec of steam and the minimum pressure requirement is 3 bars. The desalination plant can be fed with bled steam extracted from a suitable stage in low pressure turbine. As the turbine stage pressure changes with the load, it is essential to know the availability of bled steam at aforesaid pressure for various load condition. The objective of the present study is to identify a suitable extraction point so as to ensure availability of steam at desired condition for desalination plant, even at part load conditions. In order to fulfill the above objective a steam and feed system analysis code was developed which incorporates the mathematical formulation of different components of the steam and feed system such as, high pressure (HP) and low pressure (LP) turbines, re-heater, feed heaters etc. The dynamic equations are solved simultaneously to obtain the stage pressure at various load conditions. Based on the results obtained, the suitable extraction stage in LP turbine was selected. This enables to determine the lowest possible part load operation up to which availability of desalination plant could be ensured. (authors)

  16. Superalloys for ultra supercritical steam turbines--oxidation behavior

    SciTech Connect

    Holcomb, G.R.

    2008-09-01

    Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

  17. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  18. Steam Digest Volume IV

    SciTech Connect

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  19. Overview of steam generator tube degradation and integrity issues

    SciTech Connect

    Diercks, D.R.; Shack, W.J.; Muscara, J.

    1996-10-01

    The degradation of steam generator tubes in pressurized water nuclear reactors continues to be a serious problem. Primary water stress corrosion cracking is commonly observed at the roll transition zone at U-bends, at tube denting locations, and occasionally in plugs and sleeves. Outer-diameter stress corrosion cracking and intergranular attack commonly occur near the tube support plate crevice, near the tube sheet in crevices or under sludge piles, and occasionally in the free span. A particularly troubling recent trend has been the increasing occurrence of circumferential cracking at the RTZ on both the primary and secondary sides. Segmented axial cracking at the tubes support plate crevices is also becoming more common. Despite recent advances in in-service inspection technology, a clear need still exists for quantifying and improving the reliability of in- service inspection methods with respect to the probability of detection of the various types of flaws and their accurate sizing. Improved inspection technology and the increasing occurrence of such degradation modes as circumferential cracking, intergranular attack, and discontinuous axial cracking have led to the formulation of a new performance-based steam generator rule. This new rule would require the development and implementation of a steam generator management program that monitors tube condition against accepted performance criteria to ensure that the tubes perform the required safety function over the next operating cycle. The new steam generator rule will also be applied to severe accident conditions to determine the continued serviceability of a steam generator with degraded tubes in the event of a severe accident. Preliminary analyses are being performed for a hypothetical severe accident scenario to determine whether failure will occur first in the steam generator tubes, which would lead to containment bypass, or instead in the hot leg nozzle or surge line, which would not.

  20. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  1. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  2. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  3. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  4. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  5. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  6. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  7. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  8. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  9. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  10. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  11. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  12. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  13. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  14. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment....

  15. 16. SOUTH SIDE OF STEAM PLANT COOLING TOWER IN OPERABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. SOUTH SIDE OF STEAM PLANT COOLING TOWER IN OPERABLE CONDITION, WITH STACKS OF ORIGINAL BOILERS IN BACKGROUND. June 10, 1941 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  16. Materials Performance in USC Steam

    SciTech Connect

    Gordon R. Holcomb, NETL Joesph Tylczak, NETL Rongxiang Hu, NETL and URS Corp

    2011-09-15

    Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm. Towards this end, further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  17. Materials Performance in USC Steam

    SciTech Connect

    Gordon R. Holcomb, NETL Joesph Tylczak, NETL Rongxiang Hu, NETL and URS Corp

    2011-09-15

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm. Towards this end, further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  18. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect

    Kim, Jung-Taek; Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  19. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  20. Steam pretreatment for coal liquefaction

    NASA Astrophysics Data System (ADS)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  1. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  2. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  3. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  4. 4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  5. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment....

  6. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment....

  7. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment....

  8. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment....

  9. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment....

  10. Steam Digest 2001

    SciTech Connect

    Not Available

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  11. Downhole steam quality measurement

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  12. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  13. Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report, October--December 1993

    SciTech Connect

    Not Available

    1994-01-28

    Preliminary subsystem designs were developed for a Low-Emission Boiler System. Key features of the NO{sub x} and Boiler Subsystem includes: deep staged combustion with advanced low NO{sub x} burners in a furnace arrangement designed to minimize NO{sub x} emission, advanced pulverizer design, advanced operating diagnostics and control integration of steam conditions, combustion, burner management, and sootblowing.

  14. Creating conditions for the success of the French industrial advanced therapy sector.

    PubMed

    Lirsac, Pierre Noel; Blin, Olivier; Magalon, Jérémy; Angot, Pierre; de Barbeyrac, Estelle; Bilbault, Pascal; Bourg, Elisabeth; Damour, Odile; Faure, Patrick; Ferry, Nicolas; Garbil, Bénédicte; Larghero, Jérôme; Nguon, Marina; Pattou, François; Thumelin, Stéphane; Yates, Frank

    2015-01-01

    Although the European Union merely followed the initiatives of the United States and Japan by introducing special regimes for orphan medicinal products, it has introduced a special status for a new category of biological medicinal products, advanced therapy medicinal products (ATMPs), adopting specific associated regulations. European Regulation (which constitutes the highest legal instrument in the hierarchy of European law texts) [EC] No. 1394/2007, published in 2007, uses this term to define somatic cell therapy medicinal products, tissue-engineered products, and gene therapy medicinal products, possibly combined with medical devices. The stated objective was two-fold: both to promote their industrialization and market access, while guaranteeing a high level of health protection for patients. Since publication of the regulation, few marketing authorizations have been granted in Europe, and these have not been accompanied by commercial success. However, certain recent studies show that this is a growing sector and that France remains the leading European nation in terms of clinical trials. This round table brought together a panel of representatives of French public and private protagonists from the advanced therapy sector. The discussions focused on the conditions to ensure the success of translational research and, more generally, the French advanced therapy sector. These enabled a number of obstacles to be identified, which once lifted, by means of recommendations, would facilitate the development and success of this sector. PMID:25747840

  15. Qualification testing of three advanced amines for secondary-system pH control in once-through steam generator plants. Final report

    SciTech Connect

    Gaudreau, T.M.; Koch, D.W.; Lamanna, L.S.; Briden, D.W.; Scott, R.J.; Edwards, R.

    1994-03-01

    This report discusses three different advanced amines which were used for secondary system pH control at Davis Besse. The amines tested were Ethanolamine (ETA), 2-Amino,2-methyl propanol (AMP) and 3-Methoxypropylamine (MPA). All of the amines behaved as expected and predicted by industry chemistry models. The observations made during this test also compared well with laboratory testing and another field application in the case of ETA. Although the different amines affected the high temperature pH in various parts of the secondary system, the test periods were not long enough for a new equilibrium surface condition to be established. Thus, the impact of the various amines on overall iron transport in the secondary system could not be assessed. Based on a comparison between the three amines and prior operation with morpholine, ETA appeared to afford the most benefit. It was determined, however, that better results should be achievable by employing a mixture of amines. The addition of MPA, for instance, to ETA will allow for higher pH levels in the condensate system than ETA alone, while minimizing the amine concentrations. Determining the optimum chemistry control will be plant-specific and based upon the materials of construction and operation of any demineralizers.

  16. The Invisibility of Steam

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  17. Strategies for steam

    SciTech Connect

    Hennagir, T.

    1996-03-01

    This article is a review of worldwide developments in the steam turbine and heat recovery steam generator markets. The Far East is driving the market in HRSGs, while China is driving the market in orders placed for steam turbine prime movers. The efforts of several major suppliers are discussed, with brief technical details being provided for several projects.

  18. Alternative donor transplants for patients with advanced hematologic malignancies, conditioned with thiotepa, cyclophosphamide and antithymocyte globulin.

    PubMed

    Lamparelli, T; van Lint, M T; Gualandi, F; Raiola, A M; Barbanti, M; Sacchi, N; Ficai, G; Ghinatti, C; Bregante, S; Berisso, G; Dominietto, A; Di Grazia, C; Bruno, B; Sessarego, M; Casarino, L; Verdiani, S; Bacigalupo, A

    2000-12-01

    Preparative regimens without total body irradiation (TBI) have been reported for alternative donor hemopoietic stem cell transplants (HSCT). Between 7 September 1994 and 7 June 1999 48 patients with advanced hematologic malignancies were conditioned with thiotepa (THIO) 15 mg/kg, cyclophosphamide (CY) 150 mg/kg and antithymocyte globulin (ATG). Donors were HLA mismatched family members (1-2 antigens) (FAM) (n = 24, median age 31 years) or HLA matched unrelated donors (UD) (n = 24, median age 34 years). GVHD prophylaxis was cyclosporine and methotrexate. Stem cell source was peripheral blood (n = 8) or bone marrow (n = 40). Hematologic recovery was seen in 42/46 (91%) evaluable patients and complete chimerism in 31/37 patients (85%). Acute GVHD grades III-IV were seen in 10/46 patients surviving 10 days (21%) and extensive chronic GVHD in 2/36 patients surviving 100 days (5%). Twenty-six patients died (54%), eight of recurrent disease (17%) and 18 of transplant-related complications (37%): main causes of TRM were GVHD (15%), infections (15%) and graft failure (4%). Twenty-two patients (46%) survive with a median follow-up of 877 days (287-1840). The actuarial 3-year survival is 49% for FAM and 42% for UD transplants. Results obtained with this regimen in unrelated grafts for advanced CML (n = 15) were not significantly different when compared to 21 concurrent UD grafts for advanced CML prepared with CY-TBI. In conclusion, the combination of THIO-CY-ATG allows engraftment of alternative donor hemopoietic stem cells. Results are similar when using unrelated matched donors or partially mismatched family donors, and not significantly different when compared to patients conditioned with CY-TBI. PMID:11223970

  19. Materials Performance in USC Steam

    SciTech Connect

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  20. Brush Seals for Improved Steam Turbine Performance

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  1. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  2. Ultra supercritical turbines--steam oxidation

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

    2004-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  3. Steam trap monitor

    DOEpatents

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  4. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... preserving-steam subcategory. 429.80 Section 429.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam subcategory... steam impingment on wood as the predominant conditioning method; processes that use the vapor...

  5. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... preserving-steam subcategory. 429.80 Section 429.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam subcategory... steam impingment on wood as the predominant conditioning method; processes that use the vapor...

  6. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... preserving-steam subcategory. 429.80 Section 429.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... direct steam impingment on wood as the predominant conditioning method; processes that use the...

  7. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... preserving-steam subcategory. 429.80 Section 429.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... direct steam impingment on wood as the predominant conditioning method; processes that use the...

  8. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... preserving-steam subcategory. 429.80 Section 429.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... direct steam impingment on wood as the predominant conditioning method; processes that use the...

  9. Advanced spent fuel conditioning process (ACP) progress with respect to remote operation and maintenance

    SciTech Connect

    Lee, Hyo Jik; Lee, Jong Kwang; Park, Byung Suk; Yoon, Ji Sup

    2007-07-01

    Korea Atomic Energy Research Institute (KAERI) has been developing an Advanced Spent Fuel Conditioning Process (ACP) to reduce the volume of spent fuel, and the construction of the ACP facility (ACPF) for a demonstration of its technical feasibility has been completed. In 2006 two inactive demonstrations were performed with simulated fuels in the ACPF. Accompanied by process equipment performance tests, its remote operability and maintainability were also tested during that time. Procedures for remote operation tasks are well addressed in this study and evaluated thoroughly. Also, remote maintenance and repair tasks are addressed regarding some important modules with a high priority order. The above remote handling test's results provided a lot of information such as items to be revised to improve the efficiency of the remote handling tasks. This paper deals with the current status of ACP and the progress of remote handling of ACPF. (authors)

  10. Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)

    SciTech Connect

    Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok

    2007-07-01

    A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)

  11. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  12. Shore-to-ship steam purification Inverse Flash Steam Purifier (IFSTEP) field unit tests. Technical report

    SciTech Connect

    Murphy, G.; Maga, S.; Silbernagel, M.

    1995-10-01

    The Inverse Flash Steam Purifier (IFSTEP), a device to remove noncondensable gases from steam, was developed, tested, and evaluated. IFSTEP provides an alternative to methods that generate pure steam. Steam can now be purified at selected points in the steam distribution line, thus improving steam for facilities where required. This differs from reverse osmosis, de-mineralization, and de-alkalization that necessarily purify all the steam, as they are feed water treatment methods. With IFSTEP, simple water softening is adequate. The expense of the comprehensive feed water treatment, hazardous material handling, and labor intensive operation is diminished. Test data illustrate the behavior of IFSTEP during early bench tests and current field tests. Under a wide variety of upstream pressure and downstream steam demands, including boiler shutoff and startup conditions, IFSTEP consistently provided clean steam. The best results were achieved with a pressure difference control valve, which maintained a constant pressure or temperature difference between the shell and tube side of the heat exchanger. A prototype design is presented that reflects the improvements suggested by all previous testing. The prototype is modular to allow capacity growth and to meet most activity requirements.

  13. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  14. UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming

    PubMed Central

    Sun, Bai-Shen; Xu, Ming-Yang; Li, Zheng; Wang, Yi-Bo; Sung, Chang-Keun

    2012-01-01

    The metabolic profiles of Panax quinquefolius and its associated therapeutic values are critically affected by the repetitious steaming times. The times-dependent steaming effect of P. quinquefolius is not well-characterized and there is also no official guideline on its times of steaming. In this paper, a UPLC-Q-TOF-MS/MS method was developed for the qualitative profiling of multi-parametric metabolic changes of raw P. quinquefolius during the repetitious steaming process. Our method was successful in discriminating the differentially multi-steamed herbs. Meantime, the repetitious steaming-inducing chemical transformations in the preparation of black American ginseng (American ginseng that was subjected to 9 cycles of steaming treatment) were evaluated by this UPLC-Q-TOF-MS/MS based chemical profiling method. Under the optimized UPLC-Q-TOF-MS/MS conditions, 29 major ginsenosides were unambiguously identified and/or tentatively assigned in both raw and multi-steamed P. quinquefolius within 19 min, among them 18 ginsenosides were detected to be newly generated during the preparatory process of black American ginseng. The mechanisms involved were further deduced to be hydrolysis, dehydration, decarboxylation and addition reactions of the original ginsenosides in raw P. quinquefolius through analyzing mimic 9 cycles of steaming extracts of 14 pure reference ginsenosides. Our novel steaming times-dependent metabolic profiling approach represents the paradigm shift in the global quality control of multi-steamed P. quinquefolius products. PMID:23717129

  15. Steam-water relative permeability

    SciTech Connect

    Ambusso, W.; Satik, C.; Home, R.N.

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  16. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit

  17. Steam generator performance degradation

    SciTech Connect

    Lovett, J.T.; Dow, B.L. )

    1991-09-01

    A survey was conducted to determine the range and severity of steam generator performance degradation effects experienced by PWRs in the United States. The survey results were tabulated and correlated with steam generator age and design. Operating experience at several PWRs was examined in detail. The operating experience at US PWRs was compared to that of PWRs in Japan and Germany. Possible causes for the performance degradation were postulated and evaluated. The sensitivity of steam generator output pressure to changes in various parameters (such as fouling factor, average reactor coolant temperature, and percentage of steam generator tubes plugged) was calculated. These calculations were used in the evaluation of possible causes of steam generator performance degradation. Several deposit exfoliation scenarios were evaluated in terms of the calculated effect on fouling factor trends and associated steam generator output pressure trends. 15 refs., 32 figs., 7 tabs.

  18. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  19. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  20. Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler

    SciTech Connect

    Shingledecker, John P; Wright, Ian G

    2006-01-01

    The U.S. Ultra-supercritical (USC) Steam Boiler Consortium, funded by the U.S. Department of Energy and the Ohio Coal Development Office, has been working to develop the necessary materials technology to construct a steam power boiler with maximum steam conditions of 760 C and 35MPa. One large component of this work is to evaluate the properties of the materials chosen for such a boiler. While long-term creep strength of base metal is initially used to set temperatures, stresses, and simple design rules, it is clear that base metal creep strength is not always the material property of most importance when selecting an alloy. The fabrication issues (typically weldability), the properties of materials after fabrication, the corrosion resistance of the material, and material cost all need to be considered in addition to baseline mechanical properties. Work is ongoing at Oak Ridge National Laboratory to evaluate the material technologies being developed by the USC Steam Boiler Consortium and perform additional advanced research activities in areas where new materials developments and better fundamental understanding are needed to ensure the long-term success of a 760 C power steam boiler.

  1. Influence of various operating conditions on advanced PFBC with staged combustion

    SciTech Connect

    Moersch, O.; Nagel, H.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    The development of PFBC towards advanced or second generation PFBC focuses on an increase of temperature at the gas turbine inlet to bring forth a substantial improvement of the turbine itself and the overall system performance. Most of such advanced systems described in literature include a carbonizer for partial conversion of coal producing a low calorific pressurized syngas and a PFBC burning the remaining char. After hot gas clean-up the syngas and the O{sub 2}-rich fuel gas from the PFBC are led to the combustion chamber of the gas turbine. In the proposed staged combustion concept (PFBC-SC), which also aims at raising the temperatures at the gas turbine inlet, coal is burned substoichiometrically in a pressurized fluidized bed producing a low calorific gas. After hot gas clean-up the gas undergoes post-combustion with pressurized air and enters the gas turbine at approximately 1,450 K. The advantages of PFBC-SC over APFBC as described above are the lower investment costs and the simpler process, because no separate gasifier including hot gas cleaning device is needed. At the IVD's 50 kWth PFBC test facility, experimental investigations were done into substoichiometrical combustion with regard to composition of the produced gas, carbon-conversion and afterburner temperature. The results of the experiments which were carried out at various temperatures (1,073--1,200 K), pressures (1--13 bar), air ratios (0.5--0.9) and with different coals were compared with chemical equilibrium calculations. In contrast to the operating pressure the heating value of the syngas ({ge}CO, H{sub 2}, CH{sub 4}) could be increased significantly with increasing temperatures. Due to the better gasification behavior of subbituminous coal compared with bituminous coal almost equilibrium conditions were achieved. At high pressures and temperatures (13 bar/1,173 K) the carbon conversion rate 97.5% at all air ratios.

  2. Downhole steam injector

    DOEpatents

    Donaldson, A. Burl; Hoke, Donald E.

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  3. 5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  4. 14. MARINE STEAM BOILERS AT WEST SIDE OF CROSSCUT STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. MARINE STEAM BOILERS AT WEST SIDE OF CROSSCUT STEAM PLANT BUILDING, FROM SOUTH. August 4, 1947 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  5. 8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  6. Palliative Care, Hospice, and Advance Care Planning: Views of People Living with HIV and Other Chronic Conditions.

    PubMed

    Slomka, Jacquelyn; Prince-Paul, Maryjo; Webel, Allison; Daly, Barbara J

    2016-01-01

    People living with HIV (PLWH) who survive to older adulthood risk developing multiple chronic medical conditions. Health policymakers recognize the role of early palliative care and advance care planning in improving health quality for at-risk populations, but misperceptions about palliative care, hospice, and advance care planning are common. Before testing a program of early palliative care for PLWH and other chronic conditions, we conducted focus groups to elicit perceptions of palliative care, hospice, and advance care planning in our target population. Overall, participants were unfamiliar with the term palliative care, confused concepts of palliative care and hospice, and/or associated hospice care with dying. Participants misunderstood advance care planning, but valued communication about health care preferences. Accepting palliative care was contingent on distinguishing it from hospice and historical memories of HIV and dying. Provision of high-quality, comprehensive care will require changing public perceptions and individuals' views in this high-risk population. PMID:27053406

  7. Computerized operating cost model for industrial steam generation

    SciTech Connect

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  8. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A. )

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  9. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A.

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  10. Study of the influence of sporulation conditions on heat resistance of Geobacillus stearothermophilus used in the development of biological indicators for steam sterilization.

    PubMed

    Guizelini, Belquis P; Vandenberghe, Luciana P S; Sella, Sandra Regina B R; Soccol, Carlos Ricardo

    2012-12-01

    Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance. PMID:22872104

  11. STEAM GENERATOR FOR NUCLEAR REACTOR

    DOEpatents

    Kinyon, B.W.; Whitman, G.D.

    1963-07-16

    The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

  12. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  13. Steam Turbine Materials and Corrosion

    SciTech Connect

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  14. Steam turbine materials and corrosion

    SciTech Connect

    Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

    2007-12-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

  15. Advanced Beamformers for Cochlear Implant Users: Acute Measurement of Speech Perception in Challenging Listening Conditions

    PubMed Central

    Buechner, Andreas; Dyballa, Karl-Heinz; Hehrmann, Phillipp; Fredelake, Stefan; Lenarz, Thomas

    2014-01-01

    Objective To investigate the performance of monaural and binaural beamforming technology with an additional noise reduction algorithm, in cochlear implant recipients. Method This experimental study was conducted as a single subject repeated measures design within a large German cochlear implant centre. Twelve experienced users of an Advanced Bionics HiRes90K or CII implant with a Harmony speech processor were enrolled. The cochlear implant processor of each subject was connected to one of two bilaterally placed state-of-the-art hearing aids (Phonak Ambra) providing three alternative directional processing options: an omnidirectional setting, an adaptive monaural beamformer, and a binaural beamformer. A further noise reduction algorithm (ClearVoice) was applied to the signal on the cochlear implant processor itself. The speech signal was presented from 0° and speech shaped noise presented from loudspeakers placed at ±70°, ±135° and 180°. The Oldenburg sentence test was used to determine the signal-to-noise ratio at which subjects scored 50% correct. Results Both the adaptive and binaural beamformer were significantly better than the omnidirectional condition (5.3 dB±1.2 dB and 7.1 dB±1.6 dB (p<0.001) respectively). The best score was achieved with the binaural beamformer in combination with the ClearVoice noise reduction algorithm, with a significant improvement in SRT of 7.9 dB±2.4 dB (p<0.001) over the omnidirectional alone condition. Conclusions The study showed that the binaural beamformer implemented in the Phonak Ambra hearing aid could be used in conjunction with a Harmony speech processor to produce substantial average improvements in SRT of 7.1 dB. The monaural, adaptive beamformer provided an averaged SRT improvement of 5.3 dB. PMID:24755864

  16. Advances in lectin microarray technology: Optimized protocols for piezoelectric print conditions

    PubMed Central

    Pilobello, Kanoelani T.; Agrawal, Praveen; Rouse, Richard; Mahal, Lara K.

    2015-01-01

    Lectin microarray technology has been used to profile the glycosylation of a multitude of biological and clinical samples, leading to new clinical biomarkers and advances in glycobiology. Lectin microarrays, which include over 90 plant lectins, recombinant lectins, and selected antibodies, are used to profile N-linked, O-linked, and glycolipid glycans. The specificity and depth of glycan profiling depends upon the carbohydrate-binding proteins arrayed. Our current set targets mammalian carbohydrates including fucose, high mannose, branched and complex N-linked, α- and β- Galactose and GalNAc, α-2,3- and α-2,6- sialic acid, LacNAc and Lewis X epitopes. In previous protocols, we have described the use of a contact microarray printer for lectin microarray manufacture. Herein, we present an updated protocol using a non-contact, piezoelectric printer, which leads to increased lectin activity on the array. We describe optimization of print conditions and sample hybridization, and methods of analysis. PMID:23788322

  17. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. PMID:24873715

  18. Mathematical modeling of control system for the experimental steam generator

    NASA Astrophysics Data System (ADS)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  19. STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    The approach used is to inject steam into 1- dimensional columns that have been packed with contaminated soil from the site. Temperatures in the system are monitored aliquots of the effluent collected for analysis. A sample of the initial soil, the final steamed soil, the effluen...

  20. Steampunk: Full Steam Ahead

    ERIC Educational Resources Information Center

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  1. Running Out of Steam.

    ERIC Educational Resources Information Center

    Kumar, Promod

    2000-01-01

    Explains why schools should evaluate whether their older steam-heating systems are still cost-effective, or need to be repaired or replaced. The symptoms of deterioration are listed along with discussions on repair or replacement decision making on three areas of steam heating systems: boilers; distribution system; and terminal equipment. (GR)

  2. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    SciTech Connect

    Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans; Kidder, Michelle; Polyzos, Georgios; Leonard, Keith J

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  3. Treeline advances along the Urals mountain range - driven by improved winter conditions?

    PubMed

    Hagedorn, Frank; Shiyatov, Stepan G; Mazepa, Valeriy S; Devi, Nadezhda M; Grigor'ev, Andrey A; Bartysh, Alexandr A; Fomin, Valeriy V; Kapralov, Denis S; Terent'ev, Maxim; Bugman, Harald; Rigling, Andreas; Moiseev, Pavel A

    2014-11-01

    High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub-Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11,100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade(-1) ), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05°C decade(-1) ). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind-sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single-stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest-tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks. PMID

  4. Noise Survey Under Static Conditions of a Turbine-Driven Transonic Propeller with an Advance Ratio of 4.0

    NASA Technical Reports Server (NTRS)

    Kurbjun, Max C.

    1959-01-01

    Overall sound-pressure levels and frequency spectra have been obtained under static conditions on a transonic propeller with an advance ratio of 4.0. This advance ratio represents a practical minimum tip speed for transonic flight speeds. The three-blade, 6.85-foot-diameter, 1,710-rpm propeller is powered by a turbine engine and is designed to operate at a forward Mach number of 0.82 at an altitude of 35,000 feet. The results consist of overall sound-pressure levels and frequency spectra obtained from analyses made of recordings taken during ground runups of the propeller with an advance ratio of 4.0. These results are compared with similar results obtained from a supersonic propeller having an advance ratio of 2.2 reported in NACA Technical Note 4059 and from a modified supersonic propeller having an advance ratio of 3.2 reported in NACA Technical Note 4172. The advance-ratio-4.0 propeller of the present investigation produced a maximum sound-pressure level of 117.5 decibels when corrected to 1,400 horsepower. This overall noise output represents a lowering of the maximum overall sound-pressure level by approximately 5 decibels from that of the advance-ratio-3.2 propeller and by 14 decibels from that of the advance-ratio-2.2 propeller at comparable engine horsepowers. The frequency spectrum for the present propeller was the same as that for the advance-ratio-3.2 propeller, that is, high sound-pressure levels for the low-blade-passage harmonics with a rapid decrease in level with increasing order of harmonic. The 5-decibels reduction, under static conditions, is not considered sufficient to warrant the increased weight and operational penalties that would accompany this selection over the more efficient advance-ratio-3.2 propeller. At high forward speeds, however, the noise level of the present advance-ratio-4.0 propeller, especially in the fre- quency range where passenger comfort is important, should probably be substantially lower than that of the advance

  5. Steam trap monitor

    DOEpatents

    Ryan, Michael J.

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  6. Ukraine Steam Partnership

    SciTech Connect

    Gurvinder Singh

    2000-02-15

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  7. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  8. Integrity of the tubes used in vertical and horizontal steam generators

    NASA Astrophysics Data System (ADS)

    Bergunker, V. D.

    2011-03-01

    Statistical data on experience gained from operation of steam generators around the world are presented, problems arising in vertical and horizontal steam generators are described, and the conditions of heattransfer tubes used in them are compared.

  9. Refurbishing steam turbines

    SciTech Connect

    Valenti, M.

    1997-12-01

    Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

  10. Solar steam nanobubbles.

    PubMed

    Polman, Albert

    2013-01-22

    Silica-gold core-shell nanoparticles that are immersed in water act as efficient nanoscale generators of steam when illuminated with sunlight. In their paper in this issue of ACS Nano, Halas, Nordlander, and co-workers demonstrate this intriguing phenomenon that results from the nucleation of steam at the surface of individual nanoparticles that are heated by the sun. The same effect is also used to demonstrate distillation of ethanol. The solar steam nanobubble generation phenomenon results from the complex interplay of many different phenomena that occur at the nanoscale, and can find a broad range of applications. PMID:23282196

  11. Materials Performance in USC Steam

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

    2011-09-07

    Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

  12. The Mechanisms of Inhibition of Advanced Glycation End Products Formation through Polyphenols in Hyperglycemic Condition.

    PubMed

    Khangholi, Shahpour; Majid, Fadzilah Adibah Abdul; Berwary, Najat Jabbar Ahmed; Ahmad, Farediah; Aziz, Ramlan Bin Abd

    2016-01-01

    Glycation, the non-enzymatic binding of glucose to free amino groups of an amino acid, yields irreversible heterogeneous compounds known as advanced glycation end products. Those products play a significant role in diabetic complications. In the present article we briefly discuss the contribution of advanced glycation end products to the pathogenesis of diabetic complications, such as atherosclerosis, diabetic retinopathy, nephropathy, neuropathy, and wound healing. Then we mention the various mechanisms by which polyphenols inhibit the formation of advanced glycation end products. Finally, recent supporting documents are presented to clarify the inhibitory effects of polyphenols on the formation of advanced glycation end products. Phytochemicals apply several antiglycation mechanisms, including glucose metabolism, amelioration of oxidative stress, scavenging of dicarbonyl species, and up/down-regulation of gene expression. To utilize polyphenols in order to remedy diabetic complications, we must explore, examine and clarify the action mechanisms of the components of polyphenols. PMID:26550791

  13. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  14. CORCO downhole steam generator

    SciTech Connect

    Rintoul, B.

    1982-03-01

    The opening of a new frontier in steaming moved forward in Jan. 1982 when a CORCO (Chemical Oil Recovery Co.) generator described as the first commercial down-hole steam generator went into operation in Kern County's Devils Den field, 60 miles northwest of Bakersfield, CA. A major reason for selecting the down-hole generator for the Devils Den field is that along with steam the unit puts away flue gas resulting from combustion. There is no pressure to speak of in the escudo, and it is hoped that the inert gas will build up bottom-hole pressure to assist in oil recovery. Another reason is that the down-hole generator, rated for 7 million btu/hr, makes it possible to tailor steam injection to the well's requirements. The advantages and disadvantages of the CORCO generator are described, along with its application in the Kern River field.

  15. Continuous steam explosion

    SciTech Connect

    Taylor, J.D.; Yu, E.K.C.

    1995-02-01

    StakeTech has focused on developing steam explosion on a commercial basis. The company essentially a biomass conversion company dealing with cellulosic biomass such as wood, crop residues and, more recently, wastepaper and municipal solid waste (MSW). They are faced with a tremendous opportunity to develop uses for the 50% of biomass that is currently wasted. The StakeTech steam explosion process is able to break the bonds using only high-pressure steam with no chemical additives. The continuous StakeTech System now has been installed in five countries and has proved effective in processing a wide variety of raw materials including wood chips, straw, sugarcane bagasse, and waste paper. End-use applications range from specialty chemicals to large-volume agricultural products. The increase of development activities in steam explosion should lead to expanded end-use applications, and acceptance of the technology by industry should accelerate in the years to come.

  16. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  17. Cost Reduction Strategies - Steam

    SciTech Connect

    2001-03-01

    Boilers play a particularly important role in integrated mills because they not only provide the steam needed for key processes but also consume by-product fuels generated in the coke ovens, blast furnace, and BOF.

  18. Power enhancement of the Brayton cycle by steam utilization

    NASA Astrophysics Data System (ADS)

    Jesionek, Krzysztof; Chrzczonowski, Andrzej; Ziółkowski, Paweł; Badur, Janusz

    2012-09-01

    The paper presents thermodynamic analysis of the gas-steam unit of the 65 MWe combined heat and power station. Numerical analyses of the station was performed for the nominal operation conditions determining the Brayton and combined cycle. Furthermore, steam utilization for the gas turbine propulsion in the Cheng cycle was analysed. In the considered modernization, steam generated in the heat recovery steam generator unit is directed into the gas turbine combustion chamber, resulting in the Brayton cycle power increase. Computational flow mechanics codes were used in the analysis of the thermodynamic and operational parameters of the unit.

  19. Origin and transport of chloride in superheated geothermal steam

    USGS Publications Warehouse

    Truesdell, A.H.; Haizlip, J.R.; Armannsson, H.; D'Amore, F.

    1989-01-01

    Hydrogen chloride (HCl) is a known component of some volcanic gases and volcanic-related hydrothermal systems. It has recently been discovered in superheated steam in exploited geothermal systems, usually as a result of HCl-induced corrosion of well casing and steam gathering systems. Evaluation of four geothermal systems (Tatun, Taiwan; Krafla, Iceland; Larderello, Italy and The Geysers, USA) which produce CI-bearing steam provides evidence for the presence of Cl as HCl and the natural reservoir conditions which can produce HCl-bearing steam. Theoretical calculations defining the physical and chemical conditions of the reservoir liquid which can produce HCl-bearing steam are presented. The main factors are pH, temperature and Cl concentration. Lower pH, higher temperature and higher chlorinity allow more HCl to be volatilized with steam. In order to reach the surface in steam, the HCl cannot contact liquid water in which it is more soluble, essentially limiting transport to superheated steam. Temperature, pH and Cl concentration of reservoir liquids in each of the geothermal systems evaluated combine differently to produce HCl-bearing steam. ?? 1989.

  20. Effect of Dry Steam on Nature and Quality of Selected Characteristic Organic Chemicals

    NASA Astrophysics Data System (ADS)

    Li, Z.; Yamasaki, N.; Ioku, K.

    2007-03-01

    In this study, effects of steam with different density (saturated and dry steam) on five characteristic organic chemicals such as alcohol, ester, aromatics, phenol and fatty acid were investigated below 200 °C. The natures of the tested organic chemicals were analyzed by weight loss in steam. The experimental results showed that the dissolving behavior of each organic compound in steam is significantly different. Alcohols and phenanthrene can dissolve easily in steam with low density; High saturated fatty acid cannot almost dissolve in steam below 200 °C; Ester are less stable in saturated steam; Phenols revealed a variable behavior characterized by an increase of weight at early stage and a decrease later in saturated steam, and companied by color change. It must be necessary to consider proper steam density condition for selective extraction of some special chemicals.

  1. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other...

  2. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other...

  3. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other...

  4. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other...

  5. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other...

  6. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  7. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  8. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  9. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  10. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  11. Steam plasmatron gasification of distillers grains residue from ethanol production.

    PubMed

    Shie, Je-Lueng; Tsou, Feng-Ju; Lin, Kae-Long

    2010-07-01

    In this study, a plasmatron reactor was used for gasifying the waste of distillers grains at different temperatures (773, 873, 973 K) and water flow rates (1, 2, 3 mL min(-1)), which were heated to produce steam. Among all the gas products, syngas was the major component (88.5 wt.% or 94.66 vol.%) with temperatures yielding maximum concentrations at 873 K with a relatively high reaction rate. The maximum concentrations regarding gaseous production occurring times are all below 1 min. With the increase of steam, the recovery mass yield of syngas also increases from 34.14 to 45.47 approximately 54.66 wt.% at 873 K. Water-gas reactions and steam-methane reforming reactions advance the production of syngas with the increase of steam. Furthermore, the water-shift reaction also increases in the context of steam gasification which leads to the decrease of CO(2) at the same time. PMID:20163957

  12. Steam generators and related auxiliaries

    SciTech Connect

    Keller, D.L.

    1986-04-01

    The current capability of the power generation industry to supply steam generating equipment for large central fossil stations is much lower than that of several years ago. Volatile energy prices make it very difficult to predict long-term demand changes, but current conditions strongly suggest that demand forecasts and orders will increase from current levels. This combination of circumstances strongly suggest that, while not a certainty, the potential for material and equipment shortages is a very real possibility that belongs in any current assessment of the future of the industry.

  13. [Defective function of bioindicators for steam sterilization].

    PubMed

    Botzenhart, K; Merkt-Kinzler, M

    1990-05-01

    It can be shown, that under certain conditions commercially available indicators with Bacillus stearothermophilus and packages of native spores from soil prepared according to DIN 58 946/4 react differently to treatment in a lab-type steam sterilizer. The differences were most evident when incomplete evacuation of air had to be supposed. These results lead to the conclusion that some bioindicators are not able to show the inefficient function of steam sterilizers caused by local residuals of air. This may be caused by the properties of the selected strain, by the conditions of growth and preparation of the spores and by the culture medium used after exposition. The results of our experiments as well as the resistance of mesophilic spore forming bacilli against dry heat described by other authors make it necessary to test the resistance of bioindicators for steam sterilization not only against steam according to DIN 58946/4 but also against dry heat or mixtures of steam and air. PMID:2393488

  14. Advanced PFBC transient analysis

    SciTech Connect

    White, J.S.; Bonk, D.L.

    1997-05-01

    Transient modeling and analysis of advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigation by the US Department of Energy`s Federal Energy Technology Center (FETC). The object of the effort is to identify key operating parameters that affect plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX{trademark}, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper describes the development of a series of TRAX-based transient models of advanced PFBC power plants. These power plants burn coal or other suitable fuel in a PFBC, and the high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When it is utilized, the low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to raise and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

  15. 49 CFR 230.70 - Safe condition.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and... of each day the locomotive is used, the steam locomotive operator shall ensure that: (1) The brakes on the steam locomotive and tender are in safe and suitable condition for service; (2) The...

  16. 49 CFR 230.70 - Safe condition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and... of each day the locomotive is used, the steam locomotive operator shall ensure that: (1) The brakes on the steam locomotive and tender are in safe and suitable condition for service; (2) The...

  17. 49 CFR 230.70 - Safe condition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and... of each day the locomotive is used, the steam locomotive operator shall ensure that: (1) The brakes on the steam locomotive and tender are in safe and suitable condition for service; (2) The...

  18. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  19. Steam turbine materials and corrosion

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.

    2007-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

  20. RPV steam generator pressure boundary

    SciTech Connect

    Strosnider, J.

    1996-03-01

    As the types of SG tube degradation affecting PWR SGs has changed, and improvements in tube inspection and repair technology have occurred, current SG regulatory requirements and guidance have become increasingly out of date. This regulatory situation has been dealt with on a plant-specific basis, however to resolve this problem in the long term, the NRC has begun development of a performance-based rule. As currently structured, the proposed steam generator rule would require licensees to implement SG programs that monitor the condition of the steam generator tubes against accepted performance criteria to provide reasonable assurance that the steam generator tubes remain capable of performing their intended safety functions. Currently the staff is developing three performance criteria that will ensure the tubes can continue to perform their safety function and therefore satisfy the SG rule requirements. The staff, in developing the criteria, is striving to ensure that the performance criteria have the two key attributes of being (1) measurable (enabling the tube condition to be {open_quotes}measured{close_quotes} against the criteria) and (2) tolerable (ensuring that failures to meet the criteria do not result in unacceptable consequences). A general description of the criteria are: (1) Structural integrity criteria: Ensures that the structural integrity of the SG tubes is maintained for the operating cycle consistent with the margins intended by the ASME Code. (2) Leakage integrity criteria: Ensures that postulated accident leakages and the associated dose releases are limited relative to 10 CFR Part 50 guidelines and 10 CFR Part 50 Appendix A GDC 19. (3) Operational leakage criteria: Ensures that the operating unit will be shut down as a defense-in depth measure when operational SG tube leakage exceeds established leakage limits.

  1. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  2. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  3. The study of lithography conditions to use advanced resist performance properly

    NASA Astrophysics Data System (ADS)

    Yang, Zhengkai; Wang, Wuping; Chen, Quan; Aoyama, Hajime; Takemasa, Kengo; Sei, Toshihiko; Miyazawa, Tami; Matsuyama, Tomoyuki; Shao, Chun

    2015-03-01

    Correlation of resist modeling of printed features with lithographic data is a necessary part of developing new lithographic processes. Recently, we have found a case in which the most advanced resist types sometimes show better behavior than expectations from optical simulation in terms of dose latitude, MEEF (mask error enhancement factor), and even CD variation through different pitches. This superior resist performance may allow greater margin for error in each component, such as mask, scanner, and metrology in very low-k1 lithography. On the other hand, since the resist pattern CD for the most advanced resist is very much different from the prediction of optical simulation, it is a challenge to build OPC models using the exposure result with the resist. In order to solve this issue, we have tried to use several litho parameters to reduce the gap between optical simulation and resist CDs for OPC modeling. In this paper we discuss the effect of the parameters to reduce the gap between optical model and actual resist behavior with keeping superior performance as much as possible. The method we mention may be a key to use the most advanced resist in near future. As a result the life of ArF immersion lithography in the critical layer would be extended than we expect today.

  4. Chemistry of Earth's Putative Steam Atmosphere

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Schaefer, L.

    2007-12-01

    The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.

  5. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  6. 32. 48' MILL STEAM ENGINE ADMISSION BOX (?), STEAM VALVE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. 48' MILL STEAM ENGINE ADMISSION BOX (?), STEAM VALVE, AND REVERSING MECHANISM LIFTING CYLINDER. - U.S. Steel Homestead Works, 48" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  7. 14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  8. Review of surface steam sterilization for validation purposes.

    PubMed

    van Doornmalen, Joost; Kopinga, Klaas

    2008-03-01

    Sterilization is an essential step in the process of producing sterile medical devices. To guarantee sterility, the process of sterilization must be validated. Because there is no direct way to measure sterility, the techniques applied to validate the sterilization process are based on statistical principles. Steam sterilization is the most frequently applied sterilization method worldwide and can be validated either by indicators (chemical or biological) or physical measurements. The steam sterilization conditions are described in the literature. Starting from these conditions, criteria for the validation of steam sterilization are derived and can be described in terms of physical parameters. Physical validation of steam sterilization appears to be an adequate and efficient validation method that could be considered as an alternative for indicator validation. Moreover, physical validation can be used for effective troubleshooting in steam sterilizing processes. PMID:18313509

  9. Compatibility of selected ceramics with steam-methane reformer environments

    SciTech Connect

    Keiser, J.R.; Howell, M.; Williams, J.J.; Rosenberg, R.A.

    1996-04-01

    Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

  10. Selection of labyrinth seals in steam turbines

    NASA Astrophysics Data System (ADS)

    Kostyuk, A. G.

    2015-01-01

    The efficiency, vibration stability, operational durability, and cost of the main types of peripheral seals used in steam turbines are considered. A comparison between the conventional and honeycomb seals is given. Conditions subject to which replacement of conventional seals by honeycomb ones can be justified are pointed out. The use of variable-pitch multicomb seals as the most promising ones is recommended.

  11. Steam-injected gas turbine analysis: Steam rates

    SciTech Connect

    Rice, I.G.

    1995-04-01

    This paper presents an analysis of steam rates in steam-injected gas turbines (simple and reheat). In considering a gas turbine of this type, the steam-injection flow is separated from the main gas stream for analysis. Dalton`s and Avogadro`s laws of partial pressure and gas mixtures are applied. Results obtained provide for the accurate determination of heat input, gas expansion based on partial pressures, and heat-rejection steam-enthalpy points.

  12. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  13. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  14. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  15. STEAM GENERATOR GROUP PROJECT

    SciTech Connect

    Clark, R. A.; Lewis, M

    1985-09-01

    This report is a summary of progress in the Surry Steam Generator Group Project for 1984. Information is presented on the analysis of two baseline eddy current inspections of the generator. Round robin series of tests using standard in-service inspection techniques are described along with some preliminary results. Observations are reported of degradation found on tubing specimens removed from the generator, and on support plates characterized in-situ. Residual stresses measured on a tubing specimen are reported. Two steam generator repair demonstrations are described; one for antivibration bar replacement, and one on tube repair methods. Chemical analyses are shown for sludge samples removed from above the tube sheet.

  16. Analytical description of the modern steam automobile

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1974-01-01

    The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.

  17. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    SciTech Connect

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

  18. Steam treatment of zebra mussels

    SciTech Connect

    Tsou, J.; Rybarik, D.L.; Thiel, J.

    1995-06-01

    Steam injection into intake bays is a nonchemical method to control zebra mussels. This technique was demonstrated at Dairyland Power Cooperative`s J.P. Madgett Station located in Alma, Wisconsin. The project was funded by the EPRI Zebra Mussel Consortium which includes: Dairyland Power Cooperative, Central Illinois Public Service, Duke Power, Illinois Power Company, PSI Energy, Public Service Electric & Gas, and Tennessee Valley Authority. This technique can be used by other power plants with a similar problem. A contract between Electric Power Research Institute (EPRI) and Stone & Webster Engineering Corporation (Stone & Webster) was initiated in August 1994. The steam treatments were performed at the J.P. Madgett intake in Alma, Wisconsin, on September 14 and 18, 1994. The J.P. Madgett Station has two water intake bays with storage capacities of approximately 295,000 and 265,000 gallons, respectively. Each intake can be isolated, permitting either full or reduced generation depending on river temperature conditions. In addition to the intake bays, the outside fire protection loop and hydrants were also treated with the hot water from one of the bays. This paper presents the process design, piping and steam educator configurations, portable industrial boiler sizing and description, and the thermocouples to monitor the water temperature in the intake bay. The biological mortality and control test protocol and treatment results are also presented. Treatment effectiveness was 100%; however, equipment installation and operation was more problematic than anticipated. A generic computer program is developed and verified using thermal data from the test. The PC program will allow other utilities to size the boiler and estimate the heat losses from an intake bay. The treatment also provided valuable information that simplifies future applications and provides for more realistic design and installation schedules and costs.

  19. New high temperature steels for steam power plants

    SciTech Connect

    Hald, J.; Nath, B.

    1998-07-01

    Development of high efficiency ultra supercritical (USC) steam power plant is based on the availability of improved high temperature steels for key components in the steam cycle i.e: Thick section boiler components and steam lines; turbine rotors, casings, valves and bolts; superheaters; furnace panels. New martensitic high creep strength 9--12%Cr steels like the P91, P92 and P122 allow increased steam parameters in steam headers and steam lines, and similar martensitic steels are used for rotors, casings and valves of advanced steam turbines. The development of these steels have included demonstration of fabricability like welding and bending, fabrication of demonstration components built into existing plants, and the validation of long term creep properties with testing times of more than 30,000 hours. The development work has been made in international projects like the EPRI RP1403, COST 501 and ECCC. The first use of the new steels have followed in USC plants in Europe and Japan, leading to plant efficiencies up to 47%. Superheater steels must have high corrosion and oxidation resistance, and a number of new austenitic steels have been developed for this purpose. Tests are currently running to obtain long term corrosion and oxidation data for design of superheaters in the new steels. Steels for furnace panels need to be welded without post weld heat treatment, and also for this purpose new ferritic and martensitic steels are available. With the materials development described above it is today possible to construct a USC plant with steam parameters 325bar/610 C/630 C/630 C and an efficiency approaching 50%. Future developments in the European THERMIE demonstration project ``Advanced (700 C) PF Power Plant'' will address the use of nickel or cobalt base superalloys for boilers, steam lines and turbines. This may lead to efficiencies in the range 52--55%.

  20. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings

  1. The value of steam turbine upgrades

    SciTech Connect

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  2. Advanced technologies for scalable ATLAS conditions database access on the grid

    NASA Astrophysics Data System (ADS)

    Basset, R.; Canali, L.; Dimitrov, G.; Girone, M.; Hawkings, R.; Nevski, P.; Valassi, A.; Vaniachine, A.; Viegas, F.; Walker, R.; Wong, A.

    2010-04-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysis of server performance under stress tests indicates that Conditions Db data access is limited by the disk I/O throughput. An unacceptable side-effect of the disk I/O saturation is a degradation of the WLCG 3D Services that update Conditions Db data at all ten ATLAS Tier-1 sites using the technology of Oracle Streams. To avoid such bottlenecks we prototyped and tested a novel approach for database peak load avoidance in Grid computing. Our approach is based upon the proven idea of pilot job submission on the Grid: instead of the actual query, an ATLAS utility library sends to the database server a pilot query first.

  3. Coordination of care for individuals with advanced progressive conditions: a multi-site ethnographic and serial interview study

    PubMed Central

    Mason, Bruce; Epiphaniou, Eleni; Nanton, Veronica; Donaldson, Anne; Shipman, Cathy; Daveson, Barbara A; Harding, Richard; Higginson, Irene; Munday, Dan; Barclay, Stephen; Boyd, Kirsty; Dale, Jeremy; Kendall, Marilyn; Worth, Allison; Murray, Scott A

    2013-01-01

    Background Coordination of care for individuals with advanced progressive conditions is frequently poor. Aim To identify how care is coordinated in generalist settings for individuals with advanced progressive conditions in the last year of life. Design and setting A mixed methods study of three UK generalist clinical settings producing three parallel case studies: an acute admissions unit in a regional hospital, a large general practice, and a respiratory outpatient service. Method Ethnographic observations in each setting, followed by serial interviews of patients with advanced progressive conditions and their family carers in the community. A spectrum of clinicians and healthcare workers were also interviewed. Results Ethnographic observations were conducted for 22 weeks. A total of 56 patients, 25 family carers and 17 clinicians yielded 198 interviews. Very few participants had been identified for a palliative approach. Rapid throughput of hospital patients and time pressures in primary care hindered identification of palliative care needs. Lack of care coordination was evident during emergency admissions and discharges. Patient, families, and professionals identified multiple problems relating to lack of information, communication, and collaboration at care transitions. Family carers or specialist nurses, where present, usually acted as the main care coordinators. Conclusion Care is poorly coordinated in generalist settings for patients in the last year of life, although those with cancer have better coordinated care than other patients. A model to improve coordination of care for all individuals approaching the end of life must ensure that patients are identified in a timely way, so that they can be assessed and their care planned accordingly. PMID:23972199

  4. Power conditioning subsystems for photovoltaic central-station power plants - State-of-the-art and advanced technology

    NASA Technical Reports Server (NTRS)

    Bulawka, A.; Krauthamer, S.; Das, R.

    1986-01-01

    An overview is given of the technical and near-term cost requirements that must be met to develop economically viable power conditioning subsystems (PCS) for large-scale, central photovoltaic power stations. Various commercially available PCS hardware suitable for use in today's central photovoltaic power stations are also surveyed. Federal and industrial activities in the research and development of advanced PCSs that will contribute to the attainment of fully competitive, large-scale photovoltaic power stations are reviewed. The status of the DOE central station PCS program is discussed.

  5. District steam and the St. Louis steam loop

    SciTech Connect

    Tierney, T.M.; Sauer, H.J. Jr.

    1999-07-01

    Owned and operated by large public electric utilities, district steam systems flourished in most northern US cities in the first half of this century. Following World War II, however, district steam systems became minor and, in some cases, unprofitable portions of the utilities' operations. Consequently, public utilities ceased promoting district steam to existing and potential customers, leading to the decline of their use. In recent years, district steam systems have been revitalized by independent enterprises that have the commitment and expertise to make these systems once again reliable and cost-effective energy sources. This paper reports on one such system, The St. Louis Steam Loop. The St. Louis steam loop consists of 22 miles of insulated underground steam piping encompassing a 400-square block area in the city's downtown business district. The loop is supplied with steam by the Ashley Plant, which was built in 1904 for the St. Louis World's Fair. Due to the rising cost of oil, which has been used to fuel the Ashley Plant since 1972, and the subsequent loss of customers, many people considered the steam system a dinosaur in the jet age. In 1982, Trigen-St. Louis Energy Corporation purchased the steam system and embarked on an aggressive campaign to upgrade all aspects of the system, including valves, piping, and meters. In 1999, Trigen-St. Louis will install an ISMW state-of-the-art combustion turbine cogenerator to provide 95% of the steam to the steam loop. A primary reason for the St. Louis Steam Loop's longevity is that it has reliably supplied steam to many downtown buildings for the better part of the 20th century.

  6. Experimental and numerical study on condensation in transonic steam flow

    NASA Astrophysics Data System (ADS)

    Majkut, Mirosław; Dykas, Sławomir; Strozik, Michał; Smołka, Krystian

    2015-09-01

    The present paper describes an experimental and numerical study of steam condensing flow in a linear cascade of turbine stator blades. The experimental research was performed on the facility of a small scale steam power plant located at Silesian University of Technology in Gliwice, Poland. The test rig of the facility allows us to perform the tests of steam transonic flows for the conditions corresponding to these which prevail in the low-pressure (LP) condensing steam turbine stages. The experimental data of steam condensing flow through the blade-to- blade stator channel were compared with numerical results obtained using the in-house CFD numerical code TraCoFlow. Obtained results confirmed a good quality of the performed experiment and numerical calculations.

  7. Experience in the repair of steam generator auxiliary feedwater nozzle

    SciTech Connect

    Chao, K.K.N.

    1996-12-01

    The auxiliary feedwater nozzle is quite often subjected to more thermal stress cycles and other loading mechanisms during their service life than the material was designed and fabricated for at the nozzle of the earlier steam generators in many nuclear plants. During plant operation, the auxiliary feedwater nozzle outlet is exposed to the hot steam from the generator side, while the auxiliary feedwater piping which contains subcooled water from the inlet often induces water hammer as a result of the steam-water mixing phenomena. The thermal cycles and the steam bubble collapse at the nozzle may cause cracking in the nozzle liner and interior surface of the nozzle, and subsequently results in structural damage to the steam generator. This presentation is intended to share the lessons learned from the evaluation of the nozzle condition and the subsequent modification and repair made to the auxiliary feedwater nozzle at the Palisades Nuclear Plant. Other nuclear plant owners may benefit from this experience.

  8. Advancing medical-surgical nursing practice: improving management of the changing patient condition.

    PubMed

    Monroe, Heidi; Plylar, Peggy; Krugman, Mary

    2014-01-01

    Higher patient acuities and more novice nurses on medical-surgical units have Educators focused on achieving positive outcomes with changes in patient condition. An educational program was developed to enhance nurses' knowledge, skill, and confidence in assessing hemodynamics, recognizing early signs of instability, and administering vasoactive medications. The program was successful with significant knowledge improvement as well as an increased use of the Medical Emergency Team while maintaining a low number of code calls. PMID:25407973

  9. Steamer of steam circulation system

    SciTech Connect

    Onodera, M.

    1986-09-23

    A conveyor steamer is described which consists of: a room enclosed with heat-insulated walls, floor, and ceiling, the room having an entrance and an exit for goods to be steamed, a conveyor means for carrying the goods to be steamed, the conveyor means traversing into the entrance of the room, through the room, and out of the exit of the room; a source of heated primary steam; first pipe means, arranged beneath the conveyor means, for jetting the heated primary steam upwardly from across the floor of the room; second pipe means disposed across the entire ceiling of the room arranged above the conveyor means, for scavenging spent steam from across the entire ceiling of the room; and an ejector-condenser means, interconnected between the first pipe means, the source of primary heated steam and the second pipe means, for mixing the spent steam from the second pipe means with the heated primary steam in the first pipe means; whereby the spent steam mixed with the heated primary steam is caused to recirculate in the first pipe means through the room, thus saving energy and consuming less heated primary steam so that cost reductions will result.

  10. The influence of selected design and operating parameters on the dynamics of the steam micro-turbine

    NASA Astrophysics Data System (ADS)

    Żywica, Grzegorz; Kiciński, Jan

    2015-10-01

    The topic of the article is the analysis of the influence of selected design parameters and operating conditions on the radial steam micro-turbine, which was adapted to operate with low-boiling agent in the Organic Rankine Cycle (ORC). In the following parts of this article the results of the thermal load analysis, the residual unbalance and the stiffness of bearing supports are discussed. Advanced computational methods and numerical models have been used. Computational analysis showed that the steam micro-turbine is characterized by very good dynamic properties and is resistant to extreme operating conditions. The prototype of micro-turbine has passed a series of test calculations. It has been found that it can be subjected to experimental research in the micro combined heat and power system.

  11. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  12. Data analysis for steam generator tubing samples

    SciTech Connect

    Dodd, C.V.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generators program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC`s mobile NDE laboratory and staff. This report provides a description of the application of advanced eddy-current neural network analysis methods for the detection and evaluation of common steam generator tubing flaws including axial and circumferential outer-diameter stress-corrosion cracking and intergranular attack. The report describes the training of the neural networks on tubing samples with known defects and the subsequent evaluation results for unknown samples. Evaluations were done in the presence of artifacts. Computer programs are given in the appendix.

  13. Crude oil steam distillation in steam flooding. Final report

    SciTech Connect

    Wu, C.H.; Elder, R.B.

    1980-08-01

    Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

  14. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    NASA Astrophysics Data System (ADS)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  15. Advanced boundary condition method in quantum transport and its application in nanodevices

    NASA Astrophysics Data System (ADS)

    He, Yu

    Modern semiconductor devices have reached critical dimensions in the sub-20nm range. During the last decade, quantum transport methods have become the standard approaches to model nanoscale devices. In quantum transport methods, Schrodinger equations are solved in the critical device channel with the contacts served as the open boundary conditions. Proper and efficient treatments of these boundary conditions are essential to provide accurate prediction of device performance. The open boundary conditions, which represent charge injection and extraction effects, are described by contact self-energies. All existing contact self-energy methods assume periodic and semiinfinite contacts, which are in stark contrast to realistic devices where the contacts often have complicated geometries or imperfections. On the other hand, confined structures such as quantum dots, nanowires, and ultra-thin bodies play an important role in nanodevice designs. In the tight binding models of these confined structures, the surfaces require appropriate boundary treatments to remove the dangling bonds. The existing boundary treatments fall into two categories. One is to explicitly include the passivation atoms in the device. This is limited to passivation with atoms and small molecules due to the increasing rank of the Hamiltonian. The other is to implicitly incorporate passivation by altering the orbital energies of the dangling bonds with a passivation potential. This method only works for certain crystal structures and symmetries, and fails to distinguish different passivation scenarios, such as hydrogen and oxygen passivation. In this work, an efficient self-energy method applicable for arbitrary contact structures is developed. This method is based on an iterative algorithm which considers the explicit contact segments. The method is demonstrated on a graphene nanoribbon structure with trumpet shape contacts and a Si0.5Ge0.5 nanowire transistor with alloy disorder contacts. Furthermore

  16. INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS

    SciTech Connect

    Katya L Le Blanc; Johanna h Oxstrand

    2014-04-01

    It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each

  17. Cycle Configurations for a PBMR Steam and Electricity Production Plant

    SciTech Connect

    Matzner, Dieter; Kriel, Willem; Correia, Michael; Greyvenstein, Renee

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite moderated High Temperature Gas-cooled Reactor (HTGR) that is capable of multiple missions. The petrochemical industry requires the use of high temperature steam and electricity for their processes. Currently coal or natural gas is utilised for the generation of high temperature steam and electricity, which under-utilises natural resources and in the process emits CO{sub 2} into the atmosphere. This paper provides an overview of the PBMR product development path and discusses how steam production forms part of the future possibilities of the PBMR technology. Suitable cycle configurations for both process steam and electricity generation as required by petrochemical plants are discussed. (authors)

  18. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  19. Project DEEP STEAM

    NASA Astrophysics Data System (ADS)

    Aeschliman, D. P.; Clay, R. G.; Donaldson, A. B.; Eisenhawer, S. W.; Fox, R. L.; Johnson, D. R.; Mulac, A. J.

    1982-01-01

    The objective of Project DEEP STEAM is to develop the technology to economically produce heavy oils from deep reservoirs. The tasks included in this project are the development of thermally efficient delivery systems and downhole steam generation systems. During the period January 1-March 31, 1981, effort has continued on a low pressure combustion downhole generator (Rocketdyne), and on two high pressure designs (Foster-Miller Associates, Sandia National Laboratories). The Sandia design was prepared for deployment in the Wilmington Field at Long Beach, California. Progress continued on the Min-Stress II packer concept at L'Garde, Inc., and on the extruded metal packer at Foster-Miller. Initial bare string field data are reported on the insulated tubular test at Lloydminster, Saskatchewan, Canada.

  20. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  1. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  2. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  3. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    SciTech Connect

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-07-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  4. Indicated and actual mass inventory measurements for an inverted U-tube steam generator

    SciTech Connect

    Loomis, G.G.; Plessinger, M.P.; Boucher, T.J.

    1986-01-01

    Results from an experimental investigation of actual versus indicated secondary liquid level in a steam generator at steaming conditions are presented. The experimental investigation was performed in two different small scale U-tube-in-shell steam generators at typical pressurized water reactor operating conditions (5-7 MPa; saturated) in the Semiscale facility. During steaming conditions, the indicated secondary liquid level was found to vary considerably from the actual ''bottled-up'' liquid level. These difference between indicated and actual liquid level are related to the frictional pressure drop associated with the two-phase steaming condition in the riser. Data from a series of bottle-up experiments (Simultaneously, the primary heat source and secondary feed and steam are terminated) are tabulated and the actual liquid level is correlated to the indicated liquid level.

  5. Steam drive recovery method utilizing a downhole steam generator

    SciTech Connect

    Snavely, E. S.; Hopkins, D. N.

    1984-09-18

    Viscous oil is recovered from a subterranean, viscous oil-containing formation by a steam flooding technique wherein steam is generated in a downhole steam generator located in an injection well by spontaneous combustion of a pressurized mixture of a water-soluble fuel such as sugars and alcohols dissolved in water and substantially pure oxygen. The generated mixture of steam and combustion gases pass through the formation, displacing oil and reducing the oil's viscosity and the mobilized oil is produced from the formation via a spaced-apart production well.

  6. Steam drive oil recovery method utilizing a downhole steam generator

    SciTech Connect

    Nopkins, D. N.; Snavely, E. S.

    1984-10-23

    Viscous oil is recovered from a subterranean, viscous oil-containing formation by a steam flooding technique wherein steam is generated in a downhole steam generator located in an injection well by spontaneous combustion of a pressurized mixture of a water-soluble fuel such as sugars and alcohols dissolved in water or a stable hydrocarbon fuel-in-water emulsion and substantially pure oxygen. The generated mixture of steam and combustion gases pass through the formation, displacing oil and reducing the oil's viscosity and the mobilized oil is produced from the formation via a spaced-apart production well.

  7. Academic career in medicine – requirements and conditions for successful advancement in Switzerland

    PubMed Central

    Buddeberg-Fischer, Barbara; Stamm, Martina; Buddeberg, Claus

    2009-01-01

    conditions for an academic career in medicine in Switzerland appear to be difficult especially for those physicians combining research with clinical work. For a successful academic career it seems crucial to start with research activities right after graduation, and take up clinical training later in the career. Furthermore, special mentoring programs for junior academics should be implemented at all medical schools to give trainees more goal-oriented guidance in their career. PMID:19402885

  8. Characterization of PWR steam generator deposits

    SciTech Connect

    Varrin, R. Jr.

    1996-02-01

    Restoring the thermal performance of the steam generators often requires the utility to remove deposits by expensive chemical means. This work demonstrates that careful characterization of secondary side deposit samples can reveal their chemical and physical properties which in turn contribute to an overall assessment of the need for and extent of steam generator inspection and maintenance. More specifically, knowledge of deposit characteristics can contribute to: (1) determination of the source of corrosion products, (2) assessment of feedwater chemistry control strategies, (3) prediction of rates of tube degradation, and (4) evaluation of degraded heat transfer performance or flow instabilities. Despite the relationships between deposits and steam generator operation and performance, few utilities elect to perform the types of characterizations which are suitable for the determination of the specific chemical and physical nature of their particular deposits. One of the principal goals of this document is to encourage utilities to consider deposit characterization an integral part of an overall effort to assess and maintain the material condition of the steam generators at their plant. This document includes a review of the nature of deposits and relates deposit characteristics to a variety of secondary side phenomena including corrosion and fouling. Candidate techniques for revealing relevant deposit properties are provided so that inferences regarding the role of deposits in promoting or causing these phenomena at their plant can be developed.

  9. Downhole steam generator shows merit

    SciTech Connect

    Not Available

    1980-11-01

    Production from a 5-spot pattern in Kern River Field reached 25,000 bbl during a 5-month test of a down-hole steam generator-equivalent to the amount of oil expected if steam injection from the conventional source had been continued. The test evaluated the down-hole generator as a steam source relatively free of atmospheric pollutants. The biggest objection to steam recovery of heavy crude is the volume of combustion products vented to the atmosphere, and these frequently contain small amounts of sulfur compounds. One big advantage of generating steam down hole is elimination of heat losses in the injection well. The practical limit for conventional steam injection is in a reservoir approximately 2,500 ft deep; the down-hole generator should operate economically to 6,000 ft. The test proved the feasibility of the method, and cleared the way for a series of down-hole generator installation and retrieval tests.

  10. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. PMID:24980031

  11. Steam generators, turbines, and condensers. Volume six

    SciTech Connect

    Not Available

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

  12. The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D

    SciTech Connect

    Doo Yong Lee; Soon Joon Hong; Byung Chul Lee; Heok Soon Lim

    2006-07-01

    Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)

  13. Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics

    SciTech Connect

    Menapace, J A; Penetrante, B; Golini, D; Slomba, A; Miller, P E; Parham, T; Nichols, M; Peterson, J

    2001-11-01

    Laser induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. Foe example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3-nsec with average fluences of 8 J/cm{sup 2} and peak fluences between 12 and 15 J/cm{sup 2}. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3{omega}), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damage initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3{omega} damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3{omega} damage performance, polishing layer contamination, and optical subsurface damage.

  14. Conceptual design of MgB2 coil for the 100 MJ SMES of advanced superconducting power conditioning system (ASPCS)

    NASA Astrophysics Data System (ADS)

    Atomura, Naoki; Takahashi, Toshinori; Amata, Hiroto; Iwasaki, Tatsuya; Son, Kyoungwoo; Miyagi, Daisuke; Tsuda, Makoto; Hamajima, Takataro; Shintomi, Takakazu; Makida, Yasuhiro; Takao, Tomoaki; Munakata, Kohe; Kajiwara, Masataka

    In order to reduce global carbon-dioxide in the world, we propose an Advanced Superconducting Power Conditioning System (ASPCS) which is composed of 5 MW renewable energy resources and 1 MW hybrid storage system. The hybrid storage system is composed of FC-H2-EL and SMES which is installed adjacent to a LH2 station for vehicles. Since the SMES can be operated at 20 K which is a saturated temperature of LH2, we can use MgB2 superconductors. In the ASPCS, 100 MJ storage capacities of the SMES should be required. This paper focuses on studies into a conceptual design of SMES toroidal coil composed of the MgB2 and indirectly cooled by LH2.

  15. Process for purifying geothermal steam

    SciTech Connect

    Li, C.T.

    1980-04-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment of solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  16. Process for purifying geothermal steam

    DOEpatents

    Li, Charles T.

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  17. Process for purifying geothermal steam

    DOEpatents

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  18. Regenerative superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  19. Parametric studies influencing condensation evolution in compressible steam flow

    NASA Astrophysics Data System (ADS)

    Beheshti Amiri, H.; Kermani, M. J.; Piroozi, A. A.

    2015-08-01

    In this paper, the effect of operational and geometrical parameters on the location of condensation onset and the rate of condensations are considered. These parameters are expansion rate of different geometry, inlet stagnation condition and the waves. To do so, a numerical method is presented to solve the two-dimensional two-phase steam flow over a series of geometries (such as nozzles, expansion corners and steam turbine blade-to-blade passages) by means of equilibrium thermodynamics model.

  20. Downhole steam-generator study. Volume 2: Design summary

    NASA Astrophysics Data System (ADS)

    1982-06-01

    A detailed design of a low pressure combustion, indirect contact, downhole steam generator was prepared. The design is based on analysis and experiments conducted previously (reported in Vol. I). The generator is sized to operate in a 7-inch casing and deliver 350 bbl/d of 80% quality steam at a pressure of 1500 psia. Included in this report are a description of the design, the expected range of operating conditions, and a suggested installation procedure.

  1. Downhole steam-generator study. Volume II. Design summary

    SciTech Connect

    Not Available

    1982-06-01

    A detailed design of a low pressure combustion, indirect contact, downhole steam generator was prepared. The design is based on analysis and experiments conducted previously (reported in Vol. I). The generator is sized to operate in a 7-inch casing and deliver 350 bbl/d of 80% quality steam at a pressure of 1500 psia. Included in this report are a description of the design, the expected range of operating conditions, and a suggested installation procedure.

  2. Thermobaric calculation of a steam-thermal borehole

    NASA Astrophysics Data System (ADS)

    Alishaev, M. G.; Azizov, G. A.

    2011-07-01

    A procedure is proposed for carrying out an approximate analytical calculation of pressure and temperature along a vertical borehole for thermal water with a temperature of 150-320°C taking into account its phase transition into steam. It is shown that both a single-phase flow mode for water and a two-phase flow mode for a mixture of water and steam can appear in the borehole under certain conditions.

  3. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions

    PubMed Central

    Cooper, Jennifer

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  4. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    PubMed

    Morales, Ivan; Cooper, Jennifer; Amador, José A; Boving, Thomas B

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  5. Catalytic glycerol steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  6. Catalytic glycerol steam reforming for hydrogen production

    SciTech Connect

    Dan, Monica Mihet, Maria Lazar, Mihaela D.

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  7. Variable speed, condensing steam turbine and power system

    SciTech Connect

    Kelly, D.A.

    1980-09-30

    The variable speed condensing steam turbine is a simplified and effective steam expander which is built mainly of simple, lowcost sheet metal parts and is designed to provide a variable speed/torque output range. The turbine concept is based on the past tesla turbine principle of equally spaced rotor discs to provide a long helical path for steam expansion with high operating efficiency and minimum friction. Unlike the cylindrical tesla turbine this unit is in conical form with uniformly varying diameter discs used to provide a variable speed/torque power output range. A further purpose of having a uniform conical housing and uniformly increasing diameter discs is to achieve maximum steam expansion which will lead to rapid steam condensation, or a precondensation condition for the expended steam passing through the conical turbine. A fuel conservation feature of the condensing turbine is a provision for separating hydrogen gas from a portion of the expanded/expended steam which will be conducted to the external fuel burner of the vapor generator, as part of the complete power system.

  8. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  9. Tools to Boost Steam System Efficiency

    SciTech Connect

    2005-05-01

    The Steam System Scoping Tool quickly evaluates your entire steam system operation and spots the areas that are the best opportunities for improvement. The tool suggests a range of ways to save steam energy and boost productivity.

  10. Status of the CRBRP steam-generator design

    SciTech Connect

    Schmidt, J.E.; Martinez, R.S.; Murdock, J.F.

    1981-06-01

    Fabrication of the Prototype Unit is near completion and will be delivered to the test site in August, 1981. The Plant Unit design is presently at an advanced stage and will result in steam generator units fully capable of meeting all the requiments of the CRBRP Power Plant.

  11. Steam drying -- Modeling and applications

    SciTech Connect

    Wimmerstedt, R.; Hager, J.

    1996-08-01

    The concept of steam drying originates from the mid of the last century. However, a broad industrial acceptance of the technique has so far not taken place. The paper deals with modelling the steam drying process and applications of steam drying within certain industrial sectors where the technique has been deemed to have special opportunities. In the modelling section the mass and heat transfer processes are described along with equilibrium, capillarity and sorption phenomena occurring in porous materials during the steam drying process. In addition existing models in the literature are presented. The applications discussed involve drying of fuels with high moisture contents, cattle feed exemplified by sugar beet pulp, lumber, paper pulp, paper and sludges. Steam drying is compared to flue gas drying of biofuels prior to combustion in a boiler. With reference to a current installation in Sweden, the exergy losses, as manifested by loss of co-generation capacity, are discussed. The energy saving potential when using steam drying of sugar beet pulp as compared to other possible plant configurations is demonstrated. Mechanical vapor recompression applied to steam drying is analyzed with reference to reported data from industrial plants. Finally, environmental advantages when using steam drying are presented.

  12. IN SITU STEAM EXTRACTION TREATMENT

    EPA Science Inventory

    In situ steam extraction removes volatile and semivolatile hazardous contaminants from soil and groundwater without excavation of the hazardous waste. aste constituents are removed in situ by the technology and are not actually treated. he use of steam enhances the stripping of v...

  13. Effects of phase transformation of steam-water relative permeabilities

    SciTech Connect

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  14. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  15. Steam generator tube integrity program

    SciTech Connect

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  16. Features of steam turbine cooling by the example of an SKR-100 turbine for supercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Arkadyev, B. A.

    2015-10-01

    Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.

  17. Steam separator modeling for various nuclear reactor transients

    SciTech Connect

    Paik, C Y; Mullen, G; Knoess, C; Griffith, P

    1987-06-01

    In a pressurized water reactor steam generator, a moisture separator is used to separate steam and liquid and to insure that essentially dry steam is supplied to the turbine. During a steam line break or combined steam line break plus tube rupture, a number of phenomena can occur in the separator which have no counterparts during steady-state operation. How the separator will perform under these circumstances is important for two reasons, it affects the carry-over of radioactive iodine and the water inventory in the secondary side. This study has as its goal the development of a simple separator model which can be applied to a variety of steam generator for off-design conditions. Experiments were performed using air and water on three different types of centrifugal separators: a cyclone as a generic separator, a Combustion Engineering type stationary swirl vane separator, and a Westinghouse type separator. The cyclone separator system has three stages of separation: first the cyclone, then a gravity separator, and finally a chevron plate separator. The other systems have only a centrifugal separator to isolate the effect of the primary separator. Experiments were also done in MIT blowdown rig, with and without a separator, using steam and water. The separators appear to perform well at flow rates well above the design values as long as the downcomer water level is not high. High downcomer water level rather than high flow rates appear to be the primary cause of degraded performance. Appreciable carry-over from the separator section of a steam generator occurs when the drain lines from three stages of separation are unable to carry off the liquid flow. Failure scenarios of the separator for extreme range of conditions from the quasi-steady state transient to the fast transients are presented. A general model structure and simple separator models are provided.

  18. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  19. Numerical Viscous Flow Analysis of an Advanced Semispan Diamond-Wing Model at High-Life Conditions

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Biedron, R. T.; Luckring, J. M.

    2002-01-01

    Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant width standoff. The analyses include: (1) the numerical simulation of the NTF empty, tunnel flow characteristics; (2) semispan high-lift model with the standoff in the tunnel environment; (3) semispan high-lift model with the standoff and viscous sidewall in free air; and (4) semispan high-lift model without the standoff in free air. The computations were performed at conditions that correspond to a nominal approach and landing configuration. The wing surface pressure distributions computed for the model in both the tunnel and in free air agreed well with the corresponding experimental data and they both indicated small increments due to the wall interference effects. However, the wall interference effects were found to be more pronounced in the total measured and the computed lift, drag and pitching moment due to standard induced up-flow effects. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted well. The numerical predictions are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage fore-body pressure distributions and the resulting impact on the overall configuration longitudinal aerodynamic characteristics.

  20. Advanced combination of laser and synchrotron techniques to study minerals at extreme conditions in the time-domain mode (Invited)

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Zinin, P.; Goncharov, A.; Zhuravlev, K. K.; Tkachev, S. N.

    2013-12-01

    Over the past two decades, high pressure research has made breakthrough progress in many fields of science mainly due to significant advances in development of both high pressure vessels (diamond anvil cell and large volume press) and high brilliance synchrotron based techniques, including high resolution x-ray micro-diffraction, x-ray spectroscopy (absorption, emission, resonance), micro-imaging, inelastic and nuclear resonance scattering. Combination of double-sided laser heating with synchrotron x-ray radiation has stimulated synthesis and investigation of new materials with unique composition and properties in-situ at high temperatures and high pressures in the diamond anvil cell. Equation of state, structure, phase transformations, element partitioning, electronic and optical properties of various minerals (single crystal, powder, nano-crystalline, amorphous solid and fluids) have been successfully studied at extreme conditions with help of the lasers and x-ray beams. Recent developments in pulse laser heating technique, including application of fiber lasers and flat top laser beam shaping optics, result in significant improvement in synthesis of new metastable materials with tuneable composition and properties controlled in-situ with high resolution x-ray and optical techniques in time-domain mode. To study elastic properties of opaque minerals in situ at high pressure and temperature we have combined laser ultrasonic with laser heating techniques. The shear and longitudinal wave velocities were measured for iron at pressures up to 60 GPa in the diamond anvil cell. The details and application of the synchrotron and optical techniques for studies unique physical and chemical properties of minerals in-situ at extreme conditions will be discussed on example of iron-bearing materials.

  1. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  2. Downhole steam generation: material studies

    SciTech Connect

    Beauchamp, E.K.; Weirick, L.J.; Muir, J.F.

    1982-01-01

    One enhanced oil recovery technique for extracting heavy crude from deep reservoirs by steam at the bottom of an injection well. Development of a downhole steam generator that will produce steam and inject it into formations at depths greater than 2500 feet is one objective of a Department of Energy/Sandia National Laboratories development effort - Project DEEP STEAM. Extensive material studies have been performed in support of Project DEEP STEAM; current efforts are devoted primarily to the selection and evaluation of materials for use in downhole steam generators. This paper presents observations of the performance of candidate metals and refractory ceramics (combustor liners) during tests of two prototypic, high pressure, diesel/air combustion, direct contact, downhole steam generators. The first downhole test of such a generator provides data on the performance of various metals (304L, 310 and 316S stainless steels and plain carbon steel) exposed for several weeks to a warm, aerated saltwater environment. A number of corrosion mechanisms acted to cause severely degraded perforance of some of the metals. Several refractory liner designs were evaluated during ground level tests of a generator having a ceramic-lined combustion chamber. Of the two refractories employed, alumina and silicon carbide, the alumina liners exhibited more serious surface degradation and corrosion.

  3. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  4. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  5. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  6. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-15

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  7. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  8. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  9. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  10. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  11. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  12. Steam distillation effect and oil quality change during steam injection

    SciTech Connect

    Lim, K.T.; Ramey, H.J. Jr.; Brigham, W.E.

    1992-01-01

    Steam distillation is an important mechanism which reduces residual oil saturation during steam injection. It may be the main recovery mechanism in steamflooding of light oil reservoirs. As light components are distilled the residual (initial) oil, the residuum becomes heavier. Mixing the distilled components with the initial oil results in a lighter produced oil. A general method has been developed to compute steam distillation yield and to quantify oil quality changes during steam injection. The quantitative results are specific because the California crude data bank was used. But general principles were followed and calculations were based on information extracted from the DOE crude oil assay data bank. It was found that steam distillation data from the literature can be correlated with the steam distillation yield obtained from the DOE crude oil assays. The common basis for comparison was the equivalent normal boiling point. Blending of distilled components with the initial oil results in API gravity changes similar to those observed in several laboratory and field operations.

  13. Rotor thermal stress monitoring in steam turbines

    NASA Astrophysics Data System (ADS)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  14. Steam Generator Group Project. Annual report, 1982

    SciTech Connect

    Clark, R.A.; Lewis, M.

    1984-02-01

    The Steam Generator Group Project (SGGP) is an NRC program joined by additional sponsors. The SGGP utilizes a steam generator removed from service at a nuclear plant (Surry 2) as a vehicle for research on a variety of safety and reliability issues. This report is an annual summary of progress of the program for 1982. Information is presented on the Steam Generator Examination Facility (SGEF), especially designed and constructed for this research. Loading of the generator into the SGEF is then discussed. The report then presents radiological field mapping results and personnel exposure monitoring. This is followed by information on field reduction achieved by channel head decontaminations. The report then presents results of a secondary side examination through shell penetrations placed prior to transport, confirming no change in generator condition due to transport. Decontamination of the channel head is discussed followed by plans for eddy current testing and removal of the plugs placed during service. Results of a preliminary profilometry examination are then provided.

  15. Underground coal gasification using oxygen and steam

    SciTech Connect

    Yang, L.H.; Zhang, X.; Liu, S.

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  16. Measuring non-condensable gases in steam

    SciTech Connect

    Doornmalen, J. P. C. M. van; Kopinga, K.

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  17. Measuring non-condensable gases in steam.

    PubMed

    van Doornmalen, J P C M; Kopinga, K

    2013-11-01

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1%) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M(TM) Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation. PMID:24289436

  18. Measuring non-condensable gases in steam

    NASA Astrophysics Data System (ADS)

    van Doornmalen, J. P. C. M.; Kopinga, K.

    2013-11-01

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3MTM Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  19. Steam foam studies in the presence of residual oil

    SciTech Connect

    Hutchinson, D.A.; Demiral, B.; Castanier, L.M.

    1992-05-01

    The lack of understanding regarding foam flow in porous media necessitates further research. This paper reports on going work at Stanford University aimed at increasing our understanding in the particular area of steam foams. The behavior of steam foam is investigated with a one dimensional (6 ft. {times} 2.15 in.) sandpack under residual oil conditions of approximately 12 percent. The strength of the in-situ generated foam, indicated by pressure drops, is significantly affected by injection procedure, slug size, and steam quality. The surfactant concentration effect is minor in the range studied. In the presence of residual oil the simultaneous injection of steam and surfactant fails to generate foam in the model even though the same procedure generates a strong foam in the absence of oil. Nevertheless when surfactant is injected as a slug ahead of the steam using a surfactant alternating (SAG) procedure, foam is generated. The suggested reason for the success of SAG is the increased phase mixing that results from steam continually having to reestablish a path through a slug of surfactant solution.

  20. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect

    Gordon H. Holcomb

    2009-01-01

    U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  1. Analysis of containment performance and radiological consequences under severe accident conditions for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.

    1994-01-01

    A severe accident study was conducted to evaluate conservatively scoped source terms and radiological consequences to support the Advanced Neutron Source (ANS) Conceptual Safety Analysis Report (CSAR). Three different types of severe accident scenarios were postulated with a view of evaluating conservatively scoped source terms. The first scenario evaluates maximum possible steaming loads and associated radionuclide transport, whereas the next scenario is geared towards evaluating conservative containment loads from releases of radionuclide vapors and aerosols with associated generation of combustible gases. The third scenario follows the prescriptions given by the 10 CFR 100 guidelines. It was included in the CSAR for demonstrating site-suitability characteristics of the ANS. Various containment configurations are considered for the study of thermal-hydraulic and radiological behaviors of the ANS containment. Severe accident mitigative design features such as the use of rupture disks were accounted for. This report describes the postulated severe accident scenarios, methodology for analysis, modeling assumptions, modeling of several severe accident phenomena, and evaluation of the resulting source term and radiological consequences.

  2. Effect of variable conditions on steam reforming and aqueous phase reforming of n-butanol over Ni/CeO2 and Ni/Al2O3 catalysts

    NASA Astrophysics Data System (ADS)

    Roy, B.; Sullivan, H.; Leclerc, C. A.

    2014-12-01

    A comparison of aqueous phase reforming (APR) and steam reforming (SR) of n-butanol (n-BuOH) over Ni(20 wt%) loaded Al2O3 and CeO2 catalysts has been discussed in this paper. The BuOH conversion increases as the system pressure decreases in APR and SR. For both catalysts, the H2 and CO2 selectivity increased as the pressure increased in SR, reached a maximum at the bubble point pressure, and then decreased in the APR region. The Ni/CeO2 catalyst demonstrated higher selectivity for H2 and CO2than the Ni/Al2O3 catalyst during SR, which are consistent with the results of our previous publication on APR of n-butanol (n-BuOH) over similar catalysts. Unlike in APR, the Ni/CeO2 catalyst produced CO in SR. For both of the catalysts, the activation energies for H2 and CO2 production and BuOH conversion were lower in SR than that in APR. The proposed primary reaction pathway for reforming of BuOH on both catalysts is the same for APR and SR. The n-BuOH dehydrogenated to butaldehyde followed by decarbonylation to propane. Then the propane is steam reformed to hydrogen and carbon monoxide. The CO converts to CO2 mostly through water gas shift.

  3. Global shielding analysis for the three-element core advanced neutron source reactor under normal operating conditions

    SciTech Connect

    Slater, C.O.; Bucholz, J.A.

    1995-08-01

    Two-dimensional discrete ordinates radiation transport calculations were performed for a model of the three-element core Advanced Neutron Source reactor design under normal operating conditions. The core consists of two concentric upper elements and a lower element radially centered in the annulus between the upper elements. The initial radiation transport calculations were performed with the DORT two-dimensional discrete ordinates radiation transport code using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub 6} quadrature, and a P{sub 1} Legendre polynomial expansion of the cross sections to determine the fission neutron source distribution in the core fuel elements. These calculations were limited to neutron groups only. The final radiation transport calculations, also performed with DORT using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub l0} quadrature, and a P{sub 3} Legendre polynomial expansion of the cross sections, produced neutron and gamma-ray fluxes over the full extent of the geometry model. Responses (or activities) at various locations in the model were then obtained by folding the appropriate response functions with the fluxes at those locations. Some comparisons were made with VENTURE-calculated (diffusion theory) 20-group neutron fluxes that were summed into four broad groups. Tne results were in reasonably good agreement when the effects of photoneutrons were not included, thus verifying the physics model upon which the shielding model was based. Photoneutrons increased the fast-neutron flux levels deep within the D{sub 2}0 several orders of magnitude. Results are presented as tables of activity values for selected radial and axial traverses, plots of the radial and axial traverse data, and activity contours superimposed on the calculational geometry model.

  4. Exprimental Results of the First Two Stages of an Advanced Transonic Core Compressor Under Isolated and Multi-Stage Conditions.

    NASA Technical Reports Server (NTRS)

    Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.

    2015-01-01

    NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency for large gas turbine engines. Under ERA, the highly loaded core compressor technology program attempts to realize the fuel burn reduction goal by increasing overall pressure ratio of the compressor to increase thermal efficiency of the engine. Study engines with overall pressure ratio of 60 to 70 are now being investigated. This means that the high pressure compressor would have to almost double in pressure ratio while keeping a high level of efficiency. NASA and GE teamed to address this challenge by testing the first two stages of an advanced GE compressor designed to meet the requirements of a very high pressure ratio core compressor. Previous test experience of a compressor which included these front two stages indicated a performance deficit relative to design intent. Therefore, the current rig was designed to run in 1-stage and 2-stage configurations in two separate tests to assess whether the bow shock of the second rotor interacting with the upstream stage contributed to the unpredicted performance deficit, or if the culprit was due to interaction of rotor 1 and stator 1. Thus, the goal was to fully understand the stage 1 performance under isolated and multi-stage conditions, and additionally to provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to understand fluid dynamics loss source mechanisms due to rotor shock interaction and endwall losses. This paper will present the description of the compressor test article and its measured performance and operability, for both the single stage and two stage configurations. We focus the paper on measurements at 97% corrected speed with design intent vane setting angles.

  5. Experimental Results of the First Two Stages of an Advanced Transonic Core Compressor Under Isolated and Multi-Stage Conditions

    NASA Technical Reports Server (NTRS)

    Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.

    2015-01-01

    NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency of large gas turbine engines. Under ERA the task for a High Pressure Ratio Core Technology program calls for a higher overall pressure ratio of 60 to 70. This mean that the HPC would have to almost double in pressure ratio and keep its high level of efficiency. The challenge is how to match the corrected mass flow rate of the front two supersonic high reaction and high corrected tip speed stages with a total pressure ratio of 3.5. NASA and GE teamed to address this challenge by using the initial geometry of an advanced GE compressor design to meet the requirements of the first 2 stages of the very high pressure ratio core compressor. The rig was configured to run as a 2 stage machine, with Strut and IGV, Rotor 1 and Stator 1 run as independent tests which were then followed by adding the second stage. The goal is to fully understand the stage performances under isolated and multi-stage conditions and fully understand any differences and provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to isolate fluid dynamics loss source mechanisms due to interaction and endwalls. The paper will present the description of the compressor test article, its predicted performance and operability, and the experimental results for both the single stage and two stage configurations. We focus the detailed measurements on 97 and 100 of design speed at 3 vane setting angles.

  6. Simulation: A tool for steam plant dynamic analysis

    NASA Astrophysics Data System (ADS)

    Anneveld, H.

    Stringent requirements of combined cycles makes design and operation of process plants increasingly complex. The behavior of the complete controlled process is studied by way of simulation. By utilizing this method, process conditions can be optimized with reduced risk. This will lead to greater financial benefits. There is a large range of simulation programs which make it possible to study realistically the dynamic behavior of a wide range of complex process conditions and problematic interactions. The steam generation and distribution, the pressure limitation controls, and the dynamic behavior of a steam plant are discussed.

  7. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  8. High temperatures health monitoring of the condensed water height in steam pipe systems

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-04-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 °C while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the airbacked probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  9. Losses estimation in transonic wet steam flow through linear blade cascade

    NASA Astrophysics Data System (ADS)

    Dykas, Sławomir; Majkut, Mirosław; Strozik, Michał; Smołka, Krystian

    2015-04-01

    Experimental investigations of non-equilibrium spontaneous condensation in transonic steam flow were carried out in linear blade cascade. The linear cascade consists of the stator blades of the last stage of low pressure steam turbine. The applied experimental test section is a part of a small scale steam power plant located at Silesian University of Technology in Gliwice. The steam parameters at the test section inlet correspond to the real conditions in low pressure part of 200MWe steam turbine. The losses in the cascade were estimated using measured static pressure and temperature behind the cascade and the total parameters at inlet. The static pressure measurements on the blade surface as well as the Schlieren pictures were used to assess the flow field in linear cascade of steam turbine stator blades.

  10. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    SciTech Connect

    Bennett, P.R.; St. Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption.

  11. Steam reforming catalyst

    DOEpatents

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  12. Potential applications for amylose inclusion complexes produced by steam jet cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steam jet cooking is a commercially scalable method of thermomechanically processing starch for many applications. Previous studies at NCAUR have revealed the specific effects of heat and shear on various starch types cooked under different steam flow, pressure, and slurry flow conditions. Starch-...

  13. AC fog withstand test on contaminated insulators by steam fog

    SciTech Connect

    Arai, J.N.

    1982-11-01

    This paper describes the results of an investigation into how steam fog parameters affect the withstand voltage of artificially contaminated insulators by the fog withstand method. Established the correlation between the steam flow rate and liquid water content of the fog. The fog withstand voltage showed a lower value with little dispersion at about 3 to 10 g/m/sup 3/ of the maximum liquid water content. The minimum fog withstand voltage agreed well with the minimum flashover voltage obtained under natural conditions. The authors suggest that, for the fog withstand test using steam fog, the ideal fog condition would be about 3 to 7 g/m/sup 3/ of the maximum liquid water content of the fog.

  14. Steam bottoming cycle for an adiabatic diesel engine

    SciTech Connect

    Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

    1984-03-01

    A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

  15. Low temperature steam and formaldehyde sterilization.

    PubMed

    Robertshaw, R G

    1983-09-01

    A standard low temperature steam/formaldehyde autoclave was tested according to the manufacturer's instructions, using a range of test pieces containing Bacillus stearothermophilus spores as the challenge organism. There were failures in killing the challenge organism and the reasons for these are discussed. A description of modifications made to the autoclave is given together with details of an improved operating cycle. The performance of the modified autoclave was greatly improved and conditions were established for reliable and consistent sterilization of all the test pieces. A commercially produced prototype autoclave similarly modified also showed effective sterilization. PMID:6195245

  16. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  17. Comparative analysis of steam delivery cost for surface and downhole steam drive technologies

    SciTech Connect

    Hart, C.M.

    1981-10-01

    A basis is established for evaluating the economic performances of the technologies for enhanced recovery of heavy crude being investigated through the Department of Energy's Project DEEP STEAM. Conventional surface steam drive is compared with: (1) thermally efficient delivery (through insulated strings) of surface generated steam; (2) low pressure combustion downhole steam generation; (3) high pressure combustion downhole steam generation; (4) high pressure combustion downhole steam generation using air as the oxygen source; and (5) high pressure combustion downhole steam generation substituting pure oxygen for air. A parametric analysis is performed for varying depths, injection rates, and steam qualities.

  18. Steam Pressure Reduction, Opportunities, and Issues

    SciTech Connect

    Berry, Jan; Griffin, Mr. Bob; Wright, Anthony L

    2006-01-01

    Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

  19. Advancing beyond AP Courses

    ERIC Educational Resources Information Center

    Hammond, Bruce G.

    2009-01-01

    A quiet revolution is picking up steam in the nation's private secondary schools, with broad implications for college admissions and for teaching and learning on both sides of the transition from high school to college. About 50 of the nation's leading college-preparatory schools have opted out of the College Board's Advanced Placement (AP)…

  20. Analysis and potential of once-through steam generators in line focus systems - Final results of the DUKE project

    NASA Astrophysics Data System (ADS)

    Feldhoff, Jan Fabian; Hirsch, Tobias; Pitz-Paal, Robert; Valenzuela, Loreto

    2016-05-01

    The direct steam generation in line focus systems such as parabolic troughs and linear Fresnel collectors is one option for providing `solar steam' or heat. Commercial power plants use the recirculation concept, in which the steam generation is separated from the superheating by a steam drum. This paper analyzes the once-through mode as an advanced solar field concept. It summarizes the results of the DUKE project on loop design, a new temperature control strategy, thermo-mechanical stress analysis, and an overall cost analysis. Experimental results of the temperature control concept at the DISS test facility at Plataforma Solar de Almería are presented.

  1. Nuclear steam-generator transplant total rises

    SciTech Connect

    Smock, R.

    1982-09-01

    Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

  2. Experimental analysis of dynamic characteristics for vibration-impact process of steam turbine blades with integral shroud

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Lu-ping; Lu, Xu-xiang; Rao, Hong-de; Liu, Yu-jing

    2008-11-01

    Integral shroud is an advanced technique used to improve reliability of steam turbine blades. In this paper, dynamic characteristics of vibration-impact process of steam turbine blades with integral shroud are studied. To test and verify the reliability of calculation result, a series of experiments are well performed on the platform of contracting and impacting of blades tips. The dynamic strain data under different gaps, different loads and different rotating speeds are surveyed through which the log decrement at each condition is obtained, and the effects of vibration damping are obtained by comparing the log decrement. The results of experimental study show that larger log decrement means larger system damping and better effectives of vibration reduction. Besides, the effects of vibro-impact reduction of different parameters are got and the experimental study results show that the vibro-impact structure is a good vibration damper. The dynamic stress of the blade with integral shroud is insensitive to loads when the gap between adjacent integral shrouds is small. In short, the achievements gained in the paper have revealed dynamic characteristics for vibro-impact process of steam turbine blades with integral shroud, which will bring important engineering application to development and modification design of the integrally shrouded blades.

  3. Improvements in the simulation of a main steam line break with steam generator tube rupture

    NASA Astrophysics Data System (ADS)

    Gallardo, Sergio; Querol, Andrea; Verdú, Gumersindo

    2014-06-01

    The result of simultaneous Main Steam Line Break (MSLB) and a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR) is a depressurization in the secondary and primary system because both systems are connected through the SGTR. The OECD/NEA ROSA-2 Test 5 performed in the Large Scale Test Facility (LSTF) reproduces these simultaneous breaks in a Pressurized Water Reactor (PWR). A simulation of this Test 5 was made with the thermal-hydraulic code TRACE5. Some discrepancies found, such as an underestimation of SG-A secondary pressure during the depressurization and overestimation of the primary pressure drop after the first Power Operated Relief Valve (PORV) opening can be improved increasing the nodalization of the Upper Head in the pressure vessel and meeting the actual fluid conditions of Upper Head during the transient.

  4. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  5. Steam Reforming of Hydrocarbon Fuels

    SciTech Connect

    Ming, Qimin; Healey, T; Allen, Lloyd; Irving, Patricia M.

    2002-12-01

    has developed a proprietary catalyst formulation for the fuel processor that is being developed for use with polymer electrolyte membrane fuel cells. The catalyst has been tested for the steam reforming of various hydrocarbons such as natural gas, iso-octane, retail gasoline, and hexadecane. A 300h continuous test has shown that the catalyst has very stable performance for steam reforming of iso-octane at 800?C with a steam/C ratio of 3.6. The same catalyst was also tested for steam reforming hexadecane (a surrogate of diesel) for 73h as well as natural gas for over 150h continuously, without deactivation or carbon deposition. Sulfur tolerance of the catalyst was tested using iso-octane containing various concentrations of sulfur. There was no catalyst deactivation after a 220h continuous test using iso-octane with 100ppm sulfur. For comparison, a nickel catalyst (12wt.% Ni/Al2O3) was also tested using different levels of sulfur in iso-octane. The results indicated that the InnovaTek catalyst has a substantially improved sulfur resistance compared to the nickel catalysts currently used for steam reforming. In addition, a variation of the catalyst was also used to reduce CO concentration to < 1% by water gas shift reaction.

  6. Steam generator hand hole shielding.

    PubMed

    Cox, W E

    2000-05-01

    Seabrook Station is an 1198 MWE Pressurized Water Reactor (PWR) that began commercial operation in 1990. Expensive and dose intensive Steam Generator Replacement Projects among PWR operators have led to an increase in steam generator preventative maintenance. Most of this preventative maintenance is performed through access ports in the shell of the steam generator just above the tube sheet known as secondary side hand holes. Secondary side work activities performed through the hand holes are typically performed without the shielding benefit of water in the secondary side of the steam generator. An increase in cleaning and inspection work scope has led to an increase in dose attributed to steam generator secondary side maintenance. This increased work scope and the station goal of maintaining personnel radiation dose ALARA led to the development of the shielding concept described in this article. This shield design saved an estimated 2.5 person-rem (25 person-Smv) the first time it was deployed and is expected to save an additional 50 person-rem (500 person-mSv) over the remaining life of the plant. PMID:10770158

  7. An Analysis of STEM/STEAM Teacher Education in Korea with a Case Study of Two Schools from a Community of Practice Perspective

    ERIC Educational Resources Information Center

    Jho, Hunkoog; Hong, Oksu; Song, Jinwoong

    2016-01-01

    The aim of this study was to investigate STEAM (Science, Technology, Engineering, Arts, and Mathematics) teacher education and to examine the successful conditions for its implementation. This study observed two leading schools that have actively participated in STEAM education since the initial stage of STEAM education in Korea. Through…

  8. Experimental performance evaluation of heat pump-based steam supply system

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Sakuraba, I.; Hashimoto, K.; Hasegawa, H.

    2015-08-01

    Heat pumps have become increasingly important as a technology to reduce primary energy consumption and greenhouse effect gas emission. They are presently used mainly on residential air-conditioning and domestic hot water and are expected to spread to industrial heating processes. In 2011, Kobe Steel, Ltd. developed and commercialized two heat pump- based steam supply systems; the high efficiency steam supply system with a steam temperature of 120°C (SGH120) and the system which enables a steam temperature of 165°C (sGh165). For promoting the spread of these industrial heat pumps and enhancing the reliability of them, we investigate experimentally steam generation rate, energy efficiency and controlled performance of the SGH165 under various operating conditions on the assumption of actual different industrial processes, and evaluate technical possibilities for better performance.

  9. Thermodynamic evaluation of the possibility to increase cogeneration turbine efficiency by using a heat pump operating with steam

    NASA Astrophysics Data System (ADS)

    Batenin, V. M.; Datsenko, V. V.; Zeigarnik, Yu. A.; Kosoi, A. S.; Sinkevich, M. V.

    2016-01-01

    Cogeneration turbines operate in different operation modes that considerably differ as to the working process conditions. In summer time, when heat demand is minimal, almost all steam flow passes through all turbine stages and enters into the condenser (condensing mode of operation). When heat supply is needed, the steam bleed-offs are used. The several last stages of the turbine (low-pressure part—LPP) have a control diaphragm at the inlet. When the heat supply is large, the diaphragm is maximally closed, and the entire steam flow, with an exception for a minimal ventilation flow is delivered to the steam bleed-offs (cogeneration mode). LPP flow path is designed for the optimal operation in the condensing mode. While running in cogeneration mode, the LPP operating conditions are far from optimal. Depending on the ventilation steam flow rate and outlet pressure, the LPP power can drop to zero or even become negative (ventilation mode). It is proposed to control an outlet steam pressure by using the heat pump that operates with steam. The heat pump energy consumption can be compensated and even exceeded by optimizing the steam expansion process in LPP. In this respect, operating conditions of cogeneration turbine LPPs during the cold season are analyzed. A brief description of a heat pump operating with steam is made. The possibility of increasing cogeneration turbine efficiency by using a steam heat pump is shown.

  10. Computer program for calculating water and steam properties

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Peller, I. C.; Baron, A. K.

    1975-01-01

    Computer subprogram calculates thermodynamic and transport properties of water and steam. Program accepts any two of pressure, temperature, and density as input conditions. Pressure and either entropy or enthalpy are also allowable input variables. Output includes any combination of temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, surface tension, and the Laplace constant.

  11. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  12. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  13. A nonlinear dynamic model of a once-through, helical-coil steam generator

    SciTech Connect

    Abdalla, M.A.

    1993-07-01

    A dynamic model of a once-through, helical-coil steam generator is presented. The model simulates the advanced liquid metal reactor superheated cycle steam generator with a four-region, moving-boundary, drift-flux model. The model is described by a set of nonlinear differential equations derived from the fundamental equations of conversation of mass, energy, and momentum. Sample results of steady-state and transient calculations are presented.

  14. Development of a downhole steam generator system

    SciTech Connect

    Not Available

    1984-04-01

    This report describes the development of a downhole steam generator system for use in enhanced oil recovery. The system is composed of four major components: A state-of-the-art review indicated that advances in technology would be necessary in two areas (high pressure combustion and high temperature packer seals) in order to fabricate a field-worthy system. As a result, two tasks were undertaken which resulted in the development of a novel ceramic-lined combustor and a unique all-metal packer. These elements were incorporated into an overall system design. Key system components were built and tested in the laboratory. The program culminated in a successful simulated downhole test of the entire system, less tube string, at Sandia National Laboratories. 5 references, 41 figures, 9 tables.

  15. The Advanced Learner's Sociolinguistic Profile: On Issues of Individual Differences, Second Language Exposure Conditions, and Type of Sociolinguistic Variable

    ERIC Educational Resources Information Center

    Howard, Martin

    2012-01-01

    Situated within the recent new wave of second language acquisition studies investigating the acquisition of sociolinguistic variation, this article draws on a longitudinal database of advanced French interlanguage to explore a number of issues that have not yet been extensively investigated. They concern the issue of individual variation in the…

  16. Analysis of thermosyphoning in a steam generator model

    SciTech Connect

    Martinez, M.J.; Martinez, G.M.

    1991-10-01

    An analysis of thermosyphoning in a stream generator model is presented. The model considers the transient development of buoyancy-driven steam flow in the steam generator tubing, secondary side heat transfer and an inlet plenum mixing model. Numerical solutions are obtained for conditions intended to simulate the natural circulation phenomena in a 3-Loop pressurized water reactor in a loss-of-coolant accident scenario. The relation between the circulation rate and the heating rate is determined. The sensitivity of the model to various key parameters is examined. 16 refs.

  17. Health and safety impact of steam generator tube degradation

    SciTech Connect

    Marston T.

    1997-02-01

    In this paper the author addresses the problems inherent in evaluating the safety of steam generators with respect to tube rupture as part of a probabilistic safety analysis (PSA) of a reactor plant. He reviews the history of PSA as applied to reactors, and then looks at tube rupture histories as a start toward establishing event frequencies. He considers tube ruptures from the aspect of being an initiating event to being a conditional event to some other event, and then the question of performance of the steam generator in the face of a severe accident in the reactor.

  18. Evaluation of steam generator WWER 440 tube integrity criteria

    SciTech Connect

    Splichal, K.; Otruba, J.; Burda, J.

    1997-02-01

    The main corrosion damage in WWER steam generators under operating conditions has been observed on the outer surface of these tubes. An essential operational requirement is to assure a low probability of radioactive primary water leakage, unstable defect development and rupture of tubes. In the case of WWER 440 steam generators the above requirements led to the development of permissible limits for data evaluation of the primary-to-secondary leak measurements and determination of acceptable values for plugging of heat exchange tubes based on eddy current test (ECT) inspections.

  19. Salisbury hospital's steam trap success.

    PubMed

    Baillie, Jonathan

    2011-03-01

    With the Carbon Reduction Commitment now fully in force, and the NHS tasked with achieving tough carbon emission reduction targets in line with both UK and EU mandates, healthcare estates teams across the country are seeking cost-effective ways to reduce energy consumption. Against this backdrop, Salisbury District Hospital has implemented a concerted energy-saving programme, key elements of which include replacing existing bucket steam traps with higher performing, lower maintenance, and more effective GEM venturi steam traps from Thermal Energy International (TEI), installing a new gas CHP engine, and looking into fitting a TEI condensate economiser system. PMID:21485315

  20. Organic Evaporator steam valve failure

    SciTech Connect

    Jacobs, R. A.

    1992-09-29

    DWPF Technical has requested an analysis of the capacity of the organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS).

  1. Enhanced oil recovery using direct downhole steam generation

    SciTech Connect

    Fox, R.L.

    1983-01-01

    High pressure, direct contact steam generators are capable of producing high quality steam and inert combustion gas from a compact apparatus. The combination of steam and inert gas is attractive for many enhanced recovery operations. Direct contact steam generators can be utilized to produce steam with gases either on the surface or down hole. The utilization of these devices down hole can reduce capital and operating costs and eliminate delivery heat loss at the expense of a loss of accessibility. These devices are usually referred to as down-hole generators, even if operated on the surface. The current state of technology of these generators has evolved from a series of field test demonstrations to commercial deployment. The results obtained from demonstration tests conducted in reservoirs ranging from 250 to 800 m in depth showed that these devices could be operated successfully in the oil field for long periods of time. Subsequent to the successful demonstrations, commercial equipment has been deployed in various reservoir conditions. The results from both demonstration tests and current commercial operations are discussed.

  2. Containment steam blowdown analysis : experimental and numerical comparisons.

    SciTech Connect

    NguyenLe, Q.; Ishii, M.; Reactor Analysis; Purdue Univ.

    1999-01-01

    This paper compares the numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. A three step approach was used to analyze the steam jet behavior. First, the temperature and pressure data of a steam blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric Simplified Boiling Water Reactor. Second, a 1-dimensonial, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Finally, 2-dimensional and 3-dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. It was found that RELAP5 is reasonably capable in predicting the general temperature and pressure trends in the RPV. However, due to modeling compromises and the code's built-in capabilities, RELAP5 1-dimensional predictions of containment temperature and pressure did not compare well with measured data. On the other hand, with minor modfications to the k-{var_epsilon} turbulence model, the 2-dimensional and 3-dimensional PHOENICS CFD solutions compared extremely well with the measured data.

  3. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    SciTech Connect

    Chornet, E.; Wang, D.; Montane, D.

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  4. Subcooled choked flow through steam generator tube cracks

    NASA Astrophysics Data System (ADS)

    Wolf, Brian J.

    The work presented here describes an experimental investigation into the choked flow of initially subcooled water through simulated steam generator tube cracks at pressures up to 6.9 MPa. The study of such flow is relevant to the prediction of leak flow rates from a nuclear reactor primary side to secondary side through cracks in steam generator tubes. An experimental approach to measuring such flow is de- scribed. Experimental results from data found in literature as well as the data collected in this work are compared with predictions from presented models as well as predictions from the thermal-hydraulic system code RELAP5. It is found that the homogeneous equilibrium model underpredicts choked flow rates of subcooled water through slits and artificial steam generator tube cracks. Additional modeling of thermal non-equilibrium improves the predictibility of choking mass flux for homogeneous models, however they fail to account for the characteristics of the two-phase pressure drop. An integral modeling approach is enhanced using a correlation developed from the data herein. Also, an assessment of the thermal-hydraulics code RELAP5 is performed and it’s applicability to predict choking flow rates through steam generator tube cracks is addressed. This assessment determined that the Henry & Fauske model, as coded in RELAP5, is best suited for modeling choked flow through steam generator tube cracks. Finally, an approach to applying choked flow data that is not at the same thermo-dynamic conditions as a prototype is developed.

  5. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  6. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  7. Are Your Steam Traps Leaking Money?

    ERIC Educational Resources Information Center

    American School and University, 1974

    1974-01-01

    Contends that small defects in steam heating systems often go unnoticed, while efficiency drops. Presents guidelines for detecting steam loss through trap orifices and determining how much they are costing. (Author/MLF)

  8. Insulate Steam Distribution and Condensate Return Lines

    SciTech Connect

    Not Available

    2006-01-01

    This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  9. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  10. Seasonal Climate Forecasts and Water Management for Steam-Electric Generation

    SciTech Connect

    Greis, N.P.

    1982-12-01

    A water demand model for electricity production is presented which estimates the variablility of water demand for energy production as a function of climate, especially temperature. The model incorporates the effects of temperature on both consumer energy demand levels and process evaporation for steam-electric cooling. The weather-sensitive analysis of water use contained herein is motivated by two factors. First, the electric power industry is using an increasingly large quantity of water, primarily for cooling. The extent of this use is highly dependent on weather conditions. Second, the current state-of-the-art of seasonal climate forecasting, especially temperature, continues to advance. Whether or not seasonal forecasts can be of beneficial use in water management in the electric power industry becomes an important question in the face of a prolonged water shortage.

  11. Seasonal Climate Forecasts and Water Management for Steam-Electric Generation.

    NASA Astrophysics Data System (ADS)

    Greis, Noel P.

    1982-12-01

    A water demand model for electricity production is presented which estimates the variability of water demand for energy production as a function of climate, especially temperature. The model incorporates the effects of temperature on both consumer energy demand levels and process evaporation for steam-electric cooling. The weather-sensitive analysis of water use contained herein is motivated by two factors. First, the electric power industry is using an increasingly large quantity of water, primarily for cooling. The extent of this use is highly dependent on weather conditions. Second, the current state-of-the-art of seasonal climate forecasting, especially temperature, continues to advance. Whether or not seasonal forecasts can be of beneficial use in water management in the electric power industry becomes an important question in the face of a prolonged water shortage.

  12. Vapor generator steam drum spray head

    DOEpatents

    Fasnacht, Jr., Floyd A.

    1978-07-18

    A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

  13. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  14. Non-catalytic steam hydrolysis of fats

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  15. Proceedings of steam generator sludge deposition in recirculating and once through steam generator upper tube bundle and support plates

    SciTech Connect

    Baker, R.L. ); Harvego, E.A. )

    1992-01-01

    The development of remedial measures of shot peening have given nuclear utilities viable measures to address primary water stress corrosion cracking to extend steam generator life. The nuclear utility industry is now faced with potential replacement of steam generators in nuclear power plants due to stress corrosion cracking and intergranular attach in crevice locations on the secondary side of steam generators at tube support plates and at the crevice at the top of the tube sheet. Significant work has been done on developing and understanding of the effects of sludge buildup on the corrosion process at these locations. This session was envisioned to provide a forum for the development of an understanding of the mechanisms which control the transport and deposition of sludge on the secondary side of steam generators. It is hoped that this information will aid utilities in monitoring the progression of fouling of these crevices by further knowledge in where to look for the onset of support plate crevice fouling. An understanding of the progression of fouling from upper tube support plates to those lower in the steam generator where higher temperatures cause the corrosion process to initiate first can aid the nuclear utility industry in developing remedial measures for this condition and in providing a forewarning of when to apply such remedial measures.

  16. Evaluation of the psychological state of patients with advanced cancer and the impact of support on their emotional condition

    PubMed Central

    Adamska, Ewa; Lewandowska, Małgorzata; Kobos, Józef

    2013-01-01

    Aim of the study The aim of the study was to evaluate the patient's psychological state in the advanced stage of cancerous disease and to assess the effect of sustenance provided by the nursing personnel upon the emotional state of the patient. Material and methods The study group comprised 46 subjects treated in palliative care medical wards in Łódź. The data were collected in accordance with the HADS-M questionnaire as well as a self-developed survey. The information obtained was analysed by means of Pearson χ2 test. Results The results obtained indicate that most subjects undergo mood aggravation. 76.2% of patients were diagnosed with depressive states. Only 19.6% of the population under investigation showed no signs of anxiety states. The study demonstrates irritation to be yet another unfavourable emotional state coupled with the advanced stage of cancerous disease with as few as 4.4% (4.2%) respondents claiming not to suffer any such symptoms. The patients highly prize the support they receive and it notably improved their well-being. Social support is essential in the advanced stage of the disease. Less severe mental disorders were noted in people who have received all kinds of support. PMID:23788945

  17. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; Zhou, Can; Housley, Gregory K.

    2015-11-01

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit consisted of two solid oxide electrolysis stacks electrically connected in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A cm-2 was used for the long-term operating at a constant current mode, resulting in a theoretical hydrogen production rate about 23 slpm. A demonstration of 830 h stable operation was achieved with a degradation rate of 3.1% per 1000 h. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.

  18. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2003-01-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

  19. Steam Power Plants in Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, E E

    1926-01-01

    The employment of steam power plants in aircraft has been frequently proposed. Arguments pro and con have appeared in many journals. It is the purpose of this paper to make a brief analysis of the proposal from the broad general viewpoint of aircraft power plants. Any such analysis may be general or detailed.

  20. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  1. The STEAM behind the Scenes

    ERIC Educational Resources Information Center

    Smith, Carmen Petrick; King, Barbara; González, Diana

    2015-01-01

    There is a growing need for STEAM-based (Science, Technology, Engineering, Arts, and Mathematics) knowledge and skills across a wide range of professions (Brazell 2013). Yet students often fail to see the usefulness of mathematics beyond the classroom (Kloosterman, Raymond, and Emenaker 1996), and they do not regularly make connections between…

  2. Downhole steam generator: field tests

    SciTech Connect

    Eson, R.L.

    1982-01-01

    Excessive air pollution and heat losses up to 32% in the surface lines and out the stacks of conventional generators are reasons why conventional steam generation is efficient. These problems are addressed and overcome through the use of a direct-fired down-hole steam generator (DSG). By performing the combustion process at high pressure, and then adding water, a mixture of carbon dioxide, nitrogen, and steam is discharged directly into the heavy oil reservoir. This study documents a series of field tests of a direct-fired DSG showing its ability to produce and inject high quality steam into heavy oil reservoirs without the need for expensive stack scrubbers to remove sulfur dioxide (SO/sub 2/), as well as sophisticated nitrogen oxides (NO/sub x/) control techniques. Results from the 6-in. diameter, 6-ft long, 7.1-mmBtu/hr DSG showed that corrosion can be controlled and production can be improved dramatically in actual field tests in California heavy oil reservoirs.

  3. New downhole steam generator tested

    SciTech Connect

    Bleakley, W.B.

    1981-07-01

    Completion of 2 field tests of a new-model down-hole steam generator paves the way for further evaluation and development of a system destined to increase California's heavy oil production. Current air pollution restrictions there prevent installation of conventional steam generators in several areas of interest to oil operators. The current series of tests, conducted by Chemical Oil Recovery Co. (CORCO) of Bakersfield, California, follows an earlier prototype operation conducted by Sandia National Laboratories in conjunction with the US Department of Energy. The CORCO tests were conducted on the surface with the generator's output going into Tenneco Oil Exploration and Production Co.'s overland-Riokern Well No. 80, located in the Kern River field 4 miles north of Bakersfield. The first test was concluded with just under 1000 bbl of steam injected, less than planned due to a higher-than-expected injection pressure. The unit operated at less than 25% capacity because of the air compressor limitation. Compressor output was only 285 psi, not enough to inject the desired volumes into the reservoir. Test data shows that injection amounted to 150 bpd of 90 to 95% quality steam at 225-psi wellhead pressure. After injection, the well was shut in for 3 days to allow soaking, then put on production. Initial production was 40 bopd at 175 F.

  4. Direct firing downhole steam generator

    SciTech Connect

    Binsley, R.L.; Wagner, W.R.; Wright, D.E.

    1982-06-29

    Direct firing downbole steam generator basically comprises an injector assembly axially connected with a combustion chamber. Downstream of the combustion chamber and oriented so as to receive its output is a heat exchanger wherein preheated water is injected into the heat exchanger through a plurality of one-way valves, vaporized and injected through a nozzle, packer and check valve into the well formation.

  5. Task 1—Steam Oxidation (NETL-US)

    SciTech Connect

    G. R. Holcomb

    2010-05-01

    The proposed steam in let temperature in the Advanced Ultra Supercritical (A·USC) steam turbine is high enough (760°C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre •. A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

  6. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. PMID:24368272

  7. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  8. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    C. Jean Bustard

    2003-12-01

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  9. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. PMID:25553562

  10. Optimize steam cracking with online NIR analysis

    SciTech Connect

    Lambert, D.; Descales, B.; Bages, S.; Bellet, S.; Llinas, J.R.; Loublier, M.; Maury, J.P.; Martens, A.

    1995-12-01

    At Lavera, the steam cracker of Naphtachimie (a 50/50 subsidiary of BP Chemicals and Elf Atochem) was the first equipped with online NIR analysis of naphtha feedstock. The 24 furnaces of the plant produce more than 670,000 tpy of ethylene. Since 1991, these furnaces have been controlled by an in-house, online process control model that uses the 13 naphtha properties provided by the online NIR analyzer to adjust the furnaces` operating conditions in real time. The naphtha represents between 70% and 95% of the unit feedstock. With the high level of NIR spectroscopy repeatability and the robustness of in-house models based on more than 15 years of experience, optimization of steam cracker operations allows a substantial induced benefit in the range of $1 million/yr. Other NIR online applications have been installed at BP Lavera on major industrial units such as motor gasoline blending optimization and crude oil distillation monitoring. The paper describes the principle of operation, online NIR analysis, and advantages and benefits.

  11. Alcohol LOX Steam Generator Test Experience

    NASA Astrophysics Data System (ADS)

    Schaefer, K.; Dommers, M.

    2004-10-01

    At the DLR test centre in Lampoldshausen there is a long experience in the development of rocket steam generators as a main subsystem for the altitude simulation. The rocket steam generators make it possible to supply the required quantities of steam at short notice with reduced investment and operating costs. The rocket steam generators are based on the combustion of liquid oxygen (LOX) and ethyl alcohol (ALC). The paper deals with the experience of the development of the steam generators and the operation at the altitude simulation P1.0 for satellite propulsion and P4.2 for altitude simulation of AESTUS upper stage engine.

  12. Large scale steam valve test: Performance testing of large butterfly valves and full scale high flowrate steam testing

    SciTech Connect

    Meadows, J.B.; Robbins, G.E.; Roselius, D.G.

    1995-05-01

    This report presents the results of the design testing of large (36-inch diameter) butterfly valves under high flow conditions. The two butterfly valves were pneumatically operated air-open, air-shut valves (termed valves 1 and 2). These butterfly valves were redesigned to improve their ability to function under high flow conditions. Concern was raised regarding the ability of the butterfly valves to function as required with high flow-induced torque imposed on the valve discs during high steam flow conditions. High flow testing was required to address the flow-induced torque concerns. The valve testing was done using a heavily instrumented piping system. This test program was called the Large Scale Steam Valve Test (LSSVT). The LSSVT program demonstrated that the redesigned valves operated satisfactorily under high flow conditions.

  13. Steam cooling system for a gas turbine

    DOEpatents

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  14. Effect of Maximum Cruise-power Operation at Ultra-lean Mixture and Increased Spark Advance on the Mechanical Condition of Cylinder Components

    NASA Technical Reports Server (NTRS)

    Harris, Herbert B.; Duffy, Robert T.; Erwin, Robert D., Jr.

    1945-01-01

    A continuous 50-hour test was conducted to determine the effect of maximum cruise-power operation at ultra-lean fuel-air mixture and increased spark advance on the mechanical conditions of cylinder components. The test was conducted on a nine-cylinder air-cooled radial engine at the following conditions:brake horsepower, 750; engine speed, 1900 rpm; brake mean effective pressure, 172 pounds per square inch; fuel-air ratio, 0.052; spark advance, 30 deg B.T.C.; and maximum rear-spark-plug-bushing temperature, 400 F. In addition to the data on corrosion and wear, data are presented and briefly discussed on the effect of engine operation at the conditions of this test on economy, knock, preignition, and mixture distribution. Cylinder, piston, and piston-ring wear was small and all cylinder component were in good condition at the conclusion of the 50-hour test except that all exhaust-valve guides were bellmouthed beyond the Army's specified limit and one exhaust-valve face was lightly burned. It is improbable that the light burning in one spot of the valve face would have progressed further because the burn was filled with a hard deposit so that the valve face formed an unbroken seal and the mating seat showed no evidence of burning. The bellmouthing of the exhaust-valve guides is believed to have been a result of the heavy carbon and lead-oxide deposits, which were present on the head end of the guided length of the exhaust-valve stem. Engine operational the conditions of this test was shown to result In a fuel saving of 16.8 percent on a cooled-power basis as compared with operation at the conditions recommended for this engine by the Army Air Forces for the same power.

  15. Numerical modeling of the expansion phase of steam explosions

    SciTech Connect

    Hyder, M.L. ); Farawila, Y.M.; Abdel-Khalik, S.I.; Halvorson, P.J. )

    1992-05-01

    In the development of the Severe Accident Analysis Program for the Savannah River production reactors, it was recognized that certain accidents have -the potential for causing damaging steam explosions. Steam explosions can occur when metals, such as the aluminum-based fuel used at Savannah River, are melted and come into contact with water. This condition is unstable, and local turbulence can lead to the generation of great quantities of steam within a few milliseconds. This phenomenon has been observed in several reactor incidents and experiments (BORAX, SPERT-1, SL-1, probably Chernobyl) where it caused damage to the reactor and associated structures. The massive SRS reactor buildings are likely to withstand any imaginable steam explosion. However, reactor components and building structures including hatches, ventilation ducts, etc., could be at risk if such an explosion occurred. The goal for this study was to develop a computer code that could be used parametrically to predict the effects of various steam explosions on their surroundings. This would be able to predict whether a steam explosion of a given magnitude would be likely to fail a particular structure. This would require, of course, that the magnitude of the explosion be specified through some combination of judgment and calculation. The requested code, identified as the K-FIX(GT) code, was developed and delivered by the contractor, along with extensive documentation. The several individual reports that constitute the documentation are each being issued as a separate WSRC report. Documentation includes several model calculations, and. representation of these in graphic form. This report incorporates Report GTRSR-006, which gives an overview of the methods used in the development of K-FIX(GT), and the results of a comparison with experiments in the literature. The authors conclude that the results of the comparison calculation are in reasonable agreement with observations.

  16. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  17. Sedimentary and structural evolution of a Pleistocene small-scale push moraine in eastern Poland: New insight into paleoenvironmental conditions at the margin of an advancing ice lobe

    NASA Astrophysics Data System (ADS)

    Włodarski, Wojciech; Godlewska, Anna

    2016-08-01

    Recent studies of push moraines have focused on the interplay between the dynamics of ice margins and the environmental variables of the foreland into which they advance. These studies showed that the spatial distribution, geometry and style of the glaciotectonic deformation of push moraines are controlled by ice-induced stresses, the strain rate, the rheology of the deposits and hydraulic conductivity. In this work, we provide new insight into this interplay at a small spatio-temporal scale, specifically, the ancient glacial system of the Liwiec ice lobe within the younger Saalian ice sheet in eastern Poland. The paleoenvironmental variables that are analysed here refer to the dynamics of the hydrological processes that affected the patterns and sediment deposition rate on the terminoglacial fan and the resulting mechanical stratigraphy and hydraulic conductivity of the foreland. We document the progradational sequence of the fan deposits that developed as a result of the ice lobe thickening and the steepening of its stationary front. The sedimentary features of the fan, the lithology of its basement and the hydraulic conductivity of the foreland strongly influenced the geometry and kinematics of fold growth during the advance of the ice lobe. The predominance of flexural slip and the development of fractures, including fold-accommodation faults, were interpreted to be an effect of buckle folding due to horizontal shortening induced by ice advance. The partial overriding of the push moraine by the ice lobe and, thus, the submarginal conditions for deformation were inferred from the significant hinge migration and internal deformation of the strata under undrained conditions in one of the folds. The synfolding deposition pattern of the fan growth strata allowed us to suggest that the push moraine was probably formed by a sustained advance rather than surge.

  18. [Effect of steam application based on microbiological and parasitologic test procedures].

    PubMed

    Haas, A; Platz, S; Eichhorn, W; Kaaden, O R; Unshelm, J

    1998-12-01

    In the present study steam application was investigated with regard to microbicidal and parasiticidal effects. The cleaning apparatus used (Uninova Company) works at a boiler pressure of about 5 bar and consequently with a temperature up to 155 degrees C inside the boiler. Whereas the ambient atmosphere working temperature of steam is slightly below 100 degrees C. The tests are based on the DVG guidelines for testing chemical disinfectants (2). Different steaming times and distances were used in germ carrier tests with three different germ carriers (tile, wood, carpet) and three different test germs (Staphyloccocus aureus, Pseudomonas aeruginosa, Candida albicans) in order to determine the optimum conditions for biocidal effects of steam-application. These optimum conditions were additionally tested with two test viruses (ECBO- and Reo-virus) and a parasitological resting form (ascarid worm eggs). Swirling of germs caused by steam turbulence was minimized by covering the steam outlet nozzle with cloth. The experiments showed logarithmical reduction factors of at least 5.0 in the germ count at steaming times of 5 seconds and a steaming distance of 2.5 cm for all three test germs on all three germ carriers (mean of 10 repeated tests). The virological tests showed good disinfection results after a steaming time of only 2 seconds using aseptic gauze as germ carrier and also after 5 seconds using wood as a carrier. Finally in testing vitality of undeveloped Ascarid worm eggs only 2 seconds of steam treatment proved to be sufficient for a 100 percent destruction. According to the present results steam treatment is most likely to become a valuable, ecologically compatible method in controlling hygienic problems, with a potential of partly replacing chemical disinfectants. In particular we see applications in keeping pets and companion animals, provided the above mentioned rules are followed (steaming distance 2.5 cm; steaming time 5 seconds; cloth). In farm animal stables

  19. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-01-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the third reporting quarter, the electrostatic tensiometer for laboratory determination of flyash cohesivity was completed. Modifications were made to this method to improve repeatability. In addition, a new multi-cell laboratory flyash resistivity furnace was completed. Also during this quarter an agreement was reached for the initial field trial of the new additives at the City of Ames, Iowa Municipal Power Plant.

  20. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  1. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&

  2. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2001-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.

  3. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.

  4. Assessing the remote sensing derived evaporative stress index with ground observations of crop conditions to advance drought early warning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought has significant impacts over broad spatial and temporal scales, and information about the timing and extent of such conditions is of critical importance to many end users in the agricultural and water resource management communities. The ability to accurately monitor effects on crops, and p...

  5. ADVANCING EPA WETLAND SCIENCE: DEVELOPING TOOLS FOR QUANTITATIVE ASSESSMENT OF WETLAND FUNCTION AND CONDITION AT THE REGIONAL LEVEL

    EPA Science Inventory

    The EPA Office of Water has recognized a critical need for tribes, states and federal agencies to be able to quantitatively assess the condition of the nations wetland resources. Currently, greater than 85% of states, tribes, and territories are lacking even rudimentary biologic...

  6. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2003-07-30

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

  7. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  8. Closed loop steam cooled airfoil

    SciTech Connect

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  9. Steam System Energy Conservation Measures

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  10. Direct firing downhole steam generator

    SciTech Connect

    Wagner, W.R.; Wright, D.E.; Binsley, R.L.

    1982-06-29

    A direct firing down-hole steam generator is composed of an injector assembly axially connected with a combustion chamber. Downstream of the combustion chamber and oriented so as to receive its output is a heat exchanger where preheated water is injected into the heat exchanger through a number of one-way valves. The heated water is vaporized and injected through a nozzle, packer, and check valve into the well formation. 9 claims.

  11. Some aspects of two-phase flow, heat transfer and dynamic instabilities in medium and high pressure steam generators

    NASA Astrophysics Data System (ADS)

    Unal, H. C.

    1981-03-01

    Experimental data for void fraction, incipient point of boiling, initial point of net vapor generation, bubble dynamics, dryout, two-phase flow pressure drop and density-wave oscillations were obtained in long, sodium heated steam generator tubes of different geometries for a wide range of operating conditions and at medium and high pressures. These data and data from literature taken in sodium and electrically heated steam generator tubes were correlated. Aspects of two-phase flow, heat transfer and density-wave oscillations in these steam generators disclosed include the distribution factor in small- and medium-size diameter steam generator tubes, the characteristic of the transitions at the incipient point of boiling and initial point of net vapor generation, bubble growth during subcooled nucleate flow boiling, the importance of the equivalent length for dryout in non-uniformly heated steam generator tubes and the mechanisms of density-wave oscillations in once-through steam generator tubes.

  12. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-09-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  13. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-05-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the fourth reporting quarter, laboratory-screening tests of more than 20 potential additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of flyash cohesivity. Resistivity was measured for each screening test with a new multi-cell laboratory flyash resistivity furnace constructed for this project. An initial field trial of three additive formulations was also conducted at the City of Ames, Iowa Municipal Power Plant.

  14. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  15. Effects of multiple chronic conditions on health care costs: an analysis based on an advanced tree-based regression model

    PubMed Central

    2013-01-01

    Background To analyze the impact of multimorbidity (MM) on health care costs taking into account data heterogeneity. Methods Data come from a multicenter prospective cohort study of 1,050 randomly selected primary care patients aged 65 to 85 years suffering from MM in Germany. MM was defined as co-occurrence of ≥3 conditions from a list of 29 chronic diseases. A conditional inference tree (CTREE) algorithm was used to detect the underlying structure and most influential variables on costs of inpatient care, outpatient care, medications as well as formal and informal nursing care. Results Irrespective of the number and combination of co-morbidities, a limited number of factors influential on costs were detected. Parkinson’s disease (PD) and cardiac insufficiency (CI) were the most influential variables for total costs. Compared to patients not suffering from any of the two conditions, PD increases predicted mean total costs 3.5-fold to approximately € 11,000 per 6 months, and CI two-fold to approximately € 6,100. The high total costs of PD are largely due to costs of nursing care. Costs of inpatient care were significantly influenced by cerebral ischemia/chronic stroke, whereas medication costs were associated with COPD, insomnia, PD and Diabetes. Except for costs of nursing care, socio-demographic variables did not significantly influence costs. Conclusions Irrespective of any combination and number of co-occurring diseases, PD and CI appear to be most influential on total health care costs in elderly patients with MM, and only a limited number of factors significantly influenced cost. Trial registration Current Controlled Trials ISRCTN89818205 PMID:23768192

  16. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions.

    PubMed

    Musioł, Marta; Sikorska, Wanda; Adamus, Grazyna; Janeczek, Henryk; Richert, Jozef; Malinowski, Rafal; Jiang, Guozhan; Kowalczuk, Marek

    2016-06-01

    This paper presents a forensic engineering study on the biodegradation behaviour of prototype packaging thermoformed from PLA-extruded film and plain PLA film under industrial composting conditions. Hydrolytic degradation in water was conducted for reference. The effects of composting duration on changes in molar mass, glass transition temperature and degree of crystallinity of the polymeric material were monitored using gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The chemical structure of water soluble degradation products of the polymeric material was determined using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS). The results show that the biodegradation process is less dependent on the thermoforming process of PLA and more dependent on the composting/degradation conditions that are applied. The increase in the dispersity index, leading to the bimodal molar mass distribution profile, suggests an autocatalytic hydrolysis effect at the early stage of the composting process, during which the bulk hydrolysis mechanism dominantly operates. Both the prototype PLA-packaging and PLA rigid film samples were shown to have a gradual increase in opacity due to an increase in the degree of crystallinity. PMID:27103398

  17. Design of Steam Generator for 700 MWe IPHWR

    SciTech Connect

    John, Benny; Ghadge, S.G.

    2006-07-01

    The next stage in the Indian Nuclear Power programme consists of building 700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) units. This involves up-rating of all the plant equipment like Reactor, Steam Generators (SGs), turbo-generator, major pumps etc. The 434 MWth SG used in the current generation 540 MWe IPHWRs, is a mushroom type, inverted U tube, natural circulation steam generator. The challenge, for evolution of the 540 MWth SG design, was to keep the tube diameter, tube pitch and outer diameter of the steam generator sections identical to the 434 MWth SG as far as possible. Further, the temperature difference between the primary inlet and outlet temperatures from SG was also to be maintained equal to that of 434 MWth SG. The paper describes the thermal hydraulic studies carried out for arriving at an optimal process design of 540 MWth SG. The studies were carried out using the validated 1-D code developed in house. The paper covers the issues like, extraction of the extra 106 MWth power, maintenance of a good circulation ratio under all operating conditions, additional capacity requirements of steam separators and accommodation of internals in the given space. (authors)

  18. A Steam-Plasma Igniter for Aluminum Powder Combustion

    NASA Astrophysics Data System (ADS)

    Sanghyup, Lee; Kwanyoung, Noh; Jihwan, Lim; Woongsup, Yoon

    2015-05-01

    High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high-melting-temperature oxides. A plasma torch characterized by an ultrahigh-temperature plasma plume fulfills such high-temperature ignition conditions. A new steam plasma igniter is designed and successfully validated by aluminum power ignition and combustion tests. The steam plasma rapidly stabilizes in both plasma and steam jet modes. Parametric investigation of the steam plasma jet is conducted in terms of arc strength. A high-speed camera and an oscilloscope method visualize the discharge characteristics, and optical emission spectroscopy measures the thermochemical properties of the plasma jet. The diatomic molecule OH fitting method, the Boltzmann plot method, and short exposure capturing with an intensified charge coupled device record the axial distributions of the rotational gas temperature, excitation temperature, and OH radical distribution, respectively. The excitation temperature at the nozzle tip is near 5500 K, and the gas temperature is 5400 K.

  19. Development of technology for downhole steam production. SPE Paper 9776

    SciTech Connect

    Fox, R. L.; Donaldson, A. B.; Mulac, A. J.

    1981-01-01

    Two concepts for downhole production of steam for drive operations have been selected for comparative development. The two designs differ in method of transferring heat from hot combustion gases to produce steam. A low pressure combustion design transfers energy to water through a heat exchanger thus enabling the combustion process to be conducted at a pressure less than the injection pressure; a high pressure combustion design mixes the combustion gases directly with water, resulting in the injection of steam and combustion gases into the reservoir. The comparative development program has included analysis of energy efficiency, computational examination of recovery, core recovery experiments, and field evaluation. Field tests have been conducted under low reservoir injection pressure (2.76 MPa). The tests were carried out in a 260 m (800 ft) deep reservoir utilizing a 2.5 acre five spot pattern. Data collected from injection and production wells included fluid flow rates, fluid compositions, and energy content. The reservoir conditions were monitored by a combination of global flow measurements and simultaneous core flow tests. Test results have demonstrated that the recovery with the high pressure combustion design is equivalent to the low pressure design at low reservoir pressure. The injection of combustion gases with steam have reduced the quantity of air contaminents released to the atmosphere.

  20. Eddy-current steam generator data analysis performance. Final report

    SciTech Connect

    Harris, D.H.

    1993-06-01

    This study assessed the accuracy of eddy current, bobbin coil data analysis of steam generator tubes conducted under the structure of the PWR Steam Generator Examination Guidelines, Individual and team performance measures were obtained from independent analyses of data from 1619 locations in a sample of 199 steam generator tubes. The 92 reportable indications contained in the tube sample, including 64 repairable indications, were attributable to: wear at anti-vibration bars, intergranular attack/stress-corrosion cracking (IGA/SCC) within tube sheet crevice regions, primary-water stress-corrosion cracking (PWSCC) at tube roll transitions, or thinning at cold-leg tube supports. Analyses were conducted by 20 analysts, four each from five vendors of eddy current steam generator examination services. In accordance with the guidelines, site orientation was provided with plant-specific guidelines; preanalysis practice was completed on plant-specific data; analysts were qualified by performance testing; and independent primary-secondary analyses were conducted with resolution of discrepancies (team analyses). Measures of analysis performance included percentages of indications correctly reported, percentages of false reports, and relative operating characteristic (ROC) curves. ROC curves presented comprehensive pictures of analysis accuracy generalizable beyond the specific conditions of this study. They also provided single-value measures of analysis accuracy. Conclusions and recommendations were provided relative to analysis accuracy, effect of primary-secondary analyses, analyses of tube sheet crevice regions, establishment of reporting criteria, improvement of examination guidelines, and needed research.

  1. M-6 steam drive project review report

    SciTech Connect

    Cerrada, R.; Puig, F.

    1982-01-01

    A review of the status and experiences gained in the M-6 steam drive project after 3 yr of steam injection is presented. The M-6 project is being conducted in a fully depleted heavy oil reservoir of Venezuela Bolivar Coast field, and comprises 151 wells of which 19 are injectors. The review is based on the overall project performance and describes operational problems, steam plant performance, production forecast and special data acquisition. After a total of ca 7.8 x 106 metric tons of steam injected, steam breakthrough has been observed in some hexagons. Remedial shut off in oil production wells have performed successfully. The M-6 project continues to provide useful experience and information which will be used in planning future steam drive projects in the heavy oil reservoirs of the Bolivar Coast.

  2. Optical steam quality measurement system and method

    DOEpatents

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  3. Clofarabine ± fludarabine with once daily i.v. busulfan as pretransplant conditioning therapy for advanced myeloid leukemia and MDS.

    PubMed

    Andersson, Borje S; Valdez, Benigno C; de Lima, Marcos; Wang, Xuemei; Thall, Peter F; Worth, Laura L; Popat, Uday; Madden, Timothy; Hosing, Chitra; Alousi, Amin; Rondon, Gabriela; Kebriaei, Partow; Shpall, Elizabeth J; Jones, Roy B; Champlin, Richard E

    2011-06-01

    Although a combination of i.v. busulfan (Bu) and fludarabine (Flu) is a safe, reduced-toxicity conditioning program for acute myelogenous leukemia/myelodysplastic syndromes (AML/MDS), recurrent leukemia posttransplantation remains a problem. To enhance the conditioning regimen's antileukemic effect, we decided to supplant Flu with clofarabine (Clo), and assayed the interactions of these nucleoside analogs alone and in combination with Bu in Bu-resistant human cell lines in vitro. We found pronounced synergy between each nucleoside and the alkylator but even more enhanced cytotoxic synergy when the nucleoside analogs were combined prior to exposing the cells to Bu. We then designed a 4-arm clinical trial in patients with myeloid leukemia undergoing allogeneic stem cell transplantation (allo-SCT). Patients were adaptively randomized as follows: Arm I-Clo:Flu 10:30 mg/m(2), Arm II-20:20 mg/m(2), Arm III-30:10 mg/m(2), and Arm IV-single-agent Clo at 40 mg/m(2). The nucleoside analog(s) were/was infused over 1 hour once daily for 4 days, followed on each day by Bu, infused over 3 hours to a pharmacokinetically targeted daily area under the curve (AUC) of 6000 μMol-min ± 10%. Fifty-one patients have been enrolled with a minimum follow-up exceeding 100 days. There were 32 males and 19 females, with a median age of 45 years (range: 6-59). Nine patients had chronic myeloid leukemia (CML) (BC: 2, second AP: 3, and tyrosine-kinase inhibitor refractory first chronic phase [CP]: 4). Forty-two patients had AML: 14 were induction failures, 8 in first chemotherapy-refractory relapse, 7 in untreated relapse, 3 in second or subsequent relapse, 4 were in second complete remission (CR), and 3 in second CR without platelet recovery (CRp), 2 were in high-risk CR1. Finally, 1 patient was in first CRp. Graft-versus-host disease (GVHD) prophylaxis was tacrolimus and mini-methorexate (MTX), and those who had an unrelated or 1 antigen-mismatched donor received low-dose rabbit

  4. Steam Technical Brief: How to Calculate the True Cost of Steam

    SciTech Connect

    2010-06-25

    This BestPractice Steam Technical Brief helps you calculate the true cost of steam. Knowing the correct cost is important for many reasons and all of them have to do with improving the company's bottom line.

  5. Insulate Steam Distribution and Condensate Return Lines - Steam Tip Sheet #2

    SciTech Connect

    2012-01-31

    This revised AMO tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Determination of steam wetness in the steam-generating equipment of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Gorburov, V. I.; Gorburov, D. V.; Kuz'min, A. V.

    2012-05-01

    Calculation and experimental methods for determining steam wetness in horizontal steam generators for nuclear power stations equipped with VVER reactors, namely, the classic salt technique and calculations based on operating parameters are discussed considered and compared.

  7. Design of steam silencers for geothermal applications

    SciTech Connect

    Lazalde-Crabtree, H.

    1985-01-01

    Steam silencers are a means of reducing the loud noise caused by venting steam into the atmosphere as a consequence of load-reductions in a geothermal power plant. For new plants, or for those in which noise measurements cannot be made, an analytical method is given to determine the unsilenced noise levels. Designs fo two types of steam silencers, based on experimental work and theoretical considerations, are presented.

  8. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  9. Calculation of steam-water injector properties

    NASA Astrophysics Data System (ADS)

    Pavlicek, Petr; Linhart, Jiri

    2014-08-01

    The topic of this article is a calculation of steam-water injector properties using simplified one dimensional global model. In this case the injector is used as combined mixing heat exchanger and water pump. It mixes steam with water and inject water into an area with a set back-pressure. At the exit only liquid phase is present, which is caused by a shock wave which occurs in highly wet steam.

  10. Response of a glass melter to steam explosion

    SciTech Connect

    Yau, W F; Durant, W S

    1984-01-01

    As part of the safety assessment in the design of the glass melter for large-scale immobilization of high-level radioactive wastes, structural considerations of the containment shell include its dynamic responses to abnormal loading conditions such as that caused by a steam explosion. The postulated steam explosion, conservatively given an energy content equivalent to 13 pounds of TNT, is capable of exerting sudden pressures greater than 300 psi but less than 410 psi on the melter wall. By use of thin-shell theory, the equations of motion satisfying the discontinuity conditions at junctions of shells with different curvatures are solved analytically. Results of stress analysis ensure elastic responses of the containment structure of the melter. 6 references, 3 figures, 1 table.

  11. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  12. Pneumatic transport of coal by steam

    SciTech Connect

    Ekmann, J.M.; Wildman, D.J.; Mathur, M.P.; Klinzing, G.E.

    1985-01-01

    Steam has been suggested as the transport gas in power plant facilities where the availability high pressure steam already exists. The transport of coal pneumatically by the use of steam to a loading ratio of 10 has been studied experimentally in a 0.0107 meter diameter pipe. Analysis of the energy losses in transport of the steam-coal mixture has been carried out using a model based on thermodynamic and fluid mechanics principles. Good agreement between the data and model has been obtained.

  13. Pneumatic transport of coal by steam

    SciTech Connect

    Wildman, D.J.; Mathur, M.P.; Ekmann, J.M.; Klinzing, G.E.

    1984-01-01

    Steam has been suggested as the transport gas in power plant facilities where the availability of high pressure steam already exists. The transport of coal pneumatically by the use of steam to a loading ratio of 10 has been studied experimentally in a 3/8'' pipe. Analysis of the energy losses in transport of the steam-coal mixture has been carried out using a model based on thermodynamic and fluid mechanics principles. Good agreement between the data and model has been obtained. 4 references, 2 figures.

  14. Steam consumption reduction by eutectic freeze crystallization

    SciTech Connect

    Bichsel, S.E.; Cleary, M.; Barron, T.S.; Heist, J.A.

    1985-01-01

    Steam production in American beet sugar factories can be reduced by 600 pounds per ton of beets by using hydrate freeze crystallization in place of pan evaporators for sugar crystallization. This is a relatively constant number, regardless of current factory energy use. Further reduction is limited by the juice heating needs in the purification operations. Steam for juice heating is 20 to 30% on beets, or 400 to 600 pounds of steam per ton. In efficient factories this is about the steam flow to the evaporators when the pan crystallizers are replaced by freeze crystallization. An approach is described here for a rapid evaluation of effects on the steam balance of basic process changes. It provides a visual guide to restructuring the steam balance that simplifies optimization when such changes are made. The graphic approach is useful in illustrating methods of reducing energy use in a sugar factory, in addition to the current analysis of integration of the hydrate freeze process. For example, membrane and vapor recompression evaporators for juice concentration must be accompanied by major factory modifications to produce any net savings of steam. The reason is the needs for specific steam quantity and quality for the pan evaporators and juice heaters, supplied through the current evaporator trains. Reduction of the steam rate below 25 to 35% on beets will require changes to the conventional juice purification process.

  15. Testing a steam-formaldehyde sterilizer for gas penetration efficiency

    PubMed Central

    Line, Stuart J.; Pickerill, J. K.

    1973-01-01

    A test piece is described for monitoring the performance of low-temperature steam-with-formaldehyde sterilizers. Comparative tests have shown it to be more difficult to penetrate than an arterial catheter when exposed to the same sterilizing conditions. It is permanent and simple to use and maintain. The growth or non-growth of bacterial spores, in the convenient form of spore strips, is used to indicate the efficacy of sterilization. PMID:4752414

  16. Steam sterilization: a comparison of Steam-Clox and some european biological indicators.

    PubMed

    Hoborn, J

    1975-07-01

    Results of a study of the reaction of a chemical indicator (Steam-Clox) and of two biological indicators exposed to steam sterilization with varying amounts of air introduced with the steam, indicate that the chemical indicator is capable of detecting significantly smaller amounts of air than either of the biological indicators tested. PMID:1236614

  17. Design Evolution and Verification of the A-3 Chemical Steam Generator

    NASA Technical Reports Server (NTRS)

    Kirchner, Casey K.

    2009-01-01

    Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs

  18. Tet-on, or Tet-off, that is the question: Advanced conditional gene expression in Aspergillus.

    PubMed

    Wanka, Franziska; Cairns, Timothy; Boecker, Simon; Berens, Christian; Happel, Anna; Zheng, Xiaomei; Sun, Jibin; Krappmann, Sven; Meyer, Vera

    2016-04-01

    In Aspergillus, controlled gene expression is often achieved using the reverse tetracycline-controlled transactivator (rtTA) dependent Tet-on system, whereby transcription is activated in a titratable manner by addition of the tetracycline derivative doxycycline. The complementary Tet-off system utilises the tetracycline-controlled transactivator (tTA) component to quantitatively reduce gene expression. In this study, we utilised a synthetic biological approach to engineer highly optimised Tet-off conditional expression systems in Aspergillus niger and Aspergillus fumigatus. Steps for delivery of these tools include utilising codon optimised cassette components, testing several promoters for improved genetic stability and validating two modified luciferase reporters for highly accurate measurements of gene expression. The Tet-off cassettes developed in this study enable facile and quantitative functional analysis, as validated by Tet-off analysis of genes involved in chitin synthesis and cell wall polarity in A. niger, and para-aminobenzoic acid synthesis in A. fumigatus. We also used a racA(G18V) dominant allele to demonstrate that Tet-off in A. niger enables gene over-expression and downregulation in a single isolate. Additionally, we used the improved luciferase reporters to show that the Tet-off cassette in A. niger enables quantification of gene oscillations. In order to demonstrate that synthetic biological approaches developed here are broadly applicable to engineering transcriptional circuits in filamentous fungi, we used our strategy for improving cassette stability by promoter replacement in the A. niger Tet-on system, which resulted in a modified Tet-on cassette with higher stability in recipient genomes. PMID:26555930

  19. Open cycle ocean thermal energy conversion steam control and bypass system

    DOEpatents

    Wittig, J. Michael; Jennings, Stephen J.

    1980-01-01

    Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.

  20. Development of the first demonstration CFB boiler for gas and steam cogeneration

    SciTech Connect

    Fang, M; Luo, Z.; Li, X.; Wang, Q.; Shi, Z.; Ni, M.; Cen, K.

    1997-12-31

    To solve the shortage of gas and steam supply in the small towns of the country, a new gas steam cogeneration system has been developed. On the basis of the fundamental research on the system, a demonstration gas steam cogeneration system has been designed. As the phase 1 of the project, a 75t/h demonstration CFB boiler for gas steam cogeneration has been erected and operated at Yangzhong Thermal Power Plant of China. This paper introduces the first 75t/h demonstration CFB boiler for gas steam cogeneration. Due to the need of gas steam cogeneration process, the boiler has the features of high temperature cyclone separation, high solid recycle ratio, staged combustion and an external heat exchanger adjusting bed temperature and heat load. The operation results show that the boiler has wide fuel adaptability and the heating value of the coal changes from 14MJ/Kg to 25MJ/Kg. The heat load changes from 85t/h to 28t/h while steam parameter is maintained at the normal conditions. The combustion efficiency of the boiler attain 98%. The boiler design and operation experiences may be a guide to the design and operation of larger CFB units in the future.

  1. Modeling of a horizontal steam generator for the submerged nuclear power station concept

    SciTech Connect

    Palmrose, D.E.; Herring, J.S.

    1993-05-01

    A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube`s inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

  2. Steam wetness measurement using CCD imaging methods in low-pressure turbine

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Qin, Shiqiao; Huang, Zhuqing; Wang, Xingshu; Hu, Chunsheng

    2010-11-01

    The steam flow in low-pressure turbine contained abundant water droplets, which will decrease the work efficiency and pose potential threaten to operation safety, so measurement of steam wetness has brought great interest in electricity generation industry. In this paper, a new measuring method using CCD (Charge Coupled Device) imaging technique was proposed to determine the wetness in steam turbine based on the forward small angle light scattering theory. A simulated steam turbine facility was designed to generate the wet steam, and light scattering experiments were carried out at various working conditions in this device. The steam wetness parameters and droplet size distribution were obtained by means of numerical inversion of the light intensity distribution based on Mie scattering theory. The results demonstrate that the obtained data from the present analysis is in good agreement with the results of the theory analysis and previous study, and the proposed method is proved to be suitable for steam wetness measuring and monitoring by further development.

  3. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    PubMed

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2. PMID:26204849

  4. New ferritic steels increase the thermal efficiency of steam turbines

    SciTech Connect

    Mayer, K.H.; Bakker, W.T.

    1996-12-31

    The further development of ferritic high-temperature-resistant 9--11%Cr steels has paved the way for fossil-fired power stations to be operated at turbine steam inlet temperatures of up to around 600 C and high supercritical steam pressures with a distinct improvement in thermal efficiency, a significant contribution towards reducing the environmental impact of SO{sub 2}, NO{sub x} and CO{sub 2} emissions and to a more economical utilization of fossil fuels. Advances in the development of these steels are primarily attributable to joint research projects undertaken by the manufacturers and operators of power stations in Japan (EPDC), in the USA (EPRI) and in Europe (COST 501). The report gives details on the results achieved under EPRI Research Project RP 140 3-15/23 on the creep behavior of modified 9%CrMo cast steel used in the manufacture of steam turbines for coal-fired power plants. The modified 9%CrMo cast steel also offers great benefits as regards improving the useful life and thermal efficiency of existing power plants.

  5. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  6. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time.

    PubMed

    Wu, Li; Wang, Bujun

    2016-07-01

    We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (P<0.05) affected the conversion of 3-ADON during the CSB making process. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. PMID:26920279

  7. Effect of Advancing Age and Multiple Chronic Conditions on Mortality in Patients with End-Stage Renal Disease after Implantable Cardioverter-Defibrillator Placement

    PubMed Central

    Krishnaswami, Ashok; Kiley, Mary-Lou; Anthony, Faith F; Chen, Yuexin; Chen, Jason; Rajagopal, Sumanth; Liu, Taylor I; Young, Charlie; Paxton, Elizabeth W

    2016-01-01

    Context: There is insufficient information on the effect that advancing age and multiple chronic conditions (MCC) have on mortality after placement of an implantable cardioverter-defibrillator in patients with end-stage renal disease (ESRD) vs non-ESRD. Objective: To assess whether a differential effect of age and MCC exists between ESRD and non-ESRD. Design: Population-based, retrospective cohort study using data from the national Kaiser Permanente Cardiac Device Registry of patients who underwent placement of an implantable cardioverter-defibrillator between January 1, 2007, and December 31, 2013. Main Outcome Measures: All-cause mortality. Results: Of 7825 patients with implantable cardioverter-defibrillator placement, ESRD-affected patients constituted 4.0% of the cohort (n = 311), were similar in age (p = 0.91), and presented with a larger comorbidity burden (3.3 ± 1.3 vs 2.4 ± 1.5, p < 0.001). The effect of advancing age (every 5 years) on mortality in the ESRD cohort (hazard ratio [HR] = 1.11, 95% confidence interval [CI] = 1.03–1.20) was less than in the non-ESRD cohort (HR = 1.28, 95% CI = 1.25–1.32). Similarly, the effect of each additional comorbidity in the ESRD cohort was less (HR = 1.04, 95% CI = 0.91–1.19) than in the non-ESRD group (HR = 1.20, 95% CI = 1.16–1.25). Lastly, ESRD was independently associated with a 3-fold greater hazard of mortality. Conclusions: Advancing age and increasing number of MCC have a differential effect on mortality risk in patients with ESRD compared with their non-ESRD counterparts. Future studies should focus on assessment of nonlinear relationships of age, MCC, and naturally occurring clusters of MCC on mortality. PMID:26562307

  8. 13. View of disassembled steam engine showing cylinder, piston rod, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of disassembled steam engine showing cylinder, piston rod, parallel motion links and steam chest. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  9. 3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF STEAM PLANT BUILDING, FROM SOUTHWEST. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  10. 23. STEAM PLANT TURBINE DECK FROM NORTH END OF BUILDING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. STEAM PLANT TURBINE DECK FROM NORTH END OF BUILDING, SHOWING FOURTH STEAM UNIT IN PLACE AT FAR SOUTH END. April 6, 1950 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  11. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  12. End-of-Life Discussions and Advance Care Planning for Children on Long-Term Assisted Ventilation with Life-Limiting Conditions

    PubMed Central

    Kun, Sheila S.; Graham, Robert J.; Keens, Thomas G.

    2013-01-01

    Families of children with life-limiting conditions who are on long-term assisted ventilation need to undertake end-of-life advance care planning (ACP) in order to align their goals and values with the inevitability of their child's condition and the risks it entails. To discuss how best to conduct ACP in this population, we performed a retrospective analysis of end-of-life discussions involving our deceased ventilator-assisted patients between 1987 and 2009. A total of 34 (72 percent) of 47 study patients were the subject of these discussions; many discussions occurred after acute deterioration. They resulted in directives to forgo or limit interventions for 21 children (45 percent). We surmise that many families were hesitant to discuss end-of-life issues during periods of relative stability. By offering anticipatory guidance and encouraging contemplation of patients’ goals both in times of stability and during worsening illness, health care providers can better engage patients’ families in ACP. As the child's condition progresses, the emphasis can be recalibrated. How families respond to such encouragement can also serve as a gauge of their willingness to pursue ACP. PMID:22582468

  13. 2D-simulation of wet steam flow in a steam turbine with spontaneous condensation

    NASA Astrophysics Data System (ADS)

    Sun, Lan-Xin; Zheng, Qun; Liu, Shun-Long

    2007-06-01

    Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic steam flow in the 2-D rotor-tip section of a stage turbine is investigated. Calculated results agree with experimental data reasonably well. On the basis of the above work, a 2-D numerical simulation of wet steam flow in adjacent root sections of a complex steam turbine stage was carried out. Computational results were analyzed and provide insights into effective removal of humidity.

  14. Steam generator tubing NDE performance

    SciTech Connect

    Henry, G.; Welty, C.S. Jr.

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  15. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation.

  16. 49 CFR 230.70 - Safe condition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Safe condition. 230.70 Section 230.70 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Brake and Signal Equipment § 230.70...

  17. Reliability assessment for a steam-driven jet injector for the IS-BWR design

    SciTech Connect

    Aybar, H.S.

    1996-12-31

    In recent years, several advanced reactor designs that utilize passive safety systems have been proposed as a result of public concern about nuclear power plant safety. System simplicity and maintainability and the utilization of passive features are the main design and safety objectives of the advanced reactors. The inherently safe, natural circulation boiling water reactor (IS-BWR) concept with a steam-driven jet injector (SDJI) as a passive emergency core cooling system has been proposed by the faculty and students in the Nuclear Engineering Program at the Ohio State University. The SDJI is a device without moving parts in which steam is used as an energy source to pump cold water from a pressure much lower than the steam pressure to a pressure higher than the steam pressure. Thus, the SDJI can be considered equivalent to a turbine-driven pump. All thermodynamics processes in the SDJI rely on direct contact transport phenomena between water and steam. The SDJI has been used as an emergency feedwater device in ships and a steam-jet air ejector to remove noncondensable gases from the condenser in modern steam power plants where the pressures are <1.7 MPa. The preliminary probabilistic reliability assessment for the emergency core cooling system of the IS-BWR has been reported. After recent experimental studies on the SDJI, its reliability has been reevaluated for the design improvement of the IS-BWR. The purpose of this paper is to give a reliability assessment of the SDJI after the recent development and a comparison with conventional systems.

  18. ENGINEERING BULLETIN: IN SITU STEAM EXTRACTION TREATMENT

    EPA Science Inventory

    In situ steam extraction removes volatile and semivolatile hazardous contaminants from soil and groundwater without excavation of the hazardous waste. Waste constituents are removed in situ by the technology and are not actually treated. The use of steam enhances the stripping of...

  19. BWR drywell behavior under steam blowdown

    SciTech Connect

    NguyenLe, Q.A.; Ishii, Mamoru

    1998-12-31

    Historically, the focus of thermal-hydraulics analyses on large-break loss-of-coolant accidents (LOCAs) has been on the transients within the reactor or steam generator. Few have studied the effects of steam blowdown on the containment building. The authors present some numerical and experimental results of the blowdown tests performed at the Purdue University multidimensional integrated test assembly (PUMA).

  20. Steam Reformer With Fibrous Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  1. CHARACTERIZATION OF FRACTURED BEDROCK FOR STEAM INJECTION

    EPA Science Inventory

    The most difficult setting in which to conduct groundwater remediation is that where chlorinated solvents have penetrated fractured bedrock. To demonstrate the potential viability of steam injection as a means of groundwater clean-up in this type of environment, steam will be in...

  2. Integrated coal drying and steam gasification process

    SciTech Connect

    Nahas, N.C.

    1981-08-18

    Carbonaceous solids slurried in an aqueous solution, which preferably contains catalyst constituents having gasification activity, are dried by contacting the slurry with superheated steam in a fluid bed slurry dryer and the resultant dried solids are subsequently gasified with steam generated in the dryer.

  3. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  4. Circumferential cracking of steam generator tubes

    SciTech Connect

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  5. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation and standard industrial test methods such as acetic acid salt spray (AASS) and filiform corrosion on commercial AA6060 alloy. Barrier properties of the film including adhesion were evaluated using tape test under wet and dry conditions. Electrochemical results showed reduced cathodic and anodic activity, while the protection provided by steam treatment with HNO3 was a function of the concentration of NO3- ions. The coating generated by inclusion of KMnO4 showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local coverage of the alloy microstructure resulting from steam containing with KMnO4 and HNO3.

  6. Steam-foam mechanistic field trial in the Midway-Sunset field

    SciTech Connect

    Friedmann, F.; Smith, M.E.; Guice, W.R. ); Gump, J. ); Nelson, D.G. )

    1994-11-01

    A one-pattern, steam-foam mechanistic field trial was conducted in Section 26C of the Midway-Sunset field (upper Monarch sand). The test objectives were (1) to understand the mechanisms of steam diversion caused by foam under reservoir conditions, (2) to establish whether foam can exist in-depth away from the injection well, and (3) to measure incremental oil that can be attributed to foam. Surfactant was injected with steam and nitrogen continuously, and bottom-hole injection pressure (BIHP) increased from 100 to 300 psig, indicating good foam generation. Better steam distribution across the injector's perforations occurred when foam was generated. Improvements in both vertical and areal sweep efficiency of steam were observed. Substantial temperature and gas saturation increases coincided with surfactant breakthrough and local reservoir pressure increases at observation wells. Complementary laboratory core-floods showed that foam generation could occur at low-pressure gradients, which are typical of in-depth conditions. Both laboratory and field data were interpreted as evidence that the in-depth presence of foam was the result of local generation wherever surfactant, steam, and nitrogen were present, rather than propagation of a foam bank generated near the injector. Some oil-production increase was also observed during the test; however, an accurate quantitative estimate of incremental oil owing to foam was difficult to establish.

  7. A study of relative permeability for steam-water flow in porous media

    SciTech Connect

    Ambusso, Willis; Satik, Cengiz; Horne, Roland

    1996-01-24

    We report on continuing experimental and numerical efforts to obtain steam-water relative permeability functions and to assess effect of heat transfer and phase change. To achieve these, two sets of steady-state flow experiments were conducted: one with nitrogen and water and another with steam and water. During these experiments, a mixture of nitrogen-water (or steam-water) was injected into a Berea sandstone core. At the onset of steady state conditions, three-dimensional saturation distributions were obtained by using a high resolution X-ray computer tomography scanner. By identifying a length of the core over which a flat saturation profile exists and measuring the pressure gradient associated with this length, we calculated relative permeabilities for nitrogen-water flow experiments. The relative permeability relations obtained in this case were in good agreement with those reported by other investigators. Another attempt was also made to conduct a steam-water flow experiment under adiabatic conditions. This experiment was completed with partial success due to the difficulties encountered during the experiment. The results of this experiment showed that a flat saturation profile actually developed over a substantial length of the core even at a comparatively modest injection rate (6 grams per minute) with low steam quality (4% by mass). The completion of this set of experiments should yield steam-water relative permeability relations in the near future.

  8. A Comparison of Mass Rate and Steam Quality Reductions to Optimize Steamflood Performance

    SciTech Connect

    Messner, Gregory L.

    1999-08-09

    Many operators of steamdrive projects will reduce the heat injection rate as the project matures. The major benefit of this practice is to reduce the fuel costs and thus extend the economic life of the project. However, there is little industry consensus on whether the heat cuts should take the form of: (1) mass rate reductions while maintaining the same high steam quality, or (2) steam quality decreases while keeping the same mass rate. Through the use of a commercial three-phase, three-dimensional simulator, the oil recovery schedules obtained when reducing the injected steam mass rate or quality with time were compared under a variety of reservoir and operating conditions. The simulator input was validated for Kern River Field conditions by using the guidelines developed by Johnson, et at. (1989) for four steamflood projects in Kern River. The results indicate that for equivalent heat injection rates, decreasing the steam injection mass rate at a constant high quality will yield more economic oil than reducing the steam quality at a constant mass rate. This conclusion is confirmed by a sensitivity analysis which demonstrates the importance of the gravity drainage/steam zone expansion mechanism in a low-pressure, heavy oil steamflood with gravity segregation. Furthermore, the impact of discontinuous silts and nonuniform initial temperatures within the steamflood zone was studied, indicating again that a decreasing mass rate injection strategy is a superior operating practice.

  9. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  10. Steam condensation inside a vertical tube with noncondensable gas

    SciTech Connect

    Araki, Hidefumi; Kataoka, Yoshiyuki; Murase, Michio

    1994-12-31

    Passive containment cooling systems are being studied extensively in order to enhance reactor simplicity. One promising concept is a system equipped with condensers submerged in pools located outside the primary containment vessel (PCV). Assuming a loss-of-coolant accident, steam flows into the condensers together with nitrogen, which fills the containment drywell. Then steam is condensed in the tubes, and the decay heat is released to the atmosphere by vaporization of the pool water, suppressing and pressure of the PCV below the design pressure. In the foregoing process, the noncondensable gas greatly lowers the heat transfer coefficient (HTC) inside the condenser tubes. Therefore the effect of noncondensable gases should be clarified to predict HTCs under such conditions. The objective of this study are to measure local HTCs inside a condenser tube and to develop their evaluation methods in the presence of noncondensable gas.

  11. Steam generator tube integrity program leak rate tests. Progress report

    SciTech Connect

    Clark, R.A.; Bickford, R.L.

    1984-01-01

    This interim report presents preliminary results on leak rate tests performed on through-wall defected Inconel 600 steam generator tubing. Tube defects included an EDM (electro-discharge machine) notch and IGSCC (intergranular stress corrosion cracks) of various lengths. Tests were conducted at PWR operating temperatures with leakage of hot water/steam into air. A number of IGSCC cracks were unstable under the experiment conditions of these initial tests, continuing to grow until system capacity limitations resulted in decreased pressure differential. However, initial tesing also pointed to a need for reconfiguration of the test apparatus to sustain increased flow and, more importantly, alter the mode of control. The initial test configuration is based on flow control, with pressure differential across the specimen an independent variable. This often results in pressure increases too rapid to establish the initiation of crack instability. A reconfigured system based on pressure control with flow as an independent parameter is being recommended for future tests.

  12. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    SciTech Connect

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-18

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  13. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    SciTech Connect

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; Zhou, Can; Housley, Gregory K.

    2015-08-06

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation was achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.

  14. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    DOE PAGESBeta

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; Zhou, Can; Housley, Gregory K.

    2015-08-06

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation wasmore » achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.« less

  15. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    NASA Astrophysics Data System (ADS)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  16. Turbulent Navier-Stokes Flow Analysis of an Advanced Semispan Diamond-Wing Model in Tunnel and Free Air at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad; Biedron, Robert T.; Luckring, James M.

    2002-01-01

    Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.

  17. Production of synthetic fuels using syngas from a steam hydrogasification and reforming process

    NASA Astrophysics Data System (ADS)

    Raju, Arun Satheesh Kumar

    This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio

  18. Steam stripping recycle developed for gasifier liquors

    SciTech Connect

    Not Available

    1987-03-01

    When coal is gasified in fixed bed processes such as the British Gas/Lurgi Slagging Gasifier, the crude product contains steam which on cooling results in the formation of an aqueous liquor. This liquor contains soluble species such as hydrogen sulfide, ammonia, hydrogen cyanide, hydrogen chloride and phenols. These liquors are environmentally unacceptable and their disposal can be a serious problem. British Gas has developed a new process for the purification of such aqueous effluent liquors. It has been discovered that the gasification steam may be used, at gasification pressure, to strip the volatile compounds from such liquors and thereby include these compounds in the reactant stream where they are gasified within the main reactor. A portion of the gasifier feed steam may be superheated, passed through the condensate liquor, combined with the remaining portion of the gasifier feed steam and then injected through the tuyeres of the gasification plant. In this way an effluent liquor is produced with contains substantially only inorganic compounds, and these can be removed by conventional treatments. Although high-pressure steam stripping removes any lighter volatile components, compounds such as the higher molecular weight phenols may not be readily stripped out. The invention therefore provides also for the use of oxygen-containing gas under pressure to purify the effluent. The oxygen-containing gas may either be used alone, in a mixture with steam or as a second stage following the steam-stripping process.

  19. Cyclic steaming in heavy oil diatomite

    SciTech Connect

    Kumar, M.; Beatty, F.D.

    1995-12-31

    Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) induced fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.

  20. Sullair low pressure downhole steam generator system

    SciTech Connect

    Klingler, R.P.

    1982-01-01

    Scientists and engineers are continually searching for techniques to release more oil from known reservoirs to improve productivity and lessen dependence on new finds. Based on a record of success dating to the early 1960s, thermal methods, and in particular methodology for steam treating deep reservoirs, have become an area of intense activity. In the U.S. alone, it has been reported that ca 300,000 bopd was produced in 1981 by traditional surface steam methods. Of the thermal techniques emerging, downhole steam generation is of particular interest in this discussion. 11 references.

  1. Electric-arc steam plasma generator

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  2. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  3. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  4. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  5. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  6. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  7. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  8. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  9. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  10. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  11. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  12. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  13. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  14. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  15. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  16. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  17. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  18. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  19. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  20. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...