Science.gov

Sample records for advanced stokes polarimeter

  1. Stokes, the Chicago far-infrared polarimeter

    NASA Technical Reports Server (NTRS)

    Platt, S. R.; Dotson, J. L.; Dowell, C. Darren; Hildebrand, Roger H.; Schleuning, D.; Novak, Giles

    1995-01-01

    The far-infrared polarimeter, Stokes, has produced hundreds of measurements of the polarized emission from Galactic clouds. This paper gives examples of the results and describes the design and performance of the instrument.

  2. Hemispherical Stokes polarimeter for early cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Lemaillet, Paul; Ramella-Roman, Jessica C.

    2011-03-01

    Optimal treatment of skin cancer before it reaches metastasis depends critically on early diagnosis of the melanoma. Valuable information for this diagnosis can be obtained from the analysis of skin roughness. This information can aid in determining the necessity for skin removal. For this purpose, we developed a hemispherical imaging Stokes polarimeter designed to monitor skin cancer based on a roughness assessment of the epidermis. Our setup is composed of 16 out-of-plane polarized light illuminations tubes that contain a three color LED and a vertical polarizer, a Stokes polarimeter that contains 2 liquid crystal retarders, a reference vertical polarizer and a fast acquisition camera. The Stokes polarimeter was calibrated using a set of well-known input polarization states. Each illumination polarizer was positioned using a roughness gold standard and a facet model describing the principal angle of polarization of the analyzed light as a function of the angle of incidence. A set of phantoms mimicking the optical properties of skin at 633 nm as well as skin roughness was built using wax as the bulk material, titanium dioxide as the scatterer and a black dye as the absorber. Images of these phantoms are presented and they are analyzed using a facet model.

  3. Infrared Stokes imaging polarimeter using microbolometers

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Pezzaniti, J. Larry; Dereniak, Eustace L.; Gerhart, Grant R.

    2009-08-01

    A long wave infrared (LWIR) division of amplitude imaging Stokes polarimeter is presented. For the first time, to our knowledge, application of microbolometer focal plane array (FPA) technology to polarimetry is demonstrated. The sensor utilizes a wire-grid beamsplitter with imaging systems positioned at each output to analyze two orthogonal linear polarization states simultaneously. Combined with a form birefringent wave plate, the system is capable of snapshot imaging polarimetry in any one Stokes parameter (S1, S2 or S3). Radiometric and polarimetric calibration procedures for the instrument are provided and data from the instrument are presented, demonstrating the ability to measure intensity variations corresponding to polarized emission in natural environments. As such, emission polarimetry can be exploited at significantly reduced cost, sensor size and power consumption over instruments based on more costly Mercury-Cadmium Telluride (MCT) FPA's.

  4. The San Fernando Observatory video Stokes polarimeter

    NASA Technical Reports Server (NTRS)

    Richter, P. H.; Zeldin, L. K.; Loftin, T. A.

    1985-01-01

    A study was conducted to determine the suitability of the San Fernando Observatory's 61 cm (24 inch) aperture vacuum solar telescope and 3 m (118 inch) focal length vacuum spectroheliograph for Stokes Polarimetry measurements. The polarization characteristics of these two instruments was measured by determining their Mueller matrices as a function of telescope orientation, field angle, wavelength, grating type, and position of the measuring beam in the telescope entrance window. In general, the polarizing and depolarizing properties are small so that inversion of the system Mueller matrix will permit the accurate measurement of Stokes profiles for vector magnetic field determination. A proposed polarimeter design based on the use of a TV camera system to simultaneously scan six different polarization components of a given line profile is described. This design, which uses no rotating optics or electronic modulators and makes efficient use of the available irradiance, promises to yield high quality vector magnetograms.

  5. Analysis of an interferometric Stokes imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Murali, Sukumar

    Estimation of Stokes vector components from an interferometric fringe encoded image is a novel way of measuring the State Of Polarization (SOP) distribution across a scene. Imaging polarimeters employing interferometric techniques encode SOP in- formation across a scene in a single image in the form of intensity fringes. The lack of moving parts and use of a single image eliminates the problems of conventional polarimetry - vibration, spurious signal generation due to artifacts, beam wander, and need for registration routines. However, interferometric polarimeters are limited by narrow bandpass and short exposure time operations which decrease the Signal to Noise Ratio (SNR) defined as the ratio of the mean photon count to the standard deviation in the detected image. A simulation environment for designing an Interferometric Stokes Imaging polarimeter (ISIP) and a detector with noise effects is created and presented. Users of this environment are capable of imaging an object with defined SOP through an ISIP onto a detector producing a digitized image output. The simulation also includes bandpass imaging capabilities, control of detector noise, and object brightness levels. The Stokes images are estimated from a fringe encoded image of a scene by means of a reconstructor algorithm. A spatial domain methodology involving the idea of a unit cell and slide approach is applied to the reconstructor model developed using Mueller calculus. The validation of this methodology and effectiveness compared to a discrete approach is demonstrated with suitable examples. The pixel size required to sample the fringes and minimum unit cell size required for reconstruction are investigated using condition numbers. The importance of the PSF of fore-optics (telescope) used in imaging the object is investigated and analyzed using a point source imaging example and a Nyquist criteria is presented. Reconstruction of fringe modulated images in the presence of noise involves choosing an

  6. 2-Cam LWIR imaging Stokes polarimeter

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Dereniak, Eustace L.; Pezzaniti, Larry; Gerhart, Grant R.

    2008-04-01

    A 2-Cam micro-bolometer imaging polarimeter operating in the LWIR is presented. The system is capable of snapshot imaging Stokes polarimetry in any one channel (S I, S II, or S 3) by taking two simultaneous measurements of a scene. For measurements of S I or S II, the instrument relies on a specially optimized wire-grid beam-splitter. For measurements of S 3, a form birefringent quarter-wave retarder is inserted into the optical path. Specifics associated with the design of the wire-grid beam-splitter and the form birefringent quarter-wave retarder will be overviewed, with inclusion of RCWA simulations. Calibration and simulation procedures, as well as calibration targets, will be highlighted, and initial data from the instrument are presented.

  7. A subwavelength Stokes polarimeter on a silicon chip

    NASA Astrophysics Data System (ADS)

    Espinosa Soria, A.; Rodríguez-Fortuño, Francisco J.; Griol, Amadeu; Martínez, Alejandro

    2016-04-01

    Measuring the state of polarization (SoP) of light beams is of paramount importance in many scientific and technological disciplines, including chemistry, biosensing, astronomy and optical communications. Commercial polarimeters are built by using bulky and expensive optical elements, including half-wave plates or grid polarizers, with little prospect for miniaturization. Inspired by the concept of spin-orbit coupling, here we introduce a nanophotonic polarimeter that measures the full SoP - Stokes parameters - of a light beam over an ultrabroad wavelength range. The active region of the device, formed by a metallic nanoantenna on top of a silicon waveguide crossing, is less than a square wavelength, one order of magnitude smaller than polarimeters based on metasurfaces and many orders of magnitude smaller than commercial devices. Our approach is universal and therefore applicable to any wavelength regime and technological platform, opening a new route for miniaturized polarimeters.

  8. DESIGN AND MEASUREMENT OF THE STOKES POLARIMETER FOR THE COSMO K-CORONAGRAPH

    SciTech Connect

    Hou Junfeng; De Wijn, Alfred G.; Tomczyk, Steven E-mail: dwijn@ucar.edu

    2013-09-01

    We present the Stokes polarimeter for the new Coronal Solar Magnetism Observatory K-coronagraph. The polarimeter can be used in two modes. In observation mode, it is sensitive to linear polarization only and operates as a ''Stokes definition'' polarimeter. In the ideal case, such a modulator isolates a particular Stokes parameter in each modulation state. For calibrations, the polarimeter can diagnose the full Stokes vector. We present here the design process of the polarimeter, analyze its tolerances with a Monte Carlo method, develop a way to align the individual elements, and measure and evaluate its performance in both modes.

  9. Optimization of retardance for a complete Stokes polarimeter

    SciTech Connect

    Sabatke, D. S.; Descour, M. R.; Dereniak, E. L.; Sweatt, W. C.; Kemme, S. A.; Phipps, G. S.

    2000-06-01

    We present two figures of merit based on singular value decomposition, which can be used to assess the noise immunity of a complete Stokes polarimeter. These are used to optimize a polarimeter featuring a rotatable retarder and a fixed polarizer. A retardance of 132 degree sign (approximately three-eighths wave) and retarder orientation angles of {+-}51.7{sup (convolution} {sup sign)} and {+-}15.1{sup (convolution} {sup sign)} are found to be optimal when four measurements are used. Use of this retardance affords a factor-of-1.5 improvement in signal-to-noise ratio over systems employing a quarter-wave plate. A geometric means of visualizing the optimization process is discussed, and the advantages of the use of additional measurements are investigated. No advantage of using retarder orientation angles spaced uniformly through 360 degree sign is found over repeated measurements made at the four retarder orientation angles. (c) 2000 Optical Society of America.

  10. Optimization of retardance for a complete Stokes polarimeter

    SciTech Connect

    Sabatke, D.S.; Descour, M.R.; Dereniak, E.L.; Sweatt, W.C.; Kemme, S.A.; Phipps, G.S.

    2000-01-13

    The authors present two figures of merit based on singular value decomposition which can be used to assess the noise immunity of a complete Stokes polarimeter. These are used to optimize a polarimeter consisting of a rotatable retarder and fixed polarizer. A retardance of 132{degree} (approximately three eights wave) and retarder orientation angles of {+-}51.7{degree} and {+-}15.1{degree} are found to be optimal when four measurements are used. Use of this retardance affords a factor of 1.5 improvement in signal-to-noise ratio over systems employing a quarter wave plate. A geometric means of visualizing the optimization process is discussed, and the advantages of the use of additional measurements are investigated. No advantage of using retarder orientation angles spaced uniformly through 360{degree} is found over repeated measurements made at the four angles given previously.

  11. Development of real-time rotating waveplate Stokes polarimeter using multi-order retardation for ITER poloidal polarimeter

    NASA Astrophysics Data System (ADS)

    Imazawa, R.; Kawano, Y.; Ono, T.; Itami, K.

    2016-01-01

    The rotating waveplate Stokes polarimeter was developed for ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter. The generalized model of the rotating waveplate Stokes polarimeter and the algorithm suitable for real-time field-programmable gate array (FPGA) processing were proposed. Since the generalized model takes into account each component associated with the rotation of the waveplate, the Stokes parameters can be accurately measured even in unideal condition such as non-uniformity of the waveplate retardation. Experiments using a He-Ne laser showed that the maximum error and the precision of the Stokes parameter were 3.5% and 1.2%, respectively. The rotation speed of waveplate was 20 000 rpm and time resolution of measuring the Stokes parameter was 3.3 ms. Software emulation showed that the real-time measurement of the Stokes parameter with time resolution of less than 10 ms is possible by using several FPGA boards. Evaluation of measurement capability using a far-infrared laser which ITER poloidal polarimeter will use concluded that measurement error will be reduced by a factor of nine.

  12. Development of real-time rotating waveplate Stokes polarimeter using multi-order retardation for ITER poloidal polarimeter.

    PubMed

    Imazawa, R; Kawano, Y; Ono, T; Itami, K

    2016-01-01

    The rotating waveplate Stokes polarimeter was developed for ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter. The generalized model of the rotating waveplate Stokes polarimeter and the algorithm suitable for real-time field-programmable gate array (FPGA) processing were proposed. Since the generalized model takes into account each component associated with the rotation of the waveplate, the Stokes parameters can be accurately measured even in unideal condition such as non-uniformity of the waveplate retardation. Experiments using a He-Ne laser showed that the maximum error and the precision of the Stokes parameter were 3.5% and 1.2%, respectively. The rotation speed of waveplate was 20 000 rpm and time resolution of measuring the Stokes parameter was 3.3 ms. Software emulation showed that the real-time measurement of the Stokes parameter with time resolution of less than 10 ms is possible by using several FPGA boards. Evaluation of measurement capability using a far-infrared laser which ITER poloidal polarimeter will use concluded that measurement error will be reduced by a factor of nine. PMID:26827317

  13. The Galway astronomical Stokes polarimeter: an all-Stokes optical polarimeter with ultra-high time resolution

    NASA Astrophysics Data System (ADS)

    Collins, Patrick; Kyne, Gillian; Lara, David; Redfern, Michael; Shearer, Andy; Sheehan, Brendan

    2013-12-01

    Many astronomical objects emit polarised light, which can give information both about their source mechanisms, and about (scattering) geometry in their source regions. To date (mostly) only the linearly polarised components of the emission have been observed in stellar sources. Observations have been constrained because of instrumental considerations to periods of excellent observing conditions, and to steady, slowly or periodically-varying sources. This leaves a whole range of interesting objects beyond the range of observation at present. The Galway Astronomical Stokes Polarimeter (GASP) has been developed to enable us to make observations on these very sources. GASP measures the four components of the Stokes Vector simultaneously over a broad wavelength range 400-800 nm., with a time resolution of order microseconds given suitable detectors and a bright source - this is possible because the optical design contains no moving or modulating components. The initial design of GASP is presented and we include some preliminary observational results demonstrating that components of the Stokes vector can be measured to % in conditions of poor atmospheric stability. Issues of efficiency and stability are addressed. An analysis of suitable astronomical targets, demanding the unique properties of GASP, is also presented.

  14. Analyzing the data from X-ray polarimeters with Stokes parameters

    NASA Astrophysics Data System (ADS)

    Kislat, F.; Clark, B.; Beilicke, M.; Krawczynski, H.

    2015-08-01

    X-ray polarimetry promises to deliver unique information about the geometry of the inner accretion flow of astrophysical black holes and the nature of matter and electromagnetism in and around neutron stars. In this paper, we discuss the possibility to use Stokes parameters - a commonly used tool in radio, infrared, and optical polarimetry - to analyze the data from X-ray polarimeters such as scattering polarimeters and photoelectric effect polarimeters, which measure the linear polarization of the detected X-rays. Based on the azimuthal scattering angle (in the case of a scattering polarimeter) or the azimuthal component of the angle of the electron ejection (in the case of a photoelectric effect polarimeter), the Stokes parameters can be calculated for each event recorded in the detector. Owing to the additive nature of Stokes parameters, the analysis reduces to adding the Stokes parameters of the individual events and subtracting the Stokes parameters characterizing the background (if present). The main strength of this kind of analysis is that the errors on the Stokes parameters can be computed easily and are well behaved - in stark contrast of the errors on the polarization fraction and polarization direction. We demonstrate the power of the Stokes analysis by deriving several useful formulae, e.g. the expected error on the polarization fraction and polarization direction for a detection of NS signal and NBG background events, the optimal observation times of the signal and background regions in the presence of non-negligible background contamination of the signal, and the minimum detectable polarization (MDP) that can be achieved when following this prescription.

  15. Imaging molecular structure with Stokes-polarimeter based second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Qiu, Jianjun; Hu, Chih-Wei; Kao, Fu-Jen

    2013-02-01

    We analyzed the polarization states of second harmonic generation (SHG) signals from starch granules and type I collagen through a four-channel photon counting based Stokes-polarimeter. The 2D SHG images of samples are reconstructed using various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), the degree of circular polarization (DOCP), as well as the anisotropy from the acquired Stokes parameters. Furthermore, we have demonstrated that the polarization parameters are changes at different input polarizations and focusing depths.

  16. A high spatial resolution Stokes polarimeter for motional Stark effect imaging

    SciTech Connect

    Thorman, Alex; Michael, Clive; Howard, John

    2013-06-15

    We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high energy neutral beams injected into the magnetized plasma. We describe the optical system and compare its performance against a Mueller matrix model that takes account of non-ideal performance of the switching ferro-electric liquid crystal waveplates and other polarizing components.

  17. Infrared Stokes Spectro-Polarimeter at the National Astronomical Observatory of Japan

    NASA Astrophysics Data System (ADS)

    Hanaoka, Y.; Sakurai, T.; Shinoda, K.; Noguchi, M.; Miyashita, M.; Fukuda, T.; Suzuki, I.; Hagino, M.; Arai, T.; Yamasaki, T.; Takeyama, N.

    2011-04-01

    We are now constructing an infrared spectro-polarimeter for the Solar Flare Telescope of NAOJ. It observes the full Sun in two wavelength bands, one near 1.56 μm for highly Zeeman-sensitive spectral lines of Fe I and the other near 10830 Å for He I and Si I lines. The instrument records full Stokes profiles, and a Stokes inversion process will give information on the strength and orientation of the magnetic field vector for both of the photosphere and the chromosphere. The infrared detector we are using is an InGaAs camera manufactured by a Belgian company Xenics. Its format is 640×512 pixels and its read-out speed is 90 frames s-1. The solar disk will be covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps will be made of 1200×1200 pixels with a pixel size of 1.8 arcsec. Now we are operating regular observations and generate full-disk, full-Stokes maps (a few maps per day). Our ultimate goal is to derive the distribution of magnetic helicity over the whole surface of the Sun, not only in sunspots and active regions.

  18. Data analysis for a rotating quarter-wave, far-infrared Stokes polarimeter.

    PubMed

    Giudicotti, Leonardo; Brombin, Matteo

    2007-05-10

    Data analysis techniques are reviewed and extended for the measurement of the Stokes vector of partially or completely polarized radiation by the rotating quarter-wave method. It is shown that the conventional technique, based on the Fourier analysis of the recorded signal, can be efficiently replaced by a weighted least-squares best fit, so that the different accuracy of the measured data can be taken into account to calculate the measurement errors of the Stokes vector elements. Measurement errors for the polarization index P and for the azimuth and ellipticity angles psi and chi of the radiation are also calculated by propagation error theory. For those cases in which the above technique gives a nonphysical Stokes vector (i.e., with a polarization degree of P>1) a constrained least-squares best fit is introduced, and it is shown that in this way a Stokes vector with P = 1 (rather than PStokes vectors obtained by the above techniques during the characterization of components for a far-infrared polarimeter at lambda=118.8 microm for applications in plasma diagnostics are presented and discussed. Finally the problem of the experimental determination of physically consistent Mueller matrices (i.e., of Mueller matrices for which the transformed Stokes vector has always PStokes vector, the imposed PStokes vectors conventionally measured for the determination of a full 16-element Mueller matrix, gives only a necessary but not a sufficient condition. PMID

  19. Optimal configurations of full-Stokes polarimeter with immunity to both Poisson and Gaussian noise

    NASA Astrophysics Data System (ADS)

    Mu, Tingkui; Chen, Zeyu; Zhang, Chunmin; Liang, Rongguang

    2016-05-01

    For a full-Stokes polarimeter (FSP), generally there are two types of noise, signal-dependent Poisson shot noise and signal-independent additive Gaussian noise, which will degrade the signal-to-noise ratio on the measured Stokes parameters. The relation between the immunity to Gaussian noise and the condition of the measurement matrix has been widely studied in the recent literature. In this paper, we present a new merit function and use it to achieve optimal configurations with immunity to both types of noise. The numerical results show that, for the FSP consisting of variable retarders followed by a fixed polarizer, the four measurement channels immune to these two types of noise can be optimally composed by a 102.2° retardance with a pair of azimuths ±71.9° and a 142.1° retardance with a pair of azimuths ±34.95°, or by two quarter-wave plates with four pairs of azimuths (±70.15°, ±87.84°) and (±42.82°, ±19.14°). The tolerances of the retardances or azimuths in the optimized configurations are evaluated for practical manufacturing, assembling and alignment.

  20. Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Lemaillet, Paul; Germer, Thomas A.; Shupp, Jeffrey W.; Venna, Suraj S.; Boisvert, Marc E.; Flanagan, Katherine E.; Jordan, Marion H.; Ramella-Roman, Jessica C.

    2012-07-01

    Optimal treatment of skin cancer before it metastasizes critically depends on early diagnosis and treatment. Imaging spectroscopy and polarized remittance have been utilized in the past for diagnostic purposes, but valuable information can be also obtained from the analysis of skin roughness. For this purpose, we have developed an out-of-plane hemispherical Stokes imaging polarimeter designed to monitor potential skin neoplasia based on a roughness assessment of the epidermis. The system was utilized to study the rough surface scattering for wax samples and human skin. The scattering by rough skin--simulating phantoms showed behavior that is reasonably described by a facet scattering model. Clinical tests were conducted on patients grouped as follows: benign nevi, melanocytic nevus, melanoma, and normal skin. Images were captured and analyzed, and polarization properties are presented in terms of the principal angle of the polarization ellipse and the degree of polarization. In the former case, there is separation between different groups of patients for some incidence azimuth angles. In the latter, separation between different skin samples for various incidence azimuth angles is observed.

  1. Concurrent measurement of linear and circular birefringence using rotating-wave-plate Stokes polarimeter.

    PubMed

    Lin, Jing-Fung

    2008-09-01

    A novel technique is presented for obtaining concurrent measurements of the linear and circular birefringence properties of an optical sample by using a rotating-wave-plate Stokes polarimeter to extract the 2x2 central elements of the corresponding Mueller matrix via two linearly polarized probe lights. For a compound sample comprising a half-wave plate in series with a quarter-wave plate, the measured values of the principal angle and retardance of the quarter-wave plate are found to have average normalized errors of 0.56% and 1.16%, respectively, while the measured value of the rotation angle of the half-wave plate has an error of just 0.39%. When analyzing glucose solutions with concentrations ranging from 0-1.2 g/dl positioned in front of a half-wave plate, the average normalized errors in the principal axis angle and retardance measurements of the half-wave plate are 0.69% and 2.65%, respectively, while the error in the rotation angle measurements of the glucose solutions is 2.13%. The correlation coefficient between the measured rotation angle and the concentration of the glucose solution is determined to be 0.99985, while the standard deviation is just 0.0022 deg. Overall the experimental results demonstrate the ability of the proposed system to obtain highly accurate measurements of the linear and circular birefringence properties of an optical sample and to decouple the relationship between the principal axis angle and the rotation angle. PMID:18758522

  2. Development and manufacturing of panoramic Stokes polarimeter using the polarization films in the Main Astronomical Observatory of NAS of Ukraine

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.; Sergeev, A. V.

    2015-08-01

    In the Main Astronomical Observatory of NAS of Ukraine is proposed and implemented the concept of the imaging Stokes polarimeter [1-5]. This device allows carrying out measurements of the four Stokes vector components at the same time, in a wide field, and without any restrictions on the relative aperture of the optical system. Its scheme is developed so that only by turning wheel with replaceable elements, photopolarimeter could be transformed into a low resolution spectropolarimeter. The device has four film's polarizers with positional angles 0°, 45°, 90°, 135°. The device uses a system of special deflecting prisms in each channel. These prisms were achromatizing in the spectral range of 420-850 nm [2], the distortion of the polarimeter optical system is less than 0.65%. In manufacturing version of spectropolarimeter provided for the possibility of using working on passing the diffraction grating with a frequency up to 100 lines/mm. Has begun the laboratory testing of instrument. References. 1. Sinyavskii I.I., Ivanov Yu. S., Vidmachenko Anatoliy P., Karpov N.V. Panoramic Stokes-polarimeter // Ecological bulettin of research centers of the Black Sea Economic Cooperation. - 2013. - V. 3, No 4. - P. 123-127. 2. Sinyavskii I. I., Ivanov Yu. S., Vil'machenko A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548. 3. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring" // Kosmichna Nauka i Tekhnologiya. - 2007. - V. 13, No. 1, p. 63 - 70. 4. Yatskiv Ya. S., Vidmachenko A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Syniavskyi I. I. Spectropolarimetric device for overatmospheric investigations of Solar System bodies // Kosmichna Nauka i Tekhnologiya. - 2008. - V. 14, No. 2. - P. 56

  3. Imaging Stokes polarimeter by dual rotating retarder and analyzer and its application of evaluation of Japanese lacquer

    NASA Astrophysics Data System (ADS)

    Mizutani, Ryota; Ishikawa, Tomoharu; Ayama, Miyoshi; Otani, Yukitoshi

    2012-11-01

    Lacquer crafts are distributed over Southeast Asia from the East Asia such as China and Korea, Vietnam, Myanmar including Japan. Especially, a Japanese lacquer is well-known traditional crafts. Its color is jet black but people feel different texture because it is made by complicated and multi step manufacturing process such as coating and polishing with different materials. In this report, we focus polarization properties of surface structures on black Japanese lacquer. All states of polarization can be expressed Stokes parameters, which are consisted on four elements as s0 to s3. These parameters are effective for the evaluation of the state of polarization. The polarization information of surface structure of Japanese lacquer can be visualized by using an imaging Stokes polarimeter by dual rotating retarder and analyzer. It is possible to evaluate surface character by comparing the degree of polarization. It is effective to evaluate the surface by using the polarization information.

  4. Using a polarizing film in the manufacture of panoramic Stokes polarimeters at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine

    NASA Astrophysics Data System (ADS)

    Sinyavskiy, I. I.; Ivanov, Yu. S.; Vidmachenko, A. P.; Sergeev, A. V.

    2013-09-01

    MAO of NASU proposed and implemented the concept [1] of imaging Stokes polarimeter, which allows to measure four components of the Stokes vector at the same time, in a wide field, and without restrictions on the relative aperture of the system. And polarimeter can be converted into low-resolution spectropolarimeter by rotation of the wheel with replaceable elements. To full utilization of the CCD area in the device installed four film's polarizer with positional angles 0°, 45°, 90°, 135°. In each channel of this device installed the system of special deflecting prisms, which achromatize for the spectral range 420-850 nm [2]. Distortion is less than 0.65%. Also have the opportunity the use of the diffraction grating with a frequency up to 100 lines / mm, working on the transmission. References. 1. Sinyavskii I.I., Ivanov Yu.S., Vidmachenko A.P., Karpov N.V. Panoramic Stokes polarimeter // Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, ISSN: 1729-5459. - 2013 - V. 3, No 4. - P. 123-127. 2. Sinyavskii, I. I.; Ivanov, Yu. S.; Vil'machenko, A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548.

  5. Demonstration of a snapshot full-Stokes division-of-aperture imaging polarimeter using Wollaston prism array

    NASA Astrophysics Data System (ADS)

    Mu, Tingkui; Zhang, Chunmin; Liang, Rongguang

    2015-12-01

    A snapshot full-Stokes division-of-aperture imaging polarimeter using a Wollaston prism array (WPA) is theoretically described and experimentally demonstrated. Two-dimensional spatial distributions of six polarization eigenstates, linear (0°, 90°, 45°, 135°), and left and right circular polarization states, are identified and separated by the WPA simultaneously and projected onto the six portions of a single focal-plane array by a lens array. The conditions of the measurement matrix formed by the six polarization modulation channels are naturally superior for immunity to Gaussian and Poisson noise. The unique properties of the WPA, such as its high extinction ratio, optical efficiency and transmittance, can further ensure the achievement of immunity. The snapshot principle and the conditions of the measurement matrix are discussed. A proof-of-concept system using a complementary metal oxide semiconductor (CMOS) sensor for visible light is built and validated using laboratory and outdoor measurements.

  6. Development of advanced Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1994-01-01

    The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.

  7. PEM-based polarimeters for industrial applications

    NASA Astrophysics Data System (ADS)

    Wang, Baoliang

    2010-11-01

    A polarimeter is an optical instrument used in the transmissive mode for determining the polarization state of a light beam, or the polarization-altering properties of a sample, such as diattenuation, retardation and depolarizion.1 (Reflective "polarimeters" are typically called ellipsometers.) Polarimeters can, thus, be broadly categorized as either light-measuring polarimeters or sample-measuring polarimeters. A light-measuring polarimeter is also known as a Stokes polarimeter, which measures the polarization state of a light beam as described by the Stokes parameters. A sample-measuring polarimeter is also known as a Mueller polarimeter, which measures the complete set or a subset of polarization-altering properties of a sample. Polarimeters can also be categorized by whether they measure the complete set of polarization properties. If a Stokes polarimeter measures all four Stokes parameters, it is called a complete Stokes polarimeter; otherwise, an incomplete or a special Stokes polarimeter. Similarly, there are complete and incomplete Mueller polarimeters. Nearly all samplemeasuring polarimeters are incomplete or special polarimeters, particularly for industrial applications. These special polarimeters bear different names. For example, a circular dichroism spectrometer, which measures the differential absorption between left and right circularly polarized light (▵A= AL - AR), is a special polarimeter for measuring the circular diattenuation of a sample; a linear birefringence measurement system is a special polarimeter for measuring the linear retardation of a sample. Polarimeters have a broad range of applications in both academic research and industrial metrology. Polarimeters are applied to chemistry, biology, physics, astronomy, material science and many other scientific areas. Polarimeters are used as metrology tools in the semiconductor, fiber telecommunication, flat panel display, pharmaceutical and many other industries. Different branches of

  8. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Astrophysics Data System (ADS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  9. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Astrophysics Data System (ADS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-03-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  10. Calibration of a visible polarimeter

    NASA Astrophysics Data System (ADS)

    Gibney, Mark

    2012-06-01

    The calibration of a visible polarimeter is discussed. Calibration coefficients that provide a complete linear characterization of a polarimeter are represented in this paper by the analyzer vector, where sensor response in counts is given by the dot product of the analyzer vector and the incoming Stokes vector. Using the analyzer vector to represent the effect of the sensor on the incoming Stokes vector, we can include elements of the calibration Stokes vector in the fit used to estimate the analyzer vectors/calibration coefficients. This technique allows us to alleviate some of the strict requirements usually levied on the source used to generate the calibration Stokes vectors, such as source temporal stability. Data will be shown that validate the resultant analyzer vectors/calibration coefficients, using a novel technique with a tilted glass plate. A discussion of how these techniques are applied to IR sensors will also be touched on.

  11. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zou, Z. Y.; Liu, H. Q. Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X.; Ding, W. X.; Brower, D. L.; Lan, T.

    2014-11-15

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  12. Astrobiological polarimeter

    NASA Astrophysics Data System (ADS)

    Kothari, Neeraj; Jafarpour, Aliakbar; Thaler, Tracey L.; Trebino, Rick; Bommarius, Andreas S.

    2007-09-01

    Chirality is an excellent indicator of life, but naturally occurring terrestrial and extra-terrestrial samples nearly always exhibit massive depolarizing light scattering (DLS). This problem bears a striking resemblance to that of developing a chirality-based non-invasive glucose monitor for diabetics. Both applications require a lightweight, compact, efficient, and robust polarimeter that can operate despite significant DLS. So for astrobiological applications, we developed a polarimeter that was inspired from a polarimetry technique previously investigated for non-invasive in-vivo glucose-sensing. Our polarimeter involves continuously rotating the plane of linear polarization of a laser beam to probe a sample with DLS, and analyzing its transmission with a fixed analyzer to obtain a sinusoidal voltage signal. We lock-in detect this signal using a reference signal from an analogous set up without any sample. With milk as a scatterer, we find that this polarimeter detects chirality in the presence of three orders of magnitude more DLS than conventional polarimeters. It can accurately measure 0.1° of polarization rotation in the presence of 15% milk.

  13. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    NASA Astrophysics Data System (ADS)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  14. LEP and CEBAF Polarimeters

    SciTech Connect

    Rossmanith, Robert; Burkert, Volker; Placidi, Massimo

    1988-09-01

    This paper gives an overview on high energy electron (positron) polarimeters by describing in more detail the plans for the LEP polarimeter and the CEBAF polarimeters. Both LEP and CEBAF will have laser polarimeters. In addition CEBAF will be equipped with a Moller polarimeter (for currents below 1 micro-amp).

  15. The Advanced Energetic Pair Telescope (AdEPT), a Medium-Energy Gamma-Ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley D.

    2015-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg > 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from ~20 MeV to >10 GeV. However, neither instrument is optimized for observations below ~200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, a significant sensitivity gap will remain in the medium-energy regime (0.75 - 200 MeV) that has been explored only by COMPTEL and EGRET on CGRO. Exploring this regime with angular resolution near the kinematic limit and high polarization sensitivity requires a gamma-ray telescope design with a low density electron track imaging detector.The medium-energy (~5 to ~200 MeV) Advanced Energetic Pair Telescope (AdEPT), will achieve angular resolution of ~0.6° at 70 MeV, similar to the angular resolution of Fermi/LAT at ~1 GeV that brought tremendous success in identifying new sources. AdEPT will also provide unprecedented polarization sensitivity of ~1% for a 1 Crab source. The enabling technology for AdEPT is the Three-Dimensional Track Imager (3-DTI) a low-density, large volume, gas time-projection chamber with a 2-dimensional readout. The 3-DTI provides high-resolution three-dimensional electron tracking with minimal Coulomb scattering that is essential to achieve high angular resolution and polarization sensitivity. We describe our ROSES/APRA funded program to build a 50´50´100 cm3 AdEPT prototype, measure the angular resolution and polarization sensitivity of this prototype at an accelerator, and highlight some of the key science questions that AdEPT will address.

  16. Recent advances in Euler and Navier-Stokes methods for calculating helicopter rotor aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Baeder, J. D.

    1991-01-01

    This paper outlines some recent advances in the application of the Euler and Navier-Stokes computational fluid dynamics methods to analyze nonlinear problems of helicopter aerodynamics and acoustics. A complete flowfield simulation of helicopters is currently not feasible with these methods. However, the use of the state-of-the-art numerical algorithms in conjunction with powerful supercomputers, like the Cray-2, have enabled notable progress to be made in modeling several individual components of this complex flow in hover and forward flight.

  17. Rhus verniciflua Stokes against Advanced Cancer: A Perspective from the Korean Integrative Cancer Center

    PubMed Central

    Choi, Woncheol; Jung, Hyunsik; Kim, Kyungsuk; Lee, Sookyung; Yoon, Seongwoo; Park, Jaehyun; Kim, Sehyun; Cheon, Seongha; Eo, Wankyo; Lee, Sanghun

    2012-01-01

    Active anticancer molecules have been searched from natural products; many drugs were developed from either natural products or their derivatives following the conventional pharmaceutical paradigm of drug discovery. However, the advances in the knowledge of cancer biology have led to personalized medicine using molecular-targeted agents which create new paradigm. Clinical benefit is dependent on individual biomarker and overall survival is prolonged through cytostatic rather than cytotoxic effects to cancer cell. Therefore, a different approach is needed from the single lead compound screening model based on cytotoxicity. In our experience, the Rhus verniciflua stoke (RVS) extract traditionally used for cancer treatment is beneficial to some advanced cancer patients though it is herbal extract not single compound, and low cytotoxic in vitro. The standardized RVS extract's action mechanisms as well as clinical outcomes are reviewed here. We hope that these preliminary results would stimulate different investigation in natural products from conventional chemicals. PMID:22174564

  18. DoFP polarimeter based polarization microscope for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Jintao; He, Honghui; He, Chao; Ma, Hui

    2016-03-01

    Polarization microscope is a useful technique to observe the optical anisotropic nature of biomedical specimens and provide more microstructural information than the conventional microscope. In this paper, we present a division of focal plane (DoFP) polarimeter based polarization microscope which is capable of imaging both the Stokes vector and the 3×4 Mueller matrix. The Mueller matrix measurement can help us completely understand the polarization properties of the sample and the Stokes vector measurement is a simultaneous technology. First, we calibrate a DoFP polarimeter using the polarization data reduction method for accurate Stokes vector measurements. Second, as the Stokes vector computation for all pixels using the calibrated instrument matrix is usually time consuming, we develop a GPU acceleration algorithm for real time Stokes vector calculations. Third, based on the accurate and fast Stokes vector calculation, we present an optimal 4-states of polarization (4-SoP) illumination scheme for Mueller matrix measurement using the DoFP polarimeter. Finally, we demonstrate the biomedical applications of the DoFP polarimeter based polarization microscope. Experiment results show that the characteristic features of many biomedical samples can be observed in the "polarization staining" images using the circularly polarized light as illumination. In this way, combined with GPU acceleration algorithm, the DoFP polarization microscope has the capacity for real time polarization monitoring of dynamic processes in biological samples.

  19. A derivative standard for polarimeter calibration

    SciTech Connect

    Mulhollan, G.; Clendenin, J.; Saez, P.

    1996-10-01

    A long-standing problem in polarized electron physics is the lack of a traceable standard for calibrating electron spin polarimeters. While several polarimeters are absolutely calibrated to better than 2%, the typical instrument has an inherent accuracy no better than 10%. This variability among polarimeters makes it difficult to compare advances in polarized electron sources between laboratories. The authors have undertaken an effort to establish 100 nm thick molecular beam epitaxy grown GaAs(110) as a material which may be used as a derivative standard for calibrating systems possessing a solid state polarized electron source. The near-bandgap spin polarization of photoelectrons emitted from this material has been characterized for a variety of conditions and several laboratories which possess well calibrated polarimeters have measured the photoelectron polarization of cathodes cut from a common wafer. Despite instrumentation differences, the spread in the measurements is sufficiently small that this material may be used as a derivative calibration standard.

  20. LWIR Snapshot Imaging Polarimeter

    SciTech Connect

    Dr. Robert E Sampson

    2009-04-01

    This report describes the results of a phase 1 STTR to design a longwave infrared imaging polarimeter. The system design, expected performance and components needed to construct the imaging polarimeter are described. Expected performance is modeled and sytem specifications are presented.

  1. Design of a polarimeter with two ferroelectric liquid crystal panels

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Lizana, Angel; Campos, Juan

    2013-09-01

    We present a Stokes polarimeter based on two ferroelectric liquid crystal monopixel panels. This architecture presents advantages associated to dynamic polarimeters and also, allows very fast polarization measurements. A ferroelectric liquid crystal panel can be modeled as a waveplate with a constant retardance and, with two possible orientations for its fast axis when a bipolar electrical sign is addressed. We have calibrated the optical features of our ferroelectric liquid crystal panels: retardance and rotation of the optical axis. In addition, we have carried out an optimization of the orientation of these panels in the setup in order to obtain a minimum condition number of our polarimeter and so, minimize the propagation of noise. Afterwards, we have conducted a tolerance analysis of the elements involved in the setup, focusing for a 2% of accuracy in the Stokes vectors measurements. Then, an experimental calibration is carried out and several measurements are taken in order to analyze its performance.

  2. Models comparison for JET polarimeter data

    SciTech Connect

    Mazzotta, C.; Orsitto, F. P.; Giovannozzi, E.; Boboc, A.; Tudisco, O.; Zabeo, L.; Brombin, M.; Murari, A.

    2008-03-12

    A complete comparison between the theory and the measurements in polarimetry was done by using the Far Infrared Polarimeter at JET. More than 300 shots were analyzed, including a wide spectrum of JET scenarios in all critical conditions for polarimetry: high density, high and very low fields, high temperatures.This work is aimed at the demonstration of the robustness of the theoretical models for the JET polarimeter measurements in the perspective of using these models for ITER like plasma scenarios . In this context, an assessment was performed on how the line-integrated plasma density along the central vertical chord of FIR polarimeter could be evaluated using the Cotton-Mouton effect and its possible concrete use to correct fringe jumps of the interferometer.The models considered are: i) the rigorous numerical solution of the Stokes propagation equations, using dielectric tensor evaluated from JET equilibrium and Thomson scattering [1,2]; ii) two types of approximated solutions [2,3] and iii) the Guenther empirical model [4] that considers the mutual effect between Cotton-Mouton and Faraday rotation angle. The model calculations have been compared with polarimeter measurements for the Cotton-Mouton phase shift.The agreement with theory is satisfactory within the limits of experimental errors [3].

  3. Earth Observing Scanning Polarimeter (EOSP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.

  4. The Penn Polarimeters

    NASA Astrophysics Data System (ADS)

    Koch, Robert H.; Wolf, George W.; Hull, Anthony B.; Elias, Nicholas M., II; Holenstein, Bruce D.; Mitchell, Richard J.

    2012-03-01

    This report describes the inception, development and extensive use over 30 years of elliptical polarimeters at the University of Pennsylvania. The initial Mark I polarimeter design utilized oriented retarder plates and a calcite Foster-Clarke prism as the analyzer. The Mark I polarimeter was used on the Kitt Peak 0.9 m in 1969-70 to accomplish a survey of approximately 70 objects before the device was relocated to the 0.72 m reflector at the Flower and Cook Observatory. Successive generations of automation and improvements included the early-80's optical redesign to utilize a photoelastic modulated wave plate and an Ithaco lock-in amplifier - the photoelastic modulating polarimeter. The final design in 2000 concluded with a fully remote operable device. The legacy of the polarimetric programs includes studies of close binaries, pulsating hot stars, and luminous late-type variables.

  5. Wide field snapshot imaging polarimeter using modified Savart plates

    NASA Astrophysics Data System (ADS)

    Saito, Naooki; Odate, Satoru; Otaki, Katsura; Kubota, Masahiro; Kitahara, Rintaro; Oka, Kazuhiko

    2013-09-01

    Without moving parts, the snapshot imaging polarimeter utilizing Savart plates is capable of stable and fast measurements of spatiallly distributed Stokes parameters. To increase feasibility of the optical design, we propose modi cations that enable a wider eld-of view. By changing the Savar plates' con guration and improving the calibration procedure, the unwanted effects associated with the increase in the eld of view can be reduced. We carried out the veri cation experiments of the wide eld of view snapshot imaging polarimeter.

  6. Portable Imaging Polarimeter and Imaging Experiments

    SciTech Connect

    PHIPPS,GARY S.; KEMME,SHANALYN A.; SWEATT,WILLIAM C.; DESCOUR,M.R.; GARCIA,J.P.; DERENIAK,E.L.

    1999-11-01

    Polarimetry is the method of recording the state of polarization of light. Imaging polarimetry extends this method to recording the spatially resolved state of polarization within a scene. Imaging-polarimetry data have the potential to improve the detection of manmade objects in natural backgrounds. We have constructed a midwave infrared complete imaging polarimeter consisting of a fixed wire-grid polarizer and rotating form-birefringent retarder. The retardance and the orientation angles of the retarder were optimized to minimize the sensitivity of the instrument to noise in the measurements. The optimal retardance was found to be 132{degree} rather than the typical 90{degree}. The complete imaging polarimeter utilized a liquid-nitrogen cooled PtSi camera. The fixed wire-grid polarizer was located at the cold stop inside the camera dewar. The complete imaging polarimeter was operated in the 4.42-5 {micro}m spectral range. A series of imaging experiments was performed using as targets a surface of water, an automobile, and an aircraft. Further analysis of the polarization measurements revealed that in all three cases the magnitude of circular polarization was comparable to the noise in the calculated Stokes-vector components.

  7. Exploiting motion-based redundancy to enhance microgrid polarimeter imagery

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Tyo, J. Scott; Black, Wiley T.; LaCasse, Charles F.

    2009-08-01

    Microgrid polarimeters are a type of division of focal plane (DoFP) imaging polarimeter that contains a mosaic of pixel-wise micropolarizing elements superimposed upon an FPA sensor. Such a device measures a slightly different polarized state at each pixel. These measurements are combined to estimate the Stokes vector at each pixel in the image. DoFP devices have the advantage that they can obtain Stokes vector image estimates for an entire scene from a single frame capture. However, they suffer from the disadvantage that the neighboring measurements that are used to estimate the Stokes vector images are acquired at differing instantaneous fields of view (IFOV). This IFOV issue leads to false polarization signatures that significantly degrade the Stokes vector images. Interpolation and other image processing strategies can be employed to reduce IFOV artifacts; however these techniques have a limit to the amount of enhancement they can provide on a single microgrid image. Here we investigate algorithms that use multiple microgrid images that contain frame-to-frame global motion to further enhance the Stokes vector image estimates. Motion-based imagery provides additional redundancy that can be exploited to recover information that is "missing" from a single microgrid frame capture. We have found that IFOV and aliasing artifacts can be defeated entirely when these types of algorithms are applied to the data prior to Stokes vector estimation. We demonstrate results on real LWIR microgrid data using a particular resolution enhancement technique from the literature.

  8. The Advanced Energetic Pair Telescope (AdEPT), a High Sensitivity Medium-Energy Gamma-Ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley D; De Nolfo, Georgia; Hanu, Andrei R; Krizmanic, John F; Stecker, Floyd W.; Timokhin, Andrey; Venters, Tonia M.

    2014-08-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg > 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from ~20 MeV to >10 GeV. However, neither instrument is optimized for observations below ~200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, a significant sensitivity gap will remain in the medium-energy regime (0.75 - 200 MeV) that has been explored only by COMPTEL and EGRET on CGRO. Tapping into this unexplored regime requires development of a telescope with significant improvement in sensitivity. Our mission concept, covering ~5 to ~200 MeV, is the Advanced Energetic Pair Telescope (AdEPT). The AdEPT telescope will achieve angular resolution of ~0.6 deg at 70 MeV, similar to the angular resolution of Fermi/LAT at ~1 GeV that brought tremendous success in identifying new sources. AdEPT will also provide unprecedented polarization sensitivity, ~1% for a 1 Crab source. The enabling technology for AdEPT is the Three-Dimensional Track Imager (3-DTI) a low-density, large volume, gas time-projection chamber with a 2-dimensional readout. The 3-DTI provides high-resolution three-dimensional electron tracking with minimal Coulomb scattering that is essential to achieve high angular resolution and polarization sensitivity. We describe the design, fabrication, and performance of the 3-DTI detector, describe the development of a 50x50x100 cm3 AdEPT prototype, and highlight a few of the key science questions that AdEPT will address.

  9. Imaging polarimetry in the LWIR with microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Tyo, J. S.

    2010-06-01

    Microgrid polarimeters have emerged over the past decade as a viable tool for performing real-time, highly accurate polarimetric imagery. A microgrid polarimeter operates by integrating a focal plane array (FPA) with an array of micropolarizing optics. Mircrogrids have the advantage of being relatively compact, rugged, and inherently spatiotemporally aligned. However, they have the single disadvantage that the various polarization measurements that go into estimating the Stokes parameters at a particular pixel are actually coming from separate locations in the field. Hence, a microgrid polarimeter performs best where there is no image information, obviating the need for an imaging polarimeter! Recently we have been working with a LWIR microgrid polarimeter at the College of Optical Sciences. Our instrument is a DRS Sensors & Targeting Systems 640 x 480 HgCdTe FPA with linear polarizers at 0°, 45°, 90°, and 135° [1]. In this paper we will review our recent results that derive methods for artifact-free reconstruction of band limited imagery.

  10. Recent advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Wedan, Bruce W.; Abid, Ridha

    1989-01-01

    A thin-layer Navier-Stokes has been developed for solving high Reynolds number, turbulent flows past aircraft components under transonic flow conditions. The computer code has been validated through data comparisons for flow past isolated wings, wing-body configurations, prolate spheroids and wings mounted inside wind-tunnels. The basic code employs an explicit Runge-Kutta time-stepping scheme to obtain steady state solution to the unsteady governing equations. Significant gain in the efficiency of the code has been obtained by implementing a multigrid acceleration technique to achieve steady-state solutions. The improved efficiency of the code has made it feasible to conduct grid-refinement and turbulence model studies in a reasonable amount of computer time. The non-equilibrium turbulence model of Johnson and King has been extended to three-dimensional flows and excellent agreement with pressure data has been obtained for transonic separated flow over a transport type of wing.

  11. The submillimeter array polarimeter

    NASA Astrophysics Data System (ADS)

    Marrone, Daniel P.; Rao, Ramprasad

    2008-07-01

    We describe the Submillimeter Array (SMA) Polarimeter, a polarization converter and feed multiplexer installed on the SMA. The polarimeter uses narrow-band quarter-wave plates to generate circular polarization sensitivity from the linearly-polarized SMA feeds. The wave plates are mounted in rotation stages under computer control so that the polarization handedness of each antenna is rapidly selectable. Positioning of the wave plates is found to be highly repeatable, better than 0.2 degrees. Although only a single polarization is detected at any time, all four cross correlations of left- and right-circular polarization are efficiently sampled on each baseline through coordinated switching of the antenna polarizations in Walsh function patterns. The initial set of anti-reflection coated quartz and sapphire wave plates allows polarimetry near 345 GHz; these plates have been have been used in observations between 325 and 350 GHz. The frequency-dependent cross-polarization of each antenna, largely due to the variation with frequency of the retardation phase of the single-element wave plates, can be measured precisely through observations of bright point sources. Such measurements indicate that the cross-polarization of each antenna is a few percent or smaller and stable, consistent with the expected frequency dependence and very small alignment errors. The polarimeter is now available for general use as a facility instrument of the SMA.

  12. Advancing the theoretical foundation of the partially-averaged Navier-Stokes approach

    NASA Astrophysics Data System (ADS)

    Reyes, Dasia Ann

    The goal of this dissertation is to consolidate the theoretical foundation of variable-resolution (VR) methods in general and the partially-averaged Navier-Stokes (PANS) approach in particular. The accurate simulation of complex turbulent flows remains an outstanding challenge in modern computational fluid dynamics. High-fidelity approaches such as direct numerical simulations (DNS) and large-eddy simulation (LES) are not typically feasible for complex engineering simulations with current computational technologies. Low-fidelity approaches such as Reynolds-averaged Navier-Stokes (RANS), although widely used, are inherently inadequate for turbulent flows with complex flow features. VR bridging methods fill the gap between DNS and RANS by allowing a tunable degree of resolution ranging from RANS to DNS. While the utility of VR methods is well established, the mathematical foundations and physical characterization require further development. This dissertation focuses on the physical attributes of fluctuations in partially-resolved simulations of turbulence. The specific objectives are to: (i) establish a framework for assessing the physical fidelity of VR methods to examine PANS fluctuations; (ii) investigate PANS simulations subject to multiple resolution changes; (iii) examine turbulent transport closure modeling for partially-resolved fields; (iv) examine the effect of filter control parameters in the limit of spectral cut-off in the dissipative region; and (v) validate low-Reynolds number corrections with RANS for eventual implementation with PANS. While the validation methods are carried out in the context of PANS, they are considered appropriate for all VR bridging methods. The key findings of this dissertation are summarized as follows. The Kolmogorov hypotheses are suitably adapted to describe fluctuations of partially-resolved turbulence fields, and the PANS partially-resolved field is physically consistent with the adapted Kolmogorov hypotheses. PANS

  13. A Polarimeter for SOFIA: Summary of Research

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1999-01-01

    The purpose of this research was to study designs for a far-infrared polarimeter for SOFIA that would greatly surpass the performance of the earlier polarimeter, Stokes, used on the Kuiper Airborne Observatory. Specifically we wished to gain the sensitivity to observe much fainter objects, to provide a choice of passbands, to reduce systematic errors, and to improve the efficiency. All of these objectives were successfully addressed. The gain in sensitivity will be achieved in part by the superior capabilities of SOFIA but to an even greater extent by the incorporation of new-technology detector arrays. We are developing superconducting transition-edge detectors using the "pop-up" design conceived by Dr. Harvey Moseley. The choice of passbands is achieved by providing three alternative optical paths, each with its own spectral filter, half-wave plate, and pupil tens. A new investigation has shown that multiwavelength observations provide an essential feature of far-infrared polarimetry. The principal source of systematic errors in observations of extended objects has been unknown polarization in the reference beams. We have developed a strategy for estimating these errors.

  14. LWIR polarimeter calibration

    NASA Astrophysics Data System (ADS)

    Blumer, Robert V.; Miller, Miranda A.; Howe, James D.; Stevens, Mark A.

    2002-01-01

    Performance reported efforts to calibrate a MWIR imaging polarimeter met with moderate success. Recent efforts to calibrate a LWIR sensor using a different technique have been much more fruitful. For our sensor, which is based on a rotating retarder, we have improved system calibration substantially be including nonuniformity correction at all measurement positions of the retarder in our polarization data analysis. This technique can account for effects such as spurious optical reflections within a camera system that had been masquerading as false polarization in our previous data analysis methodology. Our techniques will be described and our calibration results will be quantified. Data from field-testing will be presented.

  15. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  16. Combatting infrared focal plane array nonuniformity noise in imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Kumar, Rakesh; Black, Wiley; Boger, James K.; Tyo, J. Scott

    2005-08-01

    One of the most significant challenges in performing infrared (IR) polarimetery is the focal plane array (FPA) nonuniformity (NU) noise that is inherent in virtually all IR photodetector technologies that operate in the midwave IR (MWIR) or long-wave IR (LWIR). NU noise results from pixel-to-pixel variations in the repsonsivity of the photodetectors. This problem is especially severy in the microengineered IR FPA materials like HgCdTe and InSb, as well as in uncooled IR microbolometer sensors. Such problems are largely absent from Si based visible spectrum FPAs. The pixel response is usually a variable nonlinear response function, and even when the response is linearized over some range of temperatures, the gain and offset of the resulting response is usually highly variable. NU noise is normally corrected by applying a linear calibration to the data, but the resulting imagery still retains residual nonuniformity due to the nonlinearity of the photodetector responses. This residual nonuniformity is particularly troublesome for polarimeters because of the addition and subtraction operations that must be performed on the images in order to construct the Stokes parameters or other polarization products. In this paper we explore the impact of NU noise on full stokes and linear-polarization-only IR polarimeters. We compare the performance of division of time, division of amplitude, and division of array polarimeters in the presence of both NU and temporal noise, and assess the ability of calibration-based NU correction schemes to clean up the data.

  17. Snapshot imaging polarimeters using spatial modulation

    NASA Astrophysics Data System (ADS)

    Luo, Haitao

    The recent demonstration of a novel snapshot imaging polarimeter using the fringe modulation technique shows a promise in building a compact and moving-parts-free device. As just demonstrated in principle, this technique has not been adequately studied. In the effort of advancing this technique, we build a complete theory framework that can address the key issues regarding the polarization aberrations caused by using the functional elements. With this model, we can have the necessary knowledge in designing, analyzing and optimizing the systems. Also, we propose a broader technique that uses arbitrary modulation instead of sinusoidal fringes, which can give us more engineering freedom and can be the solution of achromatizing the system. In the hardware aspect, several important progresses are made. We extend the polarimeter technique from visible to middle wavelength infrared by using the yttrium vanadate crystals. Also, we incorporate a Savart Plate polarimter into a fundus camera to measure the human eye's retinal retardance, useful information for glaucoma diagnosis. Thirdly, a world-smallest imaging polarimeter is proposed and demonstrated, which may open many applications in security, remote sensing and bioscience.

  18. Full Stokes polarization imaging camera

    NASA Astrophysics Data System (ADS)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  19. Solving Navier-Stokes Equations with Advanced Turbulence Models on Three-Dimensional Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.

    1999-01-01

    USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.

  20. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  1. Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower.

    PubMed

    Xu, Chenglin; Qu, Zhongquan; Zhang, Xiaoyu; Jin, Chunlan; Yan, Xiaoli

    2006-11-20

    A polarimeter to be mounted on the Yunnan solar tower is described. It features the ability to simultaneously measure the magnetic fields of the solar photosphere and chromosphere by analyzing the Stokes spectra of those magnetosensitive lines forming in the two regions with very high efficiency of polarization measurement. The polarimeter consists of two ferroelectric liquid crystals and one lambda/4 wave plate before a polarizing beam splitter. The achromatism of the design is emphasized to get the maximum combination efficiency over a spectral range from 5000 to 6000 A. For the used solar absorption lines MgI517.27, FeI525.06, FeI630.15, and FeI630.25 nm, the design gives theoretical efficiencies of polarization measurements, which are 0.999, 1.0, 0.943, and 0.943, respectively. A comparison with other reference polarimeters, such as the Synoptic Optical Long-term Investigation of the Sun, the Tenerife infrared polarimeter, and the La Palma Stokes Polarimeter, is carried out. PMID:17086251

  2. Demonstration of snapshot imaging polarimeter using modified Savart polariscopes.

    PubMed

    Cao, Qizhi; Zhang, Jing; DeHoog, Edward; Zhang, Chunmin

    2016-02-10

    In an earlier publication, [Appl. Opt.51, 5791 (2012)] we demonstrated by theoretical analysis that a snapshot imaging polarimeter using modified Savart polariscopes (MSP-SIP) is comparable in carrier frequency, signal-to-noise ratio, and spatial resolution to a snapshot imaging polarimeter using conventional Savart polariscopes. In this investigation, numerical simulation is used to demonstrate the feasibility of MSP-SIP and investigate the limitation of the filtration and the Fourier analysis decoupling the polarization information encoded through the spatial modulation. In addition, a laboratory experiment is conducted to demonstrate the validity of MSP-SIP. The MSP-SIP operates on the principle of encoding polarization information within the spatial modulation of the image. This unique technology allows all Stokes parameters to be simultaneously recorded from every spatial position in an image with a single integration period of the imaging system. The device contains no moving parts and requires no scanning, allowing it to acquire data without the motion artifacts normally associated with a scanning polarimeter. In addition to snapshot imaging and static (no moving parts) capabilities, image processing is simple, and the device is compact and miniature. Therefore, we believe that MSP-SIP will be useful in many applications, such as remote sensing and bioscience. PMID:26906358

  3. Design of the Polarimeter for the Fibre Arrayed Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Dun, Guang-tao; Qu, Zhong-quan

    2013-01-01

    The theoretical design of the polarimeter used for the Fibre Arrayed Solar Optical Telescope (FASOT) is described. It has the following characteris- tics: (1) It is provided with the function of optical polarization switching, which makes the high-effciency polarimetry possible; (2) In the waveband of 750 nm, the polarimetric effciency is higher than 50% for the every Stokes parameter, and higher than 86.6% for the total polarization, thus an observer can make the simultaneous polarization measurements on multiple magnetosensitive lines in such a broad range of wavelength; (3) According to the selected photospheric and chromospheric lines, the measurement can be focused on either linear polarization or circular polarization; (4) The polarimeter has a loose tolerance on the manufacturing technology of polarimetric elements and installation errors. All this makes this polarimeter become a high-performance polarimetric device.

  4. Polarization visual enhancement technique for LWIR microgrid polarimeter imagery

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Tyo, J. Scott; Black, Wiley T.; Boger, James K.; Bowers, David L.

    2008-04-01

    Division of focal plane (DoFP) polarimeters are a particular class of imaging device that consists of an array of micropolarizers integrated upon a focal plane array sensor (FPA). Such devices are also called microgrid polarimeters and have been studied over the past decade with systems being designed and built in all regions of the optical spectrum. These systems are advantageous due to their rugged, compact design and ability to obtain a complete set of polarimetric measurements during a single frame capture. One inherent disadvantage of DoFP systems is that each pixel of the FPA sensor makes a polarized intensity measurement of a different scene point. These spatial measurements are then used to estimate the Stokes vectors across the scene. Since each polarized intensity measurement has a different instantaneous field-of-view (IFOV), artifacts are introduced that can degrade the quality of estimated polarization imagery. Here we develop and demonstrate a visual enhancement technique that is able to reduce false polarization caused by IFOV error while preserving true polarization content within the Stokes parameter images. The technique is straight-forward conceptually and is computationally efficient. All results are presented using data acquired from an actual LWIR microgrid sensor.

  5. Mitigation of image artifacts in LWIR microgrid polarimeter images

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Tyo, J. Scott; Boger, James K.; Black, Wiley T.; Bowers, David M.; Kumar, Rakesh

    2007-09-01

    Microgrid polarimeters, also known as division of focal plane (DoFP) polarimeters, are composed of an integrated array of micropolarizing elements that immediately precedes the FPA. The result of the DoFP device is that neighboring pixels sense different polarization states. The measurements made at each pixel can be combined to estimate the Stokes vector at every reconstruction point in a scene. DoFP devices have the advantage that they are mechanically rugged and inherently optically aligned. However, they suffer from the severe disadvantage that the neighboring pixels that make up the Stokes vector estimates have different instantaneous fields of view (IFOV). This IFOV error leads to spatial differencing that causes false polarization signatures, especially in regions of the image where the scene changes rapidly in space. Furthermore, when the polarimeter is operating in the LWIR, the FPA has inherent response problems such as nonuniformity and dead pixels that make the false polarization problem that much worse. In this paper, we present methods that use spatial information from the scene to mitigate two of the biggest problems that confront DoFP devices. The first is a polarimetric dead pixel replacement (DPR) scheme, and the second is a reconstruction method that chooses the most appropriate polarimetric interpolation scheme for each particular pixel in the image based on the scene properties. We have found that these two methods can greatly improve both the visual appearance of polarization products as well as the accuracy of the polarization estimates, and can be implemented with minimal computational cost.

  6. Earth observing scanning polarimeter

    NASA Technical Reports Server (NTRS)

    Travis, Larry

    1993-01-01

    Climate forcing by tropospheric aerosols is receiving increased attention because of the realization that the climate effects may be large, while our knowledge of global aerosol characteristics and temporal changes is very poor. Tropospheric aerosols cause a direct radiative forcing due simply to their scattering and absorption of solar radiation, as well as an indirect effect as cloud condensation nuclei which can modify the shortwave reflectivity of clouds. Sulfate aerosols tend to increase planetary albedo through both the direct and indirect effects; a cooling due to anthropogenic sulfate aerosols has been estimated of order 1 W/sq m, noting that this is similar in magnitude to the present anthropogenic greenhouse gas warming. Other aerosols, including those from biomass burning and wind-blown desert dust are also of potential climatic importance. At present, the only global monitoring of tropospheric aerosols is a NOAA operational product, aerosol optical thickness, obtained using channel-1 (0.58-0.68 mu m) radiances from the AVHRR. With this single channel radiance data, one must use an approach which is based on the inferred excess of reflected radiance owing to scattering by the aerosols over that expected from theoretical calculations. This approach is suited only for situations where the surface has a low albedo that is well known a priori. Thus, the NOAA operational product is restricted to coverage over the ocean at AVHRR scan angles well away from sun glint, and aerosol changes are subject to confusion with changes caused by either optically thin or subpixel clouds. Because optically thin aerosols have only a small effect on the radiance, accurate measurements for optical thickness less than 0.1 (which is a typical background level) are precluded. Moreover, some of the largest and most important aerosol changes are expected over land. The Earth Observing Scanning Polarimeter (EOSP) instrument, based upon design heritage and analysis techniques

  7. POET: POlarimeters for Energetic Transients

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; McConnell, M. L.; Bloser, P.; Legere, J.; Macri, J.; Ryan, J.; Barthelmy, S.; Angelini, L.; Sakamoto, T.; Black, J. K.; Hartmann, D. H.; Kaaret, P.; Zhang, B.; Ioka, K.; Nakamura, T.; Toma, K.; Yamazaki, R.; Wu, X.

    2008-01-01

    POET (Polarimeters for Energetic Transients) is a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The POET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. POET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  8. The Compton polarimeter for SLC

    SciTech Connect

    Fero, M.J.; The SLD Collaboration

    1992-12-01

    We report on the use of a Compton scattering based polarimeter to measure beam polarization near the e{sup +}e{sub -} interaction point at the SLAC Linear Collider (SLC). Measurement of the beam polarization to a statistical precision of {delta}P/P={plus_minus}3% requires approximately three minutes under normal conditions. An average beam polarization of 22.4{plus_minus}0.7%(syst.) was measured over the course of the 1992 polarized beam run.

  9. The Compton polarimeter for SLC

    SciTech Connect

    Fero, M.J. )

    1992-12-01

    We report on the use of a Compton scattering based polarimeter to measure beam polarization near the e[sup +]e[sub -] interaction point at the SLAC Linear Collider (SLC). Measurement of the beam polarization to a statistical precision of [delta]P/P=[plus minus]3% requires approximately three minutes under normal conditions. An average beam polarization of 22.4[plus minus]0.7%(syst.) was measured over the course of the 1992 polarized beam run.

  10. Development of an infrared polarimeter

    NASA Technical Reports Server (NTRS)

    Coffeen, D. L.

    1972-01-01

    AEROPOL infrared polarimeter was built for measurements microns between 1.1 and 3.5 microns, with a 1.5 degree field of view, using a wire grid polarization analyzer. A PbS detector is cooled by condensed Freon-13. The instrument operates under minicomputer control, giving a polarization least squares solution each 2.5 seconds. AEROPOL was flown on the NASA CV-990 aircraft, in a remote-sensing study of terrestrial cloud particle sizes and shapes.

  11. In pixel analysis of molecular structure with Stokes vector resolved second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Xiang, Lu Yun; Qiu, Jianjun; Kao, Fu-Jen

    2014-02-01

    We report on measurements and characterization of polarization properties of Second Harmonic (SH) signals using a four-channel photon counting based Stokes polarimeter from type I collagen and starch granules. In this way, the critical polarization parameters including the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP), are extracted from the reconstructed Stokes vector based SH images in a pixel-by-pixel manner. The measurements are further extended to determine the molecular structure and orientation of the samples by varying the polarization states of the incident light and recording the resulting Stokes parameters of the SH signal. The combination of SHG microscopy and Stokes polarimeter hence makes a powerful tool to investigate the structural order of starch granules under water and heating environment.

  12. Compact polarimeters based on polarization-sensitive focal plane arrays

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2014-08-01

    We report on the design, fabrication and performance of the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). Despite great advances in astronomical (and terrestrial remote sensing) instrumentation, the measurement of polarization of light remains challenging and infrequent. Recently, the fabrication of micropolarizer arrays has allowed the development of compact polarimeters which promise to make polarimetry more accessible. These devices are capable of measuring the degree of polarization (DoP) and angle of polarization (AoP) across a scene using a single exposure ("snapshot"). They are compact, light-weight and mechanically robust, making them ideal for deployment on space-based platforms. We present the performance of such a polarimeter and describe the kind of science that is possible with RITPIC and future generations of these revolutionary devices.

  13. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  14. MeV Science with the Advanced Energetic Pair Telescope (AdEPT), a High Sensitivity Medium-Energy Gamma-Ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Venters, Tonia M.; Hunter, Stanley D.; De Nolfo, Georgia; Hanu, Andrei R.; Krizmanic, John F.; Stecker, Floyd W.; Timokhin, Andrey

    2016-04-01

    Many high-energy astrophysical phenomena exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares below ~200 MeV. However, while significant progress in gamma-rays has been made by instruments such as Fermi and AGILE, a significant sensitivity gap remains in the medium-energy regime (0.75 - 200 MeV) that has been explored only by COMPTEL and EGRET on CGRO. Tapping into this unexplored regime requires development of a telescope with significant improvement in sensitivity. Our mission concept, covering ~5 to ~200 MeV, is the Advanced Energetic Pair Telescope (AdEPT). The AdEPT telescope will achieve angular resolution of ~0.6 deg at 70 MeV, similar to the angular resolution of Fermi/LAT at ~1 GeV that brought tremendous success in identifying new sources. AdEPT will also provide unprecedented polarization sensitivity, ~1% for a 1 Crab source. The enabling technology for AdEPT is the Three-Dimensional Track Imager (3-DTI) a low-density, large volume, gas time-projection chamber with a 2-dimensional readout. The 3-DTI provides high-resolution three-dimensional electron tracking with minimal Coulomb scattering that is essential to achieve high angular resolution and polarization sensitivity. We describe the design, fabrication, and performance of the 3-DTI detector, describe the development of a 50x50x100 cm3 AdEPT prototype, and highlight a few of the key science questions that AdEPT will address.

  15. Laser-based capillary polarimeter.

    PubMed

    Swinney, K; Hankins, J; Bornhop, D J

    1999-01-01

    A laser-based capillary polarimeter has been configured to allow for the detection of optically active molecules in capillary tubes with a characteristic inner diameter of 250 microm and a 39-nL (10(-9)) sample volume. The simple optical configuration consists of a HeNe laser, polarizing optic, fused-silica capillary, and charge-coupled device (CCD) camera in communication with a laser beam analyzer. The capillary scale polarimeter is based on the interaction between a polarized laser beam and a capillary tube, which results in a 360 degree fan of scattered light. This array of scattered light contains a set of interference fringe, which respond in a reproducible manner to changes in solute optical activity. The polarimetric utility of the instrument will be demonstrated by the analysis of two optically active solutes, R-mandelic acid and D-glucose, in addition to the nonoptically active control, glycerol. The polarimetric response of the system is quantifiable with detection limits facilitating 1.7 x 10(-3) M or 68 x 10(-12) nmol (7 psi 10(-9) g) sensitivity. PMID:11315158

  16. Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology

    NASA Astrophysics Data System (ADS)

    Sposato, Stephanie H.; Fetrow, Matthew P.; Bishop, Kenneth P.; Caudill, Thomas R.

    2002-05-01

    Spectrally varying long-wave infrared (LWIR) polarization measurements can be used to identify materials and to discriminate samples from a cluttered background. Two LWIR instruments have been built and fielded by the Air Force Research Laboratory: a multispectral LWIR imaging polarimeter (LIP) and a full-Stokes Fourier transform infrared (FTIR) spectral polarimeter (FSP), constructed for higher spectral resolution measurements of materials. These two instruments have been built to gain an understanding of the polarization signatures expected from different types of materials in a controlled laboratory and in varying field environments. We discuss the instruments, calibration methods, general operation, and measurements characterizing the emitted polarization properties of materials as a function of wavelength. The results show that we are able to make polarization measurements with a relative accuracy of 0.5% degree of polarization (DOP) between two different instruments that are calibrated with the same techniques, and that these measurements can improve the understanding of polarization phenomenology.

  17. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  18. Polarimeter for high energy photons

    NASA Astrophysics Data System (ADS)

    Wojtsekhowski, Bogdan; Vlahovic, Branislav; Tedeschi, David; Danagulian, Samuel; Litvienko, Vladimir; Pinayev, Igor

    1999-11-01

    The physics program at TJNAF includes fundamental experiments with polarized photon beam in few GeV energy range. Development of the Polarimeter for use in Hall B experiments is the subject of present abstract. We have proposed to take advantage of the recent progress in silicon micro strip detectors for measurement of the geometry and angle correlation in electron positron pair production from an amorphous converter. A detailed analysis of the setup including MC simulation shows an experimental asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of the photon energies. This asymmetry value is confirmed by our experimental results obtained using 100 percent polarized 40 MeV γ rays at Duke FEL.

  19. Development of cosmic x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Hayato, Asami; Tamagawa, Toru; Tsunoda, Naoko; Hashimoto, Shigehira; Miyamoto, Masao; Kohama, Mitsuhiro; Tokanai, Fuyuki; Hamagaki, Hideki; Inuzuka, Masahide; Miyasaka, Hiromasa; Sakurai, Ikuya; Makishima, Kazuo

    2006-06-01

    We present a performance study of a cosmic X-ray polarimeter which is based on the photoelectric effect in gas, and sensitive to a few to 30 keV range. In our polarimeter, the key device would be the 50 μm pitch Gas Electron Multiplier (GEM). We have evaluated the modulation factor using highly polarized X-ray, provided by a synchrotron accelerator. In the analysis, we selected events by the eccentricity of the charge cloud of the photoelectron track. As a result, we obtained the relationship between the selection criteria for the eccentricity and the modulation factors; for example, when we selected the events which have their eccentricity of > 0.95, the polarimeter exhibited with the modulation factor of 0.32. In addition, we estimated the Minimum Detectable Polarization degree (MDP) of Crab Nebula with our polarimeter and found 10 ksec observation is enough to detect the polarization, if we adopt suitable X-ray mirrors.

  20. COMMISSIONING CNI PROTON POLARIMETERS IN RHIC.

    SciTech Connect

    HUANG,H.; BRAVAR,A.; LI,Z.; MACKAY,W.W.; MAKDISI,Y.; RESCIA,S.; ROSER,T.; SURROW,B.; BUNCE,G.; DESHPANDE,A.; GOTO,Y.; ET AL

    2002-06-02

    Two polarimeters based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region have been installed and commissioned in the Blue and Yellow rings of RHIC during the first RHIC polarized proton collider run. Each polarimeter consists of ultra-thin carbon targets and six silicon detectors. With newly developed wave form digitizers, they provide fast and reliable polarization information for both rings.

  1. Alignment error analysis of the snapshot imaging polarimeter.

    PubMed

    Liu, Zhen; Yang, Wei-Feng; Ye, Qing-Hao; Hong, Jin; Gong, Guan-Yuan; Zheng, Xiao-Bing

    2016-03-10

    A snapshot imaging polarimeter (SIP) system is able to reconstruct two-dimensional spatial polarization information through a single interferogram. In this system, the alignment errors of the half-wave plate (HWP) and the analyzer have a predominant impact on the accuracies of reconstructed complete Stokes parameters. A theoretical model for analyzing the alignment errors in the SIP system is presented in this paper. Based on this model, the accuracy of the reconstructed Stokes parameters has been evaluated by using different incident states of polarization. An optimum thickness of the Savart plate for alleviating the perturbation introduced by the alignment error of the HWP is found by using the condition number of the system measurement matrix as an objective function in a minimization procedure. The result shows that when the thickness of a Savart plate is 23 mm, corresponding to the condition number 2.06, the precision of the SIP system can reach to 0.21% at 1° alignment tolerance of the HWP. PMID:26974785

  2. Turbulent Navier-Stokes Flow Analysis of an Advanced Semispan Diamond-Wing Model in Tunnel and Free Air at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad; Biedron, Robert T.; Luckring, James M.

    2002-01-01

    Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.

  3. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    DOE PAGESBeta

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less

  4. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    SciTech Connect

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  5. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    NASA Astrophysics Data System (ADS)

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-01

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  6. GRASSP (GRAnada Sprite Spectrograph and Polarimeter). Design and implementation.

    NASA Astrophysics Data System (ADS)

    Passas, María; Sánchez, Justo; Gordillo-Vázquez, Francisco J.; Luque, Alejandro; Parra-Rojas, Francisco C.

    2013-04-01

    Transient luminous events (TLEs) are short optical emissions that occur in the upper atmosphere above storm systems. They appear between 15 and 90 km altitude and last between less than a millisecond to up to two seconds. So far there are no polarization studies of TLEs, nor high-resolution spectroscopy results which could help us to understand the kinetics and electrodynamics of these kind of optical emissions. The GRASSP (Granada Sprite Spectrograph and Polarimeter) instrument has been developed to measure simultaneously the polarization and the spectra of the light emitted from these TLEs with medium spectral resolution (0.45nm). By consulting a real-time lightning database, the telescope aims automatically to the region of the sky where a TLE is predicted to appear. The instrument is located outside the 2.2 m dome of the German-Spanish Astronomical Center at Calar Alto, Sierra de Los Filabres, north of Almería (Andalucía, Southern Spain), at 2168 meters above mean sea level. From this location we can observe the western Mediterranean Sea zone (37°-45°N; 2°W-6°E) with an elevation of 10°-35° above the horizon, a region where the most TLE activity in Europe takes place. GRASSP is a prototype which consists of a spectrograph and a polarimeter, both installed on a telescope mount. The 6-channel imaging polarimeter will cover a spectral range from 500 - 750 nm, with a polarized / unpolarized sensitivity smaller than 5 %. It will present a circular field of view of 5° and a CCD of 2000 × 2000 pixels with a FOV of 15 µm/px. The goal is to find the 4 Stokes parameters in a single shot. To do so, the polarimeter consists of seven circular windows disposed over a telescope surface, six of them are located around the border of the circle and the last one is located in the center. This single window will show the unfiltered image and the six remaining ones include a different polarizer ( 0° 45° 90° 180° linear polarizers and left and right circular

  7. Motion-based nonuniformity correction in DoFP polarimeters

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Tyo, J. Scott; Ratliff, Bradley M.

    2007-09-01

    Division of Focal Plane polarimeters (DoFP) operate by integrating an array of micropolarizer elements with a focal plane array. These devices have been investigated for over a decade, and example systems have been built in all regions of the optical spectrum. DoFP devices have the distinct advantage that they are mechanically rugged, inherently temporally synchronized, and optically aligned. They have the concomitant disadvantage that each pixel in the FPA has a different instantaneous field of view (IFOV), meaning that the polarization component measurements that go into estimating the Stokes vector across the image come from four different points in the field. In addition to IFOV errors, microgrid camera systems operating in the LWIR have the additional problem that FPA nonuniformity (NU) noise can be quite severe. The spatial differencing nature of a DoFP system exacerbates the residual NU noise that is remaining after calibration, and is often the largest source of false polarization signatures away from regions where IFOV error dominates. We have recently presented a scene based algorithm that uses frame-to-frame motion to compensate for NU noise in unpolarized IR imagers. In this paper, we have extended that algorithm so that it can be used to compensate for NU noise on a DoFP polarimeter. Furthermore, the additional information provided by the scene motion can be used to significantly reduce the IFOV error. We have found a reduction of IFOV error by a factor of 10 if the scene motion is known exactly. Performance is reduced when the motion must be estimated from the scene, but still shows a marked improvement over static DoFP images.

  8. A 100-micron polarimeter for the Kuiper Airborne Observatory

    SciTech Connect

    Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.

    1989-02-01

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent. 20 refs.

  9. A 100-micron polarimeter for the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Novak, G.; Gonatas, D. P.; Hildebrand, R. H.; Platt, S. R.

    1989-01-01

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent.

  10. A Burst Chasing X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Hill, Joe; Barthelmy, S.; Black, K.; Deines-Jones, P.; Jahoda, K.; Sakamoto, T.; Kaaret, P.; McConnell, M.; Bloser, P.; Macri, J.; Legere, J.; Ryan, J.; Smith, B., Jr.; Zhang, B.

    2007-01-01

    Tihs is a viewgraph presentation of a discussion of the X-ray Polarimeter. Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts, the Gamma-Ray Burst Polarimeter (GRBP) for thc U S Naval Academy satellite MidSTAR-2, and thc Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  11. ON THE DOPPLER SHIFT AND ASYMMETRY OF STOKES PROFILES OF PHOTOSPHERIC Fe I AND CHROMOSPHERIC Mg I LINES

    SciTech Connect

    Na Deng; Choudhary, Debi Prasad; Balasubramaniam, K. S. E-mail: debiprasad.choudhary@csun.ed

    2010-08-10

    We analyzed the full Stokes spectra using simultaneous measurements of the photospheric (Fe I 630.15 and 630.25 nm) and chromospheric (Mg I b {sub 2} 517.27 nm) lines. The data were obtained with the High Altitude Observatory/National Solar Observatory (HAO/NSO) advanced Stokes polarimeter, about a near disk center sunspot region, NOAA AR 9661. We compare the characteristics of the Stokes profiles in terms of Doppler shifts and asymmetries among the three spectral lines, helping us to better understand the chromospheric lines and the magnetic and flow fields in different magnetic regions. The main results are: (1) for the penumbral area observed by the photospheric Fe I lines, Doppler velocities derived from Stokes I ({nu} {sub i}) are very close to those derived from linear polarization profiles ({nu}{sub lp}) but significantly different from those derived from Stokes V profiles ({nu}{sub zc}), thus providing direct and strong evidence that the penumbral Evershed flows are magnetized and mainly carried by the horizontal magnetic component; (2) the rudimentary inverse Evershed effect observed by the Mg I b {sub 2} line provides qualitative evidence on its formation height that is around or just above the temperature minimum region; (3) {nu}{sub zc} and {nu}{sub lp} in the penumbrae and {nu}{sub zc} in the pores generally approach their {nu} {sub i} observed by the chromospheric Mg I line, which is not the case for the photospheric Fe I lines; (4) the outer penumbrae and pores show similar Stokes V asymmetry behavior that tend to change from positive values in the photosphere (Fe I lines) to negative values in the low chromosphere (Mg I line); (5) the Stokes V profiles in plage regions are highly asymmetric in the photosphere and more symmetric in the low chromosphere; and (6) strong redshifts and large asymmetries are found around the magnetic polarity inversion line within the common penumbra of the {delta} spot. We offer explanations or speculations to the

  12. Image processing methods to compensate for IFOV errors in microgrid imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Boger, James K.; Fetrow, Matthew P.; Tyo, J. Scott; Black, Wiley T.

    2006-05-01

    Long-wave infrared imaging Stokes vector polarimeters are used in many remote sensing applications. Imaging polarimeters require that several measurements be made under optically different conditions in order to estimate the polarization signature at a given scene point. This multiple-measurement requirement introduces error in the signature estimates, and the errors differ depending upon the type of measurement scheme used. Here, we investigate a LWIR linear microgrid polarimeter. This type of instrument consists of a mosaic of micropolarizers at different orientations that are masked directly onto a focal plane array sensor. In this scheme, each polarization measurement is acquired spatially and hence each is made at a different point in the scene. This is a significant source of error, as it violates the requirement that each polarization measurement have the same instantaneous field-of-view (IFOV). In this paper, we first study the amount of error introduced by the IFOV handicap in microgrid instruments. We then proceed to investigate means for mitigating the effects of these errors to improve the quality of polarimetric imagery. In particular, we examine different interpolation schemes and gauge their performance. These studies are completed through the use of both real instrumental and modeled data.

  13. Noise Source for Calibrating a Microwave Polarimeter

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2006-01-01

    A correlated-noise source has been developed for use in calibrating an airborne or spaceborne Earth-observing correlation microwave polarimeter that operates in a in a pass band that includes a nominal frequency of 10.7 GHz. Deviations from ideal behavior of the hardware of correlation polarimeters are such as to decorrelate the signals measured by such an instrument. A correlated-noise source provides known input signals, measurements of which can be processed to estimate and correct for the decorrelation effect.

  14. A polarimeter for the high resolution ultraviolet spectrometer/polarimeter. [Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Calvert, J. A.

    1980-01-01

    The design requirements of the polarimeter were established by the scientific optical objectives of the experiment to be launched aboard the Solar Max Mission which will study active solar regions. The polarization of the light is accomplished by a rotating magnesium fluoride quarter wave plate. The quarter wave plates are rotated in 22 1/2 degree steps about an axis coincidental with the light beam. As the light beam passes through the wave plate, the transformation that occurs can be expressed by mathematical equations. By having the wave plates calibrated, the data obtained from solar flares can be analyzed and meaningful information provided to the investigators. The polarimeter has two wave plates with different optical characteristics to provide both redundancy and versatility. A four mirror polarizer was added behind one wave plate to provide additional polarization. The mechanical design, testing, and operation of the polarimeter for the high resolution ultraviolet spectrometer/polarimeter are described.

  15. Fast Solar Polarimeter: Prototype Characterization and First Results

    NASA Astrophysics Data System (ADS)

    Iglesias, F. A.; Feller, A.; Krishnappa, N.; Solanki, S. K.

    2016-04-01

    Due to the differential and non-simultaneous nature of polarization measurements, seeing induced crosstalk (SIC) and seeing limited spatial resolution can easily counterbalance the benefits of solar imaging polarimetry from the ground. The development of instrumental techniques to treat these issues is necessary to fully exploit the next generation of large-aperture solar facilities, and maintain ground-based data at a competitive level with respect to its space-based counterpart. In particular, considering that many open questions in modern solar physics demand data with challenging specifications of resolution and polarimetric sensitivity that can only be achieved with large telescope apertures (Stenflo 1999). Even if state-of-the-art adaptive optics systems greatly improve image quality, their limited correction —due to finite bandwidth, mode number and seeing anisoplanat- ism— produces large residual values of SIC (Krishnappa & Feller 2012). Dual beam polarimeters are commonly used to reduce SIC between the intensity and polarization signals, however, they cannot compensate for the SIC introduced between circular and linear polarization, which can be relevant for high-precision polarimetry. It is known that fast modulation effectively reduces SIC, but the demodulation of the corresponding intensity signals imposes hard requirements on the frame rate of the associated cameras. One way to avoid a fast sensor, is to decouple the camera readout from the intensity demodulation step. This concept is the cornerstone of the very successful Zurich Imaging Polarimeter (ZIMPOL). Even though the ZIMPOL solution allows the detection of very faint signals (˜10-5), its design is not suitable for high-spatial-resolution applications. We are developing a polarimeter that focuses on both spatial resolution (<0.5 arcsec) and polarimetric sensitivity (10-4). The prototype of this Fast Solar Polarimeter (FSP, see Feller et al. 2014), employs a high frame-rate (400 fps), low

  16. A Burst Chasing X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Barthelmy, Scott; Black, J. kevin; Deines-Jones, Philip; Jahoda, Keith; Sakamoto, Takanori; Kaaret, Philip; McConnell, Mark L.; Bloser, Peter F.; Macri, John R.; Legere, Jason S.; Ryan, James M.; Smith, Billy R., Jr.; Zhang, Bing

    2007-01-01

    Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect 1s the dominant interaction process We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts, the Gamma-Ray Burst Polarimeter (GRBP) for thc U S Naval Academy satellite MidSTAR-2, and thc Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  17. PoET: Polarimeters for Energetic Transients

    NASA Technical Reports Server (NTRS)

    McConnell, Mark; Barthelmy, Scott; Hill, Joanne

    2008-01-01

    This presentation focuses on PoET (Polarimeters for Energetic Transients): a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The PoET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. PoET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  18. Imaging polarimeters for solar extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Fineschi, Silvano; Fontenla, Juan M.; Walker, Arthur B. C., Jr.

    1991-01-01

    Accounts are given of EUV/FUV polarimetric instrument concepts for solar research which observe linear polarization in the spectral lines which originate in the outer solar atmosphere. The coronagraph/polarimeter instruments discussed employ all-reflective optical systems using ultrasmooth, low-scatter normal incidence mirrors and reflective polarization analyzers. The reflecting polarization analyzers operate at the Brewster angle.

  19. Design of channeled partial Mueller matrix polarimeters.

    PubMed

    Alenin, Andrey S; Scott Tyo, J

    2016-06-01

    In this paper, we introduce a novel class of systems called channeled partial Mueller matrix polarimeters (c-pMMPs). Their analysis benefits greatly by drawing from the concepts of generalized construction of channeled polarimeters as described by the modulation matrix. The modulation matrix resembles that of the data reduction method of a conventional polarimeter, but instead of using Mueller vectors as the bases, attention is focused on the Fourier properties of the measurement conditions. By leveraging the understanding of the measurement's structure, its decomposition can be manipulated to reveal noise resilience and information about the polarimeter's ability to measure the aspect of polarization that are important for any given task. We demonstrate the theory with a numerical optimization that designs c-pMMPs for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)APOPAI0003-693510.1364/AO.46.008364]. We select several example systems that produce a fewer-than-full-system number of channels yet retain the ability to discriminate objects of interest. Their respective trade-offs are discussed. PMID:27409432

  20. Polarimeter provides transient response in nanosecond range

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.

    1967-01-01

    Conventional polarimeter with a Senarmont compensator improves transient response and eliminates manual manipulation. A sampled photomultiplier output is fed to a low pass filter, resulting in a signal representing the optical state existing at the instant of sampling. With this technique, an unknown transient-induced retardation can be measured.

  1. Polarimeter blind deconvolution using image diversity

    NASA Astrophysics Data System (ADS)

    Strong, David M.

    This research presents an algorithm that improves the ability to view objects using an electro-optical imaging system with at least one polarization sensitive channel in addition to the primary channel. Following the review of historical methodologies applicable to this research area, the statistical Cramer-Rio lower bound (CRLB) is developed for a two- channel polarimeter. The CRLB is developed using the system's ability to resolve two point sources in the presence of atmospheric turbulence. The bounds show that such a polarimeter has an advantage over previous imaging methods at smaller separations. A small optical laboratory is set up to generate a set of calibrated images for verification of the simulation results and validation of algorithm development. Defocus is the aberration chosen for algorithm development and testing due to its significant presence when imaging through turbulence and its ease of production in the laboratory. An innovative algorithm for detection and estimation of the defocus aberration present in an image is also developed. Using a known defocus aberration, an iterative polarimeter deconvolution algorithm is developed using a generalized expectation-maximization (GEM) model that produces results as predicted by the CRLB results. Using an example bar target set with a degree of polarization of one, the polarimeter deconvolution algorithm can resolve the two bars down to half the bar separation as the Richardson-Lucy (RL) algorithm can do. In addition, a fidelity metric is used that shows the polarimeter deconvolution algorithm deconvolves simulated targets with approximately half of the error present in objects deconvolved using the RL algorithm. The polarimeter deconvolution algorithm is extended to an iterative polarimeter multiframe blind deconvolution (PMFBD) algorithm with an unknown aberration. Using both simulated and laboratory images, the results of the new PMFBD algorithm clearly outperforms an RL-based MFBD algorithm. The

  2. SPIDER: probing the early Universe with a suborbital polarimeter

    SciTech Connect

    Fraisse, A.A.; Chiang, H.C.; Ade, P.A.R.; Amiri, M.; Burger, B.; Davis, G.; Benton, S.J.; Bock, J.J.; Crill, B.P.; Doré, O.; Filippini, J.P.; Golwala, S.; Bond, J.R.; Farhang, M.; Bonetti, J.A.; Bryan, S.; Clark, C.N.; Contaldi, C.R.; Fissel, L.M.; Gandilo, N.N.; and others

    2013-04-01

    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern (B-modes) in the cosmic microwave background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r = 0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the ''Southern Hole.'' We show that two ∼ 20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r < 0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.

  3. Stokes examines NASA program management

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    As NASA gears up for another attempt at redesigning Space Station Freedom, some in Congress are wondering whether the space agency has learned any lessons from a number of costly past mistakes. Louis Stokes (D-Ohio), the new chairman of the House Appropriations Veterans Affairs, Housing and Urban Development, and Independent Agencies Subcommittee, held a hearing on March 17 to examine unanticipated cost growth in a variety of projects, including the space toilet, the advanced turbo pump for the shuttle, and the Mars Observer, as well as the space station. Stokes seemed well-suited to this oversight role, asking well-informed and probing questions rather than accusatory ones. The witnesses, NASA head Daniel Goldin and many of his top managers (most of whom were not in their present positions when the projects were initiated), analyzed past errors and offered useful measures for avoiding similar problems in the future.

  4. Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy.

    PubMed

    Mazumder, Nirmal; Hu, Chih-Wei; Qiu, Jianjun; Foreman, Matthew R; Romero, Carlos Macías; Török, Peter; Kao, Fu-Jen

    2014-03-15

    We report on measurements and characterization of polarization properties of Second Harmonic (SH) signals using a four-channel photon counting based Stokes polarimeter. In this way, the critical polarization parameters can be obtained concurrently without the need of repeated image acquisition. The critical polarization parameters, including the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP), are extracted from the reconstructed Stokes vector based SH images in a pixel-by-pixel manner. The measurements are further extended by varying the polarization states of the incident light and recording the resulting Stokes parameters of the SH signal. In turn this allows the molecular structure and orientation of the samples to be determined. Use of Stokes polarimetry is critical in determination of the full polarization state of light, and enables discrimination of material properties not possible with conventional crossed-polarized detection schemes. The combination of SHG microscopy and Stokes polarimeter hence makes a powerful tool to investigate the structural order of targeted specimens. PMID:23891802

  5. A comparison of Stokes parameters for sky and a soybean canopy

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Holben, Brent N.; Mcmurtrey, James E., III

    1991-01-01

    An evaluation of the polarization signatures obtained from the four Stokes parameters is reported for the atmosphere and a soybean canopy. The polarimeter design and operation are set forth, and the Stokes parameters' relationships are discussed. The canopy polarization was different from the sky at azimuths of 90 and 270 degrees, demonstrating a response that reflecting the sky polarization signatures across a plane parallel to the polarization axis and passing through a phase angle of about 90 degrees would produce. Classical behavior in terms of electromagnetic theory was found in the fourth Stokes parameter of the canopy which was obtained in the principal plane. Only the third Stokes parameter is demonstrated to be unambiguously affected in a comparison of sky polarization signatures and aerosol optical densities. The similarity between the sky at azimuth 180 degrees and the soybean canopy data at the principal plane is interesting considering the disparity of the subjects.

  6. Snapshot retinal imaging Mueller matrix polarimeter

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael

    2015-09-01

    Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.

  7. A Pair Polarimeter for High Energy Photons

    NASA Astrophysics Data System (ADS)

    Tedeschi, David; Wojtsekhowski, B.; Khandaker, M.; Klein, F.; Feldman, G.; O'Rielly, G. V.; Vlahovic, B.

    2000-10-01

    The physics program at the Thomas Jefferson National Accelerator Facility includes fundamental experiments with polarized photon beams in the GeV energy range. To measure the degree of photon polarization, a photon polarimeter based on the detection of e^+e^- pairs has been developed for use in Hall B experiments. Recent progress in silicon micro-strip detectors allows for the measurement of the angle correlation in electron-positron pair production by high energy photons incident on an amorphous converter. Theoretical calculations of the pair production process show an asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of photon energies. Experimental results obtained from 40 MeV photons at the Duke-FEL and 300 MeV photons from the Brookhaven-LEGS facility using prototype polarimeters will be presented.

  8. XUV polarimeter for undulator radiation measurements

    SciTech Connect

    Gluskin, E.; Mattson, J.E.; Bader, S.D.; Viccaro, P.J. ); Barbee, T.W. Jr. ); Brookes, N. ); Pitas, A. ); Watts, R. )

    1991-01-01

    A polarimeter for x-ray and vacuum ultraviolet (XUV) radiation was built to measure the spatial spectral dependence of the polarization of the light produced by the new undulator at the U5 beamline at NSLS. The fourth-harmonic radiation was measured, and it does not agree with predictions based on ideal simulation codes in the far-field approximation. 13 ref., 7 figs.

  9. Fast Solar Polarimeter: First Light Results

    NASA Astrophysics Data System (ADS)

    Krishnappa, N.; Feller, A.; Iglesia, F. A.; Solanki, S.

    2013-12-01

    Accurate measurements of magnetic fields on the Sun are crucial to understand various physical processes that take place in the solar atmosphere such as solar eruptions, coronal heating, solar wind acceleration, etc. The Fast Solar Polarimeter (FSP) is a new instrument that is being developed to probe magnetic fields on the Sun. One of the main goals of this polarimeter is to carry out high precision spectropolarimetric observations with spatial resolution close to the telescope diffraction limit. The polarimeter is based on pnCCD technology with split frame transfer and simultaneous multi-channel readout, resulting in frame rate upto 1 kHz. The FSP prototype instrument uses a small format pnCCD of 264x264 pixels which has been developed by PNSensor and by the semiconductor lab of the Max Planck Society. The polarization modulator is based on two ferro-electric liquid crystals (FLCs) interlaced between two static retarders. The first solar observations have been carried out with this prototype during May-June, 2013 at German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands, Spain. Here we present the instrument performance assessments and the first results on the magnetic field measurements. Further, we briefly discuss about the next phase of FSP which will be a dual beam system with 1k x 1k CCDs.

  10. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  11. New singularities for Stokes waves

    NASA Astrophysics Data System (ADS)

    Crew, Samuel C.; Trinh, Philippe H.

    2016-07-01

    In 1880, Stokes famously demonstrated that the singularity that occurs at the crest of the steepest possible water wave in infinite depth must correspond to a corner of $120^\\circ$. Here, the complex velocity scales like $f^{1/3}$ where $f$ is the complex potential. Later in 1973, Grant showed that for any wave away from the steepest configuration, the singularity $f = f^*$ moves into the complex plane, and is of order $(f-f^*)^{1/2}$ (J. Fluid Mech., vol. 59, 1973, pp. 257-262). Grant conjectured that as the highest wave is approached, other singularities must coalesce at the crest so as to cancel the square-root behaviour. Despite recent advances, the complete singularity structure of the Stokes wave is still not well understood. In this work, we develop numerical methods for constructing the Riemann surface that represents the extension of the water wave into the complex plane. We show that a countably infinite number of distinct singularities exists on other branches of the solution, and that these singularities coalesce as Stokes' highest wave is approached.

  12. Stokes' Law Revisited

    ERIC Educational Resources Information Center

    Wray, E. M.

    1977-01-01

    Discusses limitations and corrections to be made in physics experiments involving the investigations of drag and terminal velocity on spheres falling through a liquid in accordance with Stokes' law. (SL)

  13. SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    NASA Astrophysics Data System (ADS)

    Fraisse, Aurélien A.; SPIDER Collaboration

    2012-01-01

    SPIDER is a balloon-borne polarimeter designed to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the spectrum of the tensor perturbations that generate this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. The expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological B-mode signal with r=0.03. An optimized scanning strategy enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while providing access to a relatively wide range of angular scales. In the SPIDER field, the polarized emission from interstellar dust is as bright or brighter than the cosmological r=0.03 B-mode signal at all SPIDER frequencies (90, 150, and 280 GHz), a situation similar to that found in the "Southern Hole." Despite this foreground contamination, two 20-day flights of the SPIDER instrument will constrain the amplitude of the B-mode signal to r<0.03 (99% CL). In the absence of foregrounds, the same limit can be reached after one 20-day flight. The Spider collaboration gratefully acknowledges the support of NASA (APRA-NNX07AL64G), the National Science Foundation (ANT-1043515), the Gordon and Betty Moore Foundation, and the David and Lucile Packard Foundation. Support in Canada is provided by NSERC, the Canadian Space Agency, the Canada Foundation for Innovation, and CIFAR.

  14. Foreground-induced biases in CMB polarimeter self-calibration

    NASA Astrophysics Data System (ADS)

    Abitbol, Maximilian H.; Hill, James; Johnson, Bradley

    2016-06-01

    Precise polarization measurements of the cosmic microwave background (CMB) require accurate knowledge of the instrument orientation relative to the sky frame used to define the cosmological Stokes parameters. Suitable celestial calibration sources that could be used to measure the polarimeter orientation angle are limited, so current experiments commonly `self-calibrate.' The self-calibration method exploits the theoretical fact that the EB and TB cross-spectra of the CMB vanish in the standard cosmological model, so any detected EB and TB signals must be due to systematic errors. However, this assumption neglects the fact that polarized Galactic foregrounds in a given portion of the sky may have non-zero EB and TB cross-spectra. If these foreground signals remain in the observations, then they will bias the self-calibrated telescope polarization angle and produce a spurious B-mode signal. In this paper, we estimate the foreground-induced bias for various instrument configurations and then expand the self-calibration formalism to account for polarized foreground signals. Assuming the EB correlation signal for dust is in the range constrained by angular power spectrum measurements from Planck at 353 GHz (scaled down to 150 GHz), then the bias is negligible for high angular resolution experiments, which have access to CMB-dominated high 'ell' modes with which to self-calibrate. Low-resolution experiments observing particularly dusty sky patches can have a bias as large as 0.5°. A miscalibration of this magnitude generates a spurious BB signal corresponding to a tensor-to-scalar ratio of approximately r ~ 2 × 10-3, within the targeted range of planned experiments.

  15. Preliminary status of POLICAN: A near-infrared imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.

    2015-10-01

    POLICAN is a near-infrared (J, H, K) imaging polarimeter developed for the Cananea near infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. The camera has a 1024 x 1024 HgCdTe detector (HAWAII array) with a plate scale of 0.32 arcsec/pixel providing a field of view of 5.5 x 5.5 arcmin. POLICAN is mounted externally to CANICA for narrow-field (f/12) linear polarimetric observations. It consists of a rotating super achromatic (1-2.7μm) half waveplate and a fixed wire-grid polarizer as the analyzer. The light is modulated by setting the half waveplate at different angles (0°, 22.5°, 45°, 67.5°) and linear combinations of the Stokes parameters (I, Q and U) are obtained. Image reduction and removal of instrumental polarization consist of dark noise subtraction, polarimetric flat fielding and background sky subtraction. Polarimetric calibration is performed by observing polarization standards available in the literature. The astrometry correction is performed by matching common stars with the Two Micron All Sky Survey. POLICAN's bright and limiting magnitudes are approximately 6th and 16th magnitude, which correspond to saturation and photon noise, respectively. POLICAN currently achieves a polarimetric accuracy about 3.0% and polarization angle uncertainties within 3°. Preliminary observations of star forming regions are being carried out in order to study their magnetic field properties.

  16. Foreground-induced biases in CMB polarimeter self-calibration

    NASA Astrophysics Data System (ADS)

    Abitbol, Maximilian H.; Hill, J. Colin; Johnson, Bradley R.

    2016-04-01

    Precise polarization measurements of the cosmic microwave background (CMB) require accurate knowledge of the instrument orientation relative to the sky frame used to define the cosmological Stokes parameters. Suitable celestial calibration sources that could be used to measure the polarimeter orientation angle are limited, so current experiments commonly `self-calibrate.' The self-calibration method exploits the theoretical fact that the EB and TB cross-spectra of the CMB vanish in the standard cosmological model, so any detected EB and TB signals must be due to systematic errors. However, this assumption neglects the fact that polarized Galactic foregrounds in a given portion of the sky may have non-zero EB and TB cross-spectra. If these foreground signals remain in the observations, then they will bias the self-calibrated telescope polarization angle and produce a spurious B-mode signal. In this paper, we estimate the foreground-induced bias for various instrument configurations and then expand the self-calibration formalism to account for polarized foreground signals. Assuming the EB correlation signal for dust is in the range constrained by angular power spectrum measurements from Planck at 353 GHz (scaled down to 150 GHz), then the bias is negligible for high angular resolution experiments, which have access to CMB-dominated high ℓ modes with which to self-calibrate. Low-resolution experiments observing particularly dusty sky patches can have a bias as large as 0.5°. A miscalibration of this magnitude generates a spurious BB signal corresponding to a tensor-to-scalar ratio of approximately r ˜ 2 × 10-3, within the targeted range of planned experiments.

  17. Commissioning of an integral-field spectro-polarimeter for PMAS

    NASA Astrophysics Data System (ADS)

    Lemke, Ulrike; Kelz, Andreas; Bauer, Svend M.; Hahn, Thomas; Popow, Emil; Roth, Martin M.

    2008-07-01

    During 2007, a new polarimetric observing mode was added to the existing integral-field spectrograph PMAS. Initially, this instrumental upgrade is aimed to measure the linear polarization states and to determine the three Stokes parameters I, Q and U. The PMAS instrument offers an integral-field of view of up to 256 square arcseconds, while the spectrograph covers a wavelength region from 340 to 900 nm. The paper presents the opto-mechanical design of the polarimetric unit, summarizes calibration and test results and describes the first data taken during commissioning at the Calar Alto observatory. Given the range of applications and the large parameter space (two spatial coordinates, one wavelength dimension, plus polarimetric information), the realization of the PMAS 2D-Spectro-Polarimeter provides a unique capability for night-time astrophysical observations, such as the study of scattering processes or magnetic fields for a range of astronomical targets.

  18. Passive multispectral imaging polarimeter for remote atmospheric and surface studies: design based on optical coatings.

    PubMed

    Pellicori, Samuel F; Burke, Elliot

    2016-02-20

    The passive imaging polarimeter architecture is based on optical coatings and thereby avoids the complexities of current systems that use rotating polarizers, phase-modulating retarders, and birefringent elements. Coatings on stationary elements separate spectral regions and their polarized components to simultaneously produce images of the Stokes linear polarization intensities in fields of view (FOVs) ≥30°. Wavelength and FOV coverages are limited only by the telescope and relay optics employed. The images are collected in identical spectral passbands that can extend from UV to shortwave IR. An example relevant to remote sensing in the 360-900 nm range is given. An on-board calibration and stability monitor is included. PMID:26906581

  19. The Stratospheric Kinetic Inductance Polarimeter (SKIP)

    NASA Astrophysics Data System (ADS)

    Flanigan, Daniel; Ade, P.; Araujo, D.; Bradford, K. J.; Chapman, D.; Che, G.; Day, P.; Didier, J.; Doyle, S.; Eriksen, H.; Groppi, C. E.; Hillbrand, S. N.; Johnson, B.; Jones, G.; Limon, M.; Mauskopf, P.; McCarrick, H.; Miller, A. D.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, J.; Wehus, I. K.; Zmuidzinas, J.

    2014-01-01

    We discuss the Stratospheric Kinetic Inductance Polarimeter (SKIP). SKIP is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background, and Galactic dust emission by observing 1100 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKIDs), which will be maintained at 100 mK by an adiabatic demagnetization refrigerator. The polarimeter will operate in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcminute full-width half-maximum beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and is rotated on a superconducting magnetic bearing. The observation program consists of two or more five-day flights, and 150 GHz observations are planned to begin in 2017.

  20. Spectral line polarimetry with a channeled polarimeter.

    PubMed

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry. PMID:25089978

  1. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  2. Design and fabrication of the All-Reflecting H-Lyman-alpha Coronagraph/Polarimeter

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Johnson, R. B.; Fineschi, Silvano; Walker, Arthur B. C., Jr.; Baker, Phillip C.; Zukic, Muamer; Kim, Jongmin

    1993-01-01

    We have designed, analyzed, and are now fabricating an All-Reflecting H-Lyman-alpha Coronagraph/Polarimeter for solar research. This new instrument operates in a narrow bandpass centered at 215.7 A - the neutral hydrogen Ly-alpha line. It is shorter and faster than the telescope which produced solar Ly-alpha images as a part of the MSSTA payload that was launched on May 13, 1991. The Ly-alpha line is produced and linearly polarized in the solar corona by resonance scattering, and the presence of a magnetic field modifies this polarization according to the Hanle effect. The Lyman-alpha Coronagraph/Polarimeter instrument has been designed to measure coronal magnetic fields by interpreting, via the Hanle effect, the measured linear polarization of the coronal Ly-alpha line. Ultrasmooth mirrors, polarizers, and filters are being flow-polished for this instrument from CVD silicon carbide substrates. These optical components will be coated using advanced induced transmission and absorption thin film multilayer coatings to optimize the reflectivity and polarization properties at 1215.7 A. We describe some of the solar imaging results obtained with the MSSTA Lyman-alpha coronagraph. We also discuss the optical design parameters and fabrication plans for the All-Reflecting H-Lyman-alpha Coronagraph/Polarimeter.

  3. Design and Fabrication of the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Johnson, R. Barry; Fineschi, Silvano; Walker, Arthur B. C., Jr.; Baker, Phillip C.; Zukic , Muamer; Kim, Jongmin

    1993-01-01

    We have designed, analyzed, and are now fabricating an All-Reflecting H-Lyman alpha Coronagraph/Polarimeter for solar research. This new instrument operates in a narrow bandpass centered at lambda 1215.7 A-the neutral hydrogen Lyman alpha (Ly-alpha) line. It is shorter and faster than the telescope which produced solar Ly-alpha images as a part of the MSSTA payload that was launched on May 13, 1991. The Ly-alpha line is produced and linearly polarized in the solar corona by resonance scattering, and the presence of a magnetic field modifies this polarization according to the Hanle effect. The Lyman alpha Coronagraph/Polarimeter instrument has been designed to measure coronal magnetic fields by interpreting, via the Hanle effect, the measured linear polarization of the coronal Ly-alpha line. Ultrasmooth mirrors, polarizers, and filters are being flow-polished for this instrument from CVD silicon carbide substrates. These optical components will be coated using advanced induced transmission and absorption thin film multilayer coatings, to optimize the reflectivity and polarization properties at 1215.7 A. We describe some of the solar imaging results obtained with the MSSTA Lyman alpha coronagraph. We also discuss the optical design parameters and fabrication plans for the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter.

  4. Compton polarimeter as a focal plane detector for hard X-ray telescope

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.

    X-ray polarimetry is expected to provide unique opportunity to study the behavior of matter and radiation under extreme magnetic fields and extreme gravitational fields. However sensitivity of the X-ray polarimeters has always been an issue for the last three decades; there is almost no progress in this field whereas there is a significant advance in the fields of X-ray spectroscopy, imaging and timing. Recently significant improvement in the sensitivity is expected in polarimetric measurements using GEM-based photoelectron tracking polarimeters coupled to soft X-ray telescopes. However they are sensitive in the soft X-ray regime. On the other hand mostly for the X-ray sources higher degree of polarisation at hard X-rays is expected because of the dominance of nonthermal X-ray emission mechanisms over the thermal counterpart. So polarisation measurement in hard X-ray can yield significant insights into such processes. Of late with the advent of high energy focussing telescopes (e.g. Nu STAR, ASTRO-H), sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array of scintillator detectors. We have carried out detailed Geant4 simulations to estimate the modulation factor for 100% polarized beam as well as polarimetric efficiency of this configuration. Polarimetric sensitivity of the instrument critically depends on low energy threshold in central plastic scatterer. We estimated the sensitivity for a range of plastic threshold energy. We also discuss the methodology to measure the threshold energy in plastic scatterer. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics and the experimental results for threshold measurements in plastic.

  5. The scanning Compton polarimeter for the SLD experiment

    SciTech Connect

    Woods, M.; SLD Collaboration

    1996-10-01

    For the 1994/95 run of the SLD experiment at SLAC, a Compton polarimeter measured the luminosity-weighted electron beam polarization to be (77.2 {+-} 0.5)%. This excellent accuracy is achieved by measuring the rate asymmetry of Compton-scattered electrons near the kinematic endpoint. The polarimeter takes data continuously while the electron and positron beams are in collision and achieves a statistical precision of better than 1% in a three minute run. To calibrate the polarimeter and demonstrate its accuracy, many scans are frequently done. These include scans of the laser polarization, the detector position with respect to the kinematic edge, and the laser power.

  6. Calibration of the Liverpool Telescope RINGO3 polarimeter

    NASA Astrophysics Data System (ADS)

    Słowikowska, Aga; Krzeszowski, Krzysztof; Żejmo, Michał; Reig, Pablo; Steele, Iain

    2016-05-01

    We present an analysis of polarimetric observations of standard stars performed over the period of more than 3 yr with the RINGO3 polarimeter mounted on the Liverpool Telescope. The main objective was to determine the instrumental polarization of the RINGO3 polarimeter in three spectral energy ranges: blue (350-640 nm), green (650-760 nm) and red (770-1000 nm). The observations were conducted between 2012 and 2016. The total time span of 1126 d was split into five epochs due to the hardware changes to the observing system. Our results should be applied to calibrate all polarimetric observations performed with the RINGO3 polarimeter.

  7. Cotton-Mouton polarimeter with HCN laser on CHS

    SciTech Connect

    Akiyama, T.; Kawahata, K.; Ito, Y.; Okajima, S.; Nakayama, K.; Okamura, S.; Matsuoka, K.; Isobe, M.; Nishimura, S.; Suzuki, C.; Yoshimura, Y.; Nagaoka, K.; Takahashi, C.

    2006-10-15

    Polarimeters based on the Cotton-Mouton effect hold promise for electron density measurements. We have designed and installed a Cotton-Mouton polarimeter on the Compact Helical System. The Cotton-Mouton effect is measured as the phase difference between probe and reference beams. In this system, an interferometric measurement can be performed simultaneously with the same probe chord. The light source is a HCN laser (wavelength of 337 {mu}m). Digital complex demodulation is adopted for small phase analysis. The line averaged density evaluated from the polarimeter along a plasma center chord is almost consistent with that from the interferometer.

  8. POL-2: The SCUBA-2 Polarimeter

    NASA Astrophysics Data System (ADS)

    Bastien, P.; Bissonnette, E.; Simon, A.; Coudé, S.; Ade, P.; Savini, G.; Pisano, G.; Leclerc, M.; Bernier, S.; Landry, J.; Houde, M.; Hezareh, T.; Naylor, D. A.; Gom, B. G.; Jenness, T.; Berry, D. S.; Johnstone, D.; Matthews, B. C.

    2011-11-01

    The SCUBA-2 polarimeter is expected to be the most sensitive instrument for the detection of polarized radiation in the submillimeter regime. This will be possible by taking advantage of the extra sensitivity, imaging speed and improved image fidelity of the new SCUBA-2 camera which is being commissioned now for use on the James-Clerk-Maxwell Telescope (JCMT). POL-2 construction is now complete and the instrument has been delivered and installed on the telescope. A general update of the instrument and its capabilities are presented. Its optical and mechanical characteristics are summarized and the expected performance is compared to previous polarimetry experiments on the JCMT. Rapid modulation to eliminate atmospheric effects is being implemented.

  9. A Pair Polarimeter for High Energy Photons

    NASA Astrophysics Data System (ADS)

    Tedeschi, David; Wojtsekhowski, B.; Abbott, D.; Vlahovic, B.; Hotta, T.; Kohri, H.; Matsumura, T.; Mibe, T.; Nakano, T.; Yurita, T.; Zegers, R.; Khandaker, M.; Feldman, G.; O'Rielly, G. V.; Wood, M.; Asai, G.; Rudge, A.; Weilhammer, P.

    2001-10-01

    The physics program at the Thomas Jefferson National Accelerator Facility includes fundamental experiments with polarized photon beams in the GeV energy range. To measure the degree of photon polarization, a photon polarimeter based on the detection of e^+e^- pairs has been developed for use in Hall B and was recently tested at the LEPS facility at SPring-8 in Japan. The use of silicon micro-strip detectors allows for the first time the measurement of the angle correlation in electron-positron pair production by high energy photons incident on an amorphous converter. Theoretical calculations of the pair production process show an asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of photon energies. Experimental results from the measurement of the pair asymmetry using 2 GeV photons from the SPring-8 facility will be presented.

  10. Soft x-ray polarimeter laboratory tests

    NASA Astrophysics Data System (ADS)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  11. Gamma-Ray Burst Polarimeter aboard IKAROS

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Yonetoku, D.; Sakashita, T.; Morihara, Y.; Kikuchi, Y.; Gunji, S.; Tokairin, N.; Mihara, T.

    2010-10-01

    A GRB polarimeter was launched by H-IIA on 21 May in 2010 at JAXA Tanegashima Space Center. A GRB polarization is the best key to understand mechanism of GRB prompt emissions and also to understand the geometry of magnetic fields. The standard GRB fireball models predict the synchrotron radiation of them, thus a high degree of polarization is expected, if the magnetic field-lines are coaligned. Previously, a few of the GRB polarization detections were reported. Although they used the Compton scattering method, but their measurements were non-coincidence mode. This made their reports were somewhat unclear. This time, our detector works fully in the coincidence mode to avoid the confusion. On 21 June, GAP is switched on and the first GRB was detected on 7 July but not yet well calibrated.

  12. Gamma-Ray Burst Polarimeter aboard IKAROS

    SciTech Connect

    Murakami, T.; Yonetoku, D.; Sakashita, T.; Morihara, Y.; Kikuchi, Y.; Gunji, S.; Tokairin, N.; Mihara, T.

    2010-10-15

    A GRB polarimeter was launched by H-IIA on 21 May in 2010 at JAXA Tanegashima Space Center. A GRB polarization is the best key to understand mechanism of GRB prompt emissions and also to understand the geometry of magnetic fields. The standard GRB fireball models predict the synchrotron radiation of them, thus a high degree of polarization is expected, if the magnetic field-lines are coaligned. Previously, a few of the GRB polarization detections were reported. Although they used the Compton scattering method, but their measurements were non-coincidence mode. This made their reports were somewhat unclear. This time, our detector works fully in the coincidence mode to avoid the confusion. On 21 June, GAP is switched on and the first GRB was detected on 7 July but not yet well calibrated.

  13. Parallel detecting, spectroscopic ellipsometers/polarimeters

    DOEpatents

    Furtak, Thomas E.

    2002-01-01

    The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.

  14. Drift parameters optimization of a TPC polarimeter: a simulation study

    NASA Astrophysics Data System (ADS)

    Rakhee, K.; Radhakrishna, V.; Koushal, V.; Baishali, G.; Vinodkumar, A. M.

    2015-06-01

    Time Projection Chamber (TPC) based X-ray polarimeters using Gas Electron Multiplier (GEM) are currently being developed to make sensitive measurement of polarization in 2-10 keV energy range. The emission direction of the photoelectron ejected via photoelectric effect carries the information of the polarization of the incident X-ray photon. Performance of a gas based polarimeter is affected by the operating drift parameters such as gas pressure, drift field and drift-gap. We present simulation studies carried out in order to understand the effect of these operating parameters on the modulation factor of a TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards GEM. Our study is aimed at achieving higher modulation factors by optimizing drift parameters. Study has shown that Ne/DME (50/50) at lower pressure and drift field can lead to desired performance of a TPC polarimeter.

  15. A LIDAR POLARIMETER TECHNIQUE FOR MEASURING SUSPENDED SOLIDS IN WATER

    EPA Science Inventory

    This study investigates the capability of the lidar polarimeter to measure the concentration of suspended solids in water for a variety of measurement conditions. Previous laboratory and field measurements have demonstrated the potential of the system to measure turbidity, transm...

  16. Variable waveplate-based polarimeter for polarimetric metrology

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Lizana, Angel; Vidal, Josep; Iemmi, Claudio; Márquez, Andrés; Moreno, Ignacio; Campos, Juan

    2009-06-01

    Polarimetry is an optical technique currently used in many research fields as biomedicine, polarimetric metrology or material characterization, where the knowledge of the state of polarization of light beams and the polarizing properties of polarizing samples is required. As a consequence, in such as applications it is necessary to use polarimeters which by means of radiomentric measurements, lead to the obtaining of some important polarimetric information. As is known, polarimeters include a state of polarization detector (PSD), which is typically formed by combinations of waveplates and polarizers. Then, intensity measurements corresponding to the projection of the analyzed state of polarization upon different configurations of the PSD used, leads to the determination of the polarimetric properties of light beams. Here, we have studied and optimized a polarimeter based on PSD system containing two electronically variable retardance waveplates. The variable waveplates are based on the Liquid Crystal Display technology, allowing the implementation of a complete polarimeter without mechanical movements.

  17. 5 MeV Mott Polarimeter Development at Jefferson Lab

    SciTech Connect

    Price, J. S.; Sinclair, C. K.; Cardman, L. S.; Haanskneccht, J.; Mack, D. J.; Piot, P.; Assamagan, K. A.; Grames, J.

    1997-01-01

    Low energy (E{sub k}=100 keV) Mott scattering polarimeters are ill- suited to support operations foreseen for the polarized electron injector at Jefferson Lab. One solution is to measure the polarization at 5 MeV where multiple and plural scattering are unimportant and precision beam monitoring is straightforward. The higher injector beam current offsets the lower cross-sections. Recent improvements in the CEBAF injector polarimeter scattering chamber have improved signal to noise.

  18. Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma

    SciTech Connect

    Zhang, J.; Peebles, W. A.; Crocker, N. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Zeng, L.; Hyatt, A. W.

    2013-10-15

    Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays a significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough B{sub T} (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret

  19. Spin Light Polarimeter at 12 GeV

    NASA Astrophysics Data System (ADS)

    Mohanmurthy, Prajwal; Dutta, Dipangkar

    2012-03-01

    We plan to develop a realistic design for a novel polarimeter which will go a long way in satisfying the requirements of the precision experiments planned for the 12GeV era at Jefferson National Accelerator Facility (JLAB). A polarimeter based on the asymmetry in the spacial distribution of the spin light component of synchrotron radiation will make for a fine addition to the existing Möller and Compton polarimeters. The spin light polarimeter consists of a set of wriggler magnet along the beam that generate synchrotron radiation. The spacial distribution of synchrotron radiation will be measured by an ionization chamber after being collimated. As a part of the design process, simulation of the effects of fringe field of the 3-pole wriggler magnet that forms the primary component of the polarimeter is underway. The fringe field was simulated using LANL Poisson Superfish mesh EM solver. The results from the simulation, the preliminary design parameters of the polarimeter and its impact will be discussed.

  20. A Disconnect between Staff and Student Perceptions of Learning: An ACELL Educational Analysis of the First Year Undergraduate Chemistry Experiment "Investigating Sugar Using a Home Made Polarimeter"

    ERIC Educational Resources Information Center

    Crisp, Michael G.; Kable, Scott H.; Read, Justin R.; Buntine, Mark A.

    2011-01-01

    This paper describes an educational analysis of a first year university chemistry practical called "Investigating sugar using a home made polarimeter". The analysis follows the formalism of the Advancing Chemistry by Enhancing Learning in the Laboratory (ACELL) project, which includes a statement of education objectives, and an analysis of the…

  1. Next Generation X-ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical

  2. Optimization of the GRAPE Polarimeter Design

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    The Gamma Ray Polarimeter Experiment (GRAPE) is designed to investigate one of the most exotic phenomena in the universe - gamma-ray bursts (GRB). There has been intense observational and theoretical research in recent years, but research in this area has been largely focused on studies of time histories, spectra, and spatial distributions. Theoretical models show that a more complete understanding of the inner structure of GRBs, including the geometry and physical processes close to the central engine, requires the exploitation of gamma-ray polarimetry. Over the past several years, we have developed the GRAPE instrument to measure the polarization of gamma-rays from GRBs over the energy range of 50 to 500 keV. The GRAPE design is a modular one in which several independent modules are required to achieve sufficient sensitivity. A single module fits on the front end of a 2-inch square flat-panel multi-anode photomultiplier tube (MAPMT). The first operational balloon flight took in place in September of 2011 from Ft. Sumner, NM. The purpose of the 2011 flight was to validate the science capability of GRAPE by measuring the Crab polarization with a collimated array of 16 modules. The limited success of that flight led to a second validation flight (also from Ft. Sumner) in the fall of 2014, with significantly improved shielding and a larger array of modules. That flight proved too short to make a full observation of the Crab. Although we did not succeed in measuring the polarization of the Crab with a high degree of confidence, we feel that we are nonetheless prepared to move forward with our program. Our next goal is to fly GRAPE on a long duration balloon (LDB) platform to collect data on a significant sample of GRBs. Our experience with the first two balloon flights, coupled with further design efforts focused on orbital payloads, has led to an improved polarimeter concept that represents a natural evolution of the current design. It is this new concept that we are

  3. Recent trial results of an LWIR polarimeter

    NASA Astrophysics Data System (ADS)

    Connor, Barry; Carrie, Iain

    2009-05-01

    The aim of this paper is to describe the results of various trials involving a high-resolution thermal imager that has been designed to be sensitive to polarised radiation. Polarisation has the potential to discriminate man-made objects and disturbed earth from background clutter. Polarisation combined with conventional thermal imaging within the one camera offers the potential to significantly reduce false alarms in surveillance and detection applications. The camera used during the trials is a technology demonstrator developed by Thales Optronics, UK. The camera operates in the longwave infra red and has a QWIP polarisation-sensitive detector. The results presented in this paper include recent trials in the UK and USA. The aim of the trials was to assess the utility in using a LWIR polarimeter for detection of difficult objects from background clutter. Thermal and polarised images were captured and processed in order to detect anomalies. Several polarisation-based discriminative imaging techniques are applied to trials imagery. The effect of the diurnal cycle on the effectiveness of polarisation for object discrimination will be assessed.

  4. Stokes vector based polarization resolved second harmonic microscopy of starch granules.

    PubMed

    Mazumder, Nirmal; Qiu, Jianjun; Foreman, Matthew R; Romero, Carlos Macías; Török, Peter; Kao, Fu-Jen

    2013-04-01

    We report on the measurement and analysis of the polarization state of second harmonic signals generated by starch granules, using a four-channel photon counting based Stokes-polarimeter. Various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), the degree of circular polarization (DOCP), and anisotropy are extracted from the 2D second harmonic Stokes images of starch granules. The concentric shell structure of a starch granule forms a natural photonic crystal structure. By integration over all the solid angle, it will allow very similar SHG quantum efficiency regardless of the angle or the states of incident polarization. Given type I phase matching and the concentric shell structure of a starch granule, one can easily infer the polarization states of the input beam from the resulting SH micrograph. PMID:23577289

  5. Stokes vector based polarization resolved second harmonic microscopy of starch granules

    PubMed Central

    Mazumder, Nirmal; Qiu, Jianjun; Foreman, Matthew R.; Romero, Carlos Macías; Török, Peter; Kao, Fu-Jen

    2013-01-01

    We report on the measurement and analysis of the polarization state of second harmonic signals generated by starch granules, using a four-channel photon counting based Stokes-polarimeter. Various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), the degree of circular polarization (DOCP), and anisotropy are extracted from the 2D second harmonic Stokes images of starch granules. The concentric shell structure of a starch granule forms a natural photonic crystal structure. By integration over all the solid angle, it will allow very similar SHG quantum efficiency regardless of the angle or the states of incident polarization. Given type I phase matching and the concentric shell structure of a starch granule, one can easily infer the polarization states of the input beam from the resulting SH micrograph. PMID:23577289

  6. Proton Polarimeter Calibration between 82 and 217 MeV

    SciTech Connect

    Glister, J; Lee, B; Beck, A; Brash, E; Camsonne, A; Choi, S; Dumas, J; Feuerbach, R; Gilman, R; Higinbotham, D W; Jiang, X; Jones, M K; May-Tal Beck, S; McCullough, E; Paolone, M; Piasetzky, E; Roche, J; Rousseau, Y; Sarty, A J; Sawatzky, B; Strauch, S

    2009-07-01

    The proton analyzing power in carbon has been measured for energies of 82 to 217 MeV and proton scattering angles of 5 to 41 degrees. The measurements were carried out using polarized protons from the elastic scattering H(pol. e, pol. p) reaction and the Focal Plane Polarimeter (FPP) in Hall A of Jefferson Lab. A new parameterization of the FPP p-C analyzing power was fit to the data, which is in good agreement with previous parameterizations and provides an extension to lower energies and larger angles. The main conclusions are that all polarimeters to date give consistent measurements of the carbon analyzing power, independently of the details of their construction and that measuring on a larger angular range significantly improves the polarimeter figure of merit at low energies.

  7. Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter

    NASA Astrophysics Data System (ADS)

    Beck, C.; Bellot Rubio, L. R.; Kentischer, T. J.; Tritschler, A.; Del Toro Iniesta, J. C.

    2010-09-01

    Context. Spectropolarimetry at high spatial and spectral resolution is a basic tool to characterize the magnetic properties of the solar atmosphere. Aims: We introduce the KIS/IAA Visible Imaging Polarimeter (VIP), a new post-focus instrument that upgrades the TESOS spectrometer at the German Vacuum Tower Telescope (VTT) into a full vector polarimeter. VIP is a collaboration between the Kiepenheuer Institut für Sonnenphysik (KIS) and the Instituto de Astrofísica de Andalucía (IAA-CSIC). Methods: We describe the optical setup of VIP, the data acquisition procedure, and the calibration of the spectropolarimetric measurements. We show examples of data taken between 2005 and 2008 to illustrate the potential of the instrument. Results: VIP is capable of measuring the four Stokes profiles of spectral lines in the range from 420 to 700 nm with a spatial resolution better than 0farcs5. Lines can be sampled at 40 wavelength positions in 60 s, achieving a noise level of about 2 × 10-3 with exposure times of 300 ms and pixel sizes of 0farcs17 × 0farcs17 (2 × 2 binning). The polarization modulation is stable over periods of a few days, ensuring high polarimetric accuracy. The excellent spectral resolution of TESOS allows the use of sophisticated data analysis techniques such as Stokes inversions. One of the first scientific results of VIP presented here is that the ribbon-like magnetic structures of the network are associated with a distinct pattern of net circular polarization away from disk center. Conclusions: VIP performs spectropolarimetric measurements of solar magnetic fields at a spatial resolution that is only slightly worse than that of the Hinode spectropolarimeter, while providing a 2D field field of view and the possibility to observe up to four spectral regions sequentially with high cadence. VIP can be used as a stand-alone instrument or in combination with other spectropolarimeters and imaging systems of the VTT for extended wavelength coverage.

  8. Run-09 pC polarimeter analysis

    SciTech Connect

    Alekseev, I.; Aschenauer, E.; Atoyan, G.; Bazilevsky, A.; Gill, R.; Huang, H.; Lee, S.; Li, X.; Makdisi, Y.; Morozov, B.; Nakagawa, I.; Svirida, D.; Zelenski, A.

    2010-08-01

    Analysis of PC polarimeter data at {radical}s = 200 and 500 GeV from Run9 is presented. Final polarization results, fill-by-fill, for blue and yellow beams, as to be used by RHIC experiments (in collisions) are released and collected in http://www4.rcf.bnl.gov/cnipol/pubdocs/Run09Offline/. Global relative systematic uncertainties {delta}P/P (to be considered as correlated from fill to fill) are 4.7% for 100 GeV beams, and 8.3% (12.1%) for blue (yellow) 250 GeV beams. For a product of two beam polarizations P{sub B} {center_dot} P{sub Y} (used in double spin asymmetry measurements) the relative uncertainty {delta}(P{sub B} {center_dot} P{sub Y})/(P{sub B} {center_dot} P{sub Y}) 8.8% for 100 GeV beams and 18.5% for 250 GeV beams. For the average between two beam polarization (P{sub B} + P{sub Y})/2 (used in single spin asymmetry measurements, when data from two polarized beams are combined) the relative uncertainty is 4.4% for 100 GeV beams and 9.2% for 250 GeV beams. Larger uncertainties for 250 GeV beams relate to significant rate related systematic effects experienced in the first part of Run9 (due to thicker targets used and smaller trans. beam size at higher beam energy).

  9. Quick, cheap, and beautiful x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Weisskopf, Martin C.; Elsner, Ronald F.; Joy, Marshall K.; O'dell, Stephen L.; Ramsey, Brian D.; Garmire, Gordon P.; Meszaros, Peter; Sunyaev, Rashid

    1994-11-01

    The use of x-ray polarimeters for the study of cosmic sources has been severely limited by the lack of launch opportunities. Thus far, the most significant x-ray-polarimetry experiment was performed by a device aboard the Orbiting Solar Observatory (OSO)-8 satellite in the 1970s. The next polarimetry experiment will be the Stellar X-Ray Polarimeter (SXRP), to be flown on the Russian Spectrum-X satellite in the next few years. Here we describe a simple experiment designed as a dedicated x-ray-polarimetry mission to operate in the 10 - 20 keV band and to complement scientifically the SXRP.

  10. A star-and-sky chopping polarimeter - Design and performance

    NASA Astrophysics Data System (ADS)

    Jain, S. K.; Srinivasulu, G.

    1991-09-01

    A star-and-sky chopping polarimeter is developed for accurate measurements of linear polarization of starlight in the standard astronomical photometric U, B, V, R, and I bands. The instrumental polarization, as determined by observing the standard unpolarized stars, is 0.04 percent. It is possible to use the instrument for the measurements of circular polarization as well. A Unicorn microcomputer controls the various operations of the instrument, acquires the data, and does the on-line data reduction. This paper describes the design and performance of the polarimeter.

  11. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    SciTech Connect

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  12. Stokes-polarimetry imaging of tissue

    NASA Astrophysics Data System (ADS)

    Wu, Paul J.

    A novel Stokes-polarimetry imaging system and technique was developed to quantify fully the polarization properties of light remitted from tissue. The uniqueness of the system and technique is established in the incident polarization. Here, the diffuse illumination is varied and controlled with the intention to improve the visibility of tissue structures. Since light retains some polarization even after multiple-scattering events, the polarization of remitted light depends upon the interactions within the material. Differentiation between tissue structures is accomplished by two-dimensional mapping of the imaged area using metrics such as the degree of linear polarization, degree of circular polarization, ellipticity, and Stokes parameters. While Stokes-polarimetry imaging can be applied to a variety of tissues and conditions, this thesis focuses on tissue types associated with the disease endometriosis. The current standard in diagnosing endometriosis is visual laparoscopy with tissue biopsy. The documented correlation between laparoscopy inspection and histological confirmation of suspected lesions was at best 67%. Endometrial lesions vary greatly in their appearance and depth of infiltration. Although laparoscopy permits tissue to be assessed by color and texture, to advance beyond the state-of-the-art, a new imaging modality involving polarized light was investigated; in particular, Stokes-polarimetry imaging was used to determine the polarization signature of light that interacted with tissue. Basic science studies were conducted on rat tails embedded within turbid gelatin. The purpose of these experiments was to determine how identification of sub-surface structures could be improved. Experimental results indicate image contrast among various structures such as tendon, soft tissue and intervertebral discs. Stokes-polarimetry imaging experiments were performed on various tissues associated with endometriosis to obtain a baseline characterization for each

  13. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed

    2014-07-01

    Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  14. Calibration method for division of focal plane polarimeters in the optical and near-infrared regime

    NASA Astrophysics Data System (ADS)

    York, Timothy; Gruev, Viktor

    2011-06-01

    Advances in nanofabrication allow for the creation of metallic nanowires acting as linear polarizers in the visible and near infrared regime. The monolithic integration of silicon detectors and pixelated nanowire metallic polarization filters allows for an efficient realization of high resolution polarization imaging sensors. These silicon sensors, known as division of focal plane polarimeters, capture polarization information of the imaged environment from ~400nm to 1050nm wavelength. The performance of the polarization sensor can be degraded by both irregularities in the fabrication of the nanowires and possible misalignment errors during the final deposition of the optical nanowire filters on the surface of the imaging sensor. In addition, electronic offsets due to the readout circuitry, electronic crosstalk, and optical crosstalk will also negatively affect the quality of the polarization information. Partial compensation for many of these post-fabrication errors can be accomplished through the use of a camera calibration routine. This paper will describe one such routine, and show how its application can increase the quality of measurements in both the degree of linear polarization and angle of polarization in the visible spectrum. The imaging array of the division of focal plane polarimeter is segmented into two by two blocks of superpixels. The calibration method chooses one of the four pixels as a reference, and then a gain and offset for each of the remaining three is computed based on this reference. The output is a calibration matrix for each pixel in the image array.

  15. Performance Verification of the Gravity and Extreme Magnetism Small Explorer GEMS X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Kenward, David

    2014-01-01

    olarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor greater than or equal to 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, approximately 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  16. Stokes polarimetry using analysis of the nonlinear voltage-retardance relationship for liquid-crystal variable retarders

    SciTech Connect

    López-Téllez, J. M. Bruce, N. C.

    2014-03-15

    We present a method for using liquid-crystal variable retarders (LCVR’s) with continually varying voltage to measure the Stokes vector of a light beam. The LCVR's are usually employed with fixed retardance values due to the nonlinear voltage-retardance behavior that they show. The nonlinear voltage-retardance relationship is first measured and then a linear fit of the known retardance terms to the detected signal is performed. We use known waveplates (half-wave and quarter-wave) as devices to provide controlled polarization states to the Stokes polarimeter and we use the measured Stokes parameters as functions of the orientation of the axes of the waveplates as an indication of the quality of the polarimeter. Results are compared to a Fourier analysis method that does not take into account the nonlinear voltage-retardance relationship and also to a Fourier analysis method that uses experimental voltage values to give a linear retardance function with time. Also, we present results of simulations for comparison.

  17. Submillimeter laser interferometer-polarimeter for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu. E.; Kiselyev, Vladimir K.; Kuleshov, E. M.; Knyaz'kov, B. N.; Kononenko, V. K.; Nesterov, P. K.; Yanovsky, M. S.

    1994-08-01

    There are presented the results of investigation of the homodyne laser interferometer-polarimeter (lambda) equals 195 micrometers made on the quasioptical element basis and designed for the synchronous determination of the plasma electron density ne and the poloidal magnetic field Bp in 'TOKAMAK' mountings of the thermonuclear fusion.

  18. The Skylab ten color photoelectric polarimeter. [sky brightness

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.; Hahn, R. C.; Sparrow, J. G.

    1975-01-01

    A 10-color photoelectric polarimeter was used during Skylab missions SL-2 and SL-3 to measure sky brightness and polarization associated with zodiacal light, background starlight, and the spacecraft corona. A description is given of the instrument and observing routines together with initial results on the spacecraft corona and polarization of the zodiacal light.

  19. The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.; Spergel, D. N.; Wollack, E. J.

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.

  20. Underwater partial polarization signatures from the shallow water real-time imaging polarimeter (SHRIMP)

    NASA Astrophysics Data System (ADS)

    Taylor, James S., Jr.; Davis, P. S.; Wolff, Lawrence B.

    2003-09-01

    Research has shown that naturally occurring light outdoors and underwater is partially linearly polarized. The polarized components can be combined to form an image that describes the polarization of the light in the scene. This image is known as the degree of linear polarization (DOLP) image or partial polarization image. These naturally occurring polarization signatures can provide a diver or an unmanned underwater vehicle (UUV) with more information to detect, classify, and identify threats such as obstacles and/or mines in the shallow water environment. The SHallow water Real-time IMaging Polarimeter (SHRIMP), recently developed under sponsorship of Dr. Tom Swean at the Office of Naval Research (Code 321OE), can measure underwater partial polarization imagery. This sensor is a passive, three-channel device that simultaneously measures the three components of the Stokes vector needed to determine the partial linear polarization of the scene. The testing of this sensor has been completed and the data has been analyzed. This paper presents performance results from the field-testing and quantifies the gain provided by the partial polarization signature of targets in the Very Shallow Water (VSW) and Surf Zone (SZ) regions.

  1. Airborne multiangle spectropolarimetric imager (AirMSPI) observations over California during NASA's polarimeter definition experiment (PODEX)

    NASA Astrophysics Data System (ADS)

    Diner, David J.; Garay, Michael J.; Kalashnikova, Olga V.; Rheingans, Brian E.; Geier, Sven; Bull, Michael A.; Jovanovic, Veljko M.; Xu, Feng; Bruegge, Carol J.; Davis, Ab; Crabtree, Karlton; Chipman, Russell A.

    2013-09-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an ultraviolet/visible/near-infrared pushbroom camera mounted on a single-axis gimbal to acquire multiangle imagery over a +/-67° along-track range. The instrument flies aboard NASA's high-altitude ER-2 aircraft, and acquires Earth imagery with ~10 m spatial resolution across an 11- km wide swath. Radiance data are obtained in eight spectral bands (355, 380, 445, 470, 555, 660, 865, 935 nm). Dual photoelastic modulators (PEMs), achromatic quarter-wave plates, and wire-grid polarizers also enable imagery of the linear polarization Stokes components Q and U at 470, 660, and 865 nm. During January-February 2013, AirMSPI data were acquired over California as part of NASA's Polarimeter Definition Experiment (PODEX), a field campaign designed to refine requirements for the future Aerosol-Cloud-Ecosystem (ACE) satellite mission. Observations of aerosols, low- and mid-level cloud fields, cirrus, aircraft contrails, and clear skies were obtained over the San Joaquin Valley and the Pacific Ocean during PODEX. Example radiance and polarization images are presented to illustrate some of the instrument's capabilities.

  2. Canadian Led X-ray Polarimeter Mission CXP

    NASA Technical Reports Server (NTRS)

    Kaspi, V.; Hanna, D.; Weisskopf, M.; Ramsey, B.; Ragan, K.; Vachon, B.; Elsner, R.; Heyl, J.; Pavlov, G.; Cumming, A.; Sutton, M.; Rowlands, N.

    2006-01-01

    We propose a Canadian-led X-ray Polarimetry Mission (CXP), to include a scattering X-ray Polarimeter and sensitive All-Sky X-ray Monitor (ASXM). Polarimetry would provide a new observational window on black holes, neutron stars, accretion disks and jets, and the ASXM would offer sensitive monitoring of the volatile X-ray sky. The envisioned polarimeter consists of a hollow scattering beryllium cone surrounded by an annular proportional counter, in a simple and elegant design that is reliable and low-risk. It would be sensitive in the 6-30 keV band to approx. 3% polarization in approx. 30 Galactic sources and 2 AGN in a baseline 1-yr mission, and have sensitivity greater than 10 times that of the previous X-ray polarimeter flown (NASA's OSO-8, 1975-78) for most sources. This X-ray polarimeter would tackle questions like, Do black holes spin?, How do pulsars pulse?, What is the geometry of the magnetic field in accreting neutron stars? Where and how are jets produced in microquasars and AGN?, What are the geometries of many of the most famous accretion-disk systems in the sky? This will be done using a novel and until-now unexploited technique that will greatly broaden the available observational phase space of compact objects by adding to timing and spectroscopy observations of polarization fraction and position angle as a function of energy. The All-Sky X-ray Monitor would scan for transients, both as potential targets for the polarimeter but also as a service to the worldwide astronomical community. The entire CXP mission could be flown for $40- 60M CDN, according to estimates by ComDev International, and could be built entirely in Canada. It would fall well within the CSA's SmallSat envelope and would empower the growing and dynamic Canadian High-Energy Astrophysics community with world leadership in a potentially high impact niche area.

  3. Nonlinear Stokes-Mueller polarimetry

    NASA Astrophysics Data System (ADS)

    Samim, Masood; Krouglov, Serguei; Barzda, Virginijus

    2016-01-01

    The Stokes-Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations with Kleinman symmetry. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional 4 ×1 Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, the relations between components of nonlinear susceptibility tensor and Mueller matrix are explicitly provided. The approach of combining linear and nonlinear optical elements is discussed within the context of polarimetry.

  4. Description and operation of CHISQMO, INVRTS, VOIGEN, VOIGTV, SMEAR, RUFF, AND POSCAR in the Stokes Analysis Program

    NASA Astrophysics Data System (ADS)

    Lites, B. W.; Skumanich, A.

    1985-03-01

    Some details of the computer program used to carry out the least-squares inversion of polarization profiles obtained with the HAO (High Altitude Observatory) Stokes Polarimeters I and II are documented. Improvements to the computer code originated by Auer, Heasley, and House (1977) include: magneto-optical effects, line damping, scattered light correction, instrumental broadening, and allowing the line center position to be a free parameter. The entire program has not been documented here, since various aspects of the program are still being revised and improved.

  5. Snapshot full-Stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy

    NASA Astrophysics Data System (ADS)

    Mu, Tingkui; Zhang, Chunmin; Li, Qiwei; Wei, Yutong; Chen, Qingying; Jia, Chenling

    2014-11-01

    Snapshot imaging spectropolarimetry is emerging as a powerful tool for mapping the spectral dependent state of polarization across most of scenarios (stable and variable), owing to its capability of real-time parallel acquisition. In this paper, two schema of snapshot full-Stokes imaging polarimeters (SFSIP) based on division-of-aperture polarimetry are presented firstly. In compliance with the definition of Stokes parameters, the first SFSIP consists of three Wollaston prisms with superior extinction ratio and simultaneously measures six polarimetric intensities (I0, I90, I45, I135, IL and IR) of scene. However, the spatial resolution of each polarimetric image only occupy one-six of detector. To increase the spatial resolution, the second SFSIP comprises a optimal four-quadrant polarization array and a pyramid prism is used to simultaneously acquire four polarimetric intensities. Since the optimal four-quadrant polarization array consists of a uniform linear polarizer and four 132º retarders with different azimuth of fast axis, the signal-to-noise ratio for each of the recovered Stokes parameters will be balanced and enhanced. Finally, the four-quadrant polarization array and pyramid prism are integrated into a integral field spectroscopy to construct a snapshot full-Stokes imaging spectropolarimetry (SFSISP). It is used to map the spectral dependent full Stokes parameters across a scene in real time.

  6. Analysis of AGS E880 polarimeter data at Gy = 12.5.

    SciTech Connect

    Cadman, R.; Huang, H.; Krueger, K.; Spinka, H.; Underwood, D.

    2012-02-23

    Data were collected with the AGS internal (E880) polarimeter at G{gamma} = 12.5 during the FY04 polarized proton run. Measurements were made with forward scintillation counters in coincidence with recoil counter telescopes, permitting an absolute calibration of the polarimeter for both nylon and carbon targets. The results are summarized and they will also be useful for an absolute calibration of the AGS CNI polarimeter at G{gamma} = 12.5.

  7. Analysis of AGS E880 polarimeter data at Ggamma = 12.5

    SciTech Connect

    Cadman, R. V.; Huang, H.; Krueger, K.; Spinka, H.; Underwood, D.

    2012-01-27

    Data were collected with the AGS internal (E880) polarimeter at G{gamma} = 12.5 during the FY04 polarized proton run. Measurements were made with forward scintillation counters in coincidence with recoil counter telescopes, permitting an absolute calibration of the polarimeter for both nylon and carbon targets. The results are summarized and they will also be useful for an absolute calibration of the AGS CNI polarimeter at G{gamma} = 12.5.

  8. A New Polarimeter at the Universite de Montreal

    NASA Astrophysics Data System (ADS)

    Manset, Nadine; Bastien, Pierre

    1995-05-01

    We present Beauty and The Beast, a new polarimeter of the Universite de Montreal, formerly built for the Canada-France-Hawaii telescope (CFHT) but never commissioned there. This computer-controlled Pockels cell polarimeter has been restored to working order and offers a wide range of possibilities: almost all functions are under remote control, linear or circular polarization observations are both possible, a filter slide provides easy access to up to six different bandpasses, and the Pockels cell and Fabry lenses are kept at a constant temperature. In addition to controlling the instrument, the software allows the use of pre-defined sequences of observation, and does data acquisition and reduction. (SECTION: Astronomical Instrumentation)

  9. Operation experience of p-Carbon polarimeter in RHIC

    SciTech Connect

    Huang, H.; Alekseev, I. G.; Aschenauer, E. C.; Atoian, G.; Bazilevsky, A.; Eyser, O.; Kalinkin, D.; Kewisch, J.; Makdisi, Y.; Nemesure, S.; Poblaguev, A.; Schmidke, W. B.; Svirida, D.; Steski, D.; Webb, G.; Zelenski, A.; Tip, K.

    2015-05-03

    The spin physics program in Relativistic Heavy Ion Collider (RHIC) requires fast polarimeter to monitor the polarization evolution on the ramp and during stores. Over past decade, the polarimeter has evolved greatly to improve its performance. These include dual chamber design, monitoring camera, Si detector selection (and orientation), target quality control, and target frame modification. The preamp boards have been modified to deal with the high rate problem, too. The ultra thin carbon target lifetime is a concern. Simulations have been carried out on the target interaction with beam. Modification has also been done on the frame design. Extra caution has been put on RF shielding to deal with the pickup noises from the nearby stochastic cooling kickers. This paper summarizes the recent operation performance of this delicate device.

  10. Estimation of errors in partial Mueller matrix polarimeter calibration

    NASA Astrophysics Data System (ADS)

    Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott

    2016-05-01

    While active polarimeters have been shown to be successful at improving discriminability of the targets of interest from their background in a wide range of applications, their use can be problematic for cases with strong bandwidth constraints. In order to limit the number of performed measurements, a number of successive studies have developed the concept of partial Mueller matrix polarimeters (pMMPs) into a competitive solution. Like all systems, pMMPs need to be calibrated in order to yield accurate results. In this treatment we provide a method by which to select a limited number of reference objects to calibrate a given pMMP design. To demonstrate the efficacy of the approach, we apply the method to a sample system and show that, depending on the kind of errors present within the system, a significantly reduced number of reference objects measurements will suffice for accurate characterization of the errors.

  11. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  12. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Ishikawa, Shin-nosuke; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N..; Ishikawa, R.; Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Giono, G.; Holloway, T.; Winebarger, A.; Cirtain, J.; DePontieu, B.; Casini, R.; Auchere F.; Bueno, J. Trujillo; Sainz, R. Manso; Belluzzi, L.; Ramos, A. Asensio; Stepan, J.; Carlsson, M.

    2014-01-01

    To Understand energy release process in the Sun including solar flares, it is essentially important to measure the magnetic field of the atmosphere of the Sun. Magnetic field measurement of the upper layers (upper chromosphere and above) was technically difficult and not well investigated yet. Upper chromosphere and transition region magnetic field measurement by Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) sounding rocket to be launched in 2015. The proposal is already selected and developments of the flight components are going.

  13. Polarimeters and Energy Spectrometers for the ILC Beam Delivery System

    SciTech Connect

    Boogert, S.; Hildreth, M.; Kafer, D.; List, J.; Monig, K.; Moffeit, K.C.; Moortgat-Pick, G.; Riemann, S.; Schreiber, H.J.; Schuler, P.; Torrence, E.; Woods, M.; /SLAC

    2009-02-24

    This article gives an overview of current plans and issues for polarimeters and energy spectrometers in the Beam Delivery System of the ILC. It is meant to serve as a useful reference for the Detector Letter of Intent documents currently being prepared. Concepts for high precision polarization and energy measurements exist. These concepts have resulted in detailed system layouts that are included in the RDR description for the Beam Delivery System. The RDR includes both upstream and downstream polarimeters and energy spectrometers for both beams. This provides needed complementarity and redundancy for achieving the precision required, with adequate control and demonstration of systematic errors. The BDS polarimeters and energy spectrometers need to be a joint effort of the ILC BDS team and the Detector collaborations, with collaboration members responsible for the performance and accuracy of the measurements. Details for this collaboration and assigning of responsibilities remain to be worked out. There is also a demonstrated need for Detector physicists to play an active role in the design and evaluation of accelerator components that impact beam polarization and beam energy capabilities, including the polarized source and spin rotator systems. A workshop was held in 2008 on ILC Polarization and Energy measurements, which resulted in a set of recommendations for the ILC design and operation. Additional input and action is needed on these from the Detector collaborations, the Research Director and the GDE. Work is continuing during the ILC engineering design phase to further optimize the polarimeter and energy spectrometer concepts and fully implement them in the ILC. This includes consideration for alternative methods, detailed design and cost estimates, and prototype and test beam activities.

  14. PHYSICS WITH A FOCAL PLANE PROTON POLARIMETER FOR HALL A AT CEBAF

    SciTech Connect

    Ron Gilman; F.T. Baker; Louis Bimbot; Ed Brash; Charles Glashausser; Mark Jones; Gerfried Kumbartzki; Sirish Nanda; Charles F. Perdrisat; Vina Punjabi; Ronald Ransome; Paul Rutt

    1994-09-01

    A focal plane polarimeter intended for the CEBAF Hall A high resolution hadron spectrometer is under construction at Rutgers University and the College of William and Mary. Experiments with focal plane polarimeters are only now beginning at electron accelerators; they play a prominent role in the list of approved experiments for Hall A. Construction of the polarimeter is in progress, it is expected to be brought to CEBAF in spring 1995. Several coincidence (e,e'p) and singles (gamma, p) measurements by the Hall A Collaboration are expected to start in 1996. In this paper we describe the polarimeter and the physics program planned for it.

  15. PolKa: A Tunable Polarimeter for Submillimeter Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Siringo, G.; Kreysa, E.; Menten, K. M.; Reichertz, L. A.

    2005-12-01

    A new polarimeter has been constructed to be used with the bolometer arrays developed at the Max-Planck-Institut für Radioastronomie in Bonn. The new polarimeter has the unique characteristic of being tunable over a wide range of wavelengths and of producing negligible absorption. It has been used at the Heinrich Hertz Telescope to measure the linear polarization of quasars and of extended sources inside our Galaxy. We detected polarization in the quasars 3C 279 and QSO B1633+382. In 3C 279 we also detected polarization variability on a time scale of a week. We also produced maps of three extended sources: the Becklin-Neugebauer/Kleinmann-Low complex in the Orion Molecular Cloud 1 (OMC 1), a filamentary cloud in OMC 3, and the massive star-forming region IRAS 05358+3543. The polarimeter has low spurious polarization and a high modulation efficiency, and the tests at the telescope show that it is well suited to become a permanent facility.

  16. A new polarimeter for (sub)millimeter bolometer arrays

    NASA Astrophysics Data System (ADS)

    Siringo, G.; Kreysa, E.; Reichertz, L. A.; Menten, K. M.

    2004-08-01

    A new polarimeter concept has been designed to be used together with the bolometer arrays developed at the Max-Planck-Institut für Radioastronomie in Bonn. The new polarimeter has the unique characteristic of being tunable over a wide range of wavelengths and of producing negligible absorption. It has been used at the Heinrich Hertz Telescope to measure the linear polarization of several quasars and of extended sources inside our Galaxy. Some results are presented here. We detected polarization in the quasars 3C 279 and QSO B1633+382. In 3C 279 we also detected polarization variability on a time scale of a week. We also produced maps of three extended sources: the Becklin-Neugebauer/Kleinmann-Low (BNKL) complex in the Orion Molecular Cloud 1 (OMC 1), a filamentary cloud in OMC 3, and the massive star-forming region IRAS 05358+3543. The polarimeter has low spurious polarization and a high modulation efficiency, and the tests at the telescope show that it is well suited to become a permanent facility.

  17. PROPOSAL FOR A CAVITY POLARIMETER AT MIT-BATES.

    SciTech Connect

    CAMERON,P.; BARRY,W.; CONTE,M.; GOLDBERG,D.A.; JACOBS,K.; LUCCIO,A.; PALAZZI,M.; PUSTERLA,M.; MACKAY,W.

    2001-06-18

    The possibility of successfully implementing a cavity polarimeter[1] has been greatly improved by the discovery[2] of a cavity mode for which the magnitude of the Stern-Gerlach force experienced by a magnetic moment traversing the cavity varies as the square of the relativistic factor gamma, so that the signal power varies as the fourth power of gamma. In addition, the interaction of this cavity mode with the beam charge varies as the inverse of the interaction with the magnetic moment, so that the background due to the beam charge varies as the inverse fourth power of gamma, If these gamma dependencies of moment and charge interaction with the pickup cavity do in fact exists the possibility is opened for very fast, accurate, and inexpensive polarimetry at accelerators like MIT-Bates and RHIC. In addition, it might become possible to seriously consider Stern-Gerlach polarization of beams at LHC. We present details of a quick polarimeter test at the electron storage ring at MIT-Bates, and of an extension of this test to a working polarimeter in the RHIC rings.

  18. Spectrographic Polarimeter and Method of Recording State of Polarity

    NASA Technical Reports Server (NTRS)

    Sparks, William B. (Inventor)

    2015-01-01

    A single-shot real-time spectropolarimeter for use in astronomy and other sciences that captures and encodes some or all of the Stokes polarization parameters simultaneously using only static, robust optical components with no moving parts is described. The polarization information is encoded onto the spectrograph at each wavelength along the spatial dimension of the 2D output data array. The varying embodiments of the concept include both a two-Stokes implementation (in which any two of the three Stokes polarization parameters are measured) and a full Stokes implementation (in which all three of the Stokes polarization parameters are measured), each of which is provided in either single beam or dual beam forms.

  19. Anti-Stokes Fluorescent Probe with Incoherent Excitation

    PubMed Central

    Li, Yang; Zhou, Shifeng; Dong, Guoping; Peng, Mingying; Wondraczek, Lothar; Qiu, Jianrong

    2014-01-01

    Although inorganic anti-Stokes fluorescent probes have long been developed, the operational mode of today's most advanced examples still involves the harsh requirement of coherent laser excitation, which often yields unexpected light disturbance or even photon-induced deterioration during optical imaging. Here, we demonstrate an efficient anti-Stokes fluorescent probe with incoherent excitation. We show that the probe can be operated under light-emitting diode excitation and provides tunable anti-Stokes energy shift and decay kinetics, which allow for rapid and deep tissue imaging over a very large area with negligible photodestruction. Charging of the probe can be achieved by either X-rays or ultraviolet-visible light irradiation, which enables multiplexed detection and function integration with standard X-ray medical imaging devices. PMID:24518662

  20. GDx-MM: An imaging Mueller matrix retinal polarimeter

    NASA Astrophysics Data System (ADS)

    Twietmeyer, Karen Marie

    2007-12-01

    Retinal diseases are a major cause of blindness worldwide. Although widely studied, disease mechanisms are not completely understood, and diagnostic tests may not detect disease early enough for timely intervention. The goal of this research is to contribute to research for more sensitive diagnostic tests that might use the interaction of polarized light with retinal tissue to detect subtle changes in the microstructure. This dissertation describes the GDx-MM, a scanning laser polarimeter which measures a complete 16-element Mueller matrix image of the retina. This full polarization signature may provide new comparative information on the structure of healthy and diseased retinal tissue by highlighting depolarizing structures as well as structures with varying magnitudes and orientations of retardance and diattenuation. The three major components of this dissertation are: (1) Development of methods for polarimeter optimization and error analysis; (2) Design, optimization, assembly, calibration, and validation of the GDx-MM polarimeter; and (3) Analysis of data for several human subjects. Development involved modifications to a Laser Diagnostics GDx, a commercially available scanning laser ophthalmoscope with incomplete polarization capability. Modifications included installation of polarization components, development of a data acquisition system, and implementation of algorithms to convert raw data into polarization parameter images. Optimization involved visualization of polarimeter state trajectories on the Poincare sphere and a condition number analysis of the instrument matrix. Retinal images are collected non-invasively at 20 mum resolution over a 15° visual field in four seconds. Validation of the polarimeter demonstrates a polarimetric measurement accuracy of approximately +/- 5%. Retinal polarization data was collected on normal human subjects at the University of Arizona and at Indiana University School of Optometry. Calculated polarization parameter

  1. Combination of Stokes polarized light imaging, roughness metrics and morphological features for the detection of melanoma

    NASA Astrophysics Data System (ADS)

    Ghassemi, P.; Shupp, J. W.; Venna, S.; Boisvert, M. E.; Flanagan, K. E.; Jordan, M. H.; Ramella-Roman, J. C.

    2012-02-01

    Skin cancer is the most common and most rapidly increasing form of cancer in the world. Optimal treatment of skin cancer before it reaches metastasis depends critically on early diagnosis. Usually physicians will measure some outward features to diagnose malignancy of pigmented skin lesion. These are mostly morphological features like border irregularity, size, shape, and color. Valuable information can be obtained from the analysis of skin roughness. Previously, we developed a hemispherical imaging Stokes polarimeter to monitor skin cancer based on a roughness assessment of the epidermis. In this study, Stokes images were analyzed to measure polarization properties of skin samples such as the principal angle of the polarization ellipse and the degree of polarization. A processing algorithm based on morphological operators was also developed and applied on Stokes images to extract shape information. Finally, an appropriate classifier was designed to determine the type of lesion based on morphological features as well as the roughness information. Clinical evaluation of the technique was performed on patients with benign nevi, melanocytic nevi, melanoma, and normal skin.

  2. Preliminary design of the full-Stokes UV and visible spectropolarimeter for UVMag/Arago

    NASA Astrophysics Data System (ADS)

    Pertenais, Martin; Neiner, Coralie; Parès, Laurent; Petit, Pascal; Snik, Frans; van Harten, Gerard

    2015-10-01

    The UVMag consortium proposed the space mission project Arago to ESA at its M4 call. Arago is dedicated to the study of the dynamic 3D environment of stars and planets. This space mission will be equipped with a high-resolution spectropolarimeter working from 119 to 888 nm. A preliminary optical design of the whole instrument has been prepared and is presented here. The design consists of the telescope, the instrument itself, and the focusing optics. Considering not only the scientific requirements, but also the cost and size constraints to fit an M-size mission, the telescope has a 1.3 m diameter primary mirror and is a classical Cassegrain-type telescope that allows a polarization-free focus. The polarimeter is placed at this Cassegrain focus. This is the key element of the mission and the most challenging one to be designed. The main challenge lies in the huge spectral range offered by the instrument; the polarimeter has to deliver the full Stokes vector with a high precision from the FUV (119 nm) to the NIR (888 nm). The polarimeter module is then followed by a high-resolution echelle-spectrometer achieving a resolution of 35000 in the visible range and 25000 in the UV. The two channels are separated after the echelle grating, allowing specific cross-dispersion and focusing optics for the UV and the visible ranges. Considering the large field of view and the high numerical aperture, the focusing optics for both the UV and the visible channels is a Three-Mirror-Anastigmatic (TMA) telescope, needed to focus the various wavelengths and many orders onto the detectors.

  3. FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle; Hill, Joanne; Black, Kevin; Baumgartner, Wayne

    2013-01-01

    This technology enables detection and measurement of x-rays in an x-ray polarimeter using a field-programmable gate array (FPGA). The technology was developed for the Gravitational and Extreme Magnetism Small Explorer (GEMS) mission. It performs precision energy and timing measurements, as well as rejection of non-x-ray events. It enables the GEMS polarimeter to detect precisely when an event has taken place so that additional measurements can be made. The technology also enables this function to be performed in an FPGA using limited resources so that mass and power can be minimized while reliability for a space application is maximized and precise real-time operation is achieved. This design requires a low-noise, charge-sensitive preamplifier; a highspeed analog to digital converter (ADC); and an x-ray detector with a cathode terminal. It functions by computing a sum of differences for time-samples whose difference exceeds a programmable threshold. A state machine advances through states as a programmable number of consecutive samples exceeds or fails to exceed this threshold. The pulse height is recorded as the accumulated sum. The track length is also measured based on the time from the start to the end of accumulation. For track lengths longer than a certain length, the algorithm estimates the barycenter of charge deposit by comparing the accumulator value at the midpoint to the final accumulator value. The design also employs a number of techniques for rejecting background events. This innovation enables the function to be performed in space where it can operate autonomously with a rapid response time. This implementation combines advantages of computing system-based approaches with those of pure analog approaches. The result is an implementation that is highly reliable, performs in real-time, rejects background events, and consumes minimal power.

  4. Identification of errors in the electron density measurements of a tangential interferometer/polarimeter system during a tokamak discharge

    SciTech Connect

    Arakawa, H.; Kawano, Y.; Itami, K.

    2012-10-15

    A new method for the comparative verification of electron density measurements obtained with a tangential interferometer and a polarimeter during a discharge is proposed. The possible errors associated with the interferometer and polarimeter are classified by the time required for their identification. Based on the characteristics of the errors, the fringe shift error of the interferometer and the low-frequency noise of the polarimeter were identified and corrected for the JT-60U tangential interferometer/polarimeter system.

  5. A Shoebox Polarimeter: An Inexpensive Analytical Tool for Teachers and Students

    ERIC Educational Resources Information Center

    Mehta, Akash; Greenbowe, Thomas J.

    2011-01-01

    A polarimeter can determine the optical activity of an organic or inorganic compound by providing information about the optical rotation of plane-polarized light when transmitted through that compound. This "Journal" has reported various construction methods for polarimeters. We report a unique construction using a shoebox, recycled office…

  6. A New Cost-Effective Diode Laser Polarimeter Apparatus Constructed by Undergraduate Students

    ERIC Educational Resources Information Center

    Lisboa, Pedro; Sotomayor, Joo; Ribeiro, Paulo

    2010-01-01

    The construction of a diode laser polarimeter apparatus by undergraduate students is described. The construction of the modular apparatus by undergraduate students gives them an insight into how it works and how the measurement of a physical or chemical property is conducted. The students use the polarimeter to obtain rotation angle values for the…

  7. Variation in sunspot properties between 1999 and 2011 as observed with the Tenerife Infrared Polarimeter

    NASA Astrophysics Data System (ADS)

    Rezaei, R.; Beck, C.; Schmidt, W.

    2012-05-01

    Aims: We study the variation in the magnetic field strength and the umbral intensity of sunspots during the declining phase of the solar cycle No. 23 and in the beginning of cycle No. 24. Methods: We analyze a sample of 183 sunspots observed from 1999 until 2011 with the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT). The magnetic field strength is derived from the Zeeman splitting of the Stokes-V signal in one near-infrared spectral line, either Fe i 1564.8 nm, Fe i 1089.6 nm, or Si i 1082.7 nm. This avoids the effects of the unpolarized stray light from the field-free quiet Sun surroundings that can affect the splitting seen in Stokes-I in the umbra. The minimum umbral continuum intensity and umbral area are also measured. Results: We find that there is a systematic trend for sunspots in the late stage of the solar cycle No. 23 to be weaker, i.e., to have a smaller maximum magnetic field strength than those at the start of the cycle. The decrease in the field strength with time of about 94 Gyr-1 is well beyond the statistical fluctuations that would be expected because of the larger number of sunspots close to cycle maximum (14 Gyr-1). In the same time interval, the continuum intensity of the umbra increases with a rate of 1.3 (±0.4)% of Ic yr-1, while the umbral area does not show any trend above the statistical variance. Sunspots in the new cycle No. 24 show higher field strengths and lower continuum intensities than those at the end of cycle No. 23, interrupting the trend. Conclusions: Sunspots have an intrinsically weaker field strength and brighter umbrae at the late stages of solar cycles compared to their initial stages, without any significant change in their area. The abrupt increase in field strength in sunspots of the new cycle suggests that the cyclic variations are dominating over any long-term trend that continues across cycles. We find a slight decrease in field strength and an increase in intensity as a long

  8. Dual instrument for Flare and CME onset observations - Double solar Coronagraph with Solar Chromospheric Detector and Coronal Multi-channel Polarimeter at Lomnicky stit Observatory

    NASA Astrophysics Data System (ADS)

    Kucera, Ales; Tomczyk, Steven; Rybak, Jan; Sewell, Scott; Gomory, Peter; Schwartz, Pavol; Ambroz, Jaroslav; Kozak, Matus

    2015-08-01

    We report on unique dual instrument developed for simultaneous measurements of velocity and magnetic fields in the solar chromosphere and corona. We describe the technical parameters and capability of the Coronal Multi-channel Polarimeter (CoMP-S) and Solar Chromospheric detector (SCD) mounted at the Double solar coronagraph at Lomnicky Stit Observatory and working simultaneously with strictly parallel pointing of both coronagraphs. The CoMP-S is 2D spectropolarimeter designed for observations of VIS and near-IR emission lines of prominences and corona with operating spectral range: 500 - 1100 nm, sequential measurement of several VIS and near-IR lines. Its field of view is 14 arcmin x 11 arcmin. It consists of 4-stage calcite Lyot filter followed by the ferro-liquid crystal polarizer and four cameras (2 visible, 2 infrared). The capability is to deliver 2D full Stokes I, Q, U, V, using registration with 2 IR cameras (line + background) and 2 VIS cameras (line + background) SCD is a single beam instrument to observe bright chromosphere. It is a combination of tunable filter and polarimeter. Spectral resolution of the SCD ranges from 0.046 nm for observations of the HeI 1083 nm line up to to 25 pm is for observation of the HeI 587.6 nm line. The birefringent filter of the SCD has high spectral resolution, as well as spatial resolution (1.7 arcseconds) and temporal resolution (10 seconds) First results are also reported and discussed.

  9. Self-referenced, microdegree, optical rotation polarimeter for biomedical applications: an analysis.

    PubMed

    Weissman, Zeev; Goldberg, Doron

    2016-07-01

    We comprehensively analyze the performance of a type of optical rotation (OR) polarimeter, which has been designed from the outset to fit the special requirements of two major applications: general chiral detection during the separation of optical isomers by high-pressure liquid chromatography systems in the pharmaceutical industry, and monitoring of glucose in the interstitial fluid of diabetics by a fully implanted long-term optical sensor. Both very demanding applications call for an OR polarimeter that can be miniaturized while maintaining high resolution and accuracy in the microdegree range in the face of considerable noise from various sources. These two characteristics—miniature size and immunity to noise—set this polarimeter apart from the traditional OR polarimeters currently in use, which are both bulky and very susceptible to noise. The following detailed analysis demonstrates the advantages of this polarimeter and its potential as an analytic and diagnostic tool. PMID:26720051

  10. Self-referenced, microdegree, optical rotation polarimeter for biomedical applications: an analysis

    NASA Astrophysics Data System (ADS)

    Weissman, Zeev; Goldberg, Doron

    2016-07-01

    We comprehensively analyze the performance of a type of optical rotation (OR) polarimeter, which has been designed from the outset to fit the special requirements of two major applications: general chiral detection during the separation of optical isomers by high-pressure liquid chromatography systems in the pharmaceutical industry, and monitoring of glucose in the interstitial fluid of diabetics by a fully implanted long-term optical sensor. Both very demanding applications call for an OR polarimeter that can be miniaturized while maintaining high resolution and accuracy in the microdegree range in the face of considerable noise from various sources. These two characteristics-miniature size and immunity to noise-set this polarimeter apart from the traditional OR polarimeters currently in use, which are both bulky and very susceptible to noise. The following detailed analysis demonstrates the advantages of this polarimeter and its potential as an analytic and diagnostic tool.

  11. Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues

    NASA Astrophysics Data System (ADS)

    Chang, Jintao; He, Honghui; Wang, Ye; Huang, Yi; Li, Xianpeng; He, Chao; Liao, Ran; Zeng, Nan; Liu, Shaoxiong; Ma, Hui

    2016-05-01

    A polarization microscope is a useful tool to reveal the optical anisotropic nature of a specimen and can provide abundant microstructural information about samples. We present a division of focal plane (DoFP) polarimeter-based polarization microscope capable of simultaneously measuring both the Stokes vector and the 3×4 Mueller matrix with an optimal polarization illumination scheme. The Mueller matrix images of unstained human carcinoma tissue slices show that the m24 and m34 elements can provide important information for pathological observations. The characteristic features of the m24 and m34 elements can be enhanced by polarization staining under illumination by a circularly polarized light. Hence, combined with a graphics processing unit acceleration algorithm, the DoFP polarization microscope is capable of real-time polarization imaging for potential quick clinical diagnoses of both standard and frozen slices of human carcinoma tissues.

  12. PolKa: a polarimeter for submillimeter bolometer arrays

    NASA Astrophysics Data System (ADS)

    Siringo, Giorgio

    2003-04-01

    Starting from measurements of the linear polarization of the radiation emitted by celestial objects it is possible to estimate some physical parameters of the source. For example, magnetic field intensities and directions or, when the magnetic field is already known, the processes producing the polarization. A new concept of polarimeter has been designed to be used together with the arrays of bolometers developed in the Bolometer Group at the Max-Planck-Institut fuer Radioastronomie in Bonn. The new polarimeter has the unique characteristic of being tunable over a wide range of wavelengths and of producing a negligible absorption. It has been used at the Heinrich Hertz telescope in Arizona, to measure the linear polarization of some quasars and of some extended sources inside our galaxy. Some results are presented. We detected polarization on the quasars 3C279 and 1633+382. On 3C279 we also detected polarization variability on a time scale of a week. Three maps of extended sources are presented: the BN/KL complex in Orion OMC-1, a filament cloud in Orion OMC-3 and the massive star forming region IRAS 05358+3543. The first map shows the polarization pattern in OMC-1 over an extended sky area with high signal-to-noise and accurate detection of the position angle. The filament in OMC-3 was observed for a short integration time and is presented here only to show the agreement with published data even under conditions of a weak signal-to-noise. The third map is the first detection of polarization in the high-mass star forming region IRAS 05358+3543. The polarimeter has low spurious polarization and a good efficiency and the tests at the telescope show that it is well suited to become a permanent facility.

  13. A cylindrically symmetric "micro-Mott" electron polarimeter.

    PubMed

    Clayburn, N B; Brunkow, E; Burtwistle, S J; Rutherford, G H; Gay, T J

    2016-05-01

    A small, novel, cylindrically symmetric Mott electron polarimeter is described. The effective Sherman function, Seff, or analyzing power, for 20 kV Au target bias with a 1.3 keV energy loss window is 0.16 ± 0.01, where uncertainty in the measurement is due primarily to uncertainty in the incident electron polarization. For an energy loss window of 0.5 keV, Seff reaches its maximum value of 0.24 ± 0.02. The device's maximum efficiency, I/Io, defined as the detected count rate divided by the incident particle rate, is 3.7 ± 0.2 × 10(-4) at 20 keV. The figure-of-merit of the device, η, is defined as Seff (2)IIo and equals 9.0 ± 1.6 × 10(-6). Potential sources of false asymmetries due to detector electronic asymmetry and beam misalignment have been investigated. The new polarimeter's performance is compared to published results for similar compact retarding-field Mott polarimeters, and it is concluded that this device has a relatively large Seff and low efficiency. SIMION(®) electron trajectory simulations and Sherman function calculations are presented to explain the differences in performance between this device and previous designs. This design has an Seff that is insensitive to spatial beam fluctuations and, for an energy loss window >0.5 keV, negligible background due to spurious ion and X-ray production at the target. PMID:27250409

  14. A cylindrically symmetric "micro-Mott" electron polarimeter

    NASA Astrophysics Data System (ADS)

    Clayburn, N. B.; Brunkow, E.; Burtwistle, S. J.; Rutherford, G. H.; Gay, T. J.

    2016-05-01

    A small, novel, cylindrically symmetric Mott electron polarimeter is described. The effective Sherman function, Seff, or analyzing power, for 20 kV Au target bias with a 1.3 keV energy loss window is 0.16 ± 0.01, where uncertainty in the measurement is due primarily to uncertainty in the incident electron polarization. For an energy loss window of 0.5 keV, Seff reaches its maximum value of 0.24 ± 0.02. The device's maximum efficiency, I/Io, defined as the detected count rate divided by the incident particle rate, is 3.7 ± 0.2 × 10-4 at 20 keV. The figure-of-merit of the device, η, is defined as Seff2I/Io and equals 9.0 ± 1.6 × 10-6. Potential sources of false asymmetries due to detector electronic asymmetry and beam misalignment have been investigated. The new polarimeter's performance is compared to published results for similar compact retarding-field Mott polarimeters, and it is concluded that this device has a relatively large Seff and low efficiency. SIMION® electron trajectory simulations and Sherman function calculations are presented to explain the differences in performance between this device and previous designs. This design has an Seff that is insensitive to spatial beam fluctuations and, for an energy loss window >0.5 keV, negligible background due to spurious ion and X-ray production at the target.

  15. Full Stokes observations in the He i 1083 nm spectral region covering an M3.2 flare

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Collados, Manuel; Sainz, Rafael Manso; Ramos, Andrés Asensio

    2015-10-01

    We present an exceptional data set acquired with the Vacuum Tower Telescope (Tenerife, Spain) covering the pre-flare, flare, and post-flare stages of an M3.2 flare. The full Stokes spectropolarimetric observations were recorded with the Tenerife Infrared Polarimeter in the He i 1083.0 nm spectral region. The object under study was active region NOAA 11748 on 2013 May 17. During the flare the chomospheric He i 1083.0 nm intensity goes strongly into emission. However, the nearby photospheric Si i 1082.7 nm spectral line profile only gets shallower and stays in absorption. Linear polarization (Stokes Q and U) is detected in all lines of the He i triplet during the flare. Moreover, the circular polarization (Stokes V) is dominant during the flare, being the blue component of the He i triplet much stronger than the red component, and both are stronger than the Si i Stokes V profile. The Si i inversions reveal enormous changes of the photospheric magnetic field during the flare. Before the flare magnetic field concentrations of up to ~1500 G are inferred. During the flare the magnetic field strength globally decreases and in some cases it is even absent. After the flare the magnetic field recovers its strength and initial configuration.

  16. Hard X-ray Imaging Polarimeter for PolariS

    NASA Astrophysics Data System (ADS)

    Hayashida, Kiyoshi

    2016-07-01

    We present the current status of development of hard X-ray imaging polarimeters for the small satellite mission PolariS. The primary aim of PolariS is hard X-ray (10-80keV) polarimetry of sources brighter than 10mCrab. Its targets include stellar black holes, neutron stars, super nova remnants, and active galactic nuclei. This aim is enabled with three sets of hard X-ray telescopes and imaging polarimeters installed on their focal planes. The imaging polarimeter consists of two kinds of (plastic and GSO) scintillator pillars and multi-anode photo multiplier tubes (MAPMTs). When an X-ray photon incident to a plastic scintillator cause a Compton scattering, a recoiled electron makes a signal on the corresponding MAPMT pixel, and a scatted X-rays absorbed in surrounding GSO makes another signal. This provide information on the incident position and the scattered direction. The latter information is employed for polarimetry. For 20keV X-ray incidence, the recoiled electron energy is as low as 1keV. Thus, the performance of this imaging polarimeter is primarily determined by the efficiency that we can detect low level signal of recoiled electrons generated in plastic scintillators. The efficiency could depend on multiple factors, e.g. quenching of light in scintillators, electric noise, pedestal error, cross talk of the lights to adjacent MAPMT pixels, MAPMT dark current etc. In this paper, we examined these process experimentally and optimize the event selection algorithm, in which single photo-electron events are selected. We then performed an X-ray (10-80keV monochromatic polarized beam) irradiation test at a synchrotron facility. The modulation contrast (M) is about 60% in 15-80keV range. We succeeded in detecting recoiled electrons for 10-80keV X-ray incidence, though detection efficiency is lower at lowest end of the energy range. Expected MDP will also be shown.

  17. RINGO2: an EMCCD-based polarimeter for GRB followup

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Bates, S. D.; Guidorzi, C.; Mottram, C. J.; Mundell, C. G.; Smith, R. J.

    2010-07-01

    We describe the design and construction of a new novel optical polarimeter (RINGO2) for the Liverpool Telescope. The instrument is designed for rapid (< 3 minute) followup observations of Gamma Ray Bursts in order to measure the early time polarization and time evolution on timescales of ~ 1 - 10000 seconds. By using a fast rotating Polaroid whose rotation is synchronized to control the readout of an electron multiplying CCD eight times per revolution, we can rebin our data in the time domain after acquisition with little noise penalty, thereby allowing us to explore the polarization evolution of these rapidly variable objects for the first time.

  18. Navier Stokes Theorem in Hydrology

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2005-12-01

    In a paper presented at the 2004 AGU International Conference, the author outlined and stressed the importance of studying and teaching certain important mathematical techniques while developing a course in Hydrology and Fluid Mechanics. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. In an article entitled "Corrections to Fluid Dynamics" R. F. Streater, (Open Systems and Information Dynamics, 10, 3-30, 2003.) proposes a kinetic model of a fluid in which five macroscopic fields, the mass, energy, and three components of momentum, are conserved. The dynamics is constructed using the methods of statistical dynamics, and results in a non-linear discrete-time Markov chain for random fields on a lattice. In the continuum limit he obtains a non-linear coupled parabolic system of field equations, showing a correction to the Navier-Stokes equations. In 2001, David Hoff published an article in Journees Equations aux derivees partielles. (Art. No. 7, 9 p.). His paper is entitled : Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions. In his paper, David Hoff proves the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time

  19. Adapting a compact Mott spin polarimeter to a large commercial electron energy analyzer for spin-polarized electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Di-Jing; Lee, Jae-Yong; Suen, Jih-Shih; Mulhollan, G. A.; Andrews, A. B.; Erskine, J. L.

    1993-12-01

    A modified Rice University-type compact Mott spin polarimeter operating at 20 kV is adapted to a large commerical hemispherical electron energy analyzer. Normal energy analyzer functions are preserved via a retractable channeltron in the polarimeter acceleration column. In the spin-detection mode, the polarimeter permits analysis of two orthogonal transverse spin-polarization components. Electron trajectory analysis is used to optimize polarimeter lens column voltages in both normal and spin-detection modes. Performance levels are established by experiments and significantly improved spin-detection efficiency is shown to be accessible by changes in the polarimeter collection solid angle.

  20. Comment on Modified Stokes Parameters

    NASA Technical Reports Server (NTRS)

    Le Vine, D.M.; Utku, C.

    2009-01-01

    It is common practice in passive microwave remote sensing (microwave radiometry) to express observables as temperatures and in the case of polarimetric radiometry to use what are called "Modified Stokes Parameters in Brightness Temperature" to describe the scene. However, definitions with slightly different normalization (with and without division by bandwidth) have appeared in the literature. The purpose of this manuscript is to present an analysis to clarify the meaning of terms in the definition and resolve the question of the proper normalization.

  1. Anti-Stokes Raman laser

    SciTech Connect

    White, J.C.; Henderson, D.

    1982-02-01

    The first observation of nonresonant, stimulated anti-Stokes Raman emission is reported. A metastable T1 (6rho /sup 2/P/sup 0//sub 3/2/) inversion is created by selective photodissociation of TlCl. Raman scattering from the Tl metastable state to ground using 532- and 355-nm pump lasers resulted in stimulated emission at 376 and 278 nm, respectively. Conversion efficiencies up to 10% are reported.

  2. The Detector System for the Stratospheric Kinetic Inductance Polarimeter ( Skip)

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Ade, P. A. R.; Araujo, D.; Bradford, K. J.; Chapman, D.; Day, P. K.; Didier, J.; Doyle, S.; Eriksen, H. K.; Flanigan, D.; Groppi, C.; Hillbrand, S.; Jones, G.; Limon, M.; Mauskopf, P.; McCarrick, H.; Miller, A.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, J.; Wehus, I. K.; Zmuidzinas, J.

    2014-09-01

    The stratospheric kinetic inductance polarimeter is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1,133 deg of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2,317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors ( Lekids). The Lekids will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, 5-day flights beginning with the 150 GHz observations.

  3. GRAPE: a balloon-borne gamma-ray polarimeter

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.; Bancroft, Christopher; Bloser, Peter F.; Connor, Taylor; Legere, Jason; Ryan, James M.

    2009-08-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50 - 500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module that has been calibrated at a polarized hard X-ray beam and flown on an engineering balloon test flight. A full-scale scientific balloon payload, consisting of up to 36 modules, is currently under development. The first flight, a one-day flight scheduled for 2011, will verify the expected scientific performance with a pointed observation of the Crab Nebula. We will then propose long-duration balloon flights to observe gamma-ray bursts and solar flares.

  4. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; Chowdhary, Jacek; Ottaviani, Matteo; Knobelspiesse, Kirk D.

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  5. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    NASA Astrophysics Data System (ADS)

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  6. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    SciTech Connect

    Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; B. Poelker; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann

    2004-03-01

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy.

  7. Impact of Heart Transplantation on Cheyne-Stokes Respiration in a Child

    PubMed Central

    Al-Saleh, Suhail; Kantor, Paul F.; Narang, Indra

    2016-01-01

    Sleep disordered breathing is well described in adults with heart failure but not in pediatric population. We describe a 13-year-old Caucasian male with severe heart failure related to dilated cardiomyopathy who demonstrated polysomnographic features of Cheyne-Stokes respiration, which completely resolved following cardiac transplantation. Cheyne-Stokes respiration in children with advanced heart failure and its resolution after heart transplant can be observed similar to adults. PMID:27127671

  8. A closed-loop dual-modulation multi-spectral polarimeter for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Zhen fang; Pirnstill, Casey W.; Coté, Gerard L.

    2016-03-01

    Optical polarimetry is a promising noninvasive means of assessing glucose concentration in the aqueous humor of the eye. One the major limiting factors is time-varying cornea birefringence due to motion artifact, which prevents the realization of this device. In this study, we simultaneously utilize laser intensity modulation and Faraday polarization rotation modulation for a real-time closed-loop multi-spectral polarimeter for glucose monitoring in vitro. In this report, a real-time closed-loop dual-modulation dual-spectral polarimeter was presented and in vitro glucose measurements were performed demonstrating the accuracy and repeatability of this polarimeter.

  9. The MESA polarimetry chain and the status of its double scattering polarimeter

    SciTech Connect

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-11-07

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article.

  10. Characterizing and Modeling the Noise and Complex Impedance of Feedhorn-Coupled TES Polarimeters

    SciTech Connect

    Appel, J. W.; Beall, J. A.; Essinger-Hileman, T.; Parker, L. P.; Staggs, S. T.; Visnjic, C.; Zhao, Y.; Austermann, J. E.; Halverson, N. W.; Henning, J. W.; Simon, S. M.; Becker, D.; Britton, J.; Cho, H. M.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Yoon, K. W.; Benson, B. A.; Bleem, L. E.

    2009-12-16

    We present results from modeling the electrothermal performance of feedhorn-coupled transition edge sensor (TES) polarimeters under development for use in cosmic microwave background (CMB) polarization experiments. Each polarimeter couples radiation from a corrugated feedhorn through a planar orthomode transducer, which transmits power from orthogonal polarization modes to two TES bolometers. We model our TES with two- and three-block thermal architectures. We fit the complex impedance data at multiple points in the TES transition. From the fits, we predict the noise spectra. We present comparisons of these predictions to the data for two TESes on a prototype polarimeter.

  11. Matrix structure for information-driven polarimeter design

    NASA Astrophysics Data System (ADS)

    Alenin, Andrey S.

    Estimating the polarization of light has been shown to have merit in a wide variety of applications between UV and LWIR wavelengths. These tasks include target identification, estimation of atmospheric aerosol properties, biomedical and other applications. In all of these applications, polarization sensing has been shown to assist in discrimination ability; however, due to the nature of many phenomena, it is difficult to add polarization sensing everywhere. The goal of this dissertation is to decrease the associated penalties of using polarimetry, and thereby broaden its applicability to other areas. First, the class of channeled polarimeter systems is generalized to relate the Fourier domains of applied modulations to the resulting information channels. The quality of reconstruction is maximized by virtue of using linear system manipulations rather than arithmetic derived by hand, while revealing system properties that allow for immediate performance estimation. Besides identifying optimal systems in terms of equally weighted variance (EWV), a way to redistribute the error between all the information channels is presented. The result of this development often leads to superficial changes that can improve signal-to-noise-ration (SNR) by up to a factor of three compared to existing designs in the literature. Second, the class of partial Mueller maitrx polarimeters (pMMPs) is inspected in regards to their capacity to match the level of discrimination performance achieved by full systems. The concepts of structured decomposition and the reconstructables matrix are developed to provide insight into Mueller subspace coverage of pMMPs, while yielding a pMMP basis that allows the formation of ten classes of pMMP systems. A method for evaluating such systems while considering a multi-objective optimization of noise resilience and space coverage is provided. An example is presented for which the number of measurements was reduced to half. Third, the novel developments

  12. George Gabriel Stokes on Water Wave Theory

    NASA Astrophysics Data System (ADS)

    Craik, Alex D. D.

    2005-01-01

    George Gabriel Stokes died just over 100 years ago, and it has been more than 150 years since he published his great 1847 paper on water waves. The work of Stokes' precursors, which informed his early publications of 1842 50, is described in the previous volume of the Annual Review of Fluid Mechanics (Craik 2004). Here I examine Stokes' papers and letters concerning water waves.

  13. New Insights into Stellar Magnetism from the Spectropolarimetry in All Four Stokes Parameters

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Snik, F.; Piskunov, N.; Jeffers, S. V.; Keller, C. U.; Makaganiuk, V.; Valenti, J. A.; Johns-Krull, C. M.; Rodenhuis, M.; Stempels, H. C.

    2011-12-01

    Development of high-resolution spectropolarimetry has stimulated a major progress in our understanding of the magnetism and activity of late-type stars. During the last decade magnetic fields were discovered and mapped for various types of active stars using spectropolarimetric methods. However, these observations and modeling attempts are inherently incomplete since they are based on the interpretation of the stellar circular polarization alone. Taking advantage of the recently commissioned HARPS polarimeter, we obtained the first systematic observations of cool active stars in all four Stokes parameters. Here we report detection of the magnetically induced linear polarization in the RS CVn binary HR 1099 and phase-resolved full Stokes vector observations of varepsilon Eri. For the latter star we measured the field strength with the precision of ˜0.1 G over a complete rotation cycle and reconstructed the global field topology with the help of magnetic Doppler imaging. Our observations of the inactive solar-like star α Cen A indicate the absence of the global field stronger than 0.2 G.

  14. Radar cross calibration investigation TAMU radar polarimeter calibration measurements

    NASA Astrophysics Data System (ADS)

    Blanchard, A. J.; Newton, R. W.; Bong, S.; Kronke, C.; Warren, G. L.; Carey, D.

    1982-10-01

    A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described.

  15. The Hertz/VPM Polarimeter: Design and First Light Observations

    NASA Technical Reports Server (NTRS)

    Krejny, Megan; Chuss, David; d'Aubigny, Christian Drouet; Golish, Dathon; Houde, Martin; Hui, Howard; Kulesa, Craig; Loewenstein, Robert F.; Moseley, Harvey; Novak, Giles; Voellmer, George; Walker, Chris; Wollack, Ed

    2008-01-01

    We present first results of Hertz/VPM, the first submillimeter polarimeter employing the dual Variable-delay Polarization Modulator (dual-VPM). This device differs from previously used polarization modulators in that it, operates in translation rather than mechanical rotation. We discuss the basic theory behind this device, and its potential advantages over the commonly used half wave plate (HFVP). The dual-VPM was tested both at the Submillimeter Telescope Observatory (SMTO) and in the lab. In each case we present a detailed description of the setup. We discovered nonideal behavior in the system. This is at least in part due to properties of the VPM wire grids (diameter, spacing) employed in our experiment. Despite this, we found that the dual-VPM system is robust, operating with high efficiency and low instrumental polarization. This device is well suited for air and space-borne applications.

  16. Cyclops: a single beam 1.3 millimeter polarimeter.

    NASA Astrophysics Data System (ADS)

    Glenn, J.; Walker, C. K.; Young, E. T.

    1997-02-01

    The authors present the design of a broadband, 1.3 mm polarimeter for astronomical observations and the results of first light observations at the Heinrich Hertz Telescope (HHT). The systematic polarization of the instrument plus telescope is 1.1%. The observed linear polarization of DR21, P = 1.65%±0.14% and θ = 16°±2°, is consistent with previous measurements. The authors' 0.9% upper limit on the linear polarization of Cepheus A is the first 1.3 mm measurement reported. With Cyclops it is possible to map the magnetic fields in several of the brightest molecular cloud dust cores in the Milky Way. The authors comment on the expected performance of an achromatic Rexolite half-waveplate for λ = 800 μm to 1.3 mm.

  17. Imaging X-Ray Polarimeter for Solar Flares (IXPS)

    NASA Technical Reports Server (NTRS)

    Hosack, Michael; Black, J. Kevin; Deines-Jones, Philip; Dennis, Brian R.; Hill, Joanne E.; Jahoda, Keith; Shih, Albert Y.; Urba, Christian E.; Emslie, A. Gordon

    2011-01-01

    We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IX PS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20-50 keV energy range during an M- or X class flare, and will provide imaging information at the approx.10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.

  18. Radar polarimeter measures orientation of calibration corner reflectors

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Norikane, Lynne

    1987-01-01

    Radar polarimeter signals from a set of trihedral corner reflectors located in the Goldstone Dry Lake in California were analyzed, and three types of scattering behavior were observed: (1) Bragg-like slightly rough surface scattering that represents the background signal from the dry lake, (2) trihedral corner reflector scattering that returns the incident polarization, and (3) two-bounce corner reflector scattering resulting from a particular alignment of a trihedral reflector. A radar calibration approach using trihedral corner reflectors should be designed such that precise alignment of the reflectors is ensured, as three-bounce and two-bounce geometries lead to very different cross sections and hence very different inferred calibration factors.

  19. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  20. Polarimeter measures sea state characteristics using emitted infrared radiation

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Hilgeman, T.

    1977-01-01

    An infrared polarimeter, capable of operating between 1 and 12 micrometers wavelength has been used to measure the polarization of emitted radiation from the sea. The observed polarization at 10.6 micrometers from a smooth sea was found to be positive, indicating the dominance of reflected infrared sky radiation over the emitted. With the appearance of waves, the percent polarization increased, as expected, for a zenith angle well above the Brewster angle for water. This is qualitatively in accordance with a model presented to explain the behavior. Initial analyses indicate that the polarized components of the sea's emitted and reflected radiation are affected by type and direction of waves, angle of viewing, and foam. The effects of variations in these parameters require further delineation. The infrared polarimetric technique appears to be a novel new passive method for remote monitoring of waves.

  1. Micro-polarimeter for high performance liquid chromatography

    DOEpatents

    Yeung, Edward E.; Steenhoek, Larry E.; Woodruff, Steven D.; Kuo, Jeng-Chung

    1985-01-01

    A micro-polarimeter interfaced with a system for high performance liquid chromatography, for quantitatively analyzing micro and trace amounts of optically active organic molecules, particularly carbohydrates. A flow cell with a narrow bore is connected to a high performance liquid chromatography system. Thin, low birefringence cell windows cover opposite ends of the bore. A focused and polarized laser beam is directed along the longitudinal axis of the bore as an eluent containing the organic molecules is pumped through the cell. The beam is modulated by air gap Faraday rotators for phase sensitive detection to enhance the signal to noise ratio. An analyzer records the beams's direction of polarization after it passes through the cell. Calibration of the liquid chromatography system allows determination of the quantity of organic molecules present from a determination of the degree to which the polarized beam is rotated when it passes through the eluent.

  2. Real-time sub-pixel registration of imagery for an IR polarimeter

    NASA Astrophysics Data System (ADS)

    Hanks, Jonathan B.; Pezzaniti, J. Larry; Chenault, David B.; Romano, João M.

    2012-06-01

    In imaging polarimetry, special consideration must be given to ensure proper spatial registration between frames. Edge artifacts caused by the differencing of unregistered frames has the potential to create significant spurious polarization signatures. To achieve 1/10th pixel registration or better, a software based registration approach is often required. The focus of this paper is to present an efficient algorithm for real time sub-pixel registration in a division-of-time IR polarimeter based on a rotating polarizer. This algorithm has been implemented in a commercially available rotating polarizer LWIR imaging polarimeter offered by Polaris Sensor Technologies. This paper presents measurements of image nutation in a rotating polarizer LWIR imaging polarimeter and real-time registration of image data from that same polarimeter. The registration algorithm is based on an optimal 2D convolution. Examples of registered images are provided as well as estimates of residual misregistration artifacts.

  3. Digital panoramic polarimeter for remote investigatirn of an optical parameter of celestial bodies

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Delec, A. S.; Nevodovskiy, PV.; Andruk, V. M.

    2003-09-01

    Digital panoramic polarimeter is an astronomical television device with panoramic high-sensitivity receiver "superisokone", LI-804 and mechanical block which consist of the polaroid modulator and large rotating achromatic phase-shift plate.

  4. The Hertz-VPM polarimeter and applications of multiwavelength polarimetry

    NASA Astrophysics Data System (ADS)

    Krejny, Megan M.

    We present initial results from Hertz/VPM, the first submillimeter polarimeter employing the dual Variable-delay Polarization Modulator (dual-VPM). This device differs from previously used polarization modulators in that it operates in translation rather than mechanical rotation. We discuss the basic theory behind this device, and its potential advantages over the commonly used half wave plate (HWP). The dual-VPM was tested both at the Submillimeter Telescope Observatory (SMTO) and in the lab. In each case we present a detailed description of the setup. We discovered that properties of the VPM wire grids (diameter and spacing) caused behavior that differs from theoretical predictions for ideal wire grid performance. Modifying the polarimeter settings to compensate for this behavior, we found that the dual-VPM system is robust, operating with high efficiency and low instrumental polarization. This device is well suited for air and space-borne applications, and is also advantageous for multi-wavelength polarimetry applications. One such application concerns submillimeter spectropolarimetry of T Tauri Star (TTS) disks, to probe the grains in this environment. We present 350 mm polarimetry of the circumstellar disk of DG Tau. Comparison with a previous measurement made at 850 mm suggests that there is considerable structure in the submillimeter polarization spectrum. We also discuss theoretical models for polarized emission from TTS disks, both simple toy models developed at Northwestern and a more sophisticated model published more recently by J. Cho and A. Lazarian. The data do not agree with this more recent model, but it is plausible that this could be due to the larger mass of the DG Tau disk in comparison to the model disk.

  5. Recent Advances in the Exploration of the Small-Scale Structure of the Quiet Solar Atmosphere: Vortex Flows, the Horizontal Magnetic Field, and the Stokes- V Line-Ratio Method

    NASA Astrophysics Data System (ADS)

    Steiner, O.; Rezaei, R.

    2012-05-01

    We review (i) observations and numerical simulations of vortical flows in the solar atmosphere and (ii) measurements of the horizontal magnetic field in quiet Sun regions. First, we discuss various manifestations of vortical flows and emphasize the role of magnetic fields in mediating swirling motion created near the solar surface to the higher layers of the photosphere and to the chromosphere. We reexamine existing simulation runs of solar surface magnetoconvection with regard to vortical flows and compare to previously obtained results. Second, we reviews contradictory results and problems associated with measuring the angular distribution of the magnetic field in quiet Sun regions. Furthermore, we review the Stokes-V-amplitude ratio method for the lines Fe i λλ 630.15 and 630.25 nm. We come to the conclusion that the recently discovered two distinct populations in scatter plots of this ratio must not bee interpreted in terms of “uncollapsed'' and “collapsed'' fields but stem from weak granular magnetic fields and weak canopy fields located at the boundaries between granules and the intergranular space. Based on new simulation runs, we reaffirm earlier findings of a predominance of the horizontal field components over the vertical one, particularly in the upper photosphere and at the base of the chromosphere.

  6. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  7. The test of the layout of polarimeter "UFP" on the telescope AZT-2

    NASA Astrophysics Data System (ADS)

    Levchenko, T. A.; Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.; Saryboha, H. V.; Zbrutsky, O. V.; Ivakhiv, O. V.

    2016-05-01

    Main Astronomical Observatory of NAS of Ukraine in cooperation with the National Technical University of Ukraine "KPI" and National University "Lviv Polytechnic" for a long time working on the design of an optical polarimeter to study of the stratospheric layer of the Earth using of orbital satellite. During this time, was accumulated a large experience of such work, and was established a layout of compact ultraviolet polarimeter (UFP) on board of satellite

  8. Analysis of AGS polarimeter data at G{gamma}=7.5.

    SciTech Connect

    Huang, H.; Cadman, R. V.; Spinka, H. M.; Underwood, D. G.

    2003-02-18

    Data were collected with the AGS internal polarimeter at G{gamma} = 7.5 during the recent FY02 polarized proton run. The addition of new forward scintillation counters permitted an absolute calibration of the polarimeter for both nylon and carbon targets. The results are summarized, and the polarization measured at G{gamma} = 7.5 is compared to that at 200 MeV.

  9. Stokes, George Gabriel (1819-1903)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Skreen, County Sligo, Ireland, became Lucasian Professor at Cambridge, best known for his work on hydrodynamics and Stokes' law of viscosity. In 1854 he explained the Fraunhofer lines in the solar spectrum as being caused by atoms in the outer layers of the Sun absorbing certain wavelengths, but when KIRCHHOFF later published the same explanation Stokes yielded priority to his more comple...

  10. PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Ilyin, I.; Järvinen, A.; Weber, M.; Woche, M.; Barnes, S. I.; Bauer, S.-M.; Beckert, E.; Bittner, W.; Bredthauer, R.; Carroll, T. A.; Denker, C.; Dionies, F.; DiVarano, I.; Döscher, D.; Fechner, T.; Feuerstein, D.; Granzer, T.; Hahn, T.; Harnisch, G.; Hofmann, A.; Lesser, M.; Paschke, J.; Pankratow, S.; Plank, V.; Plüschke, D.; Popow, E.; Sablowski, D.

    2015-05-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92 échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 arcsec, comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérot étalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we

  11. Solution of the Navier-Stokes equations for a driven cavity

    NASA Astrophysics Data System (ADS)

    Semeraro, B. D.; Sameh, Ahmed

    1991-03-01

    The flow field in a lid driven cavity is determined by integration of the incompressible Navier-Stokes equations. The numerical integration is accomplished via an operator splitting method known as the theta-scheme. This splitting separates the problem into the solution of a quasi-stokes problem and a nonlinear convection problem. Some details of solution methods used for the two subproblems and results obtained for the driven cavity are described. The schemes developed for the quasi-Stokes problem are more advanced at this stage than those for the nonlinear problem. However, the approaches used for both parts are outlined. As a model problem, a two dimensional square cavity with sides of unit length and a lid moving with unit velocity from left to right is considered. The Navier-Stokes equations are discretized in space on a uniform staggered or MAC mesh. The time discretization is accomplished via the theta-scheme.

  12. Solution of the Navier-Stokes equations for a driven cavity

    NASA Technical Reports Server (NTRS)

    Semeraro, B. D.; Sameh, Ahmed

    1991-01-01

    The flow field in a lid driven cavity is determined by integration of the incompressible Navier-Stokes equations. The numerical integration is accomplished via an operator splitting method known as the theta-scheme. This splitting separates the problem into the solution of a quasi-stokes problem and a nonlinear convection problem. Some details of solution methods used for the two subproblems and results obtained for the driven cavity are described. The schemes developed for the quasi-Stokes problem are more advanced at this stage than those for the nonlinear problem. However, the approaches used for both parts are outlined. As a model problem, a two dimensional square cavity with sides of unit length and a lid moving with unit velocity from left to right is considered. The Navier-Stokes equations are discretized in space on a uniform staggered or MAC mesh. The time discretization is accomplished via the theta-scheme.

  13. Interpolating function and Stokes phenomena

    NASA Astrophysics Data System (ADS)

    Honda, Masazumi; Jatkar, Dileep P.

    2015-11-01

    When we have two expansions of physical quantity around two different points in parameter space, we can usually construct a family of functions, which interpolates the both expansions. In this paper we study analytic structures of such interpolating functions and discuss their physical implications. We propose that the analytic structures of the interpolating functions provide information on analytic property and Stokes phenomena of the physical quantity, which we approximate by the interpolating functions. We explicitly check our proposal for partition functions of zero-dimensional φ4 theory and Sine-Gordon model. In the zero dimensional Sine-Gordon model, we compare our result with a recent result from resurgence analysis. We also comment on construction of interpolating function in Borel plane.

  14. High-resolution, high-sensitivity, ground-based solar spectropolarimetry with a new fast imaging polarimeter. I. Prototype characterization

    NASA Astrophysics Data System (ADS)

    Iglesias, F. A.; Feller, A.; Nagaraju, K.; Solanki, S. K.

    2016-05-01

    Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance when attempting to respond to a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (~10-1 arcsec) and low noise (10-3 to 10-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims: We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Methods: We describe the instrument in depth, including the fast pnCCD camera employed, the achromatic modulator package, the main calibration steps, the effects of the modulation frequency on the levels of seeing-induced spurious signals, and the effect of the camera properties on the image restoration quality. Results: The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6%) and very low noise (4.94 e- rms). The modulator is optimized to have high (>80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals that are present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7 × 10-5) after integrating 7.66 min, (b) lower than the noise (2.3 × 10-4) after integrating 1.16 min and (c) slightly above the noise (4 × 10-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low S/N of 13.9) of an active region, we can obtain one complete set of high

  15. Stokes polarimetry imaging of dog prostate tissue

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Johnston, William K., III; Walsh, Joseph T., Jr.

    2010-02-01

    Prostate cancer is the second leading cause of death in the United States in 2009. Radical prostatectomy (complete removal of the prostate) is the most common treatment for prostate cancer, however, differentiating prostate tissue from adjacent bladder, nerves, and muscle is difficult. Improved visualization could improve oncologic outcomes and decrease damage to adjacent nerves and muscle important for preservation of potency and continence. A novel Stokes polarimetry imaging (SPI) system was developed and evaluated using a dog prostate specimen in order to examine the feasibility of the system to differentiate prostate from bladder. The degree of linear polarization (DOLP) image maps from linearly polarized light illumination at different visible wavelengths (475, 510, and 650 nm) were constructed. The SPI system used the polarization property of the prostate tissue. The DOLP images allowed advanced differentiation by distinguishing glandular tissue of prostate from the muscular-stromal tissue in the bladder. The DOLP image at 650 nm effectively differentiated prostate and bladder by strong DOLP in bladder. SPI system has the potential to improve surgical outcomes in open or robotic-assisted laparoscopic removal of the prostate. Further in vivo testing is warranted.

  16. Stokes flow in ellipsoidal geometry

    NASA Astrophysics Data System (ADS)

    Vafeas, Panayiotis; Dassios, George

    2006-09-01

    Particle-in-cell models for Stokes flow through a relatively homogeneous swarm of particles are of substantial practical interest, because they provide a relatively simple platform for the analytical or semianalytical solution of heat and mass transport problems. Despite the fact that many practical applications involve relatively small particles (inorganic, organic, biological) with axisymmetric shapes, the general consideration consists of rigid particles of arbitrary shape. The present work is concerned with some interesting aspects of the theoretical analysis of creeping flow in ellipsoidal, hence nonaxisymmetric domains. More specifically, the low Reynolds number flow of a swarm of ellipsoidal particles in an otherwise quiescent Newtonian fluid, that move with constant uniform velocity in an arbitrary direction and rotate with an arbitrary constant angular velocity, is analyzed with an ellipsoid-in-cell model. The solid internal ellipsoid represents a particle of the swarm. The external ellipsoid contains the ellipsoidal particle and the amount of fluid required to match the fluid volume fraction of the swarm. The nonslip flow condition on the surface of the solid ellipsoid is supplemented by the boundary conditions on the external ellipsoidal surface which are similar to those of the sphere-in-cell model of Happel (self-sufficient in mechanical energy). This model requires zero normal velocity component and shear stress. The boundary value problem is solved with the aim of the potential representation theory. In particular, the Papkovich-Neuber complete differential representation of Stokes flow, valid for nonaxisymmetric geometries, is considered here, which provides the velocity and total pressure fields in terms of harmonic ellipsoidal eigenfunctions. The flexibility of the particular representation is demonstrated by imposing some conditions, which made the calculations possible. It turns out that the velocity of first degree, which represents the leading

  17. Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kano, Ryohei; Bando, Takamasa; Narukage, Noriyuki; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shin-­nosuke; Hara, Hirohisa; Suematsu, Yoshinori; Giono, Gabriel; Shimizu, Toshifumi; Sakao, Taro; Ichimoto, Kiyoshi; Goto, Motoshi; Winebarger, amy; Kobayashi, Ken; Trujullo Bueno, Javier; Auchere, Frederic

    2015-01-01

    Chromosphere, the transition layer of the sun is a region to switch to the magnetic pressure dominated from plasma pressure dominated, simultaneous observation of the detailed magnetic field measurement and plasma of dynamic phenomenon here is what is the frontier of the next solar physics. As This is a challenge that has just mentioned, even the next solar observation satellite plan SOLAR-C, in the experiments we had used a NASA sounding rocket for the first time in the SOLAR-C plan, will address the chromosphere-transition layer magnetic field measurement there. It is, is a Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) plan, the linear polarization of Lyman ?? emission lines chromosphere-transition layer shoots (121.6nm) were detected in 0.1 percent of high accuracy, a new technique called Hanre effect I get the magnetic field information of chromosphere-transition layer. In Japan, the US and Europe joint observation in November 2012 as a rocket experiment is adopted to NASA this plan that full-scale start-up, start from assembly work is 2014 spring flight observation device, currently, it is where the alignment of the optical elements have been implemented. After this, it is planned to continue with the performance evaluation towards the observation implementation of summer 2015. In addition to once again explain the contents of the plan In this presentation, we report an overview of the entire development and preparation current status.

  18. High resolution confocal polarimeter for the living human retina

    NASA Astrophysics Data System (ADS)

    Lara, D.; Paterson, C.

    2011-09-01

    There is strong evidence that the living human retina has polarization signatures that could be linked to the presence of Glaucoma, an ocular disease that is the second cause of blindness in the western world. In a polarization sensitive ophthalmoscope, the amount of light that can be used is limited for the safety of the subject, and the return is typically a small fraction of the light used for illumination, of the order of 10-6. Furthermore, the acquisition rates have to be sufficiently fast to avoid eye-movement artifacts. The light-budget available to produce a polarization image with a scanning laser ophthalmoscope is typically in the order of 10 nW, and pixel acquisition sampling rates are of several MHz. We are currently developing an imaging instrument for vision research and clinical vision applications and aim to introduce it to the medical and clinical environment using objective methods of image quality assessment. Here we discuss the stringent imaging requirements, polarimeter design, and show high resolution polarization retinal images.

  19. Bragg crystal polarimeter for the Spectrum-X-Gamma mission

    NASA Technical Reports Server (NTRS)

    Holley, J.; Silver, E.; Ziock, K. P.; Novick, R.; Kaaret, P.; Weisskopf, M.; Elsner, R.; Beeman, J.

    1991-01-01

    A Bragg crystal polarimeter for the focal plane of the SODART telescope on the Spectrum-X-Gamma mission is being designed. A mosaic graphite crystal will be oriented at 45 deg to the optic axis of the telescope, thereby preferentially reflecting those X-rays which satisfy the Bragg condition and have electric vectors that are perpendicular to the plane defined by the incident and reflected photons. The reflected X-rays will be detected by an imaging proportional counter with the image providing direct X-ray aspect information. The crystal will be about 50 microns thick to allow X-rays with energies of 4 keV or greater to be transmitted to a lithium block mounted below the graphite. The lithium is used to measure the polarization of these high energy X-rays by exploiting the polarization dependence of Thomson scattering. The development of thin mosaic graphite crystals is discussed and recent reflectivity, transmission, and uniformity measurements are presented.

  20. Bragg crystal polarimeter for the Spectrum-X-Gamma mission

    SciTech Connect

    Holley, J.; Silver, E.; Ziock, K.P. ); Novick, R.; Kaaret, P. . Columbia Astrophysics Lab.); Weisskopf, M.; Elsner, R. . George C. Marshall Space Flight Center); Beeman, J. )

    1990-08-13

    We are designing a Bragg crystal polarimeter for the focal plane of the SODART telescope on the Spectrum-X-Gamma mission. A mosaic graphite crystal will be oriented at 45{degree} to the optic axis of the telescope, thereby preferentially reflecting those x-rays which satisfy the Bragg condition and have electric vectors that are perpendicular to the plane defined by the incident and reflected photons. The reflected x-rays will be detected by an imaging proportional counter with the image providing direct x-ray aspect information. The crystal will be {approx}50 {mu}m thick to allow x-rays with energies {ge}4 keV to be transmitted to a lithium block mounted below the graphite. The lithium is used to measure the polarization of these high energy x-rays by exploiting the polarization dependence of Thomson scattering. The development of thin mosaic graphite crystals is discussed and recent reflectivity, transmission, and uniformity measurements are presented. 8 refs., 11 figs., 1 tab.

  1. Soft X-ray polarimeter-spectrometer SOLPEX

    NASA Astrophysics Data System (ADS)

    Steslicki, Marek; Sylwester, Janusz; Plocieniak, Stefan; Bakala, Jaroslaw; Szaforz, Zaneta Anna; Scislowski, Daniel; Kowalinski, Miroslaw; Hernandez, Jose; Vadimovich Kuzin, Sergey; Shestov, Sergey

    2015-08-01

    We present an innovative soft X-ray polarimeter and spectrometer SOLPEX. The instrument will be mounted aboard the ISS within the Russian science complex KORTES. The measurements to be made by SOLPEX are expected to be of unprecedented quality in terms of sensitivity to detect the soft-X- ray polarization of solar emission emanating from active regions and flares in particular. Simultaneous measurements of the polarization degree and the other characteristics (eg. evolution of the spectra) constitute the last, rather unexplored area of solar X-ray spectroscopy providing substantial diagnostic potential. Second important science task to be addressed are the measurements of Doppler shifts in selected X-ray spectral emission lines formed in hot flaring sources. The novel-type Dopplerometer (flat Bragg crystal drum unit) is planned to be a part of SOLPEX and will allow to measure line Doppler shifts in absolute terms with unprecedented time resolution (fraction of a second) during the impulsive flare phases. We shall present some details of the SolpeX instrument and discuss observing sequences in a view of science objectives to be reached.

  2. A circular polarimeter for the Cosmic Microwave Background

    SciTech Connect

    Giovannini, Massimo

    2010-08-01

    A primordial degree of circular polarization of the Cosmic Microwave Background is not observationally excluded. The hypothesis of primordial dichroism can be quantitatively falsified if the plasma is magnetized prior to photon decoupling since the initial V-mode polarization affects the evolution of the temperature fluctuations as well as the equations for the linear polarization. The observed values of the temperature and polarization angular power spectra are used to infer constraints on the amplitude and on the spectral slope of the primordial V-mode. Prior to photon decoupling magnetic fields play the role of polarimeters insofar as they unveil the circular dichroism by coupling the V-mode power spectrum to the remaining brightness perturbations. Conversely, for angular scales ranging between 4 deg and 10 deg the joined bounds on the magnitude of circular polarization and on the magnetic field intensity suggest that direct limits on the V-mode power spectrum in the range of 0.01 mK could directly rule out pre-decoupling magnetic fields in the range of 10–100 nG. The frequency dependence of the signal is located, for the present purposes, in the GHz range.

  3. A polarimeter for measurement of transient retardation changes.

    PubMed

    Johnston, A R

    1969-09-01

    An electronic polarimeter is described in which a signal-sampling technique and feedback are used together to measure periodic retardation changes. A Faraday cell is arranged to feed back a rotation just sufficient to cancel that caused by the unknown retardation, so that the Faraday cell current provides the quantitative measure desired. The photomultiplier output is fed to a sampling oscilloscope in the feedback loop. The instrument is best suited for the measurement of small retardation changes, of the order of 50 mrad or less. The 6-nsec time resolution obtained was limited by the photomultiplier response; a faster detector could improve it considerably. The repeatability obtained of 10(-4) rad was determined by the usual compromise between noise, primarily photon noise, and averaging time. However, other factors limit the accuracy attainable to, at best, +/-3%, for a retardation change of ~20 mrad, while a more typical accuracy was +/-5%. Either Faraday rotation, or small rotations of the optical ellipsoid of aspecimen, could also be observed. PMID:20072532

  4. The Calibration of the PEPPo Polarimeter for Electrons and Positrons

    SciTech Connect

    Adeyemi, Adeleke Hakeem; Voutier, Eric J-.M.

    2013-06-01

    The PEPPo (Polarized Electrons for Polarized Positrons) experiment at Jefferson Laboratory investigated the polarization transfer from longitudinally polarized electrons to longitudinally polarized positrons, with the aim of developing this technology for a low energy (~MeV) polarized positron source. Polarization of the positrons was measured by means of a Compton transmission polarimeter where incoming positrons transfer their polarization into circularly polarized photons that were subsequently analyzed by a thick polarized iron target. The measurement of the transmitted photon flux with respect to the orientation of the target polarization (+-) or the helicity (+-) of the incoming leptons provided the measurement of their polarization. Similar measurements with a known electron beam were also performed for calibration purposes. This presentation will describe the apparatus and calibrations performed at the injector at the Jefferson Laboratory to measure positron polarization in the momentum range 3.2-6.2 MeV/c, specifically to quantify the positron analyzing power from electron experimental data measured over a comparable momentum range.

  5. RINGO3: a multi-colour fast response polarimeter

    NASA Astrophysics Data System (ADS)

    Arnold, D. M.; Steele, I. A.; Bates, S. D.; Mottram, C. J.; Smith, R. J.

    2012-09-01

    GRB jets contain rapidly moving electrons which will spiral around magnetic field lines. This causes them to emit polarized synchrotron emission. We have built a series of polarimeters (RINGO and RINGO2) to investigate this by measuring the polarization of optical light from GRBs at a certain single wavelength. The instruments are mounted on the Liverpool Telescope, which is a fully robotic (i.e. unmanned) telescope on La Palma which reacts to triggers from satellites such as the NASA SWIFT mission. This has had great success, with the first ever detections of early time optical polarization being made. In addition, the first measurements of the change in optical polarization from a GRB as the jet expands have recently been obtained. In this paper we describe the design and construction of RINGO3. This will be a multi-colour instrument that can observe simultaneously at three wavelengths. By doing so we will be able to unambiguously identify where in the burst the polarized emission is coming from. This will allow us to distinguish between three possibilities: (1) Magnetic instabilities generated in the shock front, (2) Line of sight effects and (3) Large-scale magnetic fields present throughout the relativistic outflow. The instrument design combines a rapidly rotating polaroid, specially designed polarization insensitive dichroic mirrors and three electron multiplying CCD cameras to provide simultaneous wavelength coverage with a time resolution of 1 second.

  6. Lifetime Estimation of a Time Projection Chamber X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Brieda, Lubos; Dickens, Patsy L.; deGarcia, Kristina Montt; Hawk, Douglas L.; Hayato, Asami; Jahoda, Keith; Mohammed, Jelila

    2013-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimeter Instrument (XPI) was designed to measure the polarization of 23 sources over the course of its 9 month mission. The XPI design consists of two telescopes each with a polarimeter assembly at the focus of a grazing incidence mirror. To make sensitive polarization measurements the GEMS Polarimeter Assembly (PA) employed a gas detection system based on a Time Projection Chamber (TPC) technique. Gas detectors are inherently at risk of degraded performance arising from contamination from outgassing of internal detector components or due to loss of gas. This paper describes the design and the materials used to build a prototype of the flight polarimeter with the required GEMS lifetime. We report the results from outgassing measurements of the polarimeter subassemblies and assemblies, enclosure seal tests, life tests, and performance tests that demonstrate that the GEMS lifetime is achievable. Finally we report performance measurements and the lifetime enhancement from the use of a getter.

  7. A low-voltage retarding-field Mott polarimeter for photocathode characterization

    SciTech Connect

    McCarter, J. L.; Stutzman, M. L.; Trantham, K. W.; Anderson, T. G.; Cook, A. M.; Gay, T. J.

    2010-02-26

    Nuclear physics experiments at Thomas Jefferson National Accelerator Facility's CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the detected count rate divided by the incident particle current, is 5.4(2)×10-4, yielding a figure-of-merit, or analyzing power squared times efficiency, of 1.0(1)×10-5. The operating parameters of this new polarimeter design are compared to previously published data for other compact Mott polarimeters of the retarding-field type.

  8. A low-voltage retarding-field Mott polarimeter for photocathode characterization

    NASA Astrophysics Data System (ADS)

    McCarter, J. L.; Stutzman, M. L.; Trantham, K. W.; Anderson, T. G.; Cook, A. M.; Gay, T. J.

    2010-06-01

    Nuclear physics experiments at Thomas Jefferson National Accelerator Facility's CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the detected count rate divided by the incident particle current, is 5.4(2)×10 -4, yielding a figure-of-merit, or analyzing power squared times efficiency, of 1.0(1)×10 -5. The operating parameters of this new polarimeter design are compared to previously published data for other compact Mott polarimeters of the retarding-field type.

  9. Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  10. Progress in Airborne Polarimeter Inter Comparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  11. Run05 Proton Beam Polarization Measurements by pC-Polarimeter (ver. 1.1)

    SciTech Connect

    Nakagawa,I.; Alekseev, I.; Bazilevsky, A.; Bravar, A.; Bunce, G.; Dhawan, S.; Eyser, K.O.; Gill, R.; Haeberli, W.; Huang, H.; Makdisi, Y.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.N.; Wise, T.; Wood, J.; Yip, K.; Zelenski, A.

    2008-07-01

    The polarization of the proton beams [1, 2] at the Relativistic Heavy Ion Collider (RHIC)[3] RHIC ring. The H-Jet polarimeter is located at the collision point allowing measurements of absolute normalization is provided by the hydrogen polarimeter, which measures over 1 {approx} 2 another measurement rather than measuring the absolute polarization. both beams. Two identical pC-polarimeters are equipped in the yellow and blue rings, where carbon ribbon target, providing fast feedback to beam operations and experiments. The days to obtain {approx} 5% statistical uncertainty (in Run05). Thus, the operation of the carbon is measured using both an atomic beam source hydrogen gas jet (H-Jet)[4, 5] and proton-carbon polarimeters was focused on better control of relative stability between one measurement to statistical accuracy within 20 to 30 seconds using an ultra-thin (typically 6 {approx} 8 {micro}g/cm{sup 2}) the rings are separated. The pC-polarimeter measures relative polarization to a few percent.

  12. Airborne polarimeter intercomparison for the NASA Aerosol-Cloud-Ecosystem (ACE) mission

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K. D.; Redemann, J.

    2014-12-01

    The Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeter prototypes, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  13. On entanglement of light and Stokes parameters

    NASA Astrophysics Data System (ADS)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-08-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements.

  14. The Sir Ludwig Guttmann lecture 2012: the contribution of Stoke Mandeville Hospital to spinal cord injuries.

    PubMed

    Frankel, H L

    2012-11-01

    This Ludwig Guttmann Lecture was presented at the 2012 meeting of the International Spinal Cord Society in London. It describes the contribution of Stoke Mandeville Hospital to the field of spinal cord injuries. Dr Ludwig Guttmann started the Spinal Unit at Stoke Mandeville Hospital in 1944 and introduced a novel, comprehensive method of care, which included early admission, prevention and treatment of spinal cord injury related complications, active rehabilitation and social reintegration. Soon a dedicated specialist team was assembled and training of visitors was encouraged, some of whom went on to start their own spinal units. Research went hand in hand with clinical work, and over the years more than 500 scientific contributions from Stoke Mandeville have been published in peer reviewed journals and books. Guttmann introduced sport as a means of physical therapy, which soon lead to organised Stoke Mandeville Games, first national in 1948, then international in 1952 and finally the Paralympic Games in 1960. Stoke Mandeville is regarded as the birthplace of the Paralympic movement, and Guttmann was knighted in 1966. Stoke Mandeville is also the birthplace of the International Medical Society of Paraplegia, later International Spinal Cord Society, which was formed during the International Stoke Mandeville Games in 1961, and of the Society's medical journal Paraplegia, later Spinal Cord, first published in 1963. Guttmann's followers have continued his philosophy and, with some new developments and advances, the present day National Spinal Injuries Centre at Stoke Mandeville Hospital provides comprehensive, multidisciplinary acute care, rehabilitation and life-long follow-up for patient with spinal cord injuries of all ages. PMID:23045299

  15. The RHIC p-Carbon CNI Polarimeter Upgrade For The Beam Polarization And Intensity Measurements

    SciTech Connect

    Zelenski, A.; Bazilevski, A.; Bunce, G.; Gill, R.; Huang, H.; Mahler, G.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, T.; Steski, D.; Sivertz, M.

    2009-08-04

    Proton polarization measurements in the AGS and RHIC (Relativistic Heavy Ion Collider at the beam energies 24-250 GeV) are based on proton-carbon and proton-proton elastic scattering in the Coulomb Nuclear Interference (CNI) region. Polarimeter operation in the scanning mode also gives polarization profile and beam intensity profile (beam emittance) measurements. Bunch by bunch emittance measurement is a very powerful tool for machine setup. Presently, the polarization and beam intensity profile measurements (in both vertical and horizontal planes) are restricted by the long target switching time and possible target destruction during this complicated motion. The RHIC polarimeters were operated near the limit of the counting rate for present silicon strip detectors. The ongoing polarimeter upgrade for the 2009 run will address all these problems. The upgrade should allow significant reduction of the polarization measurement errors by making feasible the complete polarization measurements, which includes polarization profiles in both the horizontal and vertical planes.

  16. Design of a celestial Thomson-scattering X-ray polarimeter.

    NASA Technical Reports Server (NTRS)

    Landecker, P. B.

    1972-01-01

    A general discussion of the scientific importance and status of stellar X-ray polarimetry is presented. A stellar X-ray polarimeter designed to fit into the bottom half of the NASA OSO-1 wheel compartment or other similar spacecraft is described. In this design, the linear polarization is obtained as a function of energy. The sensitivity of the polarimeter in the 4-24 keV energy range was optimized with the aid of a Monte Carlo simulation computer program and is given for several important celestial X-ray sources. Estimates of sensitivity thresholds for a much larger polarimeter, suitable for flight in the NASA High-Energy Astronomy Observatory (HEAO), are also given. The minimum detectable polarization for several X-ray sources is given.

  17. A high sensitivity polarimeter for the direct detection and characterization of extra-solar planets

    NASA Astrophysics Data System (ADS)

    Hough, James H.; Lucas, Philip W.; Bailey, Jeremy A.; Tamura, Motohide

    2003-02-01

    We are constructing a high sensitivity optical polarimeter capable of detecting fractional polarization levels below 10-6. The science goal is to directly detect extra-solar planets (ESP), in contrast to the indirect methods such as radial velocity measurements. The polarimeter will detect starlight scattered from the atmosphere of the planet as a polarisation signal thereby giving information on the planetary atmospheres. The radius of the planet and the planet temperature can be determined from the measured albedo. The position angle of polarisation will enable the mass of planets, detected through radial velocity measurements, to be determined without the uncertainty of the orbit inclination (Msini). The polarimeter has an essentially simple and classical design but is able to take advantage, inter alia, of modern detector technology.

  18. POLIX: A Thomson X-ray polarimeter for a small satellite mission

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin

    2016-07-01

    POLIX is a Thomson X-ray polarimeter for a small satellite mission of ISRO. The instrument consists of a collimator, a scatterer and a set proportional counters to detect the scattered X-rays. We will describe the design, specifications, sensitivity, and development status of this instrument and some of the important scientific goals. This instrument will provide unprecedented opportunity to measure X-ray polarisation in the medium energy range in a large number of sources of different classes with a minimum detectable linear polarisation degree of 2-3%. The prime objects for observation with this instrument are the X-ray bright accretion powered neutron stars, accreting black holes in different spectral states, rotation powered pulsars, magnetars, and active galactic nuclei. This instrument will be a bridge between the soft X-ray polarimeters and the Compton polarimeters.

  19. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors

  20. Coherent anti-stokes Raman spectroscopy system for point temperature and major species concentration measurement

    SciTech Connect

    Singh, J.P.; Yueh, Fang-Yu

    1993-10-01

    The Coherent anti-Stokes Raman Spectroscopy system (CARS) has been developed as a laser-based, advanced, combustion-diagnostic technique to measure temperature and major species concentration. Principles of operation, description of the system and its capabilities, and operational details of this instrument are presented in this report.

  1. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  2. A 1.2--Millimeter Broad--Band Polarimeter

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Walker, Christopher K.; Young, Erick T.

    1996-05-01

    We describe a 1.2--millimeter polarimeter to be used on the Steward Observatory and Max--Planck--Institut fur Radioastronomie 10--meter Submillimeter Telescope Observatory. The construction, performance parameters, and scientific purpose of the instrument are presented. The detector is a Ge bolometer with a Si absorber operated in a cavity cooled to 0.36 K by a liquid He(3) refrigerator. The bandpass has a central wavelength of 1.2 mm and a width of 0.3 mm. The system noise equivalent power is 1.5*E(-14) W Hz(-{1/2}) at 20 Hz. Polarimetric modulation is accomplished with a room temperature, rotating Rexolite half-wave plate. Unidirectional grooves provide the lambda /2 phase shift between the orthogonal senses of polarization. The polarization analyzer is a stationary, room temperature, unidirectional wire grid that transmits only one sense of polarization with 99% efficiency. The system polarimetric efficiency is 87% and the laboratory instrumental polarization is a well defined 3.7%. Detection of a 1% linear polarization is possible at the several sigma level. The primary scientific goal of this instrument is to probe the magnetic field orientations in the protostellar dust cores of molecular clouds. Non--spherical dust grains are aligned in the presence of a magnetic field resulting in linear polarization of the far--infrared thermal dust emission perpendicular to the magnetic field vector. Observed field orientations will be compared to protostellar molecular outflow orientations and magnetic fields on larger scales. With these comparisons we will assess the role of magnetic fields in cloud collapse and star formation.

  3. Bandwidth and Noise in Spatiotemporally Modulated Mueller Matrix Polarimeters

    NASA Astrophysics Data System (ADS)

    Vaughn, Israel Jacob

    improved by 300% over a conventional dual rotating retarder Mueller matrix polarimeter. Reconstruction results from the physical instrument are presented, and issues with the implemented system design are discussed.

  4. A precise in situ calibration of the RHIC H-Jet polarimeter

    SciTech Connect

    Poblaguev, A. A.

    2014-03-05

    Two new methods of calibration of the hydrogen jet target polarimeter (H-Jet) at RHIC are discussed. First method is based on the measurement of low amplitude signal time of fast particles penetrating through detector. The second, geometry based, method employs correlation between z-coordinate of the recoil proton and its kinetic energy. Both methods can be used for in situ calibration of the H-Jet polarimeter. These two methods are compared with a traditional calibration of the H-Jet which uses α-sources.

  5. High-precision polarimetry at the Mont-Mégantic Observatory with the new polarimeter POMM

    NASA Astrophysics Data System (ADS)

    Bastien, Pierre; Hernandez, Olivier; Albert, Loïc.; Artigau, Étienne; Doyon, René; Drissen, Laurent; Lafrenière, David; Moffat, Antony F. J.; St-Louis, Nicole

    2014-07-01

    A new polarimeter has been built for the "Observatoire du Mont-Mégantic" (POMM) and is now in commissioning phase. It will allow polarization measurements with a precision of 10-6, an improvement by a factor of 100 over the previous observatory polarimeter. The characteristics of the instrument that allow this goal are briefly discussed and the planned science observations are presented. They include exoplanets near their host star (hot Jupiters), transiting exoplanets, stars with debris disks, young stars with proto-planetary disks, brown dwarfs, massive Wolf-Rayet stars and comets. The details of the optical and mechanical designs are presented in two other papers.

  6. The project of installing a ZIMPOL_3 polarimeter at GREGOR in Tenerife

    NASA Astrophysics Data System (ADS)

    Bianda, M.; Ramelli, R.; Stenflo, J.; Berdyugina, S.; Gisler, D.; Defilippis, I.; Bello González, N.

    A project of collaboration between Kiepenheuer Institut für Sonnenphysik, KIS, and Istituto Ricerche Solari Locarno, IRSOL, includes the installation of a ZIMPOL_3 high resolution polarimeter at the 1.5 meter aperture solar telescope GREGOR in Tenerife. Important scientific topics are expected to be investigated, in particular in the case of events showing faint amplitude polarization signatures like scattering polarization effects, and the Hanle effect. This project has also a technical importance, this combination can be used as test bench for future polarimeters to be installed on the new generation solar telescopes.

  7. Multilayer based soft-x-ray polarimeter at MAX IV Laboratory.

    PubMed

    Grizolli, Walan; Laksman, Joakim; Hennies, Franz; Jensen, Brian Norsk; Nyholm, Ralf; Sankari, Rami

    2016-02-01

    A high precision five rotation-axes polarimeter using transmission multilayers as polarizers and reflection multilayers as analyzers has been designed and manufactured. To cover the extreme ultraviolet regime, Mo/Si, Cr/C, Sc/Cr, and W/B4C multilayers for transmission and reflection have also been designed and produced. The polarimeter mechanics is supported on a hexapod to simplify the alignment relative to photon beam. The instrument is designed so that it can be easily transferred between different beamlines. PMID:26931886

  8. Multilayer based soft-x-ray polarimeter at MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Grizolli, Walan; Laksman, Joakim; Hennies, Franz; Jensen, Brian Norsk; Nyholm, Ralf; Sankari, Rami

    2016-02-01

    A high precision five rotation-axes polarimeter using transmission multilayers as polarizers and reflection multilayers as analyzers has been designed and manufactured. To cover the extreme ultraviolet regime, Mo/Si, Cr/C, Sc/Cr, and W/B4C multilayers for transmission and reflection have also been designed and produced. The polarimeter mechanics is supported on a hexapod to simplify the alignment relative to photon beam. The instrument is designed so that it can be easily transferred between different beamlines.

  9. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    SciTech Connect

    Engels, Ralf Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Schieck, Hans Paetz gen.

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  10. Absolute polarimeter for the proton-beam energy of 200 MeV

    SciTech Connect

    Zelenski, A. N.; Atoian, G.; Bogdanov, A. A.; Nurushev, S. B.; Pylaev, F. S.; Raparia, D.; Runtso, M. F.; Stephenson, E.

    2013-12-15

    A polarimeter is upgraded and tested in a 200-MeV polarized-proton beam at the accelerator-collider facility of the Brookhaven National Laboratory. The polarimeter is based on the elastic polarizedproton scattering on a carbon target at an angle of 16.2°, in which case the analyzing power is close to unity and was measured to a very high degree of precision. It is shown that, in the energy range of 190–205 MeV, the absolute polarization can be measured to a precision better than ±0.5%.

  11. Characterization of a visible spectrum division-of-focal-plane polarimeter.

    PubMed

    York, Timothy; Gruev, Viktor

    2012-08-01

    The development of high resolution division-of-focal-plane polarimeters in the visible spectrum allows real-time capture of two chief properties of interest, the degree of linear polarization and the angle of polarization. The accuracy of these two parameters can be influenced by a number of factors in the imaged scene, from the incident intensity and wavelength to the lens used for image capture. The alignment, transmission, and contrast ratios of the pixel matched filters also impact the measured parameters. A system of measurements is presented here that shows how these factors can determine the quality of a division-of-focal-plane polarimeter. PMID:22859027

  12. High purity efficient first Stokes Raman laser

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Liu, Qinyong; Li, Daijun; Du, Keming

    2015-02-01

    The subject of the solid-state Raman frequency conversion to the yellow frequency spectra has been an active topic since the mid 1990's, because of its application in bio-medical and astronomy fields. However, the yellow laser performance is often limited because of the cascade conversion to second or higher Stokes. This cascade conversion not only limits the conversion efficiency and the output power of the first Stokes, but also degrades the pulse and the beam profile of the first Stokes. We present a type of polarization coupled Raman resonator, in which the higher order ( the second Stokes and higher ) laser output can be dramatically suppressed. Our Raman resonator is pumped by a Q-switched and frequency doubled slab laser, and we can get an almost pure (P559/(P559 +P532)>99%) 559 nm yellow light output with an efficiency over 39% from 532 nm to 559 nm. The resonator includes a high reflection rear mirror, a KGW crystal, a polarization coupled input/output element, and a high reflection output coupler of 559 nm (R559 nm = 0.6). Furthermore, we have proposed an improvement of this polarization coupled Raman resonator. The theoretical calculations of the temporal and spatial dependent Raman conversion equations show that the conversion efficiency of the first order Stokes is greatly enhanced with an additionalλ/2 waveplate for 589 nm and the BBO crystal.

  13. The Thermal and Magnetic Structure of Umbral Dots from the Inversion of High-Resolution Full Stokes Observations

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.; Martínez Pillet, V.; Sobotka, M.; Vázquez, M.

    2004-10-01

    This paper presents the analysis of high-resolution Stokes observations of eight different umbral dots in a sunspot. The spectra were recorded with the La Palma Stokes Polarimeter, attached to the Swedish Vacuum Solar Telescope. The observed line profiles have been inverted to yield the height stratifications of temperature, magnetic field, and line-of-sight velocity, as well as their respective Wilson depressions. We report on systematic differences in the properties of umbral dots with respect to the nearby umbra, including small upflows (~100 m s-1), higher temperatures (~1 kK), and weaker fields (~500 G) with more horizontal orientations (~10°). The field weakening is strongly correlated with the Wilson depression, suggesting that it may be due to an opacity effect (as one is looking at higher layers). The inclination excess, on the other hand, is real and cannot be ascribed to formation height issues. The results obtained from our semiempirical modeling are discussed within the context of the currently existing scenarios for the subsurface structure of sunspots. The observational signatures revealed by our analysis fit well within both the ``spaghetti'' and the monolithic models.

  14. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  15. About the Regularized Navier Stokes Equations

    NASA Astrophysics Data System (ADS)

    Cannone, Marco; Karch, Grzegorz

    2005-03-01

    The first goal of this paper is to study the large time behavior of solutions to the Cauchy problem for the 3-dimensional incompressible Navier Stokes system. The Marcinkiewicz space L3,∞ is used to prove some asymptotic stability results for solutions with infinite energy. Next, this approach is applied to the analysis of two classical “regularized” Navier Stokes systems. The first one was introduced by J. Leray and consists in “mollifying” the nonlinearity. The second one was proposed by J.-L. Lions, who added the artificial hyper-viscosity (-Δ)ℓ/ 2, ℓ > 2 to the model. It is shown in the present paper that, in the whole space, solutions to those modified models converge as t → ∞ toward solutions of the original Navier Stokes system.

  16. Stokes equation in a toy CD hovercraft

    NASA Astrophysics Data System (ADS)

    de Izarra, Charles; de Izarra, Grégoire

    2011-01-01

    This paper deals with the study of a toy CD hovercraft used in the fluid mechanics course for undergraduate students to illustrate the lubrication theory described by the Stokes equation. An experimental characterization of the toy hovercraft (measurements of the air flow value, of the pressure in the balloon and of the thickness of the air film under the hovercraft) allows us to evaluate a reduced Reynolds number R*. Since R* < 1, it is possible to simplify the Navier-Stokes equation that is reduced to the Stokes equation, on the basis of the lubrication theory. The pressure gradient in the air flow is calculated, allowing us to establish the lifting force applied on the toy hovercraft. In addition, these results are applied to a larger scale hovercraft.

  17. Tunable anti-Stokes Raman laser

    SciTech Connect

    White, J.C.

    1984-12-04

    An anti-Stokes Raman laser is disclosed which is tunable over a range of 10-70 cm-/sup 1/. An alkali halide is used as the lasing medium and a metastable halide population inversion is created with respect to the ground state of the halide by selective photodissociation of the alkali halide. A pump laser is then employed to move the population from the metastable state to a region near an intermediate state of the halide. The population subsequently falls back to the initial ground state, thereby creating the anti-Stokes Raman emission. Since the intensity of the photodissociation is directly proportional to the amount of population inversion achieved, and hence, to the region the population may be pumped to, the tuning of the output anti-Stokes Raman lasing is a function of the intensity of the initial photodissoiation.

  18. Full Stokes glacier model on GPU

    NASA Astrophysics Data System (ADS)

    Licul, Aleksandar; Herman, Frédéric; Podladchikov, Yuri; Räss, Ludovic; Omlin, Samuel

    2015-04-01

    Two different approaches are commonly used in glacier ice flow modeling: models based on asymptotic approximations of ice physics and full stokes models. Lower order models are computationally lighter but reach their limits in regions of complex flow, while full Stokes models are more exact but computationally expansive. To overcome this constrain, we investigate the potential of GPU acceleration in glacier modeling. The goal of this preliminary research is to develop a three-dimensional full Stokes numerical model and apply it to the glacier flow. We numerically solve the nonlinear Stokes momentum balance equations together with the incompressibility equation. Strong nonlinearities for the ice rheology are also taken into account. We have developed a fully three-dimensional numerical MATLAB application based on an iterative finite difference scheme. We have ported it to C-CUDA to run it on GPUs. Our model is benchmarked against other full Stokes solutions for all diagnostic ISMIP-HOM experiments (Pattyn et al.,2008). The preliminary results show good agreement with the other models. The major advantages of our programming approach are simplicity and order 10-100 times speed-up in comparison to serial CPU version of the code. Future work will include some real world applications and we will implement the free surface evolution capabilities. References: [1] F. Pattyn, L. Perichon, A. Aschwanden, B. Breuer, D.B. Smedt, O. Gagliardini, G.H. Gudmundsson, R.C.A. Hindmarsh, A. Hubbard, J.V. Johnson, T. Kleiner, Y. Konovalov, C. Martin, A.J. Payne, D. Pollard, S. Price, M. Ruckamp, F. Saito, S. Sugiyama, S., and T. Zwinger, Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM), The Cryosphere, 2 (2008), 95-108.

  19. Preflight performance studies of the PoGOLite hard X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Jackson, M.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Takahashi, H.; Pearce, M.

    2016-01-01

    Polarimetric studies of astrophysical sources can make important contributions to resolve the geometry of the emitting region and determine the photon emission mechanism. PoGOLite is a balloon-borne polarimeter operating in the hard X-ray band (25-240 keV), with a Pathfinder mission focussing on Crab observations. Within the polarimeter, the distribution of Compton scattering angles is used to determine the polarisation fraction and angle of incident photons. To assure an unbiased measurement of the polarisation during a balloon flight it is crucial to characterise the performance of the instrument before the launch. This paper presents the results of the PoGOLite calibration tests and simulations performed before the 2013 balloon flight. The tests performed confirm that the polarimeter does not have any intrinsic asymmetries and therefore does not induce bias into the measurements. Generally, good agreement is found between results from test data and simulations which allows the polarimeter performance to be estimated for Crab observations.

  20. The GEMS X-Ray Polarimeter: Instrument Concept and Calibration Requirements

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith

    2010-01-01

    The instrument and detector concepts for the Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimetry mission will be presente d. The calibration requirements for astrophysical X-ray polarimeters in general and GEMS in particular will be discussed.

  1. A Novel Spin-Light Polarimeter for the Electron Ion Collider

    NASA Astrophysics Data System (ADS)

    Mohanmurthy, Prajwal; Dutta, Dipangkar

    2013-04-01

    High precision polarimetry is a pre-requisite for the suite of precision experiments being planned for the proposed Electron Ion Collider. A novel polarimeter based on the asymmetry in the spacial distribution of the spin light component of synchrotron radiation will make for a fine addition to the existing-conventional Møller and Compton polarimeters. The spin light polarimeter consists of a set of wiggler magnet along the beam that generate synchrotron radiation. The spacial distribution of synchrotron radiation will be measured by an ionization chamber. The up-down (below and above the wiggle) spacial asymmetry in the transverse plain is used to quantify the polarization of the beam. As a part of the design process, the fringe fields of the wiggler magnet was simulated using a 2-D magnetic field simulation toolkit called Poisson Superfish, which is maintained by Los Alamos National Laboratory. The effects of the fringe field was found to be negligible. Lastly, a full fledged GEANT-4 simulation was built to study the response of the ionization chamber. The results from all the simulations carried out, the preliminary design parameters of the polarimeter and its impact will be discussed.

  2. Examining IFOV error and demodulation strategies for infrared microgrid polarimeter imagery

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Tyo, J. Scott; LaCasse, Charles F.; Black, Wiley T.

    2009-08-01

    For the past several years we have been working on strategies to mitigate the effects of IFOV errors on LWIR microgrid polarimeters. In this paper we present a detailed, theoretical analysis of the source of IFOV error in the frequency domain, and show a frequency domain strategy to mitigate those effects.

  3. Stellar X-ray polarimeter polarizer development and calibration at LEA/LLNL

    SciTech Connect

    Ziock, K.; Silver, E.; Raffanti, M.

    1993-12-31

    A large area thin graphite crystal and a lithium scattering block are used as the polarization sensitive elements of the Stellar X-Ray Polarimeter (SXRP). The authors discuss the construction, selection and characterization of these two polarizing elements. In addition, they describe the plans for calibration of the completed instrument and the facility where it will be conducted.

  4. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    SciTech Connect

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  5. Analysis of the new polarimeter for the Marshall Space Flight Center vector magnetograph

    NASA Technical Reports Server (NTRS)

    West, E. A.

    1985-01-01

    The magnetograph was upgraded in both electronic control of the magnetograph hardware and in the polarization optics. The problems associated with the orignal polarimeter were: (1) field of view errors associated with the natural birefringence of the KD*P crystals; (2.) KD*P electrode failure due to the halfwave dc voltage required in one of the operational sequences; and (3) breakdown of the retardation properties of some KD*Ps when exposed to a zero to halfwave modulation (DC) scheme. The new polarimeter gives up the flexibility provided by two variable waveplates to adjust the retardances of the optics for a particular polarization measurement, but solves the problems associated with the original polarimeter. With the addition of the quartz quarterwave plates, a new optical alignment was developed to allow the remaining KD*P to correct for errors in the waveplates. The new optical alignment of the polarimeter is prescribed. The various sources of error, and how those errors are minimized so that the magnetograph can look at the transverse field in real time are discussed.

  6. Estimators for overdetermined linear Stokes parameters

    NASA Astrophysics Data System (ADS)

    Furey, John

    2016-05-01

    The mathematics of estimating overdetermined polarization parameters is worked out within the context of the inverse modeling of linearly polarized light, and as the primary new result the general solution is presented for estimators of the linear Stokes parameters from any number of measurements. The utility of the general solution is explored in several illustrative examples including the canonical case of two orthogonal pairs. In addition to the actual utility of these estimators in Stokes analysis, the pedagogical discussion illustrates many of the considerations involved in solving the ill-posed problem of overdetermined parameter estimation. Finally, suggestions are made for using a rapidly rotating polarizer for continuously updating polarization estimates.

  7. Stokes parameters in undergraduate laboratory exercises

    NASA Astrophysics Data System (ADS)

    Topasna, Gregory A.; Topasna, Daniela M.

    2009-06-01

    Polarization is a concept most students readily understand in terms of the preferential direction of electric field vectors. The visualization of the electric field component of an electromagnetic wave facilitates the understanding of a large body of knowledge concerning propagation and measurement of completely and partially polarized light. Little known to undergraduate students, however, is the Stokes parameters and students typically receive a cursory treatment regarding their usefulness in describing and measuring polarized light in a laboratory or astronomical setting. We present laboratory exercises where students use Stokes parameters when measuring and describing the polarization of electromagnetic radiation and in the statistical analysis of polarized light.

  8. Stokes Equation in a Toy CD Hovercraft

    ERIC Educational Resources Information Center

    de Izarra, Charles; de Izarra, Gregoire

    2011-01-01

    This paper deals with the study of a toy CD hovercraft used in the fluid mechanics course for undergraduate students to illustrate the lubrication theory described by the Stokes equation. An experimental characterization of the toy hovercraft (measurements of the air flow value, of the pressure in the balloon and of the thickness of the air film…

  9. Stokes constants for a singular wave equation

    SciTech Connect

    Linnaeus, Staffan

    2005-05-01

    The Stokes constants for arbitrary-order phase-integral approximations are calculated when the square of the wave number has either two simple zeros close to a second-order pole or one simple zero close to a first-order pole. The treatment is based on uniform approximations. All parameters may assume general complex values.

  10. The Classical Version of Stokes' Theorem Revisited

    ERIC Educational Resources Information Center

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  11. Stokely Carmichael: The Story of Black Power.

    ERIC Educational Resources Information Center

    Johnson, Jacqueline

    This biography for younger readers presents the life of Stokely Carmichael, who made famous the phrase "Black Power" as he fought for the rights of black people in the United States and who later settled in Africa, where he organizes young Africans to work for their rights. The book is introduced by an overview of the civil rights movement by…

  12. Mapping the energy distribution of SERRS hot spots from anti-Stokes to Stokes intensity ratios.

    PubMed

    dos Santos, Diego P; Temperini, Marcia L A; Brolo, Alexandre G

    2012-08-15

    The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped. PMID:22804227

  13. Observation of anomalous Stokes versus anti-Stokes ratio in MoTe2 atomic layers

    NASA Astrophysics Data System (ADS)

    Goldstein, Thomas; Chen, Shao-Yu; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    We grow hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor, with chemical vapor transport methods and investigate its atomic layers with Stokes and anti-Stokes Raman scattering. We report observation of all six types of zone center optical phonons. Quite remarkably, the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, creating an illusion of 'negative temperature'. This effect is tunable, and can be switched from anti-Stokes enhancement to suppression by varying the excitation wavelength. We interpret this observation to be a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center, which are robust even for multiple layers of MoTe2. The intense anti-Stokes Raman scattering provides a cooling channel for the crystal and opens up opportunities for laser cooling of atomically thin TMDC semiconductor devices. Supported by the University of Massachusetts Amherst, the National Science Foundation Center for Hierarchical Manufacturing (CMMI-1025020) and Office of Emerging Frontiers in Research and Innovation (EFRI-1433496).

  14. The design of a polarimeter and its use for the study of the variation of downwelling polarized radiance distribution with depth in the ocean

    NASA Astrophysics Data System (ADS)

    Bhandari, Purushottam

    The spectral polarized radiance distribution provides the most complete description of the light field that can be measured. However, this is a very difficult parameter to measure near the surface because of its large dynamic range, dependence on incoming sky conditions, and waves at the air-sea interface. The measurement of the Stokes vector of the downwelling polarized light field requires the combination of at least four images, all of which must be obtained simultaneously. To achieve this, a new polarimeter (which we call DPOL) has been designed, characterized, calibrated and deployed. The description of the DPOL, its calibrations and characterizations are discussed. The uncertainties in the retrieval of Stokes vector and other derived parameters are also discussed. This instrument is equipped with four fish-eye lenses (180° field of view) with polarizers behind each lens in a different orientation, a coherent optical fiber bundle with 4 arms, a spectral filter changer assembly and a charged coupled-device (CCD) imaging camera. With this system, a single image contains 4 separate fisheye images, each a whole hemisphere of the same scene, each with different polarization information. Using these 4 images and applying appropriate calibration parameters allows us to calculate the four-element Stokes vector and then the total degree of polarization and the angle of plane of polarization of the incoming light field in a hemisphere of desired directions. Under the Office of Naval Research RaDyO (Radiance under a Dynamic Ocean) program, DPOL has been used in the Santa Barbara Channel and Hawaii field experiments. In most cases, data on sky polarization were collected with a separate camera (Sky-Cam) simultaneously with the DPOL. The data and results with these two camera systems in these experiments are presented and are compared. Data on the inherent optical properties of water from the same field experiments collected by collaborators will be shown. Our

  15. The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Florén, H.-G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; Rydström, S.; Takahashi, H.; Lind, J.; Strömberg, J.-E.; Welin, O.; Iyudin, A.; Shifrin, D.; Pearce, M.

    2016-02-01

    In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.

  16. The development of the imaging polarimeter's polarizer on the basis of the polarizing film

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.

    2015-07-01

    Work has begun on the developing of the scientific equipment "Spectrometer polarimeter", which is planned as one of five devices that form part of the Russian-Ukrainian space experiment "Planetary Monitoring". The devices are designed to form images of celestial objects in the focal plane of a planetary telescope (PT-600) and to register spectral and polarimetric information on gas and aerosol composition of the atmospheres of planets and physics and chemical properties of the surface layers of atmosphereless astronomical bodies. A model of a polarizer based on the use of polarizing films has been designed. This model can be used in the spectrometer-polarimeter. The results of the investigation of the polarizer in the spectral range 420-850 nm are given.

  17. The Bragg Reflection Polarimeter On the Gravity and Extreme Magnetism Small Explorer Mission

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Kaaret, P.; GEMS Team

    2011-05-01

    The strong gravity associated with black holes warps the spacetime outside of the event horizon, and it is predicted that this will leave characteristic signatures on the polarization of X-ray emission originating in the accretion disk. The Gravity and Extreme Magnetism Small Explorer (GEMS) mission will be the first observatory with the capability to make polarization measurements with enough sensitivity to quantitatively test this prediction. Students at the University of Iowa are currently working on the development of the Bragg Reflection Polarimeter (BRP), a soft X-ray polarimeter, sensitive at 500 eV, that is the student experiment on GEMS. The BRP will complement the main experiment by making a polarization measurement from accreting black holes below the main energy band (2-10 keV). This measurement will constrain the inclination of the accretion disk and tighten measurements of black hole spin.

  18. The Bragg Reflection Polarimeter On the Gravity and Extreme Magnetism Small Explorer Mission

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Griffiths, S.; Daly, R.; Prieskorn, Z.; Marlowe, H.; Kaaret, P.; GEMS Team

    2011-09-01

    The strong gravity associated with black holes warps the spacetime outside of the event horizon, and it is predicted that this will leave characteristic signatures on the polarization of X-ray emission originating in the accretion disk. The Gravity and Extreme Magnetism Small Explorer (GEMS) mission will be the first observatory with the capability to make polarization measurements with enough sensitivity to quantitatively test this prediction. Students at the University of Iowa are currently working on the development of the Bragg Reflection Polarimeter (BRP), a soft X-ray polarimeter sensitive at 500 eV, that is the student experiment on GEMS. The BRP will complement the main experiment by making a polarization measurement from accreting black holes below the main energy band (2-10 keV). This measurement will constrain the inclination of the accretion disk and tighten measurements of black hole spin.

  19. Elastic scattering polarimeter for a polarized antiproton beam at U-70 accelerator of IHEP

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. A.; Chetvertkov, M. A.; Chetvertkova, V. A.; Garkusha, V. I.; Meschanin, A. P.; Mochalov, V. V.; Nurusheva, M. B.; Nurushev, S. B.; Ridiger, A. V.; Rykov, V. L.; Semenov, P. A.; Strikhanov, M. N.; Vasiliev, A. N.; Zapolsky, V. N.

    2016-02-01

    The absolute polarimeter based on the elastic p¯p-scattering in the diffraction kinematic regions with the total momentum transfer squared coverage of 0.1 < - t < 0.3 (GeV/c)2 is proposed for the polarized antiproton beam at the U-70 proton synchrotron of IHEP. It is shown that it would take ˜200-400 hours for measuring the beam polarization at the statistical errors of ΔPB/PB ≃10-15%. These time estimates include also the time which is necessary for the measurements of an analyzing power AN, using a polarized target. Besides the measurements of beam polarizations, the proposed polarimeter provides an opportunity for carrying out the experimental studies of the small momentum transfers physics which would be a valuable enrichment of the SPASCHARM experiment capabilities and its physics program.

  20. SXRP - An X-ray polarimeter for the SPECTRUM-X-Gamma mission

    NASA Technical Reports Server (NTRS)

    Costa, E.; Piro, L.; Soffitta, P.; Massaro, E.; Matt, G.; Perola, G. C.; Giarrusso, S.; La Rosa, G.; Manzo, G.; Santangelo, A.

    1992-01-01

    The Stellar X-ray Polarimeter (SXRP) is a focal plane instrument which will be flown on the SPECTRUM-X-Gamma mission in 1993. The polarimeter is composed of two separate instruments: the first exploits the dependence on the polarization of the Bragg reflection from a graphite crystal, and of the Thomson scattering from a metallic lithium target. The second instrument makes use of the recently discovered polarization dependence of X-ray photoemission from CsI. The SXRP will permit sensitive measurements of several classes of galactic X-ray sources, such as X-ray pulsars, black-hole candidates and supernova remnants. Moreover, and for the first time, SXRP will be able to perform highly sensitive measurements of the brightest extragalactic sources.

  1. Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)

    NASA Astrophysics Data System (ADS)

    Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.

    2016-04-01

    The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.

  2. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Kirbiyik, Halil; Bayar, Cevdet; Khamitov, Irek; Kahya, Gizem; Okuyan, Oguzhan

    2016-07-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian- Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabil- ities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limi- tations as well as its linearity. An instrumental intrinsic polarization was determined for the 1×5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2% %, and position angle as 1.9°. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  3. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Munson, C. D.; Nati, F.; Niemack, M. D.; Page, L.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Schillaci, A.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-03-01

    We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  4. Multilayer-based soft X-ray polarimeter at the Beijing Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Li-Juan; Cui, Ming-Qi; Zhu, Jie; Zhao, Yi-Dong; Zheng, Lei; Wang, Zhan-Shan; Zhu, Jing-Tao

    2013-07-01

    A compact high precision eight-axis automatism and two-axis manual soft-ray polarimeter with a multilayer has been designed, constructed, and installed in 3W1B at the Beijing Synchrotron Radiation Facility (BSRF). Four operational modes in the same device, which are double-reflection, double-transmission, front-reflection-behind-transmission and front-transmission-behind-reflection, have been realized. It can be used for the polarization analysis of synchrotron radiation. It also can be used to characterize the polarization properties of the optical elements in the soft X-ray energy range. Some experiments with Mo/Si and Cr/C multilayers have been performed by using this polarimeter with good results obtained.

  5. A correlation polarimeter for noise-like signals. [optimum estimation of linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.

    1976-01-01

    Optimum estimation (tracking) of the polarization plane of a linearly polarized electromagnetic wave is determined when the signal is a narrow-band Gaussian random process with a polarization plane angle which is also a Gaussian random process. This model is compared to previous work and is applicable to space communication. The estimator performs a correlation operation similar to an amplitude-comparison monopulse angle tracker, giving the name correlation polarimeter. Under large signal-to-noise ratio (SNR), the estimator is causal. Performance of the causal correlation polarimeter is evaluated for arbitrary SNR. Optimum precorrelation filtering is determined. With low SNR, the performance of this system is far better than that of previously developed systems. Practical implementation is discussed. A scheme is given to reduce the effect of linearly polarized noise.

  6. A Polarimeter for GeV Linearly-polarized Photon Beams

    NASA Astrophysics Data System (ADS)

    Wood, M. H.; Tedeschi, D.; Wojtsekhowski, B.; Abbott, D.; Nelyubin, V.; Vlahovic, B.; Asai, J.; Feldman, G.; O'Rielly, G.; Khandaker, Mahbub; Hotta, T.; Kohri, H.; Matsumura, T.; Mibe, T.; Nakano, T.; Yorita, T.; Rudge, A.; Weilhammer, P.; Zegers, R.

    2003-04-01

    We have built a polarimeter for linearly-polarized photon beams in the few GeV photon-energy range. The technique is to detect an electron-positron pair produced from a photon incident on a thin converter. The orientation and the distance separating the e^+ and e^- are measured accurately with silicon-microstrip detectors. The polarimeter was calibrated at the SPring-8 facility using a compton-backscattered photon beam in the energy range of 1.5 GeV ≤ E_γ ≤ 2.4 GeV. This measurement was the first made for the process at these energies. Results will be presented of the measured asymmetry between horizontally and vertically polarized beams.

  7. SolpeX: the soft X-ray flare polarimeter-spectrometer for the ISS

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Płocieniak, Stefan; Bakała, Jarosław; Szaforz, Żaneta; Stȩślicki, Marek; Ścisłowski, Daniel; Kowaliński, Mirosław; Podgórski, Piotr; Hernandez, Jose; Shestov, Sergey

    2015-10-01

    We present the innovative soft X-ray spectro-polarimeter, SolpeX. This instrument consists of three functionally independent blocks. They are to be included into the Russian instrument KORTES, to be mounted onboard the ISS. The three SolpeX units are: a simple pin-hole X-ray spectral imager, a polarimeter, and a fast-rotating drum multiple-flat-crystal Bragg spectrometer. Such a combination of measuring blocks will offer a new opportunity to reliably measure possible X-ray polarization and spectra of solar flares, in particular during the impulsive phase. Polarized Bremsstrahlung and line emission due to the presence of directed particle beams will be detected, and measurements of the velocities of evaporated hot plasma will be made. In this paper we discuss the details of the construction of the SolpeX units. The delivery of KORTES with SolpeX to the ISS is expected to happen in 2017/2018.

  8. Solar flare X-ray polarimeter utilizing a large area thin beryllium scattering disk

    NASA Technical Reports Server (NTRS)

    Gotthelf, E.; Hamilton, T.; Novick, R.; Chanan, G.; Emslie, A.; Weisskopf, M.

    1989-01-01

    A model of a solar flare X-ray polarimeter utilizing a large-area thin beryllium scattering disk was developed using Monte Carlo techniques for several classes of solar flares. The solar-flare polarimeter consists of a 30-cm-diam Be disk of about 1/3 of a scattering length thickness, which is surrounded by a cylindrical detector composed of six segmented panels of NaI scintillators, each coupled to 15 photomultiplier tubes. The instrument is sensitive to X-rays from 10 to 100 keV. For a class-M-2 solar flare observed for 10 sec from a balloon at an altitude of 150,000 ft, the minimum detectable polarization at the 99 percent statistical confidence level was found to be 1-6 percent over the energy range 20-100 keV.

  9. Measurements of the Polarization Properties of Foam Materials Useful for mm-wave Polarimeters Windows

    NASA Astrophysics Data System (ADS)

    Coppi, G.; Marchetti, T.; de Bernardis, P.; Masi, S.

    2016-08-01

    We have measured in the W-band, using a custom setup, the absorption and polarization properties in transmission of foam materials (elyfoamⓇ, styrodurⓇ, plastazoteⓇ, and propozoteⓇ) useful for windows of mm-wave photometers and polarimeters. The levels of the induced polarization degree and of the absorption are very small, and difficult to measure accurately. We find induced polarization degrees lower than 0.6 %, and transmissions higher than 97 % for few centimeter thicknesses of our samples. We describe the instrumental setup, the measurements, and the impact of our findings in the design of precision polarimeters for Cosmic Microwave Background measurements. All these materials, with the exception of black plastazoteⓇ, feature transmissions higher than 99 %, and induced polarizations lower than ˜1 % for sample thicknesses around 2-3 cm.

  10. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Munson, C. D.; Nati, F.; Niemack, M. D.; Page, L.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Schillaci, A.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  11. Calibration of Passive Microwave Polarimeters that Use Hybrid Coupler-Based Correlators

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.

    2003-01-01

    Four calibration algorithms are studied for microwave polarimeters that use hybrid coupler-based correlators: 1) conventional two-look of hot and cold sources, 2) three looks of hot and cold source combinations, 3) two-look with correlated source, and 4) four-look combining methods 2 and 3. The systematic errors are found to depend on the polarimeter component parameters and accuracy of calibration noise temperatures. A case study radiometer in four different remote sensing scenarios was considered in light of these results. Applications for Ocean surface salinity, Ocean surface winds, and soil moisture were found to be sensitive to different systematic errors. Finally, a standard uncertainty analysis was performed on the four-look calibration algorithm, which was found to be most sensitive to the correlated calibration source.

  12. Image interpolation for division of focal plane polarimeters with intensity correlation.

    PubMed

    Zhang, Junchao; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-01

    Division of focal plane (DoFP) polarimeters operate by integrating micro-polarizer elements with a focal plane. These polarization imaging sensors reduce spatial resolution output and each pixel has a varying instantaneous field of view (IFoV). These drawbacks can be mitigated by applying proper interpolation methods. In this paper, we present a new interpolation method for DoFP polarimeters by using intensity correlation. We employ the correlation of intensity measurements in different orientations to detect edges and then implement interpolation along edges. The performance of the proposed method is compared with several previous methods by using root mean square error (RMSE) comparison and visual comparison. Experimental results showed that our proposed method can achieve better visual effects and a lower RMSE than other methods. PMID:27607683

  13. Measurements of the Polarization Properties of Foam Materials Useful for mm-wave Polarimeters Windows

    NASA Astrophysics Data System (ADS)

    Coppi, G.; Marchetti, T.; de Bernardis, P.; Masi, S.

    2016-04-01

    We have measured in the W-band, using a custom setup, the absorption and polarization properties in transmission of foam materials (elyfoamⓇ, styrodurⓇ, plastazoteⓇ, and propozoteⓇ) useful for windows of mm-wave photometers and polarimeters. The levels of the induced polarization degree and of the absorption are very small, and difficult to measure accurately. We find induced polarization degrees lower than 0.6 %, and transmissions higher than 97 % for few centimeter thicknesses of our samples. We describe the instrumental setup, the measurements, and the impact of our findings in the design of precision polarimeters for Cosmic Microwave Background measurements. All these materials, with the exception of black plastazoteⓇ, feature transmissions higher than 99 %, and induced polarizations lower than ˜1 % for sample thicknesses around 2-3 cm.

  14. NICOLE: NLTE Stokes Synthesis/Inversion Code

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.

    2015-08-01

    NICOLE, written in Fortran 90, seeks the model atmosphere that provides the best fit to the Stokes profiles (in a least-squares sense) of an arbitrary number of simultaneously-observes spectral lines from solar/stellar atmospheres. The inversion core used for the development of NICOLE is the LORIEN engine (the Lovely Reusable Inversion ENgine), which combines the SVD technique with the Levenberg-Marquardt minimization method to solve the inverse problem.

  15. Automatic differentiation and Navier-Stokes.

    SciTech Connect

    Bischof, C.; Hovland, P.; Mohammadi, B.

    1997-12-17

    We describe the use of automatic differentiation (AD) to enhance a compressible Navier-Stokes model. With the solver, AD is used to accelerate convergence by more than an order of magnitude. Outside the solver, AD is used to compute the derivatives needed for optimization. We emphasize the potential for performance gains if the programmer does not treat AD as a black box, but instead utilizes high-level knowledge about the nature of the application.

  16. Incorporating Electrokinetic Phenomena into EBNavierStokes

    SciTech Connect

    Chu, K; Trebotich, D

    2006-01-10

    Motivated by the recent interest in using electrokinetic effects within microfluidic devices, they have extended the EBNavierStokes code to be able to handle electrokinetic effects. With this added functionality, the code becomes more useful for understanding and designing microfluidic devices that take advantage of electrokinetic effects (e.g. pumping and mixing). Supporting the simulation of electrokinetic effects required three main extensions to the existing code: (1) addition of an electric field solver, (2) development of a module for accurately computing the Smulochowski slip-velocity at fluid-solid boundaries, and (3) extension of the fluid solver to handle nonuniform inhomogeneous Dirichlet boundary conditions. The first and second extensions were needed to compute the electrokinetically generated slip-velocity at fluid-solid boundaries. The third extension made it possible for the fluid flow to be driven by a slip-velocity boundary condition (rather than by a pressure difference between inflow and outflow). In addition, several small changes were made throughout the code to make it compatible with these extensions. This report documents the changes to the EBNavierStokes code required to support the simulation of electrokinetic effects. They begin with a brief overview of the problem of electrokinetically driven flow. Next, they present a detailed description of the changes to the EBNavierStokes code. Finally, they present some preliminary results and discuss future directions and improvements to the code.

  17. Stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  18. Stokes parameters modulator for birefringent filters

    NASA Technical Reports Server (NTRS)

    Dollfus, A.

    1985-01-01

    The Solar Birefringent Filter (Filter Polarisiant Solaire Selectif FPSS) of Meudon Observatory is presently located at the focus of a solar refractor with a 28 cm lens directly pointed at the Sun. It produces a diffraction limited image without instrumental polarization and with a spectral resolution of 46,000 in a field of 6 arc min. diameter. The instrument is calibrated for absolute Doppler velocity measurements and is presently used for quantitative imagery of the radial velocity motions in the photosphere. The short period oscillations are recorded. Work of adapting the instrument for the imagery of the solar surface in the Stokes parameters is discussed. The first polarizer of the birefringent filter, with a reference position angle 0 deg, is associated with a fixed quarter wave plate at +45 deg. A rotating quarter wave plate is set at 0 deg and can be turned by incremented steps of exactly +45 deg. Another quarter wave plate also initially set at 0 deg is simultaneously incremented by -45 deg but only on each even step of the first plate. A complete cycle of increments produces images for each of the 6 parameters I + or - Q, I + or - U and I + or - V. These images are then subtracted by pairs to produce a full image in the three Stokes parameters Q, U and V. With proper retardation tolerance and positioning accuracy of the quarter wave plates, the cross talk between the Stokes parameters was calculated and checked to be minimal.

  19. Incompressible Navier-Stokes calculations in pump flows

    NASA Astrophysics Data System (ADS)

    Kiris, Cetin; Chang, Leon; Kwak, Dochan

    1993-07-01

    Flow through pump components, such as the SSME-HPFTP Impeller and an advanced rocket pump impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside an 11-inch SSME High Pressure Fuel Turbopump impeller, and an advanced rocket pump impeller. Numerical results of SSME-HPFTP impeller flow are compared with experimental measurements. In the advanced pump impeller, the effects of exit and shroud cavities are investigated. Flow analyses at design conditions will be presented.

  20. Incompressible Navier-Stokes Calculations in Pump Flows

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Leon; Kwak, Dochan

    1993-01-01

    Flow through pump components, such as the SSME-HPFTP Impeller and an advanced rocket pump impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside an 11-inch SSME High Pressure Fuel Turbopump impeller, and an advanced rocket pump impeller. Numerical results of SSME-HPFTP impeller flow are compared with experimental measurements. In the advanced pump impeller, the effects of exit and shroud cavities are investigated. Flow analyses at design conditions will be presented.

  1. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    NASA Technical Reports Server (NTRS)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  2. Polarimeter with linear response for measuring optical activity in organic compounds

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Montoya, Marcial; Garcia-Torales, G.; Gonzalez Alvarez, Alejandro

    2005-08-01

    A polarimeter designed for measuring small rotation angles on the polarization plane of light is described. The experimental device employs one fixed polarizer and a rotating analyzer. The system generates a periodical intensity signal, which is then Fourier analyzed. The coefficients of Fourier Transform contain information about rotation angles produced by organic compounds that exhibited optical activity. The experimental device can be used to determine the sugar concentration in agave juice.

  3. Microsphere plate detectors used with a compact Mott polarimeter for time-of-flight studies

    SciTech Connect

    Snell, G.; Viefhaus, J.; Dunning, F. B.; Berrah, N.

    2000-06-01

    A compact retarding-potential Mott polarimeter combined with microsphere plates (MSP) as electron detectors was built to perform spin-resolved time-of-flight electron spectroscopy. The comparison of the performance of MSP and channeltron detectors shows that the MSP detector has a better time resolution but a lower efficiency. The overall time resolution of the system was determined to be 350 ps using synchrotron radiation pulses. (c) 2000 American Institute of Physics.

  4. Data acquisition system of Moeller polarimeter Hall A Jefferson Lab (in Russian)

    SciTech Connect

    Roman Pomatsalyuk

    2012-11-01

    The structure, parameters and test results of a new data acquisition system for Moller polarimeter based on flash-ADC are presented. Flash-ADC is electronic module in VME format that consists of high-speed multichannel ADC piped type and FPGA unit on board. The use of flash-ADC has a lot of advantages: reduce of cable interconnections, events registration with higher rate, considerable decreases of system deadtime and, as result, the accuracy of polarization measurements is increases.

  5. Waveform dependence on signal amplitude in the RHIC H-Jet polarimeter

    SciTech Connect

    Poblaguev, A. A.

    2014-02-25

    A simulation of the signal waveform in the H-Jet polarimeter is discussed. The simulation includes a model of charge collection in the silicon detector and a response functions of the H-Jet front end electronics. Results of the simulation are compared with experimental data. It is shown that an analysis of the signal shape may help to suppress background in the H-Jet polarization measurements.

  6. Compton polarimeter for 10-30 keV x rays.

    PubMed

    Weber, S; Beilmann, C; Shah, C; Tashenov, S

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results. PMID:26429432

  7. Compton polarimeter for 10–30 keV x rays

    SciTech Connect

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  8. Recent Progress of the HL-2A Multi-Channel HCOOH Laser Interferometer/Polarimeter

    NASA Astrophysics Data System (ADS)

    Li, Yonggao; Zhou, Yan; Deng, Zhongchao; Li, Yuan; Yi, Jiang; Wang, Haoxi

    2015-05-01

    A multichannel methanoic acid (HCOOH, λ = 432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ = 337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of ˜30 mW, and a power stability <10% in 50 min. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase-comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign. supported by the National Magnetic Confinement Fusion Science Programs of China (Nos. 2010GB101002 and 2014GB109001), and National Natural Science Foundation of China (Nos. 11075048 and 11275059)

  9. The properties of Stokes and anti-Stokes processes in a double-cavity optomechanical system

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Bo; Fu, Chang-Bao; Gu, Kai-Hui; Wang, Rong; Wu, Jin-Hui

    2013-11-01

    We study the nonlinear Stokes and anti-Stokes processes of a weak probe field relevant to normal mode splitting (NMS) in a double-cavity optomechanical system where a membrane oscillator is shared by two identical cavities. The two cavity modes experience an optomechanical coupling of same amplitudes but opposite signs when the membrane deviates from its equilibrium position due to the radiation pressures arising from two strong pump fields. Our calculations show that the critical power of left-cavity pump field above which the double-cavity system enters the NMS regime can be easily controlled by adjusting the right-cavity pump field in power. In addition, we show that various NMS features can be well examined by focusing on the spectral structure of an anti-Stokes signal generated in the four-wave-mixing process arising from optomechanical coupling. Last but not least we note that the anti-Stokes signal's generation is accompanied by the Stokes signal's amplification (absorption) in the absence (presence) of right-cavity pump field.

  10. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  11. Studies and proposed changes to the RHIC p-Carbon polarimeters for the upcoming RUN-11

    SciTech Connect

    Makdisi, Y.; Alekseev, I.; Aschenauer, E.; Atoian, G.; Bazilevsky, A.; Gill, R.; Huang, H.; Morozov, B.; Svirida, D.; Yip, K.; Zelenski, A.

    2010-09-27

    The RHIC polarized proton complex utilizes polarimeters in each of the Blue and Yellow beams that measure the beam polarization through the p-Carbon elastic scattering process in the Coulomb Nuclear Interference kinematic region. This along with a Polarized Hydrogen Jet Target that utilizes the proton-proton elastic scattering process to first measure the analyzing power of the reaction and using the reverse process to measure the beam polarization. The latter is used to calibrate the p-Carbon polarimeters at the desired beam energy. In Run 9 RHIC ran with beams at center-of-mass energies of 200 and 500 GeV respectively. The higher beam intensities as well as the fact that the 250 GeV beam size is much smaller than that at 100 GeV resulted in significantly higher rates seen by the polarimeters and led to observed instability. In this paper, we will discuss the problems encountered and the tests that were carried out using the AGS as a proxy in an attempt to solve the problems and the path forward we took towards the upcoming polarized proton Run11.

  12. PolKa: A New Polarimeter for Millimeter and Submillimeter Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Siringo, G.; Kreysa, E.; Reichertz, L. A.; Menten, K. M.

    2004-02-01

    A new concept of polarimeter has been designed to be used together with the arrays of bolometers developed at the Max-Planck-Institut fuer Radioastronomie in Bonn. The new polarimeter has the unique characteristic of being tunable over a wide range of wavelengths and of producing a negligible absorption. It has been used at the Heinrich-Hertz telescope to measure the linear polarization of some quasars and of some extended sources inside our Galaxy. Some results are presented here. We detected polarization on the quasars 3C279 and 1633+382. On 3C279 we also detected polarization variability on a time scale of a week. We performed also maps of extended sources: the BN/KL complex in Orion OMC-1, a filament cloud in Orion OMC-3 and the massive star-forming region IRAS 05358+3543. The polarimeter has low spurious polarization and a high modulation efficiency and the tests at the telescope show that it is well suited to become a permanent facility.

  13. Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering

    NASA Astrophysics Data System (ADS)

    Gray, Valerie M.

    2013-10-01

    Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.

  14. First results from the J-TEXT high-resolution three-wave polarimeter-interferometer

    SciTech Connect

    Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Li, Q.; Chen, W.; Brower, D. L.; Ding, W. X.

    2012-10-15

    A laser-based far-infrared polarimeter-interferometer system utilizing the three-wave technique has been implemented on the J-TEXT tokamak. The polarimeter determines the Faraday effect by measuring the phase difference between two collinear, counter-rotating, circularly polarized laser beams. The first results of the polarimeter-interferometer designed for J-TEXT have been obtained in the most recent J-TEXT experimental campaign. Simultaneous polarimetric and interferometric measurement is achieved, with phase resolution up to 0.1 Degree-Sign , at bandwidth of 50 kHz. The temporal resolution, which is dependent on the laser's frequency offset, is {approx}1 {mu}s. Continual spatial measurement covering 45 cm (80% of the plasma cross-section) is realized by utilizing 1D parabolic beam expansion optics. Three initial test chords are installed and future plans call for expansion up to 30 chords with 1.5 cm chord spacing, providing high spatial resolution for measurement of electron density and current density profiles. Reliability of both polarimetric and interferometric measurement is confirmed by comparison with computation and data from a hydrocyanic acid (HCN) interferometer. With the high temporal and phase resolution, perturbations associated with the sawtooth cycle and MHD activity have been observed.

  15. Bistatic laser polarimeter calibrated to 1% at visible-SWIR wavelengths.

    PubMed

    Hoover, Brian G; Rugely, David A; Francis, Christopher M; Zeira, Gal; Gamiz, Victor L

    2016-08-22

    This paper documents the accuracy and precision of the U. S. Air Force Research Laboratory APCL laser polarimeter in arbitrary bistatic geometries at the three laser wavelengths 633nm, 1064nm, and 1550nm. The difference between measured and theoretical-truth Mueller matrices of calibration components is used as the calibration metric and justified relative to block ellipsometer calibration methods. Calibration of the polarimeter ellipsometry mode is demonstrated first, at quasi-monostatic and large bistatic angles, employing a metallic mirror and a dielectric window as the calibration component, respectively, the latter in order to avoid uncertainty in the retardance of typical metallic mirrors at large incident angles. This uncertainty is demonstrated in measurements of COTS protected-silver mirrors from two vendors, revealing an approximately λ/8 retardance difference, for reflection through 90°, between nominally-identical mirrors from the two vendors. Polarimeter calibration is finally extended beyond ellipsometry by calibrating depolarization measurements using a new technique employing ensembles of polarized states as calibration components. PMID:27557264

  16. Testing of a Narrow Gap Detector designed for a sensitive X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Gilberto Almonte, Rafael; Hill, Joanne E.; Morris, David C.; Emmett, Thomas

    2015-01-01

    Time projection polarimeters are gas detectors where incident X-rays interact with a gas atom to produce a photoelectron whose direction is correlated with the polarization of the incident X-ray. By imaging the path of many photoelectrons the polarization of the incident X-ray can be determined.The next generation of time projection polarimeter incorporates a narrow gap detector to minimize the diffusion in the transfer gap between the gas electron multiplier and the readout strips. We report on the testing performed to bring the narrow-gap design to Technology Readiness Level (TRL)-6.TRL-6 testing included random and sine burst vibration tests and thermal cycling tests. In addition thermal shock tests and creep tests were performed to further demonstrate that the design would meet requirements, particularly flatness, throughout the life of a 2 year mission.The post-test inspection following the vibration testing showed no degradation or loss of flatness. Thermal Shock testing showed no indication that the extreme temperature had any effect on the detector. Creep testing showed no positive or negative trends in flatness. Thermal cycle testing also showed no change in detector behavior. All the requirements have been met and the narrow gap polarimeter is at TRL-6.

  17. A new three-band, two beam astronomical photo-polarimeter

    NASA Astrophysics Data System (ADS)

    Srinivasulu, G.; Raveendran, A. V.; Muneer, S.; Mekkaden, M. V.; Jayavel, N.; Somashekar, M. R.; Sagayanathan, K.; Ramamoorthy, S.; Rosario, M. J.; Jayakumar, K.

    2014-09-01

    We designed and built a new astronomical photo-polarimeter that can measure linear polarization simultaneously in three spectral bands. It has a Calcite beam-displacement prism as the analyzer. The ordinary and extra-ordinary emerging beams in each spectral bands are quasi-simultaneously detected by the same photomultiplier by using a high speed rotating chopper. A rotating superachromatic Pancharatnam halfwave plate is used to modulate the light incident on the analyzer. The spectral bands are isolated using appropriate dichroic and glass filters. We show that the reduction of 50% in the efficiency of the polarimeter because of the fact that the intensities of the two beams are measured alternately is partly compensated by the reduced time to be spent on the observation of the sky background. The use of a beam-displacement prism as the analyzer completely removes the polarization of background skylight, which is a major source of error during moonlit nights, especially, in the case of faint stars. The field trials that were carried out by observing several polarized and unpolarized stars show the performance of the polarimeter to be satisfactory.

  18. First results from the J-TEXT high-resolution three-wave polarimeter-interferometer.

    PubMed

    Chen, J; Zhuang, G; Wang, Z J; Gao, L; Li, Q; Chen, W; Brower, D L; Ding, W X

    2012-10-01

    A laser-based far-infrared polarimeter-interferometer system utilizing the three-wave technique has been implemented on the J-TEXT tokamak. The polarimeter determines the Faraday effect by measuring the phase difference between two collinear, counter-rotating, circularly polarized laser beams. The first results of the polarimeter-interferometer designed for J-TEXT have been obtained in the most recent J-TEXT experimental campaign. Simultaneous polarimetric and interferometric measurement is achieved, with phase resolution up to 0.1°, at bandwidth of 50 kHz. The temporal resolution, which is dependent on the laser's frequency offset, is ∼1 μs. Continual spatial measurement covering 45 cm (80% of the plasma cross-section) is realized by utilizing 1D parabolic beam expansion optics. Three initial test chords are installed and future plans call for expansion up to 30 chords with 1.5 cm chord spacing, providing high spatial resolution for measurement of electron density and current density profiles. Reliability of both polarimetric and interferometric measurement is confirmed by comparison with computation and data from a hydrocyanic acid (HCN) interferometer. With the high temporal and phase resolution, perturbations associated with the sawtooth cycle and MHD activity have been observed. PMID:23126966

  19. A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems

    NASA Astrophysics Data System (ADS)

    Liu, Chein-Shan; Young, D. L.

    2016-05-01

    The polynomial expansion method is a useful tool for solving both the direct and inverse Stokes problems, which together with the pointwise collocation technique is easy to derive the algebraic equations for satisfying the Stokes differential equations and the specified boundary conditions. In this paper we propose two novel numerical algorithms, based on a third-first order system and a third-third order system, to solve the direct and the inverse Cauchy problems in Stokes flows by developing a multiple-scale Pascal polynomial method, of which the scales are determined a priori by the collocation points. To assess the performance through numerical experiments, we find that the multiple-scale Pascal polynomial expansion method (MSPEM) is accurate and stable against large noise.

  20. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; LeMaster, Daniel A.; Mack, Robert T.; Villeneuve, Pierre V.; Weinheimer, Jeffrey J.; Middendorf, John R.

    2011-10-01

    The LWIR microgrid Polarized InfraRed Advanced Tactical Experiment (PIRATE) sensor was used to image several types of RC model aircraft at varying ranges and speeds under different background conditions. The data were calibrated and preprocessed using recently developed microgrid processing algorithms prior to estimation of the thermal (s0) and polarimetric (s1 and s2) Stokes vector images. The data were then analyzed to assess the utility of polarimetric information when the thermal s0 data is augmented with s1 and s2 information for several model aircraft detection and tracking scenarios. Multi-variate analysis tools were applied in conjunction with multi-hypothesis detection schemes to assess detection performance of the aircraft under different background clutter conditions. We find that polarization is able to improve detection performance when compared with the corresponding thermal data in nearly all cases. A tracking algorithm was applied to a sequence of s0 and corresponding degree of linear polarization (DoLP) images. An initial assessment was performed to determine whether polarization information can provide additional utility in these tracking scenarios.

  1. The Stokes line width and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Nikishov, A. I.; Ritus, V. I.

    1994-01-01

    For a function given by contour integral the two types (conventions) of asymptotic representations are considered: the usual representation by asymptotic series in inverse powers of large parameters and the special division of contour integral in contributions of high and low saddle points. It is shown that the width of the recessive term formation zone (Stokes strip) in the second convention is determined by uncertainty relation and is much less than the zone width in the first convention. The reasons of such a difference is clarified. The results of the work are useful for understanding of formation region of the exponentially small process arising on the background of the strong one.

  2. High-sensitivity Stokes spectropolarimetry on cyanobacteria

    NASA Astrophysics Data System (ADS)

    Martin, W. E.; Hesse, E.; Hough, J. H.; Gledhill, T. M.

    2016-02-01

    We investigate the spectral signatures arising from the optical properties of chlorophyll in linear and circularly polarised scattered light from cyanobacteria. We include Stokes scattering coefficient measurements on two cyanobacteria species, Chroococcidiopsis and Synechococcus to a fractional polarisation of ±0.0001 across visible wavelengths. We find that the largest circularly polarised optical signatures from our cyanobacteria samples can be described by optical scattering from spheroidal objects with internal reflections and absorption and, importantly, light scattering from chiral processes is not identifiable in our narrow band light scattering data. We believe previous light scattering measurements attributing chirality effects to cyanobacteria may have been dominated by internal scattering processes.

  3. Adrian Stokes and the portrait of Melanie Klein.

    PubMed

    Sayers, Janet

    2015-08-01

    This paper focuses on the offer by the art writer Adrian Stokes to commission and pay for a portrait of the psychoanalyst Melanie Klein by the artist William Coldstream. It details some of the precursors of this offer in Stokes's preceding involvement first with Klein and then with Coldstream; her response to this offer; and its outcome and aftermath in Stokes's subsequent writing about Klein and Coldstream. PMID:25989030

  4. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    NASA Technical Reports Server (NTRS)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  5. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  6. Fast solvers for finite difference approximations for the Stokes and Navier-Stokes equations

    SciTech Connect

    Shin, D.

    1992-01-01

    The authors consider several methods for solving the linear equations arising from finite difference discretizations of the Stokes equations. The pressure equation method presented here for the first time, apparently, and the method, presented by Bramble and Pasciak, are shown to have computational effort that grows slowly with the number of grid points. The methods work with second-order accurate discretizations. Computational results are shown for both the Stokes and incompressible Navier-Stokes at low Reynolds number. The inf-sup conditions resulting from three finite difference approximations of the Stokes equations are proven. These conditions are used to prove that the Schur complement Q[sub h] of the linear system generated by each of these approximations is bounded uniformly away from zero. For the pressure equation method, this guarantees that the conjugate gradient method applied to Q[sub h] converges in a finite number of iterations which is independent of mesh size. The fact that Q[sub h] is bounded below is used to prove convergence estimates for the solutions generated by these finite difference approximations. One of the estimates is for a staggered grid and the estimate of the scheme shows that both the pressure and the velocity parts of the solution are second-order accurate. Iterative methods are compared by the use of the regularized central differencing introduced by Strikwerda. Several finite difference approximations of the Stokes equations by the SOR method are compared and the excellence of the approximations by the regularized central differencing over the other finite difference approximation is mentioned. This difference gives rise to a linear equation with a matrix which is slightly non-symmetric. The convergence of the typical steepest descent method and conjugate gradient method, which is almost as same as the typical conjugate gradient method, applied to slightly non-symmetric positive definite matrices are proven.

  7. The Stoke contribution to peritoneal dialysis research.

    PubMed

    Wilkie, Martin E; Jenkins, Sarah B

    2011-03-01

    The Stoke Renal Unit has been at the forefront of peritoneal dialysis (PD) research for much of the past two decades. Central to this work is the PD cohort study, which was started in 1990 and is based on regular outpatient measurements of peritoneal and clinical function, correlating these with long-term outcomes. It has provided a wealth of information on risk factors for morbidity and mortality in patients on PD, the most significant being demonstration of the effects of time and dialysate glucose exposure on changes to the peritoneal membrane, as evidenced by increases in small solute transport. Early on, the study confirmed the adverse relationship between high small-solute transport status and outcome but more recently suggested that this relationship no longer held with modern techniques for managing patients on PD. Central themes of the PD research in Stoke have included evaluation of euvolemia, the importance of ultrafiltration and how best to achieve it, and detailed assessments of transmembrane water movement. The work has included the study of sodium removal and the use of novel low sodium dialysates. More recently, attention has turned to the significance of impaired ultrafiltration capacity in patients on PD as a sign of structural membrane damage. It is hoped that further work in this area will identify preventive strategies. PMID:21364207

  8. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections

    NASA Astrophysics Data System (ADS)

    Thorman, A.; Michael, C.; De Bock, M.; Howard, J.

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  9. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro- polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with a gain of 2.0 +/- 0.5, less than or equal to 25 e- readout noise, less than or equal to 10 e-/second/pixel dark current, and less than 0.1percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; system gain, dark current, read noise, and residual non-linearity.

  10. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    NASA Technical Reports Server (NTRS)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  11. A High-Precision, Optical Polarimeter to Measure Inclinations of High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane; Matthews, K.; Kulkarni, S. R.

    2007-12-01

    While most astrophysical objects require many parameters in order to be fully described, black holes are unique in that only three parameters are required: mass, spin, and charge. Of these, mass and spin are enough to describe the black hole's gravitational field and event horizon location. Therefore, theory and observation may jointly pursue one or two quantities to uncover the progenitor star's history. Constraints on black hole mass exist for high mass X-ray binaries, such as Cygnus X-1, which is thought to consist of a 40 ± 10 solar mass O9.7Iab star and a 13.5-29 solar mass black hole (Ziolkowski 2005). While the constraints on the mass of the compact object are tight enough to declare that it is a black hole, they are sufficiently loose as to prohibit precise modeling of the progenitor star's mass. We have built an optical polarimeter for the Hale 5-m telescope at Mt. Palomar to provide an independent method for determining black hole mass. Degree of polarization will vary for an edge-on system, while position angle of net polarization will vary for a face-on system. Therefore, by monitoring the linear polarimetric variability of the binary, inclination can be estimated. Coupled with the known mass function of the binary from radial velocity work (Gies et al. 2003), inclination estimates constrain the mass of the black hole. Our polarimeter, POLISH (POLarimeter for Inclination Studies of High mass x-ray binaries), has achieved linear polarimetric precision of less than 10 parts per million on bright, unpolarized standard stars. We will also present results for polarized standard stars and Cygnus X-1 itself. This instrument has been funded by an endowment from the Moore Foundation.

  12. Electronics and signal processing for the multichord far-infrared polarimeter of the RFX experiment

    NASA Astrophysics Data System (ADS)

    Zilli, E.; Milani, F.; O'Gorman, M.; Giudicotti, L.; Prunty, S. L.

    2001-11-01

    This article describes the realization and testing of the electronic system which forms part of the multichannel far-infrared (FIR) polarimeter for the RFX machine, a plasma confinement experiment with Reversed Field Pinch (RFP) configuration. The electronic system, which comprises the detectors, the signal-processing electronics, and the motion electronics for the half-wave plate movement, is described. Emphasis is placed in the analysis of the polarimeter signals, which permits an in-depth understanding of the performance of the data processing electronics and the role of the various sources of noise in the system. After a brief outline of the basic principle of the measurement, the choice of detectors and their characteristics are described in order to achieve the best performances at the FIR wavelength (λ=118.8 μm) of interest. Various tests, which are described, confirmed the need for a specifically designed pyroelectric detector capable of operating in the hostile magnetic environment near the machine. The processing of the raw polarimeter signals to produce the required sum and difference signals and to convert them into dc signals with 3 ms time constant is presented. These signals are synchronous with a chopper signal on the FIR beam and are subsequently fed to a lock-in amplifier. An accurate analysis of the data processing procedure is described, which helps to clarify the understanding of the output signals that are eventually recorded in the data acquisition system. In particular, various sources of noise, such as thermal noise of the detectors, laser fluctuations, spurious signals at harmonics of the chopper frequency, and phase jitter of the chopper, are evaluated, discussed, and compared with the observed signals. Finally, the control circuitry for the movement of the half-wave plates, both for manual control and for the programmed sequences of zero-search and calibration performed by a PLC control system, is described. Calibration curves obtained

  13. On the operation of X-ray polarimeters with a large field of view

    SciTech Connect

    Muleri, Fabio

    2014-02-10

    The measurement of linear polarization is one of the hot topics of high-energy astrophysics. Gas detectors based on the photoelectric effect have paved the way for the design of sensitive instruments, and mission proposals based on them have been presented in the last few years in the energy range from about 2 keV to a few tens of keV. In addition, a number of polarimeters based on Compton scattering are approved or being discussed for launch on board balloons or space satellites at higher energies. These instruments are typically dedicated to pointed observations with narrow field of view telescopes or collimators, but there are also projects aimed at the polarimetry of bright transient sources such as soft gamma repeaters or the prompt emission of gamma-ray bursts. Given the erratic appearance of such events in the sky, these polarimeters have large fields of view to catch a reasonable number of them, and as a result, photons may impinge on the detector off-axis. This dramatically changes the response of the instrument to polarization, regardless of whether photoabsorption or Compton scattering is involved. Instead of the simple cosine-squared dependence expected for polarized photons that are incident on-axis, the response is never purely cosinusoidal, and a systematic modulation also appears for unpolarized radiation. We investigate the origin of these differences and present an analytical treatment that proves that such systematic effects are actually a natural consequence of how current instruments operate. Our analysis provides the expected response of photoelectric or Compton polarimeters to photons impinging with any inclination and state of polarization.

  14. Upgraded photon calorimeter with integrating readout for Hall A Compton Polarimeter at Jefferson Lab

    DOE PAGESBeta

    Friend, M.; Parno, D.; Benmokhtar, F.; Camsonne, A.; Dalton, M. M.; Franklin, G. B.; Mamyan, V.; Michaels, R.; Nanda, S.; Nelyubin, V.; et al

    2012-06-01

    The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition system (DAQ) now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped Gd2SiO5 crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.

  15. Development of two color laser diagnostics for the ITER poloidal polarimeter

    SciTech Connect

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-10-15

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 {mu}m by using a twin optically pumped CH{sub 3}OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  16. POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Vaillancourt, John E.; Savini, Giorgio; Ade, Peter A. R.; Beland, Stephane; Glenn, Jason; Hollister, Matthew I.; Maloney, Philip R.; Sayers, Jack

    2012-09-01

    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument.

  17. First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory

    SciTech Connect

    Maud Baylac; E. Burtin; C. Cavata; S. Escoffier; B. Frois; D. Lhuillier; F. Marie; J. Martino; D. Neyret; T. Pussieux; P.Y. Bertin; Kees de Jager; J. Mitchell

    2002-03-01

    A Compton polarimeter has been installed in Hall A at Jefferson Laboratory. This letter reports on the first electron beam polarization measurements performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an average current of 40 muA. The heart of this device is a Fabry-Perot cavity which increased the luminosity for Compton scattering in the interaction region so much that a 1.4% statistical accuracy could be obtained within one hour, with a 3.3% total error.

  18. Upgraded photon calorimeter with integrating readout for Hall A Compton Polarimeter at Jefferson Lab

    SciTech Connect

    Friend, M.; Parno, D.; Benmokhtar, F.; Camsonne, A.; Dalton, M. M.; Franklin, G. B.; Mamyan, V.; Michaels, R.; Nanda, S.; Nelyubin, V.; Paschke, K.; Quinn, B.; Rakhman, A.; Souder, P.; Tobias, A.

    2012-06-01

    The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition system (DAQ) now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped Gd2SiO5 crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.

  19. Laser polarimeter LP101M and its applications in liquid cromatography

    NASA Astrophysics Data System (ADS)

    Fajer, V.; Rodriguez, C.; Gonzalez, R.; Cossio, G.; Martinez, M.; Bravo, O.

    1996-02-01

    A high sensitivity laser polarimeter LP101M employing a He-Ne laser has been designed and constructed as a detector for liquid chromatography achieving a sensitivity better than 0.001 degree. The operation principle and technical characteristics of this instrument are described. A liquid gel chromatography column system suitable for sugar cane juice analysis was also designed and calibrated. It separated and analyzed the medium molecular weight carbohydrates and demonstrated the strong influence of these substances in the conventional polarimetric determinations.

  20. Polarimeter Development for an Electric Dipole Moment Search in a Storage Ring

    SciTech Connect

    Imig, Astrid

    2011-09-23

    The search for a charged particle EDM in a storage ring with the goal of a statistical sensitivity of 10-29 ecenterdotcm/year requires a very sensitive polarimeter. Studies described here have shown that systematic error effects can be handled and corrected to a sensitivity better than the required 10-6 level. The required statistical precision was shown to be attainable using a thick scattering target onto which the stored beam is slowly extracted. Models for geometric and rate systematic error effects describe the results well.

  1. Summary Report of PESP2008 - The Workshop on Polarized Electron Sources and Polarimeters

    SciTech Connect

    Poelker, M.

    2009-08-04

    The Workshop on Polarized Electron Sources and Polarimeters (PESP2008) was hosted by Jefferson Lab October 1-3, 2008, in association with SPIN2008, continuing a tradition since 1983. The workshop was well attended with 84 registrants, 38 oral presentations and 17 posters. The usual topics were covered: DC and RF photoguns, high voltage issues, photocathodes, drive lasers, vacuum and polarimetry. Detailed accounts of each contribution (oral and poster) appear within these Proceedings. This submission summarizes some of the highlights of the workshop.

  2. Ultraviolet Polarimeter for Studying the Aerosol Component in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Nevodovskyi, P. V.; Morozhenko, A. V.; Vidmachenko, A. P.; Geraimchuk, M.; Zbrutskyi, A.; Kureniov, Yu.; Sergunin, V.; Hirniak, Yu.; Ivakhiv, O.

    2013-06-01

    The changes of the weather and climate on the Earth depend on the temperature balance of the planet, i.e., on the flow of radiation coming from the Sun and emitted by the Earth into cosmic space. The changes of transparency coefficients (i.e., optical thickness of the atmosphere) and reflection coefficients (i.e., Earth surface) turn out to be decisive factors disrupting this balance. Variations of the gaseous and aerosol components of the atmosphere make an essential contribution into the changeability of the existing balance. The stratosphere and the ozone layer which protects the Earth from a severe ultraviolet radiation are of special importance in the atmosphere. Stratospheric aerosol plays an important role in the formation of a heat regime and in providing a powerful ozone layer (at the altitude of over 30 km). Spectrophotometer investigations made it possible to obtain certain data on the thickness of aerosols on these altitudes. However, its nature (i.e., a real part of the refraction index) and size distribution functions have not be studied so far. Polarization measurements enable one to most correctly determine these characteristics. The leading astronomical observatory of the National Academy of Sciences of Ukraine in collaboration with the National Technical University of Ukraine "Kyiv Polytechnic Institute" have been carrying out research since 2005 till nowadays on the development of on-board polarimeters for the purpose of studying the stratospheric aerosol from the orbit of Earth satellites [1, 2]. Based on this research, an experimental small sized polarimeter for investigation of a stratospheric aerosol from the orbit of the satellite was created. It is a dot one-channel ultraviolet polarimeter with a rotated polarization element. Glen prism is used as a polarization element which is initiated into motion by a miniature piezoelectric motor. "Sun-blind" low-sized photomultiplier R 1893 made by "Hamamatsu" Co. serves as a radiation receiver that

  3. Ultraviolet spectrometer and polarimeter (UVSP) catalog of observations. Volume 2: Experiments 30720-63057, April 1985 - February 1988

    NASA Technical Reports Server (NTRS)

    Henze, William, Jr.

    1993-01-01

    A catalog of observations (experiments) obtained by the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) from Feb. 1980 to Nov. 1989 is presented. The information for each entry includes the time of each observation, the observed position of the Sun, the spacecraft roll angle, the slit used, and instrument parameters such as raster size, pixel spacing, wavelength, polarimeter usage, gate time, etc. The document is split into three volumes: Volume 1 contains experiments 1-30719 (February 1980-April 1985); Volume 2 contains experiments 30720-63057 (April 1985-February 1988); and Volume 3 contains experiments 63058-99771 (February 1988-November 1989).

  4. Ultraviolet Spectrometer and Polarimeter (UVSP) catalog of observations. Volume 3: Experiments 63058-99771 (February 1988 - November 1989)

    NASA Technical Reports Server (NTRS)

    Henze, William, Jr.

    1993-01-01

    A catalog of a observations (experiments) obtained by the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) from Nov. 1980 to Nov. 1989 is provided. The information for each entry includes the time of each observation, the observed position of the Sun, the spacecraft roll angle, the slit used, and instrument parameters such as raster size, pixel spacing, wavelength, polarimeter usage, gate time, etc. The document is split into three volumes: Volume 1 contains experiments 1-30719 (Feb. 1980 - Apr. 1985); Volume 2 contains experiments 30720-63057 (Apr. 1985 - Feb. 1988); and Volume 3 contains experiments 63058-99771 (Feb. 1988 - Nov. 1989).

  5. The Kent State {open_quote}{open_quote}2{pi}{close_quote}{close_quote} neutron polarimeter

    SciTech Connect

    Watson, J.W.; Du, Q.; Anderson, B.D.; Baldwin, A.R.; Foster, C.C.; Garcia, L.A.; Hu, X.; Kurmanov, R.; Lamm, D.L.; Madey, R.; Pella, P.J.; Stephenson, E.J.; Wang, Y. |; Wetmore, B.; Zhang, W.

    1995-09-01

    We designed, tested and calibrated a medium-energy neutron polarimeter of a new design, which we call the {open_quote}{open_quote}2{pi}{close_quote}{close_quote} polarimeter because of its symmetric coverage of all 2{pi} of azimuth for double-scattered neutrons. During calibration tests at the IUCF we observed an over all neutron time-of-flight resolution of 360 ps. The measured analyzing power is typically 39{percent} for neutrons of both 130 and 165 MeV for optimum software cuts. The efficiency is typically 0.3{percent}. {copyright} {ital 1995 American Institute of Physics.}

  6. Ultraviolet spectrometer and polarimeter (UVSP) catalog of observations. Volume 1: Experiments 1-30719, February 1980 - April 1985

    NASA Technical Reports Server (NTRS)

    Henze, William, Jr.

    1993-01-01

    A catalog of observations (experiments) obtained by the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) from Feb. 1980 to Nov. 1989 is presented. The information for each entry includes the time of each observation, the observed position of the Sun, the spacecraft roll angle, the slit used, and instrument parameters such as raster size, pixel spacing, wavelength, polarimeter usage, gate time, etc. The document is split into three volumes: Volume 1 contains experiments 1-30719 (February 1980-April 1985); Volume 2 contains experiments 30720-63057 (April 1985-February 1988); and Volume 3 contains experiments 63058-99771 (February l988-November 1989).

  7. Coupling Boltzmann and Navier-Stokes equations by friction

    SciTech Connect

    Bourgat, J.F.; Le Tallec, P. |; Tidriri, M.D.

    1996-09-01

    The aim of this paper is to introduce and validate a coupled Navier-Stokes Boltzman approach for the calculation of hypersonic rarefied flows around maneuvering vehicles. The proposed strategy uses locally a kinetic model in the boundary layer coupled through wall friction forces to a global Navier-Stokes solver. Different numerical experiments illustrate the potentialities of the method. 29 refs., 24 figs.

  8. Aquarius Third Stokes Parameter Measurements: Initial Results

    NASA Technical Reports Server (NTRS)

    Utku, Cuneyt; Vine, David M Le; Abraham, S.; Piepmeier, J.

    2012-01-01

    The Aquarius/SAC-D observatory was launched on June 10, 2011 and the Aquarius instrument has been collecting data continuously since late August. One of the unique features of the L-band radiometers comprising Aquarius is the presence of a polarimetric channel to measure the third Stokes parameter. The purpose is to provide a measure of Faraday rotation, which can be important for remote sensing at L-band, especially in the case of remote sensing of salinity which requires high precision. Initial results are presented here showing a reasonable agreement between retrieved and modeled Faraday rotation and also the "noisy" behavior at land-water boundaries and other mixed scenes predicted by theory.

  9. The Proteus Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Bui, Trong T.; Cavicchi, Richard H.; Conley, Julianne M.; Molls, Frank B.; Schwab, John R.

    1992-01-01

    An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes.

  10. General Squirming Motion in a Stokes Flow

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2013-11-01

    Some microorganisms such as ciliates (Opalina) and colonies of flagellates (Volvox) are approximately spherical in shape and swim using beating arrays of cilia covering their surfaces. The ciliary motion over the surface may be mathematically modeled as the generation of effectively tangential velocities on the spherical surface - known as squirming motion. Previous analyses assumed axisymmetry and hence restricted all swimming kinematics to take place along a line. Here we remove this limitation and extend the analysis to general non-axisymmetric squirming motion. We derive analytically the three-dimensional translational and rotational swimming velocities as well as the surrounding flow field of a general squirmer. The framework developed here completes the analysis of squirming motion in a Stokes flow.

  11. The Chromospheric Lyman Alpha SpectroPolarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Tsuneta, S.; Trujillo Bueno, J.; Cirtain, J. W.; Bando, T.; Kano, R.; Hara, H.; Fujimura, D.; Ueda, K.; Ishikawa, R.; Watanabe, H.; Ichimoto, K.; Sakao, T.; de Pontieu, B.; Carlsson, M.; Casini, R.

    2010-12-01

    Magnetic fields in the solar chromosphere play a key role in the energy transfer and dynamics of the solar atmosphere. Yet a direct observation of the chromospheric magnetic field remains one of the greatest challenges in solar physics. While some advances have been made for observing the Zeeman effect in strong chromospheric lines, the effect is small and difficult to detect outside sunspots. The Hanle effect offers a promising alternative; it is sensitive to weaker magnetic fields (e.g., 5-500 G for Ly-Alpha), and while its magnitude saturates at stronger magnetic fields, the linear polarization signals remain sensitive to the magnetic field orientation. The Hanle effect is not only limited to off-limb observations. Because the chromosphere is illuminated by an anisotropic radiation field, the Ly-Alpha line is predicted to show linear polarization for on-disk, near-limb regions, and magnetic field is predicted to cause a measurable depolarization. At disk center, the Ly-Alpha radiation is predicted to be negligible in the absence of magnetic field, and linearly polarized to an order of 0.3% in the presence of an inclined magnetic field. The proposed CLASP sounding rocket instrument is designed to detect 0.3% linear polarization of the Ly-Alpha line at 1.5 arcsecond spatial resolution (0.7’’ pixel size) and 10 pm spectral resolution. The instrument consists of a 30 cm aperture Cassegrain telescope and a dual-beam spectropolarimeter. The telescope employs a ``cold mirror’’ design that uses multilayer coatings to reflect only the target wavelength range into the spectropolarimeter. The polarization analyzer consists of a rotating waveplate and a polarizing beamsplitter that comprises MgF2 plates placed at Brewster’s Angle. Each output beam of the polarizing beamsplitter, representing two orthogonal linear polarizations, is dispersed and focused using a separate spherical varied-line-space grating, and imaged with a separate 512x512 CCD camera. Prototypes

  12. The motional Stark effect polarimeter in the HL-2A tokamak

    SciTech Connect

    Yu, D. L. Wei, Y. L.; Xia, F.; Cao, J. Y.; Chen, C. Y.; Liu, L.; Chen, W. J.; Ji, X. Q.; Liu, Y.; Yan, L. W.; Yang, Q. W.; Duan, X. R.

    2014-05-15

    A 7-channel motional Stark effect polarimeter based on four polarizers and a spectrometer has been developed in the HL-2A tokamak, which is the first time successful utilizing this kind of polarimeter on a tokamak. The accuracy of the angle can reach ±0.25° in the calibration experiments. Pilot experiments of measuring the magnetic pitch angle have been successfully carried out in the weak motional Stark effect plasma discharge with toroidal magnetic field of ∼1.3 T and beam energy of ∼25 keV/amu. The pitch angles of magnetic field are obtained for 7 spatial points covering 24 cm along major radius with time resolution of 40 ms; the profiles of safety factor are obtained by combining with the Equilibrium and Reconstruction Fitting Code. The core value of safety factor (q) is less than 1 during the sawtooth oscillation and the position of q = 1 surface is well consistent with the results measured by soft X-ray array.

  13. Systematic and Performance Tests of the Hard X-ray Polarimeter X-Calibur

    NASA Astrophysics Data System (ADS)

    Endsley, Ryan; Beilicke, Matthias; Kislat, Fabian; Krawczynski, Henric; X-Calibur/InFOCuS

    2015-01-01

    X-ray polarimetry has great potential to reveal new astrophysical information about the emission processes of high energy sources such as black hole environments, X-ray binary systems, and active galactic nuclei. Here we present the results and conclusions of systematic and performance measurements of the hard X-ray polarimeter, X-Calibur. Designed to be flown on a balloon-borne X-ray telescope, X-Calibur will achieve unprecedented sensitivity and makes use of the fact that polarized X-rays preferentially Compton-scatter perpendicular to their E-field vector. Extensive laboratory measurements taken at Washington University and the Cornell High-Energy Synchrotron Source (CHESS) indicate that X-Calibur combines a detection efficiency on the order of unity with a high modulation factor of µ ≈ 0.5 averaged over the whole detector assembly, and with values up to µ ≈ 0.7 for select subsections of the polarimeter. Additionally, we are able to suppress background flux by more than two orders of magnitude by utilizing an active shield and scintillator coincidence. Comparing laboratory data with Monte Carlo simulations of both polarized and unpolarized hard X-ray beams illustrate that we have an exceptional understanding of the detector response.

  14. First results of the J-TEXT high-resolution 3-wave polarimeter-interferometer system

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Chen, J.; Li, Q.; Gao, L.; Wang, Z. J.; Liu, Y.; Chen, W.

    2013-10-01

    A far-infrared laser polarimeter-interferometer system based on Three-wave technique has been established on the J-TEXT tokamak. The system determines Faraday angle by measuring phase difference between two collinear, counter-rotating, circularly polarized laser beams, and acquires line-integrated electron density simultaneously by phase comparison between the two beams and a third local oscilate (LO) beam. Three seperately pumped HCOOH lasers at 432 μm are adopted as sources, suppling more than 100 mW power output in sum. Parabolic mirrors are used to expand probe beams to 450 mm wide, covering ~ 80% of plasma cross section, which allows profile measurement with high spatial resolution. First experimental results of the polarimeter-interferometer have been obtained. 12 chords (3 cm chord spacing) simultaneous polarimetric and interferometric measurements are achieved, with phase resolution up to 0.1° at bandwidth of 50 kHz. With the high temporal and phase resolution, perturbations associated with the sawtooth cycle and MHD activity have been observed.

  15. A High Sensitivity Balloon-Borne Soft Gamma-ray Polarimeter PoGOLite

    NASA Astrophysics Data System (ADS)

    Kamae, Tuneyoshi; Craig, W.; Madejski, G.; Ng, J.; Tajima, H.; Varner, G.; Carlson, P.; Klamra, W.; Pearce, M.; Bjornsson, C.; Larsson, S.; Ryde, F.; Kataoka, J.; Kawai, N.; Mizuno, T.; Takahashi, T.

    2006-09-01

    Development status of a new balloon-borne polarimeter, PoGOLite, will be presented. PoGOLite is designed to detect 10% polarization of a 100 mCrab source in one 6 hour balloon observation in the 25 keV - 100 keV energy range. Its design is based on the well-type phoswich counter technology. Polarization is measured by recording Compton scattering and photo-absorption in an array of 217 phoswich detector cells made of plastic and BGO scintillators, surrounded by active BGO shields. The design has been optimized through 4 rounds of tests at synchrotron beams and a proton beam, and flight model production has began: it can reduce the large background produced by cosmic-ray particles to about 10 mCrab level in most of its energy coverage. Potential systematic instrumental bias to the polarization measurement will be removed by rotating the polarimeter telescope around its axis. We plan to observe northern sky sources including the Crab pulsar/nebula, Cygnus X-1, and Hercules X-1 in the first flight scheduled in 2009. Our future plans include long duration balloon flights from Sweden to North America, and launching within a few weeks of gamma-ray flare detection from jet sources such as Mkn 501 by GLAST.

  16. A double-arm Møller Polarimeter for Jefferson Lab's Hall B

    NASA Astrophysics Data System (ADS)

    Grún, E.; Krúger, H.; Dermott, S.; Fechtig, H.; Graps, A. L.; Zook, H. A.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Heck, A.; Horányi, M.; Kissel, J.; Lindbad, B. A.; Linkert, D.; Linkert, G.; Mann, I.; Mcdonnell, J. A. M.; Morfill, G. E.; Polanskey, C.; Schwehm, G.; Srama, R.

    1998-10-01

    We have constructed and commissioned a double-arm Møller polarimeter for the Hall B beamline at the Thomas Jefferson National Accelerator Facility. The polarimeter measures the longitudinal polarization of the 0.8-4.0 GeV electron beam as it enters the experimental hall. The primary components of the apparatus are a target chamber, a pair of quadrupole magnets, and a pair of lead/scintillating-fiber detectors. The target chamber contains two 20 μm-thick permendur foils tilted at ± 20^o with respect to the beam axis. A target polarization of approximately 8% is produced along the beam direction by a 90 G (nominal) magnetic field generated by a pair of Helmholtz coils. The scattered Møller-electron pairs are directed toward the detectors by the quadrupoles. The quadrupoles are are individually tuned--depending on the beam energy--to center the peak of the Møller asymmetry (θ_c.m.=90^o) onto the fixed detectors. The real-to-accidental coincident-detection rate is better than 200:1. The beam polarization can be measured to a 3% relative statistical precision in less than 30 minutes with a relative systematic uncertainty of less than 5%.

  17. A high-contrast imaging polarimeter with a stepped-transmission filter based coronagraph

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Chao; Ren, De-Qing; Zhu, Yong-Tian; Dou, Jiang-Pei; Guo, Jing

    2016-05-01

    The light reflected from planets is polarized mainly due to Rayleigh scattering, but starlight is normally unpolarized. Thus it provides an approach to enhance the imaging contrast by inducing the imaging polarimetry technique. In this paper, we propose a high-contrast imaging polarimeter that is optimized for the direct imaging of exoplanets, combined with our recently developed stepped-transmission filter based coronagraph. Here we present the design and calibration method of the polarimetry system and the associated test of its high-contrast performance. In this polarimetry system, two liquid crystal variable retarders (LCVRs) act as a polarization modulator, which can extract the polarized signal. We show that our polarimeter can achieve a measurement accuracy of about 0.2% at a visible wavelength (632.8 nm) with linearly polarized light. Finally, the whole system demonstrates that a contrast of 10‑9 at 5λ/D is achievable, which can be used for direct imaging of Jupiter-like planets with a space telescope.

  18. A transmissive x-ray polarimeter design for hard x-ray focusing telescopes

    NASA Astrophysics Data System (ADS)

    Li, Hong; Feng, Hua; Ji, Jianfeng; Deng, Zhi; He, Li; Zeng, Ming; Li, Tenglin; Liu, Yinong; Heng, Peiying; Wu, Qiong; Han, Dong; Dong, Yongwei; Lu, Fangjun; Zhang, Shuangnan

    2015-08-01

    The X-ray Timing and Polarization (XTP) is a mission concept for a future space borne X-ray observatory and is currently selected for early phase study. We present a new design of X-ray polarimeter based on the time projection gas chamber. The polarimeter, placed above the focal plane, has an additional rear window that allows hard X-rays to penetrate (a transmission of nearly 80% at 6 keV) through it and reach the detector on the focal plane. Such a design is to compensate the low detection efficiency of gas detectors, at a low cost of sensitivity, and can maximize the science return of multilayer hard X-ray telescopes without the risk of moving focal plane instruments. The sensitivity in terms of minimum detectable polarization, based on current instrument configuration, is expected to be 3% for a 1mCrab source given an observing time of 105 s. We present preliminary test results, including photoelectron tracks and modulation curves, using a test chamber and polarized X-ray sources in the lab.

  19. X-ray Polarization Measurements with a Micro-pattern Gas Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Black, J. K.; Deines-Jones, P.; Jahoda, K.; Bellazzini, R.; Brez, A.; Costa, E.; Kaaret, P.; Minuti, M.; Spandre, G.; Swank, J. H.

    2006-01-01

    The benefits of Astrophysical X-ray polarization measurements have been discussed in the literature for decades and with respect to a variety of detectors. Despite this, a dedicated polarimeter for the measurement of Astrophysical sources has not flown since the 1970's, when the definitive measurement of the Crab Nebula was made. More recently, an indirect measurement of the polarization of two gamma-ray bursts has been extracted from BATSE data, re-emphasizing the importance of polarization measurements in constraining a physical model. We describe a sensitive and, and extremely versatile, photoelectric polarimeter using a micro-pattern gas detector, with an 80micron pixel ASIC anode, to image the primary photoelectron track. The detector can be optimized to a preferred energy range between 1 keV and 50 keV. We present measurements of polarized 4.5 keV X-rays and unpolarized 6 keV X-rays obtained with a prototype detector using Carbon Dioxide gas.

  20. Gamma-Ray Burst Polarimeter (GAP) aboard the Small Solar Power Sail Demonstrator IKAROS

    NASA Astrophysics Data System (ADS)

    Yonetoku, Daisuke; Murakami, Toshio; Gunji, Shuichi; Mihara, Tatehiro; Sakashita, Tomonori; Morihara, Yoshiyuki; Kikuchi, Yukihiro; Takahashi, Takuya; Fujimoto, Hirofumi; Toukairin, Noriyuki; Kodama, Yoshiki; Kubo, Shin; Ikaros Demonstration Team

    2011-06-01

    The small solar-power sail demonstrator ``IKAROS'' is a Japanese engineering verification spacecraft launched by the H-IIA rocket on 2010 May 21 at Japan Aerospace Exploration Agency (JAXA) Tanegashima Space Center. IKAROS has a 20 m diameter sail, which is made of a thin polyimide membrane. The sail converts the solar radiation-pressure into the propulsion force of IKAROS, and accelerates the spacecraft. The Gamma-Ray Burst Polarimeter (GAP) aboard IKAROS is the first polarimeter specifically designed to measure the polarization of Gamma-Ray Bursts (GRBs) from space, and will do so in the cruising phase of the IKAROS mission. GAP is a modest detector of 3.8 kg in weight and 17 cm in size with an energy range of between 50-300 keV. The GAP detector is now a member of the interplanetary network (IPN) for determining the GRB direction. The detection principle of gamma-ray polarization is the anisotropy of the Compton scattering. Coincidence between the central plastic Compton scattering medium and discrete CsI detectors distributed around the sides of the plastic defines the Compton-scattering angle, which is expected to show an angular dependence if polarization is present in a given GRB. In this paper, we present the GAP detector and its ground-based and onboard calibrations.

  1. Prototype Spectro-Polarimeter for the India's National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Elayavalli Rangarajan, Komandur; Sankarasubramanian, Kasiviswanathan; Srivastava, Nandita; Venkatakrishnan, Parameswaran; Mathew, Shibu; Bayanna, Raja; Hasan, Sirajul; Prabhu, Kesavan

    2013-04-01

    India's National Large Solar Telescope (NLST) of two meter aperture size is proposed to be set up in Ladakh region of Himalayas at a height of around 4300 meters. A high resolution spectrograph along with a polarimeter is planned as one of the backend instruments for NLST. Prototype development of the NLST Spectro-Polarimeter (SP) is proposed to be designed and developed for usage at the back focal plane of the Multi-Application Solar Telescope (MAST) recently installed at the Udaipur Solar Observatory. Design of the prototype SP is discussed in detail along with the scientific goals. The SP is designed to be operated in three wavelengths to observe photospheric and chromospheric layers of the solar atmosphere simultaneously. Vector magnetic fields will be calculated in these layers. High resolution of the designed SP will provide accurate estimates of velocities. Highly resolved polarized line profiles will allow us to obtain the height variation of vector magnetic fields when used along with suitable inversion codes (like SPINOR or SIR).

  2. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f‑5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  3. Stokes vector formalism based second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Jianjun; Mazumder, Nirmal; Tsai, Han-Ruei; Hu, Chih-Wei; Kao, Fu-Jen

    2012-02-01

    In this study, we have developed a four-channel Stokes vector formalism based second harmonic generation (SHG) microscopy to map and analyze SHG signal. A four-channel Stokesmeter setup is calibrated and integrated into a laser scanning microscope to measure and characterize the SH's corresponding Stokes parameters. We are demonstrating the use of SH and its Stokes parameters to visualize the birefringence and crystalline orientation of KDP and collagen. We believe the developed method can reveal unprecedented information for biomedical and biomaterial studies.

  4. Phase-space rotations and orbital Stokes parameters.

    PubMed

    Alieva, Tatiana; Bastiaans, Martin J

    2009-02-15

    We introduce the orbital Stokes parameters as a linear combination of a beam's second-order moments. Similar to the ones describing the field polarization and associated with beam energy and its spin angular momentum, the orbital Stokes parameters are related to the total beam width and its orbital angular momentum. We derive the transformation laws for these parameters during beam propagation through first-order optical systems associated with phase-space rotations. The values of the orbital Stokes parameters for Gaussian modes and arbitrary fields expressed as their linear superposition are obtained. PMID:19373324

  5. Preconditioning the pressure operator for the time dependent Stokes problem

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.

    1994-12-31

    In implicit time stepping procedures for the linearized Navier Stokes equations, a linear perturbed Stokes problem must be solved at each time step. Many methods for doing this require a good preconditioner for the resulting pressure operator (Schur complement). In contrast to the time independent Stokes equations where the pressure operator is well conditioned, the pressure operator for the perturbed system becomes more illconditioned as the time step is reduced (and/or the Reynolds number is increased). The authors describe the method for solving the coupled velocity/pressure systems and, in particular, show how to construct good preconditioners for the poorly conditioned pressure operator.

  6. Numerical Prediction Methods (Reynolds-Averaged Navier-Stokes Simulations of Transonic Separated Flows)

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Lomax, Harvard

    1981-01-01

    During the past five years, numerous pioneering archival publications have appeared that have presented computer solutions of the mass-weighted, time-averaged Navier-Stokes equations for transonic problems pertinent to the aircraft industry. These solutions have been pathfinders of developments that could evolve into a major new technological capability, namely the computational Navier-Stokes technology, for the aircraft industry. So far these simulations have demonstrated that computational techniques, and computer capabilities have advanced to the point where it is possible to solve forms of the Navier-Stokes equations for transonic research problems. At present there are two major shortcomings of the technology: limited computer speed and memory, and difficulties in turbulence modelling and in computation of complex three-dimensional geometries. These limitations and difficulties are the pacing items of the continuing developments, although the one item that will most likely turn out to be the most crucial to the progress of this technology is turbulence modelling. The objective of this presentation is to discuss the state of the art of this technology and suggest possible future areas of research. We now discuss some of the flow conditions for which the Navier-Stokes equations appear to be required. On an airfoil there are four different types of interaction of a shock wave with a boundary layer: (1) shock-boundary-layer interaction with no separation, (2) shock-induced turbulent separation with immediate reattachment (we refer to this as a shock-induced separation bubble), (3) shock-induced turbulent separation without reattachment, and (4) shock-induced separation bubble with trailing edge separation.

  7. Formulation of boundary conditions for the multigrid acceleration of the Euler and Navier Stokes equations

    NASA Technical Reports Server (NTRS)

    Jentink, Thomas Neil; Usab, William J., Jr.

    1990-01-01

    An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.

  8. An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Radespiel, R.; Swanson, R. C.

    1989-01-01

    Two efficient and robust finite-volume multigrid schemes for solving the Navier-Stokes equations are investigated. These schemes employ either a cell centered or a cell vertex discretization technique. An explicit Runge-Kutta algorithm is used to advance the solution in time. Acceleration techniques are applied to obtain faster steady-state convergence. Accuracy and convergence of the schemes are examined. Computational results for transonic airfoil flows are essentially the same, even for a coarse mesh. Both schemes exhibit good convergence rates for a broad range of artificial dissipation coefficients.

  9. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian; Meneveau, Charles; Eyink, Gregory

    2013-03-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al 2002). CS in general is said to be present in coupled dynamical systems when a specific property of each system has the same time evolution for all, even though the evolution itself is chaotic. The Navier-Stokes (NS) equations describe the velocity for a wide range of fluids, and their solutions are usually called turbulent if fluctuation amplitudes decrease as a power of their wavenumber. There have been some studies of CS for continuous systems (Kocarev et al 1997), but CS for NS turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. Our DNS results show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we found to be recoverable even at very high Reynolds number from simulations with moderate resolutions. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530

  10. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Meneveau, Charles; Eyink, Gregory L.

    2012-11-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al. 2002). CS in general is said to be present in a pair of coupled dynamical systems when a specific property of each system has the same time evolution for both, even though the evolution itself is chaotic. There have been some studies of CS for systems with an infinite number of degrees of freedom (Kocarev et al. 1997), but CS for Navier-Stokes (NS) turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. We present DNS results which show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. We compare our results with related ideas of ``approximate inertial manifolds.'' The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we show are recoverable even at very high Reynolds number from simulations that only resolve down to about the Kolmogorov scale. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530.

  11. Navier-Stokes Computations on Commodity Computers

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Faulkner, Thomas R.

    1998-01-01

    In this paper we discuss and demonstrate the feasibility of solving high-fidelity, nonlinear computational fluid dynamics (CFD) problems of practical interest on commodity machines, namely Pentium Pro PC's. Such calculations have now become possible due to the progress in computational power and memory of the off-the-shelf commodity computers, along with the growth in bandwidth and communication speeds of networks. A widely used CFD code known as TLNS3D, which was developed originally on large shared memory computers was selected for this effort. This code has recently been ported to massively parallel processor (MPP) type machines, where natural partitioning along grid blocks is adopted in which one or more blocks are distributed to each of the available processors. In this paper, a similar approach is adapted to port this code to a cluster of Pentium Pro computers. The message passing among the processors is accomplished through the use of standard message passing interface (MPI) libraries. Scaling studies indicate fairly high level of parallelism on such clusters of commodity machines, thus making solutions to Navier-Stokes equations for practical problems more affordable.

  12. Scaling Navier-Stokes equation in nanotubes

    NASA Astrophysics Data System (ADS)

    Gǎrǎjeu, Mihail; Gouin, Henri; Saccomandi, Giuseppe

    2013-08-01

    On one hand, classical Monte Carlo and molecular dynamics simulations have been very useful in the study of liquids in nanotubes, enabling a wide variety of properties to be calculated in intuitive agreement with experiments. On the other hand, recent studies indicate that the theory of continuum breaks down only at the nanometer level; consequently flows through nanotubes still can be investigated with Navier-Stokes equations if we take suitable boundary conditions into account. The aim of this paper is to study the statics and dynamics of liquids in nanotubes by using methods of nonlinear continuum mechanics. We assume that the nanotube is filled with only a liquid phase; by using a second gradient theory the static profile of the liquid density in the tube is analytically obtained and compared with the profile issued from molecular dynamics simulation. Inside the tube there are two domains: a thin layer near the solid wall where the liquid density is non-uniform and a central core where the liquid density is uniform. In the dynamic case a closed form analytic solution seems to be no more possible, but by a scaling argument it is shown that, in the tube, two distinct domains connected at their frontiers still exist. The thin inhomogeneous layer near the solid wall can be interpreted in relation with the Navier length when the liquid slips on the boundary as it is expected by experiments and molecular dynamics calculations.

  13. Obtaining Stokes Parameters from the SUMI Experiment

    NASA Technical Reports Server (NTRS)

    Fayock, Brian; Winebarger, Amy; Cirtain, Jonathan; Kobayashi, Ken; West, Ed

    2014-01-01

    A sounding rocket experiment designed at the Marshall Space Flight Center, named the Solar Ultraviolet Magnetograph Investigation, had its second launch in July of 2012 to test the feasibility of measuring polarization signals of the ionized magnesium resonance doublet near 280 nm, originating from the transition region. The rocket housed a telescope at the front end and an imaging system at the rear end. Placed at the focal point of the self-filtering telescope, a wave plate rotated through 12 predefined angular orientations to restrict the measurements to specific combinations of circular and linear polarization. Coupled with a double Wollaston analyzer, the linearly polarized ordinary and extraordinary beams were measured for the 12 combinations, each containing different fractions of the Stokes parameters (I, Q, U, V). A thorough analysis of the data has allowed us to come to several conclusions regarding the design of the experiment. 1) We are confident that polarization can be measured. A sunspot region was determined to exhibit similar results over multiple pixels. 2) Measurements are limited by resolution, i.e. regions smaller than the angular resolution per pixel cannot be resolved with any certainty. 3) Temporal evolution of magnetic features must be considered in future experimental designs. Measurements need to be taken in repeated cycles as opposed to a single cycle over the duration of the experiment. In our presentation, we will provide a summary of the observations along with the methods of our analysis, including the limitations that we've encountered.

  14. Multispectral Stokes polarimetry for dermatoscopic imaging

    NASA Astrophysics Data System (ADS)

    Castillejos, Y.; Martínez-Ponce, Geminiano; Mora-Nuñez, Azael; Castro-Sanchez, R.

    2015-12-01

    Most of skin pathologies, including melanoma and basal/squamous cell carcinoma, are related to alterations in external and internal order. Usually, physicians rely on their empirical expertise to diagnose these ills normally assisted with dermatoscopes. When there exists skin cancer suspicion, a cytology or biopsy is made, but both laboratory tests imply an invasive procedure. In this regard, a number of non-invasive optical techniques have been proposed recently to improve the diagnostic certainty and assist in the early detection of cutaneous cancer. Herein, skin optical properties are derived with a multispectral polarimetric dermatoscope using three different illumination wavelength intervals centered at 470, 530 and 635nm. The optical device consist of two polarizing elements, a quarter-wave plate and a linear polarizer, rotating at a different angular velocity and a CCD array as the photoreceiver. The modulated signal provided by a single pixel in the acquired image sequence is analyzed with the aim of computing the Stokes parameters. Changes in polarization state of selected wavelengths provide information about the presence of skin pigments such as melanin and hemoglobin species as well as collagen structure, among other components. These skin attributes determine the local physiology or pathology. From the results, it is concluded that optical polarimetry will provide additional elements to dermatologists in their diagnostic task.

  15. Optimal propulsive flapping in Stokes flows.

    PubMed

    Was, Loïc; Lauga, Eric

    2014-03-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers. PMID:24343130

  16. Intercomparison of Ground-Based Aerosol Retrievals Using Spex Spectro-Polarimeters

    NASA Astrophysics Data System (ADS)

    Smit, M.; Rietjens, J.; van Harten, G.; di Noia, A.; Hasekamp, O. P.; Snik, F.; Keller, C. A.

    2014-12-01

    Multi-angle spectro-polarimetry holds great potential as a remote sensing technique to derive aerosol information. A consortium of Dutch research institutes has developed a multi-angle spectro-polarimeter that is based on a novel method for measuring the state of linear polarization: spectral modulation. Through a series of carefully selected birefringent crystals, the polarization state of scattered sunlight is encoded in a sinusoidal modulation in the intensity spectrum.The technique is entirely passive. As consequence of the method is that spectral flux and state of polarization are measured simultaneouslyin a single measurement of a target scene. The technique has been employed in two instrument realizations, that are both referenced by the name SPEX: SPectro-polarimeter Experiment. A compact prototype SPEX instrument for space-based observations operates in the 400-800nm wavelength range and consists of nine fixed viewing apertures with a swath of 7 degrees each and an angular resolution of 1deg x 1deg. The space-SPEX instrument is currently being made fit to perform aerosol characterization campaigns on-board an ER-2 research aircraft together with NASA's Research Scanning Polarimeter. Another realization is groundSPEX, that was developed specifically for air-quality observations made from the ground. Both instruments were calibrated using 100% polarized light, assuming a bias-free linear response. This was validated in different ways. Using a recently developed polarization calibration stimulus we demonstrate the excellent polarimetric performance of the SPEX prototype: a polarimetric accuracy better than 0.002 + 0.01*DoLP. The overall random polarization error of groundSPEX was determined to be 0.005 by fitting the angular dependence of principle plane polarization measurements. We will present results of ground-based measurements with both SPEX instruments. We will intercompare aerosol characterization parameters such as Aerosol Optical Thickness

  17. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite

  18. On the nonstationary Stokes system in a cone

    NASA Astrophysics Data System (ADS)

    Kozlov, Vladimir; Rossmann, Jürgen

    2016-06-01

    The authors consider the Dirichlet problem for the nonstationary Stokes system in a threedimensional cone. They obtain existence and uniqueness results for solutions in weighted Sobolev spaces and prove a regularity assertion for the solutions.

  19. Navier-Stokes computations for circulation control airfoils

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Jespersen, Dennis C.; Barth, Timothy J.

    1987-01-01

    Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.

  20. Second harmonic generation double stokes Mueller polarimetric microscopy of myofilaments

    PubMed Central

    Kontenis, Lukas; Samim, Masood; Karunendiran, Abiramy; Krouglov, Serguei; Stewart, Bryan; Barzda, Virginijus

    2016-01-01

    The experimental implementation of double Stokes Mueller polarimetric microscopy is presented. This technique enables a model-independent and complete polarimetric characterization of second harmonic generating samples using 36 Stokes parameter measurements at different combinations of incoming and outgoing polarizations. The degree of second harmonic polarization and the molecular nonlinear susceptibility ratio are extracted for individual focal volumes of a fruit fly larva wall muscle. PMID:26977362

  1. Compressible Navier-Stokes Equations with Revised Maxwell's Law

    NASA Astrophysics Data System (ADS)

    Hu, Yuxi; Racke, Reinhard

    2016-05-01

    We investigate the compressible Navier-Stokes equations where the constitutive law for the stress tensor given by Maxwell's law is revised to a system of relaxation equations for two parts of the tensor. The global well-posedness is proved as well as the compatibility with the classical compressible Navier-Stokes system in the sense that, for vanishing relaxation parameters, the solutions to the Maxwell system are shown to converge to solutions of the classical system.

  2. On relaxation times in the Navier-Stokes-Voigt model

    NASA Astrophysics Data System (ADS)

    Layton, William J.; Rebholz, Leo G.

    2013-03-01

    We study analytically and numerically the relaxation time of flow evolution governed by the Navier-Stokes-Voigt (NSV) model. We first show that for the Taylor-Green vortex decay problem, NSV admits an exact solution which evolves slower than true fluid flow. Secondly, we show numerically for a channel flow test problem using standard discretisation methods that although NSV provides more regular solutions compared to usual Navier-Stokes solutions, NSV approximations take significantly longer to reach the steady state.

  3. Navier-Stokes computations for circulation controlled airfoils

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.

    1986-01-01

    Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.

  4. Expected performance of a hard X-ray polarimeter (POLAR) by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Shaolin; Produit, Nicolas; Wu, Bobing

    2009-07-01

    Polarization measurements of the prompt emission in gamma-ray bursts (GRBs) can provide diagnostic information for understanding the nature of the central engine. POLAR is a compact polarimeter dedicated to the polarization measurement of GRBs between 50 and 300 keV and is scheduled to be launched aboard the Chinese Space Laboratory around the year 2012. A preliminary Monte Carlo simulation has been accomplished to model the expected performance of POLAR while a prototype of POLAR is being constructed. The modulation factor, efficiency and effective area, background rates and minimum detectable polarization (MDP) were calculated for different detector configurations and trigger strategies. With the optimized detector configuration and trigger strategy and the total weight constraint of less than 30 kg, the primary science goal to determine whether most GRBs are strongly polarized can be achieved, and about 9 GRBs/yr can be detected with an MDP<10% for the conservative detector configuration.

  5. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    SciTech Connect

    Liu, H. Q.; Jie, Y. X. Zou, Z. Y.; Li, W. M.; Wang, Z. X.; Qian, J. P.; Yang, Y.; Zeng, L.; Wei, X. C.; Hu, L. Q.; Wan, B. N.; Ding, W. X.; Brower, D. L.; Lan, T.; Li, G. S.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  6. Research in solar physics: Some techniques for analyzing data from the ultraviolet spectrometer and polarimeter

    NASA Technical Reports Server (NTRS)

    Henze, W., Jr.

    1984-01-01

    Useful information for certain aspects of the analysis of data obtained by the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) are contained. The meaning of the UVSPCO-ordinate system and the SMM roll, pitch, and yaw are described and the process for overlaying UVSP images is explained. The various computer programs that calculate the line of sight component of the SMM spacecraft velocity from the spacecraft to the Sun is described. The spacecraft velocity is used to correct or interpret the signal observed in USVP dopplergrams. A method of using the spacecraft velocity to calibrate UVSP dopplergrams and magnetograms, i.e., determine the width of the observed emission line is applied. The UVSP polarization analysis procedures are described and the expressions for the statistical uncertainties in various quantities obtained from UVSP measurements are given.

  7. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    SciTech Connect

    Bernauer, Jan; Milner, Richard

    2013-11-07

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  8. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N.; Ishikawa, R.; Tsuneta, S.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Goto, M.; Holloway, T.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchère, F.; Trujillo Bueno, J.; Manso Sainz, R.; Belluzzi, L.; Asensio Ramos, A.; Štěpán, J.; Carlsson, M.

    2014-10-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles in the hydrogen Lyman-alpha (Lyα) line at 121.567 nm. CLASP is a vacuum-UV (VUV) spectropolarimeter to aim for first detection of the linear polarizations caused by scattering processes and the Hanle effect in the Lyα line with high accuracy (0.1%). This is a fist step for exploration of magnetic fields in the upper chromosphere and transition region of the Sun. Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect in strong UV lines like Lyα are essential to explore with future solar telescopes the strength and structures of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP proposal has been accepted by NASA in 2012, and the flight is planned in 2015.

  9. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  10. A tracking polarimeter for measuring solar and ionospheric Faraday rotation of signals from deep space probes

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.; Levy, G. S.; Stelzried, C. T.

    1974-01-01

    A tracking polarimeter implemented on the 64-m NASA/JPL paraboloid antenna at Goldstone, Calif., is described. Its performance is analyzed and compared with measurements. The system was developed to measure Faraday rotation in the solar corona of the telemetry carrier from the Pioneer VI spacecraft as it was occulted by the sun. It also measures rotation in the earth's ionosphere and is an accurate method of determining spacecraft orientation. The new feature of this system is its use of a pair of quarter-wave plates to allow the synthesis of a rotating feed system, while requiring the rotation of only a single section of waveguide. Since the polarization sensing is done at RF and the receiver operates essentially as a null detector, the system's accuracy is superior to other polarization tracking schemes. In addition, the antenna size and maser preamplifier provide unsurpassed sensitivity. The associated instrumentation used in the Pioneer VI experiment is also described.

  11. Recent developments of the JET far-infrared interferometer-polarimeter diagnostic

    SciTech Connect

    Boboc, A.; Murari, A.; Collaboration: JET-EFDA Contributors

    2010-10-15

    The far-infrared diagnostic provides essential internal measurements of the plasma density and magnetic field topology (q-profile via Faraday rotation angle) in real-time. The diagnostic capabilities have recently been extended in a number of key areas. Fast interferometer data, with 10 {mu}s time resolution, and a new MATLAB code have allowed improved analysis of the evolution of density profiles during fast events such as vertical plasma displacements, edge localized mode, pellet fuelling, and disruptions. Using the polarimeter measurements in real-time, a new calibration procedure has been developed based on a propagation code using the Mueller matrix formalism. A further major upgrade of the system is presently underway: adding a second color laser to the vertical channels and implementing a new phase counter based on analog zero crossing and field-programmable gate array boards.

  12. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Israel, M. H.; Lee, K.; Krawczynski, H.; Baring, M. G.; Barthelmy, S.; Okajima, T.; Schnittman, J.; Tueller, J.; Haba, Y.; Kunieda, H.; Matsumoto, H.; Miyazawa, T.; Tamura, K.

    2011-01-01

    X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  13. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    SciTech Connect

    Mohanmurthy, Prajwal; Dutta, Dipangkar

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  14. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    SciTech Connect

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D.

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  15. Research Scanning Polarimeter (RSP): Retrievals from PODEX and SEAC4RS

    NASA Technical Reports Server (NTRS)

    Cairns, Brian; van Diedenhoven, Bastiaan; Alexandrov, Mikhail; Chowdhary, Jacek; Wasilewski, Andrzej P.; Mishchenko, Michael

    2014-01-01

    We illustrate our methods on examples from the recent NASA's field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January - February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August - September 2013). During these campaigns the RSP was onboard the NASA's long-range high-altitude ER-2 aircraft together with an array of other remote sensing instrumentation. Correlative sampling measurements from another aircraft were also available. The data obtained during these campaigns provides an excellent opportunity to study cloud properties in variety of locations and atmospheric conditions. We present examples of boundary layer cumulus and stratocumulus clouds, liquid altostratus clouds, and fogs. In the latter two cases the droplet size distribution derived from RFT analysis exhibited multiple modes corresponding to different cloud layers, as supported by the correlative lidar atmospheric profiles.

  16. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  17. Ultraviolet spectropolarimetry of the Be star PP Carinae with the Wisconsin Ultraviolet Photo-Polarimeter Experiment

    NASA Technical Reports Server (NTRS)

    Bjorkman, K. S.; Meade, M. R.; Nordsieck, K. H.; Anderson, C. M.; Babler, B. L.; Clayton, G. C.; Code, A. D.; Magalhaes, A. M.; Schulte-Ladbeck, R. E.; Taylor, M.

    1993-01-01

    We present the first ultraviolet spectropolarimetric observations of the Be star PP Car, obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) aboard the Astro 1 mission. Usable polarization data were obtained from 1400 to 2330 A, along with a good spectrum from 1400 to 3200 A. These data show a lower polarization shortward of the Balmer jump than had been predicted by standard models, and a broad UV polarization dip around 1900 A is seen. These results are in agreement with those found from the WUPPE observations of two other Be stars, Xi Tau and Pi Aqr, which were published earlier. All these observations are an important probe of the Be circumstellar envelopes and demonstrate the need for the inclusion of metal-line effects in circumstellar disk models of Be star UV polarization.

  18. First ultraviolet spectropolarimetry of Be stars from the Wisconsin Ultraviolet Photo-Polarimeter Experiment

    NASA Technical Reports Server (NTRS)

    Bjorkman, K. S.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Nook, M. A.; Schulte-Ladbeck, R. E.

    1991-01-01

    The first UV spectropolarimetric observations of Be stars are presented. They were obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) aboard the Astro-1 mission. WUPPE data on the Be stars Zeta Tau and Pi Aqr, along with near-simultaneous optical data obtained at the Pine Bluff Observatory (PBO). Combined WUPPE and PBO data give polarization as a function of wavelength across a very broad spectral region, from 1400 to 7600 A. Existing Be star models predicted increasing polarization toward shorter wavelengths in the UV, but this is not supported by the WUPPE observations. Instead, the observations show a constant or slightly declining continuum polarization shortward of the Balmer jump, and broad UV polarization dips around 1700 and 1900 A, which may be a result of Fe-line-attenuation effects on the polarized flux. Supporting evidence for this conclusion comes from the optical data, in which decreases in polarization across Fe II lines in Zeta Tau were discovered.

  19. The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu; Amman, Mark S.; Takahashi, Tadayuki

    2012-01-01

    The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.

  20. Polarimeter Arrays with Comprehensive Frequency Coverage for the Next Generation of Precision Microwave Background Experiments

    NASA Astrophysics Data System (ADS)

    Austermann, Jason Edward; Beall, James; Becker, Dan; Cho, Hsiao-Mei; Duff, Shannon; gao, jiansong; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; li, dale; McKenney, Christopher; Ullom, Joel; van lanen, jeffrey; Vissers, Michael

    2016-06-01

    Spectral resolution at (sub-)millimeter wavelengths is now understood to be crucially important in precision measurements of the cosmic microwave background (CMB). Recent results from the Planck and BICEP/KECK experiments have established that measurements of the CMB polarization signal is limited, in part, by polarized foreground emission. In particular, polarized emission from galactic dust has been found to dominate and obscure potential signals of cosmic inflation, even in regions of the sky specifically identified as having relatively low galactic emission. Current and future experiments aim to address foreground contamination by conducting high-sensitivity observations with broad spectral coverage that will allow for differentiation within the measured signal between foreground sources of polarization and that of the CMB, which each have distinct spectral characteristics. To efficiently achieve these goals within a limited focal plane area, NIST-Boulder has developed multi-band TES-based polarimeters that simultaneously measure multiple spectral bands in each of two orthogonal polarizations. This acts to both increase pixel sensitivity through an increased total bandwidth, as well as providing broad spectral information for differentiation of emission sources. Here, we describe recent achievements and ongoing efforts at NIST-Boulder in the development of millimeter and sub-millimeter detector and focal plane technologies for future experiments, including the stage-IV CMB experiment, CMB-S4. NIST-Boulder provides critical cryogenic components to a large number of current and in-development CMB experiments. Recent milestones include the fielding of the first broadband multi-chroic mm-wave polarimeters in the ACTPol experiment, multi-band array fabrication on large-format 150 mm wafers, and development of matching 150 mm silicon platelet feedhorn arrays. We also review several related development efforts in detector, optical coupling, and readout technologies

  1. Combined spontaneous Stokes and coherent anti-Stokes Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Becker, Karina; Kiefer, Johannes

    2016-05-01

    The simultaneous determination of multiple parameters is the key in the characterization of processes and materials that change with time. In combustion environments, the combined measurement of temperature and chemical composition is particularly desirable. In the present work, possible approaches for the simultaneous application of spontaneous Raman scattering (RS) and coherent anti-Stokes Raman scattering (CARS) spectroscopy are proposed and analyzed. While RS provides concentration information of all major species, vibrational CARS is a highly accurate thermometry tool at flame conditions. Five experimentally feasible CARS-RS schemes are identified and discussed with respect to signal intensity, measurement volume, and experimental complexity. From this analysis, one scheme was found to be the best option. It utilizes a broadband dye laser centered at 852 nm as a pump and the fundamental 1064-nm radiation of the Nd:YAG as Stokes laser. The third harmonic is used as CARS probe and RS laser. The experimentally most elegant scheme replaces the third harmonic in the above scheme by the second harmonic hence involving the smallest number of optical components in the setup.

  2. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    NASA Astrophysics Data System (ADS)

    Narayan, Amrendra

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (~1GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  3. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    SciTech Connect

    Narayan, Amrendra

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  4. A sensitivity-enhanced optical heterodyne polarimeter for the measurement of optical rotation angle of chiral media

    NASA Astrophysics Data System (ADS)

    Tsai, Ying C.; Wu, Chien M.

    2004-09-01

    A novel heterodyne polarimeter is designed to measure the concentration of chiral media. Optical common-path for the interference of the TE and TM waves, after a polarizer, is set up in our system to reduce noises from the environment. A phase-variable waveplate is placed behind the sample to enhance the phase signal change of rotation of polarization introduced by the sample itself. This enhancement can be excess two orders in amplitude when the retardation of the phase-variable plate is set close to 180 degree. With this polarimeter, the measurement of optical rotation angle with high sensitivity of 6.5×10-4 degree experimentally can be achieved when phase retardation of the phase-variable waveplate is 178.5 degree. We expect that, by further improvement, it can be applied in noninvasive blood glucose concentration monitoring for diabetics in the future.

  5. Large size GEM for Super Bigbite Spectrometer (SBS) polarimeter for Hall A 12GeV program at JLab

    SciTech Connect

    Gnanvo, Kondo; Liyanage, Nilanga; Nelyubin, Vladimir; Saenboonruang, Kiadtisak; Sacher, Seth; Wojtsekhowski, Bogdan

    2015-05-01

    We report on the R&D effort in the design and construction of a large size GEM chamber for the Proton Polarimeter of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS Polarimeter trackers consist of two sets of four large chambers of size 200 cm x 60 cm2. Each chamber is a vertical stack of four GEM modules with an active area of 60 cm x 50 cm. We have built and tested several GEM modules and we describe in this paper the design and construction of the final GEM as well as the preliminary results on performances from tests carried out in our detector lab and with test beams at (Fermilab).

  6. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC; initial tests, calibration, and characteristics

    NASA Astrophysics Data System (ADS)

    Helhel, S.; Khamitov, I.; Kahya, G.; Bayar, C.; Kaynar, S.; Gumerov, R.

    2015-10-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian-Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabilities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limitations as well as its linearity. An instrumental intrinsic polarization was determined for the 1 × 5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2 %, and position angle as 1.9∘. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  7. Large size GEM for Super Bigbite Spectrometer (SBS) polarimeter for Hall A 12GeV program at JLab

    DOE PAGESBeta

    Gnanvo, Kondo; Liyanage, Nilanga; Nelyubin, Vladimir; Saenboonruang, Kiadtisak; Sacher, Seth; Wojtsekhowski, Bogdan

    2015-05-01

    We report on the R&D effort in the design and construction of a large size GEM chamber for the Proton Polarimeter of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS Polarimeter trackers consist of two sets of four large chambers of size 200 cm x 60 cm2. Each chamber is a vertical stack of four GEM modules with an active area of 60 cm x 50 cm. We have built and tested several GEM modules and we describe in this paper the design and construction of the final GEM as well asmore » the preliminary results on performances from tests carried out in our detector lab and with test beams at (Fermilab).« less

  8. Navier-Stokes Computations and Experimental Comparisons for Multielement Airfoil Configurations

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Bonhaus, Daryl L.; McGhee, Robert; Walker, Betty

    1993-01-01

    A two-dimensional unstructured Navier-Stokes code is utilized for computing the flow around multielement airfoil configurations. Comparisons are shown for a landing configuration with an advanced-technology flap. Grid convergence studies are conducted to assess inaccuracies caused by inadequate grid resolution. Although adequate resolution is obtained for determining the pressure distributions, further refinement is needed to sufficiently resolve the velocity profiles at high angles of attack. For the advanced flap configuration, comparisons of pressure distributions and lift are made with experimental data. Here, two flap riggings and two Reynolds numbers are considered. In general, the trends caused by variations in these quantities are well predicted by the computations, although the angle of attack for maximum lift is overpredicted.

  9. Analysis of the data from Compton X-ray polarimeters which measure the azimuthal and polar scattering angles

    NASA Astrophysics Data System (ADS)

    Krawczynski, H.

    2011-05-01

    X-ray polarimetry has the potential to make key-contributions to our understanding of galactic compact objects like binary black hole systems and neutron stars, and extragalactic objects like active galactic nuclei, blazars, and Gamma-Ray Bursts. Furthermore, several particle astrophysics topics can be addressed including uniquely sensitive tests of Lorentz invariance. In the energy range from 10 keV to several MeV, Compton polarimeters achieve the best performance. In this paper we evaluate the benefit that comes from using the azimuthal and polar angles of the Compton scattered photons in the analysis, rather than using the azimuthal scattering angles alone. We study the case of an ideal Compton polarimeter and show that a Maximum Likelihood analysis which uses the two scattering angles lowers the Minimum Detectable Polarization (MDP) by ≈20% compared to a standard analysis based on the azimuthal scattering angles alone. The accuracies with which the polarization fraction and the polarization direction can be measured improve by a similar amount. We conclude by discussing potential applications of Maximum Likelihood analysis methods for various polarimeter experiments.

  10. Beam Test of a Prototype Phoswich Detector Assembly forthe PoGOLite Astronomical Soft Gamma-ray Polarimeter

    SciTech Connect

    Kanai, Y.; Ueno, M.; Kataoka, J.; Arimoto, M.; Kawai, N.; Yamamoto, K.; Mizuno, T.; Fukazawa, Y.; Kiss, M.; Ylinen, T.; Bettolo, C.Marini; Carlson, P.; P.Chen d, B.Craig d, T.Kamae d, G.Madejski d, J.S.T.Ng; Rogers, R.; Tajima, H.; Thurston, T.S.; Saito, Y.; Takahashi, T. Gunji, S.; Bjornsson, C-I.; Larsson, S.; /Stockholm U. /Ecole Polytechnique /KEK, Tsukuba

    2007-01-17

    We report about the beam test on a prototype of the balloon-based astronomical soft gamma-ray polarimeter, PoGOLite (Polarized Gamma-ray Observer--Light Version) conducted at KEK Photon Factory, a synchrotron radiation facility in Japan. The synchrotron beam was set at 30, 50, and 70 keV and its polarization was monitored by a calibrated polarimeter. The goal of the experiment was to validate the flight design of the polarimeter. PoGOLite is designed to measure polarization by detecting a Compton scattering and the subsequent photo-absorption in an array of 217 well-type phoswich detector cells (PDCs). The test setup included a first flight model PDC and a front-end electronics to select and reconstruct valid Compton scattering events. The experiment has verified that the flight PDC can detect recoil electrons and select valid Compton scattering events down to 30 keV from background. The measure azimuthal modulations (34.4 %, 35.8 % and 37.2 % at 30, 50, and 70 keV, respectively) agreed within 10% (relative) with the predictions by Geant4 implemented with dependence on the initial and final photon polarizations.

  11. MAGNETIC FIELDS OF AN ACTIVE REGION FILAMENT FROM FULL STOKES ANALYSIS OF Si I 1082.7 nm AND He I 1083.0 nm

    SciTech Connect

    Xu, Z.; Liu, Y.

    2012-04-20

    Vector magnetic fields of an active region filament in the photosphere and upper chromosphere are obtained from spectro-polarimetric observations recorded with the Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope. We apply Milne-Eddington inversions on full Stokes vectors of the photospheric Si I 1082.7 nm and the upper chromospheric He I triplet at 1083.0 nm to obtain the magnetic field vector and velocity maps in two atmosphere layers. We find that (1) a complete filament was already present in H{alpha} at the beginning of the TIP II data acquisition. Only a partially formed one, composed of multiple small threads, was present in He I. (2) The AR filament comprises two sections. One shows strong magnetic field intensities, about 600-800 G in the upper chromosphere and 800-1000 G in the photosphere. The other exhibits only comparatively weak magnetic field strengths in both layers. (3) The Stokes V signal is indicative of a dip in the magnetic field strength close to the chromospheric PIL. (4) In the chromosphere, consistent upflows are found along the PIL flanked by downflows. (5) The transversal magnetic field is nearly parallel to the PIL in the photosphere and inclined by 20 Degree-Sign -30 Degree-Sign in the chromosphere. (6) The chromospheric magnetic field around the filament is found to be in normal configuration, while the photospheric field presents a concave magnetic topology. The observations are consistent with the emergence of a flux rope with a subsequent formation of a filament.

  12. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    SciTech Connect

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  13. Advantage of anti-Stokes Raman scattering for high-temperature measurements

    SciTech Connect

    Fujimori, Hirotaka; Kakihana, Masato; Ioku, Koji; Goto, Seishi; Yoshimura, Masahiro

    2001-08-13

    We present the results of experiments that assess the viability of anti-Stokes scattering to investigate in situ materials at high temperatures. Both anti-Stokes and Stokes Raman measurements have been performed at various high temperatures using hafnia as a test material. As compared with Stokes Raman spectra, anti-Stokes spectra were observed with lower thermal emission backgrounds in accordance with Planck's equation. The intensity ratio of anti-Stokes to Stokes scattering approaches 1 as the temperature increases at high temperatures satisfying the Boltzmann distribution law. These results clearly demonstrate the advantage and feasibility of anti-Stokes Raman scattering for the elimination of the thermal emission in comparison with Stokes scattering. {copyright} 2001 American Institute of Physics.

  14. Numerical solutions of the complete Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1986-01-01

    Using ideas from the kinetic theory, the Navier-Stokes equations are modified in such a way that they can be cast as a set of first order hyperbolic equations. This is achieved by incorporating time dependent terms into the definition of the stress tensor and the heat flux vectors. The boundary conditions are then determined from the theory of characteristics. Because the resulting equations reduce to the traditional Navier-Stokes equations when the steady state is reached, the present approach provides a straightforward scheme for the determination of inflow and outflow boundary conditions. The method is validated by comparing its predictions with known exact solutions of the steady Navier-Stokes equations.

  15. On multigrid methods for the Navier-Stokes Computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, D. M.; Krist, S. E.; Zang, T. A.

    1988-01-01

    The overall architecture of the multipurpose parallel-processing Navier-Stokes Computer (NSC) being developed by Princeton and NASA Langley (Nosenchuck et al., 1986) is described and illustrated with extensive diagrams, and the NSC implementation of an elementary multigrid algorithm for simulating isotropic turbulence (based on solution of the incompressible time-dependent Navier-Stokes equations with constant viscosity) is characterized in detail. The present NSC design concept calls for 64 nodes, each with the performance of a class VI supercomputer, linked together by a fiber-optic hypercube network and joined to a front-end computer by a global bus. In this configuration, the NSC would have a storage capacity of over 32 Gword and a peak speed of over 40 Gflops. The multigrid Navier-Stokes code discussed would give sustained operation rates of about 25 Gflops.

  16. Navier-Stokes and viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.; Vandalsem, William R.

    1989-01-01

    Some considerations toward developing numerical procedures for simulating viscous compressible flows are discussed. Both Navier-Stokes and boundary layer field methods are considered. Because efficient viscous-inviscid interaction methods have been difficult to extend to complex 3-D flow simulations, Navier-Stokes procedures are more frequently being utilized even though they require considerably more work per grid point. It would seem a mistake, however, not to make use of the more efficient approximate methods in those regions in which they are clearly valid. Ideally, a general purpose compressible flow solver that can optionally take advantage of approximate solution methods would suffice, both to improve accuracy and efficiency. Some potentially useful steps toward this goal are described: a generalized 3-D boundary layer formulation and the fortified Navier-Stokes procedure.

  17. What do the Navier-Stokes equations mean?

    NASA Astrophysics Data System (ADS)

    Schneiderbauer, Simon; Krieger, Michael

    2014-01-01

    The Navier-Stokes equations are nonlinear partial differential equations describing the motion of fluids. Due to their complicated mathematical form they are not part of secondary school education. A detailed discussion of fundamental physics—the conservation of mass and Newton’s second law—may, however, increase the understanding of the behaviour of fluids. Based on these principles the Navier-Stokes equations can be derived. This article attempts to make these equations available to a wider readership, especially teachers and undergraduate students. Therefore, in this article a derivation restricted to simple differential calculus is presented. Finally, we try to give answers to the questions ‘what is a fluid?’ and ‘what do the Navier-Stokes equations mean?’.

  18. Clustering algorithms for Stokes space modulation format recognition.

    PubMed

    Boada, Ricard; Borkowski, Robert; Monroy, Idelfonso Tafur

    2015-06-15

    Stokes space modulation format recognition (Stokes MFR) is a blind method enabling digital coherent receivers to infer modulation format information directly from a received polarization-division-multiplexed signal. A crucial part of the Stokes MFR is a clustering algorithm, which largely influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used for discriminating between dual polarization: BPSK, QPSK, 8-PSK, 8-QAM, and 16-QAM. We determine essential performance metrics for each clustering algorithm and modulation format under test: minimum required signal-to-noise ratio, detection accuracy and algorithm complexity. PMID:26193532

  19. A Continuation and Bifurcation Technique for Navier-Stokes Flows

    NASA Astrophysics Data System (ADS)

    Sanchez, J.; Marques, F.; Lopez, J. M.

    2002-07-01

    An efficient numerical bifurcation and continuation method for the Navier-Stokes equations in cylindrical geometries is presented and applied to a nontrivial fluid dynamics problem, the flow in a cylindrical container driven by differential rotation. The large systems that result from discretizing the Navier-Stokes equations, especially in regimes where inertia is important, necessitate the use of iterative solvers which in turn need preconditioners. We use incomplete lower-upper decomposition (ILU) as an effective preconditioner for such systems and show the significant gain in efficiency when an incomplete LU of the full Jacobian is used instead of using only the Stokes operator. The computational cost, in terms of CPU time, grows with the size of the system (i.e., spatial resolution) according to a power law with exponent around 1.7, which is very modest compared to direct methods, indicating the appropriateness of the schemes for large nonlinear partial differential equation problems.

  20. Stokes-vector evolution in a weakly anisotropic inhomogeneous medium.

    PubMed

    Kravtsov, Yu A; Bieg, B; Bliokh, K Yu

    2007-10-01

    The equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of a quasi-isotropic approximation of the geometrical optics method, which provides the consequent asymptotic solution of Maxwell's equations. Our equation generalizes previous results obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable of describing normal mode conversion in inhomogeneous media. Remarkably, evolution of the four-component Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation describing spin precession in ferromagnetic systems. The general theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples. PMID:17912336

  1. Lattice-gas automata for the Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Frisch, U.; Hasslacher, B.; Pomeau, Y.

    1986-04-01

    It is shown that a class of deterministic lattice gases with discrete Boolean elements simulates the Navier-Stokes equations, and can be used to design simple, massively parallel computing machines. A hexagonal lattice gas (HLG) model consisting of a triangular lattice with hexagonal symmetry is developed, and is shown to lead to the two-dimensional Navier-Stokes equations. The three-dimensional formulation is obtained by a splitting method in which the nonlinear term in the three-dimensional Navier-Stokes equation is recasts as the sum of two terms, each containing spurious elements and each realizable on a different lattice. Freed slip and rigid boundary conditions are easily implemented. It is noted that lattice-gas models must be run at moderate Mach numbers to remain incompressible, and to avoid spurious high-order nonlinear terms. The model gives a concrete hydrodynamical example of how cellular automata can be used to simulate classical nonlinear fields.

  2. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE PAGESBeta

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm-1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm-1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H2/air flat flame.« less

  3. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    SciTech Connect

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparation bandwidth. Shifts of 100 cm-1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm-1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H2/air flat flame.

  4. The three-wave laser polarimeter-interferometer on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Liu, Y.; Chen, J.; Gao, L.; Li, Q.; Xiong, C. Y.; Shi, P.; Zhou, Y. N.

    2016-02-01

    Motivated by increasing demands on high-quality measurement of interior magnetic field in tokamak plasma, a far-infrared laser-based polarimeter-interferometer system has been developed on J-TEXT. Three formic acid lasers separately pumped by three CO2 lasers are used as sources, providing more than 90 mW output power in total. High laser power along with usage of newly developed planar Schottky diode mixer enable high phase resolution < 1 mrad. Collinearity and polarization calibrations have been carefully done to improve the measurement reliability. Meanwhile, real-time feedback control of three-wave laser source has been realized for the first time, to fulfill the system stability. Based on three-wave technique, Faraday angle and integrated density phase along the laser path are simultaneously measured with high temporal resolution. In addition, the laser beam is expanded to cover the entire cross-section of the plasma to provide high spatial resolution measurement. With this system, MHD equilibrium of the J-TEXT plasma has been reconstructed. Obscure perturbations on magnetic topology and electron density associated with MHD instabilities, e.g. sawteeth and tearing modes have also been observed. In particular, some interesting features of disruptions in high-density discharges are identified by carefully interpreting the measured polarimeter-interferometer data. In the density ramp-up phase of a high density discharge, asymmetry in both electron density and current density profiles between the Low-Field-Side (LFS) edge (r > 0.8a) and the High-Field-Side (HFS) edge (r < -0.8a) would appear and extend gradually toward the center region. At the same time, a low-frequency (< 1 kHz) density perturbation suddenly occurs at the HFS edge and also gradually propagates into the center region. The disruption takes place when the electron density asymmetry/perturbation reaches the location nearly the m/n = 2/1 (where m and n are the toroidal mode number and the poloidal

  5. Latest Progress on the Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Smith, David Miles; Tajima, Hiroyasu; Amman, Mark

    2011-01-01

    We present the latest progress on building the balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument, including testing and calibration of the detectors and development of the imaging and aspect systems. A continental-US test flight is slated for fall 2012. GRIPS will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approx.20. keV to > approx.10 MeV. The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution to within <0.1 cu mm. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-cm thick tungsten-alloy grid with pitches that range quasi-continuously from 1 to 13 mm. With the MPRM situated 8 meters from the spectrometer, this instrument will provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate the 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e. as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS will address questions relevant to particle acceleration and energy release that ha-.e been raised by recent solar flare observations, such as: What causes the spatial separation between energetic electron producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the accelerated electrons, and why do relativistic electron dominate in the corona? How does the composition of accelerated and ambient material vary with space and time, and why?

  6. First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS)

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Shih, Albert Y.; Duncan, Nicole; Bain, Hazel; Maruca, Bennett A.; Kelley, Nicole; Godbole, Niharika; Kaufmann, Pierre; Caspi, Amir; Sample, John; Hoberman, Jane; Mochizuki, Brent; Olson, Jerry; Boggs, Steven E.; Zoglauer, Andreas; Hurford, Gordon J.; Smith, David M.; Tajima, Hiroyasu; Amman, Mark

    2016-05-01

    The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) high altitude balloon payload was successfully flown in January 2016 from Antarctica (Jan 19 to Jan 30).GRIPS provides a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma ray/hard X-ray emissions from ~20 keV to >~10 MeV. GRIPS’s goal is to address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of six 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution <0.1 mm3. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-cm thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 mm. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs, with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS was also equipped with active BGO shields, and three piggy-back instruments: a solar terahertz radiometer (Solar-T), a hard X-ray spectrometer (SMASH), and a sonic anemometer (TILDAE).We will present an overview of GRIPS's first flight, the performance of its instruments and subsystems, including the solar pointing and aspect systems, and

  7. The Identification of Mitogen Responding Subpopulations of Human Lymphocytes by Flow Polarimeter Fluorescence Measurements.

    NASA Astrophysics Data System (ADS)

    Chan, Sandra Lynn

    I have developed a method to identify the mitogen responding subpopulation of human peripheral blood lymphocytes. This method employs a flow polarimeter to measure the distribution of the intensity and the polarization of intracellular fluorescein fluorescence in suspensions of mononuclear cells isolated on density gradients from the peripheral blood of donors. I have used the change in the fluorescence of cells exposed to the mitogens PHA and Con A to identify the responding cells and to quantitate this number. I have found that for most donors, the responding cells constitute about 20-40% of the lymphocyte population. The percent of responding cells decreases to zero in patients with acute lymphocytic leukemia (2 patients) and chronic lymphocyte leukemia (10 patients). For a variety of patients with other types of cancer, the responding fraction was not significantly different from healthy controls. Moreover, the number of responding cells does not appear to be age dependent in the age range of 20-80 years. I also found that the change in fluorescence polarization correlated strongly with changes in fluorescence intensity induced by mitogens--the number of responding cells, therefore can be estimated either from the intensity or polarization distributions. The shapes of fluorescence distributions depend strongly on a number of variables including the composition and density of the lymphocyte isolating medium, the mitogen and dye concentrations, the length of incubation with mitogen or dye, and the potassium, calcium, and magnesium concentrations in the medium. In the case of fluorescein, I have worked out a methodology that allows a consistent estimate of the responding lymphocyte number. I have also investigated the use of the dye carbocyanine for the same purpose. This dye presumably identifies the mitogen responding lymphocytes on the basis of changes in membrane potential. The results with carbocyanine were found to depend on a number of variables and I could

  8. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; Clarke, A.; Freitag, S.; Howell, S.; Kapustin, V.; McNaughton, C.

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to

  9. Retrievals of cloud microphysical properties from the Research Scanning Polarimeter measurements made during PODEX field campaign

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Cairns, B.; Sinclair, K.

    2013-12-01

    We present the retrievals of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements made during NASA's POlarimeter Definition EXperiment (PODEX), which was based in Palmdale, California in January - February 2013. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was built for the NASA Glory Mission project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The RSP is a push broom scanner making samples at 0.8 degree intervals within 60 degrees from nadir in both forward and backward directions. The data from actual RSP scans is aggregated into "virtual" scans, each consisting of all reflectances (at a variety of scattering angles) from a single point on the ground or at the cloud top. In the case of water clouds the rainbow is observed in the polarized reflectances in the scattering angle range between 135 and 170 degrees. It has a unique signature that is being used to accurately determine the droplet size and is not affected by cloud morphology. Simple parametric fitting algorithm applied to these polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows to retrieve the droplet size distribution a parametric model. Of particular interest is the information contained in droplet size distribution width, which is indicative of cloud life cycle. The absorbing band method is also applied to RSP total reflectance observations. The difference in the retrieved droplet size between polarized and absorbing band techniques is expected to reflect the strength of the vertical gradient in cloud liquid water content. In addition to established retrieval

  10. Measurement of Aerosol and Cloud Particles with PACS and HARP Hyperangular Imaging Polarimeters

    NASA Astrophysics Data System (ADS)

    Martins, J.; Fernandez-Borda, R.; Remer, L. A.; Sparr, L.; Buczkowski, S.; Munchak, L. A.

    2013-12-01

    PACS is new hyper-angular imaging polarimeter for aeorosol and cloud measurerents designed to meet the requirements of the proposed ACE decadal survey mission. The full PACS system consists of three wide field of view (110deg cross track) telescopes covering the UV, VNIR, and SWIR spectral ranges with angular coverage between +55 deg forward to -55deg backwards. The angular density can be selected to cover up to 100 different viewing angles at selected wavelengths. PACS_VNIR is a prototype airborne instrument designed to demonstrate PACS capability by deploying just one of the three wavelength modules of the full PACS. With wavelengths at 470, 550, 675, 760 and 875nm, PACS_VNIR flew for the first time during the PODEX experiment in January/February 2013 aboard the NASA ER-2 aircraft. PACS SWIR (1.64, 1.88, 2.1, and 2.25um) is currently under construction and should be operational in the lab by Fall/2013. PACS_ UV has been fully designed, but is not yet under construction. During the PODEX flights PACS_VNIR collected data for aerosol and clouds over variable surface types including, water, vegetation, urban areas, and snow. The data is currently being calibrated, geolocated and prepared for the inversion of geophysical parameters including water cloud size distribution and aerosol microphysical parameters. The large density of angles in PACS allows for the characterization of cloudbow features in relatively high spatial resolution in a pixel to pixel basis. This avoids the need for assumptions of cloud homogeneity over any distance. The hyperangle capability also allows detailed observation of cloud ice particles, surface characterization, and optimum selection of the number of angles desired for aerosol retrievals. The aerosol and cloud retrieval algorithms under development for the retrieval of particle microphysical properties from the PACS data will be discussed in this presentation. As an extension of the PACS concept we are currently developing the HARP (Hyper

  11. Characterization of Super-Cooled Liquid Water Clouds Using the Research Scanning Polarimeter Measurements

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Cairns, B.; van Diedenhoven, B.; Wasilewski, A. P.; Ackerman, A. S.

    2014-12-01

    Super-cooled liquid water (SCW) clouds, where liquid droplets exist at temperatures below 0oC, impact both the radiative budget and the development of precipitation. They also present an aviation hazard due to their role in aircraft icing. The two recent NASA's field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January - February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August - September 2013) provided a unique opportunity to observe SCW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of the measurements made by the Research Scanning Polarimeter (RSP) during these experiments. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The RSP is a scanning sensor taking samples at 0.8o intervals within 60o from nadir in both forward and backward directions. This unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135o and 165o for every pixel independently. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution itself. The latter is important in the case of SCW clouds, which often have complex spatial and microphysical structure. For example the measurements made on 22 September 2013 during SEAC4RS indicate a cloud that alternates between being in glaciated and liquid phases, with super-cooled liquid drops at altitudes as high as 10 km, which

  12. A dual potential formulation of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Gegg, S. G.; Pletcher, R. H.; Steger, J. L.

    1989-01-01

    A dual potential formulation for numerically solving the Navier-Stokes equations is developed and presented. The velocity field is decomposed using a scalar and vector potential. Vorticity and dilatation are used as the dependent variables in the momentum equations. Test cases in two dimensions verify the capability to solve flows using approximations from potential flow to full Navier-Stokes simulations. A three-dimensional incompressible flow formulation is also described. An interesting feature of this approach to solving the Navier-Stokes equations is the decomposition of the velocity field into a rotational part (vector potential) and an irrotational part (scalar potential). The Helmholtz decomposition theorem allows this splitting of the velocity field. This approach has had only limited use since it increases the number of dependent variables in the solution. However, it has often been used for incompressible flows where the solution scheme is known to be fast and accurate. This research extends the usage of this method to fully compressible Navier-Stokes simulations by using the dilatation variable along with vorticity. A time-accurate, iterative algorithm is used for the uncoupled solution of the governing equations. Several levels of flow approximation are available within the framework of this method. Potential flow, Euler and full Navier-Stokes solutions are possible using the dual potential formulation. Solution efficiency can be enhanced in a straightforward way. For some flows, the vorticity and/or dilatation may be negligible in certain regions (e.g., far from a viscous boundary in an external flow). It is possible to drop the calculation of these variables then and optimize the solution speed. Also, efficient Poisson solvers are available for the potentials. The relative merits of non-primitive variables versus primitive variables for solution of the Navier-Stokes equations are also discussed.

  13. Stokes vector determination of polarized light propagation in turbid medium

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Atif, M.; Nawaz, M.

    2011-03-01

    We report a two dimensional Stokes vector imaging technique for transamination measurements of the polarization state of scattering medium. Measurement of the depth resolved Stokes parameters allows determination of the degree of polarization, birefringence, retardation, optical activity and characterization of the medium. The polarized light preserved and degree of polarization very with scatterer concentration. The transmitted intensity patterns by varying a polarization state of the incident laser light (λ = 632.8 nm) and changing analyzer configuration provides a useful information about concentration, orientation, and shape of the sample under investigation. The results are important for the understanding of polarization phenomenon in turbid media, like biological tissues.

  14. Newman-Penrose Stokes fields for radio astronomy

    SciTech Connect

    Newman, Ezra T.; Price, Richard H.

    2010-10-15

    The spin weighted spherical harmonic (SWSH) description of angular functions is typically associated with the Newman-Penrose (NP) null tetrad formalism. Recently, the SWSH description, but not the NP formalism, has been used in the study of the polarization anisotropy of the cosmic microwave background. Here we relate this application of SWSHs to a description of electromagnetic radiation and polarization in the NP formalism. In particular, we introduce NP Stokes fields that are the NP equivalent of the Stokes parameters. In addition to giving a more coherent foundation for the recent cosmological SWSH application, the NP formalism aids in the computation of the Lorentz transformation properties of polarization.

  15. Comparative analysis of high performance solvers for solving Stokes equation

    NASA Astrophysics Data System (ADS)

    Ganzha, M.; Lirkov, I.; Paprzycki, M.

    2013-10-01

    We consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. A parallel algorithm, based on a direction splitting approach is implemented. We are targeting the massively parallel computer as well as clusters consisting of many-core nodes. The implementation was tested on the IBM Blue Gene/P supercomputer and two Linux clusters. We compared the results from the direction splitting algorithm with the results from a state-of-the-art Finite Element software package for solving of Stokes equation.

  16. Some recent applications of Navier-Stokes codes to rotorcraft

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1992-01-01

    Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.

  17. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  18. Pseudo-time algorithms for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1986-01-01

    A pseudo-time method is introduced to integrate the compressible Navier-Stokes equations to a steady state. This method is a generalization of a method used by Crocco and also by Allen and Cheng. We show that for a simple heat equation that this is just a renormalization of the time. For a convection-diffusion equation the renormalization is dependent only on the viscous terms. We implement the method for the Navier-Stokes equations using a Runge-Kutta type algorithm. This permits the time step to be chosen based on the inviscid model only. We also discuss the use of residual smoothing when viscous terms are present.

  19. Algorithm implementation on the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Zang, Thomas A.

    1987-01-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  20. Factorization of the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.

    2005-01-01

    The Navier-Stokes equations for a Newtonian ideal gas are examined to determine the factorizable form of the equations relevant to the construction of a factorizable relaxation scheme. The principal linearization of the equations is found by examining the relative magnitude of the terms for short-wavelength errors. The principal part of the operator is then found. Comparison of the factors of the Navier-Stokes and Euler equations differ qualitatively because of the coupling of entropy and pressure through thermal diffusion. Special cases of the factorization are considered.

  1. Exact solutions of the generalized Navier- Stokes equations for benchmarking

    NASA Astrophysics Data System (ADS)

    Bourchtein, Andrei

    2002-08-01

    The generalized Navier- Stokes equations for incompressible viscous flows through isotropic granular porous medium are studied. Some analytical classic solutions of the Navier- Stokes equations are generalized to the case of the considered equations. Obtained solutions of generalized equations reduce to classic ones as porosity effect disappears. Average velocity of generalized solutions is calculated and evaluated in two limiting regimes of flow. In the shallow conduit, the generalized flow rate approximates the free (without porous medium) flow rate and in the case of removed boundaries this approaches Darcy's law. The use of the derived exact solutions for benchmarking purposes is described. Copyright

  2. Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy.

    PubMed

    Chen, Kun; Wu, Tao; Wei, Haoyun; Li, Yan

    2016-06-01

    We propose an all-fiber-generated, dual-soliton, Stokes-based scheme for background-free coherent anti-Stokes Raman scattering (CARS) under the spectral focusing mechanism. Owing to the strong birefringence and high nonlinearity of a polarization-maintaining PCF (PM-PCF), two soliton pulses can be simultaneously emitted along different eigenpolarization axes and both serve as Stokes pulses, while allowing feasible tunability of frequency distance and temporal interval between them. This proposed scheme, based on an all-fiber light source, exploits a unique combination of slight frequency-shift temporal walk-off of these two solitons to achieve efficient suppression of the nonresonant background and beat the inaccessibility and complexity of the excitation source. Capability is experimentally demonstrated by background-free CARS spectroscopy and unambiguous CARS microscopy in the fingerprint region. PMID:27244431

  3. Exponential integrators for the incompressible Navier-Stokes equations.

    SciTech Connect

    Newman, Christopher K.

    2004-07-01

    We provide an algorithm and analysis of a high order projection scheme for time integration of the incompressible Navier-Stokes equations (NSE). The method is based on a projection onto the subspace of divergence-free (incompressible) functions interleaved with a Krylov-based exponential time integration (KBEI). These time integration methods provide a high order accurate, stable approach with many of the advantages of explicit methods, and can reduce the computational resources over conventional methods. The method is scalable in the sense that the computational costs grow linearly with problem size. Exponential integrators, used typically to solve systems of ODEs, utilize matrix vector products of the exponential of the Jacobian on a vector. For large systems, this product can be approximated efficiently by Krylov subspace methods. However, in contrast to explicit methods, KBEIs are not restricted by the time step. While implicit methods require a solution of a linear system with the Jacobian, KBEIs only require matrix vector products of the Jacobian. Furthermore, these methods are based on linearization, so there is no non-linear system solve at each time step. Differential-algebraic equations (DAEs) are ordinary differential equations (ODEs) subject to algebraic constraints. The discretized NSE constitute a system of DAEs, where the incompressibility condition is the algebraic constraint. Exponential integrators can be extended to DAEs with linear constraints imposed via a projection onto the constraint manifold. This results in a projected ODE that is integrated by a KBEI. In this approach, the Krylov subspace satisfies the constraint, hence the solution at the advanced time step automatically satisfies the constraint as well. For the NSE, the projection onto the constraint is typically achieved by a projection induced by the L{sup 2} inner product. We examine this L{sup 2} projection and an H{sup 1} projection induced by the H{sup 1} semi-inner product. The H

  4. A cryogenic half-wave plate polarimeter using a superconducting magnetic bearing

    NASA Astrophysics Data System (ADS)

    Klein, Jeff; Aboobaker, Asad; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Gold, Benjamin; Grainger, Will; Hanany, Shaul; Hubmayr, Johannes; Hillbrand, Seth; Grain, Julien; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S.; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2011-10-01

    We present the design and measured performance of the superconducting magnetic bearing (SMB) that was used successfully as the rotation mechanism in the half-wave plate polarimeter of the E and B Experiment (EBEX) during its North American test flight. EBEX is a NASA-supported balloon-borne experiment that is designed to measure the polarization of the cosmic microwave background. In this implementation the half-wave plate is mounted to the rotor of an SMB that is operating at the sink temperature of 4 K. We demonstrate robust, remote operation on a balloon-borne payload, with angular encoding accuracy of 0.01°. We find rotational speed variation to be 0.2% RMS. We measure vibrational modes and find them to be consistent with a simple SMB model. We search for but do not find magnetic field interference in the detectors and readout. We set an upper limit of 3% of the receiver noise level after 5 minutes of integration on such interference. At 2 Hz rotation we measure a power dissipation of 56 mW. If this power dissipation is reduced, such an SMB implementation is a candidate for low-noise space applications because of the absence of stick-slip friction and low wear.

  5. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    NASA Astrophysics Data System (ADS)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.

    2016-03-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{s} , and detector time constants and saturation powers suitable for ACT CMB observations.

  6. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Technical Reports Server (NTRS)

    Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick

    2014-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e(-)/DN, a noise level less than 25e(-), a dark current level which is less than 10e(-)/pixel/s, and a residual nonlinearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  7. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Kano, R.; Kobayashi, K.; Ishikawa, R.; Bando, T.; Narukage, N.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Tsuneta, S.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchere, F.; Trujillo, Bueno J.; Manso, Sainz R.; Ramos, Asensio A.; Stepan, J.; Belluzi, L.; Carlsson, M.

    2014-01-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles caused by scattering processes and the Hanle effect in the hydrogen Lyman-alpha line (121.567nm). Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect are essential to explore the strength and structures of weak magnetic fields. The primary target of future solar telescopes is to measure the weak magnetic field in outer solar atmospheres (from the chromosphere to the corona through the transition region). The hydrogen Lyman-alpha-line is one of the best lines for the diagnostics of magnetic fields in the outer solar atmospheres. CLASP is to be launched in 2015, and will provide, for the first time, the observations required for magnetic field measurements in the upper chromosphere and transition region. CLASP is designed to have a polarimetric sensitivity of 0.1% and a spectral resolution of 0.01nm for the Lyman-alpha line. CLASP will measure two orthogonal polarizations simultaneously for about 5-minute flight. Now the integration of flight mirrors and structures is in progress. In addition to our strategy to realize such a high-precision spectro-polarimetry in the UV, we will present a progress report on our pre-launch evaluation of optical and polarimetric performances of CLASP.

  8. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Technical Reports Server (NTRS)

    Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick

    2014-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  9. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Lan, T.; Wang, S. X.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Zou, Z. Y.; Li, W. M.; Gao, X.; Qin, H.

    2015-12-01

    In this paper, we experimentally verify the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in EAST POlarimeter/INTerferometer (POINT) system, by considering mode transformation and power wastage. Being exposed to plasma environment directly, RRs have risks of deformation, erosion and deposition. RRA is preferable because it can be installed within a smaller space and provide a gap of several centimeters for the shutter design. This protective structure can reduce the cost of device maintenance and bring down system errors. According to Helmholtz-Kirchhoff integral theorem, the optimized incident diameter for the RRA, constituted by seven hexagonal RR cells, is 40 mm in POINT system. The corresponding bench tests are carried out by measuring the propagation properties of reflected beams by plane RRA for perpendicular incidence and reflected beams by terrace RRA for oblique incidence. The experimental results illustrate that RRA can be satisfactorily applied in POINT system at the optimized incident diameter. In view of the energy wastage caused by plasma film coating, it is found that RRA has more advantages for diagnostics using shorter wavelengths, such as the case in ITER.

  10. Fundus depolarization imaging with GDx VCC scanning laser polarimeter and depolarization characteristics of normal eyes

    NASA Astrophysics Data System (ADS)

    Zhou, Qienyuan; Leder, Henry A.; Lo, Barrick P.; Reed, Geradus C.; Knighton, Robert W.; Cousins, Scott W.

    2009-02-01

    GDx VCC is a confocal scanning laser polarimeter (SLP) developed to assess the retinal nerve fiber layer (RNFL) of the eye based on measurement of the phase retardation in the backscattered light from the fundus. In addition to the phase retardation measurement, a depolarization measurement is readily available from the same image series. We hypothesize that the depolarized light in the GDx signal consists of backscattering from the retinal pigment epithelium (RPE) and the RPE-Bruch's membrane junction, and further, that subRPE deposits contribute to the depolarized backscattered light in proportion to their thickness. Therefore, a quantitative macular depolarization map will provide information about both spatial distribution and heterogeneity of the RPE structure and deposit thickness. Ultimately we predict that depolarization mapping will significantly increase the positive predictive power to identify early dry AMD eyes. In this paper, depolarization measurements in normal eyes and age related changes are reported. Data collection was performed at the Duke University Eye Center. A commercial GDx VCC system was modified with a central fixation target and, instead of depolarized light intensity images, normalized depolarization images were derived and saved in the database. Macular depolarization was observed to increase with age in normal eyes at a rate of 0.27%/yr.

  11. Heterodyne double-channel polarimeter for mapping birefringence and thickness of flat glass panels

    SciTech Connect

    Protopopov, Vladimir V.; Cho, Sunghoon; Kim, Kwangso; Lee, Sukwon; Kim, Hyuk; Kim, Daesuk

    2006-05-15

    A new cross-polarized heterodyne optical technique is developed for two-dimensional (2D) simultaneous mapping of both birefringence and thickness variations in large flat glass panels commonly used in liquid-crystal displays (LCDs). Weak depolarization of a linearly polarized probe beam due to glass birefringence is detected by means of heterodyne mixing of the two cross-polarized and frequency shifted waves generated by Zeeman-type laser. Amplitude variations of the transmitted laser beam due to interference of the partial waves reflected from the both sides of a sample provide information about glass thickness. Measurements are being performed at the intermediate frequency of 2.3 MHz, providing several orders of magnitude higher speed of data acquisition with respect to traditional polarimeters. That high speed of measurements makes it possible to perform quality assessment of LCD glass panels not only in few randomly chosen points as it was in common practice before but to obtain entire 2D maps of both birefringence and thickness variations with millimeter scale spatial resolution. The medium-scale prototype of the LCD glass inspection system is developed and tested. Design and performance of the prototype are described.

  12. A Concept for a High-Energy Gamma-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Depaola, G. O.; Longo, F.

    2003-01-01

    We present a concept for an imaging gamma-ray polarimeter operating from approx. 50 MeV to approx. 1 GeV. Such an instrument would be valuable for the study of high-energy pulsars, active galactic nuclei, supernova remnants, and gamma-ray bursts. The concept makes use of pixelized gas micro-well detectors, under development at Goddard Space Flight Center, to record the electron-positron tracks from pair-production events in a large gas volume. Pixelized micro-well detectors have the potential to form large-volume 3-D track imagers with approx. 100 micron (rms) position resolution at moderate cost. The combination of high spatial resolution and a continuous low-density gas medium permits many thousands of measurements per radiation length, allowing the particle tracks to be imaged accurately before multiple scattering masks their original directions. The polarization of the incoming radiation may then be determined from the azimuthal distribution of the electron-positron pairs. We have performed Geant4 simulations of these processes to estimate the polarization sensitivity as a function of instrument parameters and event selection criteria.

  13. Fine-pitch and thick-foil gas electron multipliers for cosmic x-ray polarimeters

    NASA Astrophysics Data System (ADS)

    Tamagawa, Toru; Hayato, Asami; Yamaguchi, Yorito; Hamagaki, Hideki; Hashimoto, Shigehira; Inuzuka, Masahide; Miyasaka, Hiromasa; Sakurai, Ikuya; Tokanai, Fuyuki; Makishima, Kazuo

    2006-06-01

    We have produced various gas electron multiplier foils (GEMs) by using laser etching technique for cosmic X-ray polarimeters. The finest structure GEM we have fabricated has 30 μm-diameter holes on a 50 μm-pitch. The effective gain of the GEM reaches around 5000 at the voltage of 570 V between electrodes. The gain is slightly higher than that of the CERN standard GEM with 70 μm-diameter holes on a 140 μm-pitch. We have fabricated GEMs with thickness of 100 μm which has two times thicker than the standard GEM. The effective gain of the thick-foil GEM is 104 at the applied voltage of 350 V per 50 μm of thickness. The gain is about two orders higher than that of the standard GEM. The remarkable characteristic of the thick-foil GEM is that the effective gain at the beginning of micro-discharge is quite improved. For fabricating the thick-foil GEMs, we have employed new material, liquid crystal polymer (LCP) which has little moisture absorption rate, as an insulator layer instead of polyimide. One of the thick-foil GEM we have fabricated has 8 μm copper layer in the middle of the 100 μm-thick insulator layer. The metal layer in the middle of the foil works as a field-shaper in the multiplication channels, though it slightly decreases the effective gain.

  14. Determination of azimuthal anchoring strength in twisted nematic liquid crystal cells using heterodyne polarimeter.

    PubMed

    Yu, Tsung-Chih; Lo, Yu-Lung; Huang, Rei-Rong

    2010-09-27

    Two external-field-free methods are presented for measuring the azimuthal anchoring strength in twisted nematic liquid crystal (TNLC) cells. For asymmetrical TNLC samples, the twist angle is derived from the phase of the detected signal in a phase-sensitive heterodyne polarimeter and is then used to calculate the weak anchoring strength directly. The measurement resolution which is found to be about 0.01 μJ/m(2) makes the present method sensitive enough for the LC-based bio-sensing application. Using the proposed method, the weak azimuthal anchoring strength of a composite liquid crystal mixture (40% LCT-061153 + 60% MJO-42761) in contact with a plasma-alignment layer is found to be 7.19 μJ/m(2). For symmetrical TNLC samples, the liquid crystals are injected into a wedge cell, and the two-dimensional distributions of the twist angle and cell gap are extracted from the detected phase distribution using a genetic algorithm (GA). The azimuthal anchoring strength is then obtained by applying a fitting technique to the twist angle vs. cell gap curve. Utilizing the proposed approach, it is shown that the strong anchoring strength between a rubbed polyimide (PI) alignment layer and E7 liquid crystal is around 160 μJ/m(2) while that between a rubbed PI alignment layer and MLC-7023 liquid crystal is approximately 32 μJ/m(2). PMID:20941014

  15. POLAR: A Space-borne X-Ray Polarimeter for Transient Sources

    NASA Astrophysics Data System (ADS)

    Orsi, S.; Polar Collaboration

    2011-02-01

    POLAR is a novel compact Compton X-ray polarimeter designed to measure the linear polarization of the prompt emission of Gamma Ray Bursts (GRB) and other strong transient sources such as soft gamma repeaters and solar flares in the energy range 50-500 keV. A detailed measurement of the polarization from astrophysical sources will lead to a better understanding of the source geometry and emission mechanisms. POLAR is expected to observe every year several GRBs with a minimum detectable polarization smaller than 10%, thanks to its large modulation factor, effective area, and field of view. POLAR consists of 1600 low-Z plastic scintillator bars, divided in 25 independent modular units, each read out by one flat-panel multi-anode photomultiplier. The design of POLAR is reviewed, and results of tests of one modular unit of the engineering and qualification model (EQM) of POLAR with synchrotron radiation are presented. After construction and testing of the full EQM, we will start building the flight model in 2011, in view of the launch foreseen in 2013.

  16. Modeling precision and accuracy of a LWIR microgrid array imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Boger, James K.; Tyo, J. Scott; Ratliff, Bradley M.; Fetrow, Matthew P.; Black, Wiley T.; Kumar, Rakesh

    2005-08-01

    Long-wave infrared (LWIR) imaging is a prominent and useful technique for remote sensing applications. Moreover, polarization imaging has been shown to provide additional information about the imaged scene. However, polarization estimation requires that multiple measurements be made of each observed scene point under optically different conditions. This challenging measurement strategy makes the polarization estimates prone to error. The sources of this error differ depending upon the type of measurement scheme used. In this paper, we examine one particular measurement scheme, namely, a simultaneous multiple-measurement imaging polarimeter (SIP) using a microgrid polarizer array. The imager is composed of a microgrid polarizer masking a LWIR HgCdTe focal plane array (operating at 8.3-9.3 μm), and is able to make simultaneous modulated scene measurements. In this paper we present an analytical model that is used to predict the performance of the system in order to help interpret real results. This model is radiometrically accurate and accounts for the temperature of the camera system optics, spatial nonuniformity and drift, optical resolution and other sources of noise. This model is then used in simulation to validate it against laboratory measurements. The precision and accuracy of the SIP instrument is then studied.

  17. Prospects for Studying Interstellar Magnetic Fields with a Far-Infrared Polarimeter for SAFIR

    NASA Technical Reports Server (NTRS)

    Dowell, C. Darren; Chuss, D. T.; Dotson, J. L.

    2008-01-01

    Polarimetry at mid-infrared through millimeter wavelengths using airborne and ground-based telescopes has revealed magnetic structures in dense molecular clouds in the interstellar medium, primarily in regions of star formation. Furthermore, spectropolarimetry has offered clues about the composition of the dust grains and the mechanism by which they are aligned with respect to the local magnetic field. The sensitivity of the observations to date has been limited by the emission from the atmosphere and warm telescopes. A factor of 1000 in sensitivity can be gained by using instead a cold space telescope. With 5 arcminute resolution, Planck will make the first submillimeter polarization survey of the full Galaxy early in the next decade. We discuss the science case for and basic design of a far-infrared polarimeter on the SAFIR space telescope, which offers resolution in the few arcsecond range and wavelength selection of cold and warm dust components. Key science themes include the formation and evolution of molecular clouds in nearby spiral galaxies, the magnetic structure of the Galactic center, and interstellar turbulence.

  18. White light sunspot observations from the Solar Optical Universal Polarimeter on Spacelab-2

    NASA Technical Reports Server (NTRS)

    Shine, R. A.; Title, A. M.; Tarbell, T. D.; Topka, K. P.

    1987-01-01

    The flight of the Solar Optical Universal Polarimeter on Spacelab-2 provided the opportunity for the collection of time sequences of diffraction-limited (0.5 arcsec) solar images with excellent pointing stability (0.003 arcsec) and with freedom from the distortion that plagues ground-based images. A series of white-light images of active region 4682 were obtained on August 5, 1985, and the area containing the sunspot has been analyzed. These data have been digitally processed to remove noise and to separate waves from low-velocity material motions. The results include: (1) proper motion measurements of a radial outflow in the photospheric granulation pattern just outside the penumbra; (2) discovery of occasional bright structures ('streakers') that appear to be ejected outward from the penumbra; (3) broad dark 'clouds' moving outward in the penumbra, in addition to the well-known bright penumbral grains moving inward; (4) apparent extensions and contractions of penumbral filaments over the photosphere; and (5) observation of a faint bubble or looplike structure that seems to expand from two bright penumbral filaments into the photosphere.

  19. HX-POL-A Balloon-Borne Hard X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Krawczynski, H.; Garson, A., III; Martin, J.; Li, Q.; Beilicke, M.; Dowkontt, P.; Lee, K.; Wulf, E.; Kurfess, J.; Novikova, E. I.; De Geronimo, G.; Baring, M. G.; Harding, A. K.; Grindlay, J.; Hong, J. S.

    2009-01-01

    We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galactic X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors. Index Terms Gamma-ray astronomy, gamma-ray astronomy detectors, polarization, semiconductor radiation detectors, X-ray astronomy, X-ray astronomy detectors.

  20. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  1. MSFC Reviews Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) Data During STS-35 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of WUPPE data review at the Science Operations Area during the mission.

  2. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    NASA Astrophysics Data System (ADS)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.

    2016-08-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{ {s}}, and detector time constants and saturation powers suitable for ACT CMB observations.

  3. Faraday-Effect Polarimeter-Interferometer System for current density measurement on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Haiqing; Jie, Yinxian; Ding, Weixing; Brower, David Lyn; Zou, Zhiyong; Qian, Jinping; Li, Weiming; Zeng, Long; Zhang, Shoubiao; Hu, Liqun; Wan, Baonian

    2015-11-01

    An eleven-channel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for current density and electron density profile measurements in the EAST tokamak. Both polarimetric and interferometric measurement are obtained in a long pulse (~ 52s) discharge. The electron line-integrated density resolution of POINT is less than 5 × 1016 m-2 (~ 2°), and the Faraday rotation angle rms phase noise is <0.1°. With the high temporal (~ 1 μsec) and phase resolution (<0.1°), density perturbations associated with the sawteeth cycle and tearing mode activities have been observed. It is evident that tearing modes are well correlated to dynamics of equilibrium current profile (or q-profile). Faraday rotation angle shows clear variation with low hybrid current drive while line-integrated density remains little changed, implying the current drive in the core. A Digital Phase Detector with 250 kHz bandwidth provides real-time Faraday rotation angle and density phase shift output, which will be integrated into current profile control system in a long pulse discharge in future. This work is supported by the National Magnetic Confinement Fusion Program of China with contract No. 2012GB101002 and partly supported by the US D.O.E. contract DESC0010469.

  4. Characterization and initial results from the upgraded MST interferometer-polarimeter

    NASA Astrophysics Data System (ADS)

    Parke, E.; Brower, D. L.; Ding, W. X.; Duff, J. R.

    2015-11-01

    The FIR interferometer-polarimeter diagnostic on MST is a high-bandwidth system with unique capabilities for measuring high-frequency density and internal magnetic fluctuations. Installation of new planar-diode mixers improves both the signal strength and the noise floor compared to the corner-cube mixers previously used. The new mixer technology also offers a simpler detection configuration that eliminates the need for additional amplifiers. We characterize the bandwidth capabilities of the upgraded heterodyne receiver system and present initial measurements in reversed-field pinch (RFP) plasmas. High wavenumber resolution becomes possible when operating without focusing elements, using only the 2-3 mm aperture on the mixer to determine the sampled chord width. This configuration will provide better resolution of small-scale fluctuations observed in the RFP during periods of improved, tokamak-like confinement. Finally, cross-correlation techniques between two mixers viewing the same chord further reduce measurement noise and improve the resolution of high-frequency, small-amplitude magnetic and density fluctuations. Initial tests of this technique in neutral-beam heated plasmas will be presented. Work supported by U.S. DOE.

  5. The POLAR gamma-ray burst polarimeter onboard the Chinese Spacelab

    NASA Astrophysics Data System (ADS)

    Orsi, Silvio; Cadoux, Franck; Leluc, Catherine; Paniccia, Mercedes; Pohl, Martin; Rapin, Divic; Gauvin, Neal; Produit, Nicolas; Bao, Tianwei; Chai, Junying; Dong, Yongwei; Kong, Minnan; Lu, Li; Liu, Jiangtao; Liu, Xin; Shi, Haoli; Sun, Jianchao; Wang, Ruijie; Wen, Xing; Wu, Bobing; Xiao, Hualin; Xu, Hanhui; Zhang, Li; Zhang, Laiyu; Zhang, Shuangnan; Zhang, Yongjie; Britvich, Ilia; Hajdas, Wojtek; Marcinkowski, Radoslaw; Rybka, Dominik K.; Batsch, Tadeusz; Rutczynska, Aleksandra; Szabelski, Jacek; Zwolinska, Ania

    2014-07-01

    POLAR is a joint European-Chinese experiment aimed at a precise measurement of hard X-ray polarization (50-500 keV) of the prompt emission of Gamma-Ray Bursts. The main aim is a better understanding of the geometry of astrophysical sources and of the X-ray emission mechanisms. POLAR is a compact Compton polarimeter characterized by a large modulation factor, effective area, and field of view. It consists of 1600 low-Z plastic scintillator bars read out by 25 at-panel multi-anode photomultipliers. The incoming X-rays undergo Compton scattering in the bars and produce a modulation pattern; experiments with polarized synchrotron radiation and GEANT4 Monte Carlo simulations have shown that the polarization degree and angle can be retrieved from this pattern with the accuracy necessary for identifying the GRB mechanism. The flight model of POLAR is currently under construction in Geneva. The POLAR instrument will be placed onboard the Chinese spacelab TG-2, scheduled for launch in low Earth orbit in 2015. The main milestones of the space qualification campaign will be described in the paper.

  6. New data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer

    SciTech Connect

    Tamii, A.; Sakaguchi, H.; Takeda, H.; Yosoi, M.; Akimune, H.; Fujiwara, M.; Ogata, H.; Tanaka, M.; Togawa, H.

    1996-10-01

    This paper describes a new data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. Data are acquired by a Creative Electronic Systems (CES) Starburst, which is a CAMAC auxiliary crate controller equipped with a Digital Equipment Corporation (DEC) J11 microprocessor., The data on the Starburst are transferred to a VME single-board computer. A VME reflective memory module broadcasts the data to other systems through a fiber-optic link. A data transfer rate of 2.0 Mbytes/s between VME modules has been achieved by reflective memories. This rate includes the overhead of buffer management. The overall transfer rate, however, is limited by the performance of the Starburst to about 160 Kbytes/s at maximum. In order to further improve the system performance, the authors developed a new readout module called the Rapid Data Transfer Module (RDTM). RDTM`s transfer data from LeCroy PCOS III`s or 4298`s, and FERA/FERET`s directly to CES 8170 High Speed Memories (HSM) in VME crates. The data transfer rate of the RDTM from PCOS III`s to the HSM is about 4 Mbytes/s.

  7. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Astrophysics Data System (ADS)

    Joiner, R. K.; Kobayashi, K.; Winebarger, A. R.; Champey, P. R.

    2014-12-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e­-/DN, a noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non-linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  8. Accuracy Assessments of Cloud Droplet Size Retrievals from Polarized Reflectance Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; vanDiedenhove, Bastiaan

    2012-01-01

    We present an algorithm for the retrieval of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was on-board of the NASA Glory satellite. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths ranging from 410 to 2260 nm. The cloud droplet size retrievals use the polarized reflectance in the scattering angle range between 135deg and 165deg, where they exhibit the sharply defined structure known as the rain- or cloud-bow. The shape of the rainbow is determined mainly by the single scattering properties of cloud particles. This significantly simplifies both forward modeling and inversions, while also substantially reducing uncertainties caused by the aerosol loading and possible presence of undetected clouds nearby. In this study we present the accuracy evaluation of our algorithm based on the results of sensitivity tests performed using realistic simulated cloud radiation fields.

  9. Characterization of cloud microphysical parameters using airborne measurements by the research scanning polarimeter

    NASA Astrophysics Data System (ADS)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.; Ackerman, Andrew S.; Emde, Claudia

    2013-05-01

    We present the retrievals of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements made during the recent field campaign Development and Evaluation of satellite Validation Tools by Experimenters (DEVOTE, 2011). The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was built for the NASA Glory Mission project. This instrument measures both polarized and total reflectances in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering range between 135° and 165° where they exhibit the rainbow, the shape of which is determined mainly by single-scattering properties of the cloud particles. Two different retrieval methods were used: standard fitting of the observations with a model based on pre-assumed gamma distribution shape, and a novel non-parametric technique Rainbow Fourier Transform (RFT), which does not require any a priori assumptions about the droplet size distribution. The RSP measurements over cumulus clouds also allow for estimation of their geometry (cloud length, top and base heights), which, combined with the droplet size, can provide further insight into cloud processes.

  10. Simultaneous observation of rotational coherent Stokes Raman scattering and coherent anti-Stokes Raman scattering in air and nitrogen

    NASA Technical Reports Server (NTRS)

    Snow, J. B.; Chang, R. K.; Zheng, J. B.; Leipertz, A.

    1983-01-01

    Rotational coherent Stokes Raman scattering (CSRS) and coherent anti-Stokes Raman scattering (CARS) in air and in nitrogen were observed simultaneously by using broadband generation and detection. In the broadband technique used, the entire CARS and CSRS spectrum was generated in a single laser pulse; the CSRS and CARS signals were dispersed by a spectrograph and detected simultaneously by an optical multichannel analyzer. A three-dimensional phase-matching geometry was used to achieve spatial resolution of the CSRS and CARS beams from the input beams. Under resonant conditions, similar experiments may provide a means of investigating the possible interaction between the CSRS and CARS processes in driving the rotational levels.

  11. Tetrahedral finite-volume solutions to the Navier-Stokes equations on complex configurations

    NASA Astrophysics Data System (ADS)

    Frink, N. T.; Pirzadeh, S. Z.

    1999-09-01

    A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the USA for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.

  12. Comparisons of geoid models over Alaska computed with different Stokes' kernel modifications

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, Y.

    2011-01-01

    Various Stokes kernel modification methods have been developed over the years. The goal of this paper is to test the most commonly used Stokes kernel modifications numerically by using Alaska as a test area and EGM08 as a reference model. The tests show that some methods are more sensitive than others to the integration cap sizes. For instance, using the methods of Vaníček and Kleusberg or Featherstone et al. with kernel modification at degree 60, the geoid decreases by 30 cm (on average) when the cap size increases from 1° to 25°. The corresponding changes in the methods of Wong and Gore and Heck and Grüninger are only at the 1 cm level. At high modification degrees, above 360, the methods of Vaníček and Kleusberg and Featherstone et al become unstable because of numerical problems in the modification coefficients; similar conclusions have been reported by Featherstone (2003). In contrast, the methods of Wong and Gore, Heck and Grüninger and the least-squares spectral combination are stable at any modification degree, though they do not provide as good fit as the best case of the Molodenskii-type methods at the GPS/Leveling benchmarks. However, certain tests for choosing the cap size and modification degree have to be performed in advance to avoid abrupt mean geoid changes if the latter methods are applied.

  13. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  14. Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.

    1998-01-01

    A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.

  15. Molecular Volumes and the Stokes-Einstein Equation

    ERIC Educational Resources Information Center

    Edward, John T.

    1970-01-01

    Examines the limitations of the Stokes-Einstein equation as it applies to small solute molecules. Discusses molecular volume determinations by atomic increments, molecular models, molar volumes of solids and liquids, and molal volumes. Presents an empirical correction factor for the equation which applies to molecular radii as small as 2 angstrom…

  16. Spectroscopic Stokes polarimetry based on Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Yeng-Cheng; Lo, Yu-Lung; Li, Chang-Ye; Liao, Chia-Chi

    2015-02-01

    Two methods are proposed for measuring the spectroscopic Stokes parameters using a Fourier transform spectrometer. In the first method, it is designed for single point measurement. The parameters are extracted using an optical setup comprising a white light source, a polarizer set to 0°, a quarter-wave plate and a scanning Michelson interferometer. In the proposed approach, the parameters are extracted from the intensity distributions of the interferograms produced with the quarter-wave plate rotated to 0°, 22.5°, 45° and -45°, respectively. For the second approach, the full-field and dynamic measurement can be designed based upon the first method with special angle design in a polarizer and a quarter-wave plate. Hence, the interferograms of two-dimensional detection also can be simultaneously extracted via a pixelated phase-retarder and polarizer array on a high-speed CCD camera and a parallel read-out circuit with a multi-channel analog to digital converter. Thus, a full-field and dynamic spectroscopic Stokes polarimetry without any rotating components could be developed. The validity of the proposed methods is demonstrated both numerically and experimentally. To the authors' knowledge, this could be the simplest optical arrangement in extracting the spectral Stokes parameters. Importantly, the latter one method avoids the need for rotating components within the optical system and therefore provides an experimentally straightforward means of extracting the dynamic spectral Stokes parameters.

  17. Analysis of regularized Navier-Stokes equations, 2

    NASA Technical Reports Server (NTRS)

    Ou, Yuh-Roung; Sritharan, S. S.

    1989-01-01

    A practically important regularization of the Navier-Stokes equations was analyzed. As a continuation of the previous work, the structure of the attractors characterizing the solutins was studied. Local as well as global invariant manifolds were found. Regularity properties of these manifolds are analyzed.

  18. Optical tomography in reacting flows based on Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Sharaborin, D.; Chikishev, L.; Dulin, V.

    2015-11-01

    This paper reports on development of an optical system for tomographic imaging in reacting flows. The measurement principle is based on registration of Stokes Raman scattering (rovibrational transitions for molecular nitrogen), when a transparent object is illuminated by a laser sheet. The method allows to retrieve local gas density and concentration.

  19. An Innovative Method to Study Stokes' Law in the Laboratory

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2008-01-01

    A new method is introduced to study the behaviour of the falling spherical ball in a viscous liquid using the well known Stokes' law. Experimental results are compared with those obtained by numerical calculations. Upper limits on the size and mass of the spherical balls of different materials used in the experiment are presented. (Contains 5…

  20. Photoswitchable red fluorescent protein with a large Stokes shift

    PubMed Central

    Piatkevich, Kiryl D.; English, Brian P.; Malashkevich, Vladimir N.; Xiao, Hui; Almo, Steven C.; Singer, Robert H.; Verkhusha, Vladislav V.

    2014-01-01

    SUMMARY Subclass of fluorescent proteins, large Stokes shift fluorescent proteins, is characterized by their increased spread between the excitation and emission maxima. Here we report a photoswitchable variant of a red fluorescent protein with a large Stokes shift, PSLSSmKate, which initially exhibits excitation/emission at 445/622 nm, but irradiation with violet light photoswitches PSLSSmKate into a common red form with excitation/emission at 573/621 nm. We characterize spectral, photophysical and biochemical properties of PSLSSmKate in vitro and in mammalian cells, and determine its crystal structure in the large Stokes shift form. Mass-spectrometry, mutagenesis and spectroscopic analysis of PSLSSmKate allow us to propose molecular mechanisms for the large Stokes shift, pH dependence and light-induced chromophore transformation. We demonstrate applicability of PSLSSmKate to superresolution PALM microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects. PMID:25242289