Science.gov

Sample records for advanced strained-superlattice photocathodes

  1. Advanced Strained-Superlattice Photocathodes for Polarized Electron Sources

    SciTech Connect

    Dr. Aaron Moy

    2005-01-31

    limited band splitting; and (2) a relaxation of the strain in the epilayer since the 10-nm critical thickness for maintaining perfect strain is exceeded for a 1 % lattice-mismatch [6]. Strained superlattice structures, consisting of very thin quantum well layers alternating with lattice-mismatched barrier layers are excellent candidates for higher polarization. Due to the difference in the effective mass of the heavy- and light-holes, a superlattice exhibits a natural splitting of the valence band, which adds to the strain-induced splitting. In addition, each of the SL layers is thinner than the critical thickness. Polarized photoemission from strained InGaAs/GaAs [7], InGaAdAlGaAs [8], and GaAs/GaAsP [9,10] superlattice structures have been reported in the literature. For this Phase II program, SVT Associates worked with the Stanford Linear Accelerator Center (SLAC) and University of Wisconsin at Madison to create photocathodes with improved polarization by employing GaAs/GaAsP superlattices. These superlattices consist of alternating thin layers of GaAs and GaAsP. The thicknesses and alloy compositions are designed to create a strained GaAs photoemission layer. Under strain, the heavy-hole and light-hole valence bands in GaAs split, removing degeneracy and allowing high polarization, theoretically 100%. This final report discusses the efforts and results achieved, comparing the device performance of newly created superlattice photocathodes grown by molecular beam epitaxy (MBE) with the devices created by other fabrication technologies, and efforts to optimize and improve the device operation.

  2. Polarization Possibilities of Small Spin-Orbit Interaction in Strained-Superlattice Photocathodes

    SciTech Connect

    Maruyama, T.; Brachmann, A.; Clendenin, J.E.; Garwin, E.L.; Ioakeimidi, K.; Kirby, R.E.; Prepost, R.; Moy, A.M.; /SVT Assoc., Eden Prairie

    2006-12-12

    Strained-superlattice photocathodes based on InGaP/GaAs were investigated. The photocathode performance is found highly dependent on the superlattice parameters. The electron confinement energy in superlattice appears important.

  3. 30-kV spin-polarized transmission electron microscope with GaAs-GaAsP strained superlattice photocathode

    NASA Astrophysics Data System (ADS)

    Kuwahara, M.; Kusunoki, S.; Jin, X. G.; Nakanishi, T.; Takeda, Y.; Saitoh, K.; Ujihara, T.; Asano, H.; Tanaka, N.

    2012-07-01

    A spin-polarized electron beam has been used as the probe beam in a transmission electron microscope by using a photocathode electron gun with a photocathode made of a GaAs-GaAsP strained superlattice semiconductor with a negative electron affinity (NEA) surface. This system had a spatial resolution of the order of 1 nm for at 30 keV and it can generate an electron beam with an energy width of 0.24 eV without employing monochromators. This narrow width suggests that a NEA photocathode can realize a high energy resolution in electron energy-loss spectroscopy and a longitudinal coherence of 3 × 10-7 m.

  4. Advanced 3D Photocathode Modeling and Simulations Final Report

    SciTech Connect

    Dimitre A Dimitrov; David L Bruhwiler

    2005-06-06

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process.

  5. Advances in DC photocathode electron guns

    SciTech Connect

    Bruce M. Dunham; P. Heartmann; Reza Kazimi; Hongxiu Liu; B. M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; Charles K. Sinclair

    1998-07-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughout. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion backbombardment, and precise control of all of the electrons emitted from the cathode. In this paper, the authors will review recent results and discuss implications for future photocathode guns.

  6. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Bragg Reflector

    SciTech Connect

    Zhang, Shukui; Poelker, Matthew; Stutzman, Marcy L.; Chen, Yiqiao; Moy, Aaron

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  7. High Brightness and high polarization electron source using transmission photocathode

    SciTech Connect

    Yamamoto, Naoto; Jin Xiuguang; Ujihara, Toru; Takeda, Yoshikazu; Mano, Atsushi; Nakagawa, Yasuhide; Nakanishi, Tsutomu; Okumi, Shoji; Yamamoto, Masahiro; Konomi, Taro; Ohshima, Takashi; Saka, Takashi; Kato, Toshihiro; Horinaka, Hiromichi; Yasue, Tsuneo; Koshikawa, Takanori

    2009-08-04

    A transmission photocathode was fabricated based on GaAs-GaAsP strained superlattice layers on a GaP substrate and a 20 kV-gun was built to generate the polarized electron beams with the diameter of a few micro-meter. As the results, the reduced brightness of 1.3x10{sup 7} A/cm{sup 2}/sr and the polarization of 90% were achieved.

  8. Fabrication and characterization of cesium telluride photocathodes: A promising electron source for the Los Alamos Advanced FEL

    SciTech Connect

    Kong, S.H.; Nuguyen, D.C.; Sheffield, R.L.; Sherwood, B.A.

    1994-09-01

    The Advanced FEL at Los Alamos embodies a Y{sub 2}CsSb photocathode as an electron source. The photocathode consists of a K{sub 2}CsSb film deposited on a molybdenum plug that can be inserted into the linac of the FEL. However, because K{sub 2}CsSb is easily contaminated and has a half-life of less than a day when in use, switching to a more rugged high quantum efficiency (QE) material such as Cs{sub 2}Te is considered as a means to lengthen the beam time. Cs{sub 2}Te films were deposited on molybdenum plugs in an ultrahigh-vacuum research chamber. Several Cs{sub 2}Te films were measured in-situ for their spectral responses with a bias voltage of 90V; the resulting QEs were 12-18% at a wavelength of 254 nm, 0.2-1.2% at 334 nm, 10{sup {minus}4}-10{sup {minus}3} at 365 nm, and 10{sup {minus}7}-10{sup {minus}5} at 546 nm. For this cathode to be useful, the authors need to frequency quadruple the 1052 mn line of the Nd:YLF laser to achieve a wavelength of 263 mm. Initial studies showed that the 251-nm QE of Cs{sub 2}Te is much less sensitive to contamination than the 526-nm QE of K{sub 2}CsSb. The authors exposed Cs{sub 2}Te photocathodes to air at 10{sup {minus}4} torr for five minutes. As a result, the QEs dropped from 16-18% to 1-2% at 254 mn. However, heating the cathode to 165{degrees}C revived the QE to about 10%. They conclude that Cs{sub 2}Te is a very rugged photocathode material for use in an rf photoelectron source.

  9. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    SciTech Connect

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  10. Photocathodes for free electron lasers

    SciTech Connect

    Kong, S.H.; Kinross-Wright, J.; Nuguyen, D.C.; Sheffield, R.L.

    1994-09-01

    Many different photocathodes have been used as electron sources for FELs and other electron accelerator systems. In choosing one, a compromise between lifetime and quantum efficiency have been unavoidable. High quantum efficiency photocathodes such as CsK{sub 2}Sb, Cs{sub 3}Sb, and cesiated GaAs have short operational lifetimes and require an ultrahigh-vacuum environment. Long lifetime photocathodes such as LaB{sub 6}, Cu, and Y have relatively low quantum efficiencies. However, recently, cesium telluride was found to be an exception. Initial results from CERN and now at Los Alamos have shown that Cs{sub 2}Te is reasonably rugged with a high quantum efficiency below 270 nm. Further studies were carried out at Los Alamos in determining its performance as an electron source for the Los Alamos Advanced FEL. The Los Alamos Advanced FEL was successfully operated at 5-6 microns with a Cs{sub 2}Te photocathode driven by a frequency quadrupled Nd:YLF laser as the electron source. Cs{sub 2}Te photocathodes with quantum efficiencies of 12-18% at 254 mn were fabricated in an ultrahigh-vacuum chamber and transferred under high vacuum to the FEL. The authors estimated that the operational lifetime of Cs{sub 2}Te photocathodes to be at least 20 times that for K{sub 2}CsSb photocathodes. Furthermore, experiments in the fabrication chamber have shown that heating to 150-200{degrees}C photocathodes exposed for one hour at 2{times}10{sup {minus}4} torr of air was sufficient to revive the quantum efficiency from below 1% to about 10%. The electron beam for the FEL extracted from a cesium telluride target was also characterized. The emittance, response time, saturation level and dark current of cesium telluride photocathodes was determined to be sufficient for FEL applications.

  11. SUPERCONDUCTING PHOTOCATHODES.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  12. A Masked Photocathode in Photoinjector

    SciTech Connect

    Qiang, Ji

    2010-12-14

    In this paper, we propose a masked photocathode inside the photoinjector for generating high brightness election beam. Instead of mounting the photocathode onto an electrode, an electrode with small hole is used as a mask to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material easy by rotating the photocathode behind the electrode into the hole. Furthermore, this helps reduce the dark current or secondary electron emission from the photocathode material. The masked photocathode also provides transverse cut-off to a Gaussian laser beam that reduces electron beam emittance growth from nonlinear space-charge effects.

  13. Piezoelectrically Enhanced Photocathodes

    NASA Technical Reports Server (NTRS)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced

  14. Acicular photomultiplier photocathode structure

    DOEpatents

    Craig, Richard A.; Bliss, Mary

    2003-09-30

    A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.

  15. The operation of the BNL/ATF gun-IV photocathode RF gun at the Advanced Photon Source.

    SciTech Connect

    Biedron, S. G.

    1999-04-20

    At the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), a free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) process is nearing completion. Recently, an rf photoinjector gun system was made available to the APS by Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF). It will be used to provide the high-brightness, low-emittance, and low-energy spread electron beam required by the SASE FEL theory. A Nd:Glass laser system, capable of producing a maximum of 500 {micro}J of UV in a 1-10 ps pulse at up to a 10-Hz repetition rate, serves as the photoinjector's drive laser. Here, the design, commissioning, and integration of this gun with the APS is discussed.

  16. Piezoelectrically enhanced photocathode

    NASA Technical Reports Server (NTRS)

    Beach, Robert A. (Inventor); Nikzad, Shouleh (Inventor); Strittmatter, Robert P. (Inventor); Bell, Lloyd Douglas (Inventor)

    2009-01-01

    A photocathode, for generating electrons in response to incident photons in a photodetector, includes a base layer having a first lattice structure and an active layer having a second lattice structure and epitaxially formed on the base layer, the first and second lattice structures being sufficiently different to create a strain in the active layer with a corresponding piezoelectrically induced polarization field in the active layer, the active layer having a band gap energy corresponding to a desired photon energy.

  17. Advanced Code for Photocathode Design

    SciTech Connect

    Ives, Robert Lawrence; Jensen, Kevin; Montgomery, Eric; Bui, Thuc

    2015-12-15

    The Phase I activity demonstrated that PhotoQE could be upgraded and modified to allow input using a graphical user interface. Specific calls to platform-dependent (e.g. IMSL) function calls were removed, and Fortran77 components were rewritten for Fortran95 compliance. The subroutines, specifically the common block structures and shared data parameters, were reworked to allow the GUI to update material parameter data, and the system was targeted for desktop personal computer operation. The new structures overcomes the previous rigid and unmodifiable library structures by implementing new, materials library data sets and repositioning the library values to external files. Material data may originate from published literature or experimental measurements. Further optimization and restructuring would allow custom and specific emission models for beam codes that rely on parameterized photoemission algorithms. These would be based on simplified and parametric representations updated and extended from previous versions (e.g., Modified Fowler-Dubridge, Modified Three-Step, etc.).

  18. Photocathodes in accelerator applications

    SciTech Connect

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs/sub 3/Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera.

  19. Infrared-sensitive photocathode

    DOEpatents

    Mariella, Jr., Raymond P.; Cooper, Gregory A.

    1995-01-01

    A single-crystal, multi-layer device incorporating an IR absorbing layer that is compositionally different from the Ga.sub.x Al.sub.1-x Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga.sub.w In.sub.y Al.sub.1-y-w Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga.sub.x Al.sub.1-x Sb, from which they are ejected into vacuum. Because the band alignments of Ga.sub.x Al.sub.1-x Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 .mu.m to at least 10 .mu.m.

  20. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  1. Infrared-sensitive photocathode

    DOEpatents

    Mariella, R.P. Jr.; Cooper, G.A.

    1995-04-04

    A single-crystal, multi-layer device is described incorporating an IR absorbing layer that is compositionally different from the Ga{sub x}Al{sub 1{minus}x}Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga{sub w}In{sub y}Al{sub 1{minus}y{minus}w}Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga{sub x}Al{sub 1{minus}x}Sb, from which they are ejected into vacuum. Because the band alignments of Ga{sub x}Al{sub 1{minus}x}Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 {mu}m to at least 10 {mu}m. 9 figures.

  2. DIAMOND AMPLIFIER FOR PHOTOCATHODES.

    SciTech Connect

    RAO,T.; BEN-ZVI,I.; BURRILL,A.; CHANG,X.; HULBERT,S.; JOHNSON,P.D.; KEWISCH,J.

    2004-06-21

    We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the ''gun'' through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: (1) Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. (2) Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons. (3) Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. (4) Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. (5) Production of high average currents, up to ampere class. (6) Encapsulated design, making the ''load-lock'' systems unnecessary. This paper presents the criteria that need to be taken into account in designing the amplifier.

  3. Cs based photocathodes for gaseous detectors

    SciTech Connect

    Borovick-Romanov, A.; Peskov, V.

    1993-08-01

    We demonstrated that some standard photocathodes SbCs, GaAs(Cs), Au(Cs) can easily be manufactured for use inside gaseous detectors. When filed with clean quenched gases such detectors have a quantum efficiency of a few percent in the visible region of the spectra and can operate at a gain >10{sup 3}. We tried to make these photocathodes more air stable by protecting their surfaces with a thin layer of CsI or liquid TMAE. The most air stable were photocathodes with a CsI protective layer. A wavelengths {le}185 nm such photocathodes have the highest quantum efficiency among all known air stable photocathodes, including CsI. Gaseous detectors with such photocathodes can operate at a gain of 10{sup 5}. Results of first tests of doped CsI photocathode are also presented. Possible fields of application of new photocathodes are discussed.

  4. Recent Progress toward Robust Photocathodes

    SciTech Connect

    Mulhollan, G. A.; Bierman, J. C.

    2009-08-04

    RF photoinjectors for next generation spin-polarized electron accelerators require photo-cathodes capable of surviving RF gun operation. Free electron laser photoinjectors can benefit from more robust visible light excited photoemitters. A negative electron affinity gallium arsenide activation recipe has been found that diminishes its background gas susceptibility without any loss of near bandgap photoyield. The highest degree of immunity to carbon dioxide exposure was achieved with a combination of cesium and lithium. Activated amorphous silicon photocathodes evince advantageous properties for high current photoinjectors including low cost, substrate flexibility, visible light excitation and greatly reduced gas reactivity compared to gallium arsenide.

  5. S-20 photocathode research activity. Part I

    SciTech Connect

    Gex, F.; Huen, T.; Kalibjian, R.

    1983-11-22

    The goal of this activity has been to develop and implement S-20 photocathode processing techniques at Lawrence Livermore National Laboratory (LLNL) in order to study the physical properties of the photocathode films. The present work is the initial phase of a planned activity in understanding cathode fabrication techniques and the optical/electrical characterization of these films.

  6. Intrinsic emittance reduction in transmission mode photocathodes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Cultrera, Luca; Bazarov, Ivan

    2016-03-01

    High quantum efficiency (QE) and low emittance electron beams provided by multi-alkali photocathodes make them of great interest for next generation high brightness photoinjectors. Spicer's three-step model well describes the photoemission process; however, some photocathode characteristics such as their thickness have not yet been completely exploited to further improve the brightness of the generated electron beams. In this work, we report on the emittance and QE of a multi-alkali photocathode grown onto a glass substrate operated in transmission and reflection modes at different photon energies. We observed a 20% reduction in the intrinsic emittance from the reflection to the transmission mode operation. This observation can be explained by inelastic electron-phonon scattering during electrons' transit towards the cathode surface. Due to this effect, we predict that thicker photocathode layers will further reduce the intrinsic emittance of electron beams generated by photocathodes operated in transmission mode.

  7. Evaluation system of negative electron affinity photocathode

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Chang, Benkang; Qian, Yunsheng; Wang, Guihua; Zong, Zhiyuan

    2001-10-01

    This article first describes the background of the research and manufacture of evaluation system of Negative Electron Affinity photocathode. This article designs a set of super high vacuum system for activating NEA photocathode on the base of activation theory, the process of design and debugging is given. The system is composed of three parts: super high vacuum system for GaAs material activation, multi-meter testing system, surface analysis system. The system is used for on-line evaluation of activating of NEA photocathode. The technical parameters and structure of the evaluation system of NEA photocathode are given in the paper. The system is finished and experiments are made. At last the picture of the system is given.

  8. Photocathodes for the energy recovery linacs

    SciTech Connect

    Rao, T; Burrill, A; Chang, X Y; Smedley, J; Nishitani, T; Garcia, C Hernandez; Poelker, M; Seddon, E; Hannon, F E; Sinclair, C K; Lewellen, J; Feldman, D

    2005-03-19

    This paper presents an overview of existing and emerging technologies on electron sources that can service various Energy Recovering Linacs under consideration. Photocathodes that can deliver average currents from 1 mA to 1 A, the pros and cons associated with these cathodes are addressed. Status of emerging technologies such as secondary emitters, cesiated dispenser cathodes, field and photon assisted field emitters and super lattice photocathodes are also reviewed.

  9. PHOTOCATHODES FOR THE ENERGY RECOVERY LINACS.

    SciTech Connect

    RAO, T.; BURRILL, A.; CHANG, X.Y.; SMEDLEY, J.; ET AL.

    2005-03-19

    This paper presents an overview of existing and emerging technologies on electron sources that can service various Energy Recovering Linacs under consideration. Photocathodes that can deliver average currents from 1 mA to 1 A, the pros and cons associated with these cathodes are addressed. Status of emerging technologies such as secondary emitters, cesiated dispenser cathodes, field and photon assisted field emitters and super lattice photocathodes are also reviewed.

  10. Optical fiber-based photocathode

    NASA Astrophysics Data System (ADS)

    Cǎsǎndruc, Albert; Bücker, Robert; Kassier, Günther; Miller, R. J. Dwayne

    2016-08-01

    We present the design of a back-illuminated photocathode for electron diffraction experiments based on an optical fiber, and experimental characterization of emitted electron bunches. Excitation light is guided through the fiber into the experimental vacuum chamber, eliminating typical alignment difficulties between the emitter metal and the optical trigger and position instabilities, as well as providing reliable control of the laser spot size and profile. The in-vacuum fiber end is polished and coated with a 30 nm gold (Au) layer on top of 3 nm of chromium (Cr), which emits electrons by means of single-photon photoemission when femtosecond pulses in the near ultraviolet (257 nm) are fed into the fiber on the air side. The emission area can be adjusted to any value between a few nanometers (using tapered fibers) and the size of a multi-mode fiber core (100 μm or larger). In this proof-of-principle experiment, two different types of fibers were tested, with emission spot diameters of 50 μm and 100 μm, respectively. The normalized thermal electron beam emittance (TE) was measured by means of the aperture scan technique, and a TE of 4.0 π nm was measured for the smaller spot diameter. Straightforward enhancements to the concept allowed to demonstrate operation in an electric field environment of up to 7 MV/m.

  11. RF Gun Photocathode Research at SLAC

    SciTech Connect

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  12. Characterization of quantum efficiency and robustness of cesium-based photocathodes

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.

    High quantum efficiency, robust photocathodes produce picosecond-pulsed, high-current electron beams for photoinjection applications like free electron lasers. In photoinjectors, a pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser wavelengths to maintain high current density. But faced with contamination, heating, and ion back-bombardment, the highest efficiency photocathodes find their delicate cesium-based coatings inexorably lost. In answer, the work herein presents careful, focused studies on cesium-based photocathodes, particularly motivated by the cesium dispenser photocathode. This is a novel device comprised of an efficiently photoemissive, cesium-based coating deposited onto a porous sintered tungsten substrate, beneath which is a reservoir of elemental cesium. Under controlled heating cesium diffuses from the reservoir through the porous substrate and across the surface to replace cesium lost to harsh conditions---recently shown to significantly extend the lifetime of cesium-coated metal cathodes. This work first reports experiments on coated metals to validate and refine an advanced theory of photoemission already finding application in beam simulation codes. Second, it describes a new theory of photoemission from much higher quantum efficiency cesium-based semiconductors and verifies its predictions with independent experiment. Third, it investigates causes of cesium loss from both coated metal and semiconductor photocathodes and reports remarkable rejuvenation of full quantum efficiency for contaminated cesium-coated surfaces, affirming the dispenser prescription of cesium resupply. And fourth, it details continued advances in cesium dispenser design with much-improved operating characteristics: lower temperature

  13. Photocathode device that replenishes photoemissive coating

    DOEpatents

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, the linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.

  14. Electromagnetic Simulation Studies of Photocathode Sources

    NASA Astrophysics Data System (ADS)

    Hess, Mark; Park, Chong Shik

    2007-11-01

    We present the results of electromagnetic simulation studies on space-charge dominated electron beams produced by photocathode sources. In particular, we demonstrate the computational requirements on the Green's function based simulation code IRPSS (Indiana Rf Photocathode Source Simulator) for obtaining relative space-charge electromagnetic field errors of at most 1%, and show how these fields compare with electrostatic based field solver methods. We also present the results of a multislice method used within IRPSS for modeling electron bunches, which approximates a local region of beam density as a zero longitudinal thickness slice. We show how these results can be applied to realistic photocathode experiments, such as the 1.3 GHz AWA photoinjector experiment at Argonne National Laboratory [1]. [1] P. Schoessow, et al, The Argonne Wakefield Accelerator Overview and Status, Proceedings of PAC'03, Washington, D.C., p.2596.

  15. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  16. SSRL photocathode RF gun test stand

    SciTech Connect

    Hernandez, M.; Baltay, M.; Boyce, A.

    1995-12-31

    A photocathode RF gun test stand designed for the production and study of high brightness electron beams will be constructed at SSRL. The beam will be generated from a laser driven third generation photocathode RF gun being developed in collaboration with BNL, LBL, and UCLA. The 3-5 [MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section, in order to achieve the desired low emittance beam, emittance compensation with solenoidal focusing will be employed.

  17. Graphene shield enhanced photocathodes and methods for making the same

    DOEpatents

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  18. Wire ageing with the TEA photocathode

    SciTech Connect

    Va`vra, J.

    1996-06-01

    Recently several RICH protypes successfully tested a gaseous TEA photocathode. However, its wire ageing behavior is unknown. In principle, TEA is a more strongly bonded molecule than TMAE, and, as a result, one would expect better wire ageing behavior. This paper explores this question.

  19. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    SciTech Connect

    Brendel', V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  20. A Summary of the 2010 Photocathode Physics for Photoinjectors Workshop

    SciTech Connect

    Bazarov, I; Dowell, D; Hannon, Fay; Harkay, K; Garcia, C H; Padmore, H; Rao, T; Smedley, J

    2010-10-01

    This contribution contains a summary and some highlights from the Photocathode Physics for Photoinjectors (P3) Workshop [1]. This workshop, held at Brookhaven National Laboratory in Ocotber of 2010, was aimed at bringing the photocathode community together to discuss and explore the current state of the art in accelerator photocathodes, from both a theoretical and a materials science perspective. All types of photocathode materials were discussed, including metals, NEA and PEA semiconductors, and "designer" photocathodes with bespoke properties. Topics of the workshop included: Current status of photocathodes for accelerator applications Current fabrication methods Applications of modern materials science to the growth and analysis of cathodes Photoemission spectroscopy as a diagnostic of cathode performance Utilization of modern user facilities Photoemission theory Novel ideas in cathode development Discussion forum on future collaboration for cathode growth, analysis and testing

  1. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    SciTech Connect

    Ben-Zvi,I.

    2008-11-17

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed.

  2. Study of the influence of strained superlattices introduced into a metamorphic buffer on the electrophysical properties and the atomic structure of InAlAs/InGaAs MHEMT heterostructures

    SciTech Connect

    Galiev, G. B.; Pushkarev, S. S.; Vasil'evskii, I. S.; Zhigalina, O. M.; Klimov, E. A.; Zhigalina, V. G.; Imamov, R. M.

    2013-04-15

    The results of studying the influence of strained superlattices introduced into a metamorphic buffer on the electrophysical properties and atomic crystal structure of In{sub 0.70}Al{sub 0.30}As/In{sub 0.76}Ga{sub 0.24}As/In{sub 0.70}Al{sub 0.30}As metamorphic high-electron-mobility transistor (MHEMT) nanoheterostructures on GaAs substrates are presented. Two types of MHEMT structures are grown by molecular beam epitaxy, namely, one with a linear increase in x in the In{sub x}Al{sub 1-x}As metamorphic buffer, and the second with two mismatched superlattices introduced inside the metamorphic buffer. The electrophysical and structural parameters of the grown samples are studied by the van der Pauw method, transmission electron microscopy (including scanning and high-resolution microscopy), atomic-force microscopy, and energy dispersive X-ray analysis. It is revealed that the introduction of superlattices into a metamorphic buffer substantially improves the electrophysical and structural characteristics of MHEMT structures.

  3. PROGRESS ON LEAD PHOTOCATHODES FOR SUPERCONDUCTING INJECTORS.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; SEKUTOWICZ, J.; KNEISEL, P.; LANGNER, J.; STRZYZEWSKI, P.; LEFFERTS, R.; LIPSKI, A.

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  4. Progress on lead photocathodes for superconducting injectors

    SciTech Connect

    Smedley, John; Rao, Triveni; Sekutowicz, Jacek; Kneisel, Peter; Langner, J; Strzyzewski, P; Lefferts, Richard; Lipski, Andrzej

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead plated cathode is underway.

  5. Development of High Quantum Efficiency UV/Blue Photocathode Epitaxial Semiconductor Heterostructures for Scintillation and Cherenkov Radiation Detection

    NASA Technical Reports Server (NTRS)

    Leopold, Daniel J.

    2002-01-01

    The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.

  6. Photocathode electron linac for AFEL

    NASA Astrophysics Data System (ADS)

    Wood, R. L.; Young, L. M.; Aikin, D. J.; Clark, W. L.; DePaula, R. F.; Gladwell, C.; Ledford, J. E.; Martinez, F. A.; Stovall, J. E.

    1993-06-01

    A compact, high brightness accelerator was designed and fabricated by Los Alamos National Laboratory for use in the Advanced Free Electron Laser (AFEL) Facility. A brazed copper, 1300-MHz, 20-MeV structure is suspended within a thermally insulating vacuum vessel. Integral cooling passages allow introduction of cooling water for normal operation, or liquid nitrogen for cryogenic operation. Its exceptional beam quality is expected to enhance the performance of the FEL experiments planned for the AFEL Facility.

  7. Development of Polarized Photocathodes for the Linear Collider

    SciTech Connect

    Richard Prepost

    2009-12-22

    In prior years a Wisconsin-SLAC collaboration developed polarized photocathodes which were used for the SLAC SLD and fixed target programs. Currently, the R&D program goal is the development of a polarized electron source (PES) which meets the ILC requirements for polarization, charge, lifetime, and pulse structure. There are two parts to this program. One part is the continued improvement of photocathode structures with higher polarization. The second part is the design and development of the laser system used to drive the photocathode. The long pulse train for the ILC introduces new challenges for the PES. More reliable and stable operation of the PES may be achievable if appropriate R&D is carried out for higher voltage operation and for a simpler photocathode load-lock system. The collaboration with SLAC is through the Polarized Photocathode Research Collaboration (PPRC). Senior SLAC personnel include T. Maruyama, J. Clendenin, R. Kirby, and A. Brachmann.

  8. Performance of photocathode rf gun electron accelerators

    SciTech Connect

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area.

  9. Performance of photocathode rf gun electron accelerators

    SciTech Connect

    Ben-Zvi, I.

    1993-07-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI`s performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area.

  10. Modeling Photoemission of Spin-Polarized Electrons from NEA GaAs Photocathodes

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2015-04-01

    At present, photoemission from strained GaAs activated to negative electron affinity (NEA) is a main source of polarized electrons for modern nuclear-physics and particle-physics facilities. Future experiments at advanced electron colliders will require high-current polarized electron beams, which could provide high polarization and luminosity. This sets new requirements for photocathodes in terms of high quantum efficiency (QE) (>>1%) and spin polarization (~85%). Detailed simulation and modeling of physics processes in photocathodes is important for optimization of their design in order to achieve high QE and reduce depolarization mechanisms. The purpose of the present work was to develop a semi-phenomenological model, which could predict photoemission and electron spin polarization from NEA GaAs photocathodes. Effect of the presence of nanostructures was also studied. Simulation results were compared to the experimental results obtained by the polarized electron source group at Thomas Jefferson National Accelerator Facility. Work supported by Thomas Jefferson Accelerator Facility and George Washington University.

  11. High gradient rf gun studies of CsBr photocathodes

    DOE PAGES

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  12. High gradient rf gun studies of CsBr photocathodes

    NASA Astrophysics Data System (ADS)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-01

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV /m fields without breaking down or emitting dark current. They can operate in 2 ×10-9 torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  13. R&D ERL: Photocathode Deposition and Transport System

    SciTech Connect

    Pate, D.; Ben-Zvi, I.; Rao, T.; Burrill, R.; Todd, R.; Smedley, J.; Holmes, D.

    2010-01-01

    The purpose of the photocathode deposition and transport system is to (1) produce a robust, high yield multialkali photocathode and (2) have a method of transporting the multialkali photocathode for insertion into a super conducting RF electron gun. This process is only successful if a sufficient quantum efficiency lifetime of the cathode, which is inserted in the SRF electron gun, is maintained. One important element in producing a multialkali photocathode is the strict vacuum requirements of 10{sup -11} torr to assure success in the production of longlived photocathodes that will not have their QE or lifetime depleted due to residual gas poisoning in a poor vacuum. A cutaway view of our third generation deposition system is shown in figure 1. There are certain design criteria and principles required. One must be able to install, remove, rejuvenate and replace a cathode without exposing the source or cathode to atmosphere. The system must allow one to deposit Cs, K, and Sb on a cathode tip surface at pressures in the 10{sup -10} to 10{sup -9} torr range. The cathode needs to be heated to as high as 850 C for cleaning and maintained at 130 C to 150 C during deposition. There should also be the capability for in-situ QE measurements. In addition the preparation of dispenser photocathodes must be accounted for, thus requiring an ion source for cathode cleaning. Finally the transport cart must be mobile and be able to negotiate the ERL facility labyrinth.

  14. Development of high performance bi-alkali photocathodes for next-generation sensors

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel; Wagner, Robert; Walters, Dean; Wang, Jingbo; Xia, Lei; Zhao, Huyue

    2015-04-01

    Next generation sensors such as microchannel plate based photomultiplier tubes call for robust, low-cost photocathodes with high quantum efficiency and low dark current. Traditional alkali photocathodes grown through a diffusion growth process encounter material challenge and are being investigated using X-ray scattering to optimize their performance. Photocathodes with peak quantum efficiency over 30% at ~ 400 nm wavelength were grown via a newly proposed growth method. A new photocathode growth chamber was built and incorporated into the Argonne photodetector fabrication facility to obtain robust, highly efficiencient bi-alkali photocathodes. The progress on the photocathode study, growth design and experimental results will be reported and discussed.

  15. Metal Photocathodes for Free Electron Laser Applications

    NASA Astrophysics Data System (ADS)

    Greaves, Corin Michael Ricardo

    Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high

  16. Progress on diamond amplified photo-cathode

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

    2011-03-28

    Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

  17. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  18. Photoemission characteristics of thin GaAs-based heterojunction photocathodes

    SciTech Connect

    Feng, Cheng; Zhang, Yijun Qian, Yunsheng; Shi, Feng; Zou, Jijun; Zeng, Yugang

    2015-01-14

    To better understand the different photoemission mechanism of thin heterojunction photocathodes, the quantum efficiency models of reflection-mode and transmission-mode GaAs-based heterojunction photocathodes are revised based on one-dimensional continuity equations, wherein photoelectrons generated from both the emission layer and buffer layer are taken into account. By comparison of simulated results between the revised and conventional models, it is found that the electron contribution from the buffer layer to shortwave quantum efficiency is closely related to some factors, such as the thicknesses of emission layer and buffer layer and the interface recombination velocity. Besides, the experimental quantum efficiency data of reflection-mode and transmission-mode AlGaAs/GaAs photocathodes are well fitted to the revised models, which confirm the applicability of the revised quantum efficiency models.

  19. L-band Photocathode RF gun at KEK-STF

    NASA Astrophysics Data System (ADS)

    Sugiyama, H.; Takahashi, Y.; Hayano, H.; Urakawa, J.; Kashiwagi, S.; Isoyama, G.; Kato, R.; Sugimoto, N.; Kuriki, M.

    2011-05-01

    The superconducting RF test facility (STF) in KEK is a facility to promote R&D of the International Linear Collider (ILC) cavities and cryomodule. L-band photocathode RF gun has been developed at KEK-STF as an electron beam source for cryomodule test scheduled in autumn of 2011. The RF cavity of the gun will be operated with a 1.3 GHz RF frequency, 1 msec RF pulse width, 5 Hz repetition rate at normal conductivity. The cavity was prepared by collaborative work with DESY and FNAL, and fabricated by FNAL. The RF conditioning of the cavity has been started since April 2010. A cesium telluride thin film as a photocathode material has been adopted, and the preparation equipment for cesium telluride has been newly designed and constructed. By using this new system, a fabrication and a performance estimation of the cesium telluride thin film as a photocathode are the next step of the research.

  20. FEMTO SECOND ELECTRON BEAM DIFFRACTION USING A PHOTOCATHODE RF GUN.

    SciTech Connect

    WANG,X.J.WU,Z.IHEE,H.

    2003-05-12

    One of the 21st century scientific frontiers is to explore the molecule structure transition on the femtosecond time scale. X-ray free electron laser (XFEL) is one of the tools now under development for investigating femto-second structure transition. We are proposing an alternative technique--femto-second electron diffraction based on a photocathode RF gun. We will present a design of a kHz femto-seconds electron diffraction system based on a photocathode RF gun. Our simulation shows that, the photocathode RF gun can produce 100 fs (FWHM) electron bunch with millions electrons at about 2 MeV. This is at least one order of magnitude reduction in bunch length, and two orders of magnitude increase in number of electrons comparing to present time-resolved electron diffraction system. We will also discuss various issues and limitations related to MeV electron diffraction.

  1. Emission properties of body-centered cubic elemental metal photocathodes

    SciTech Connect

    Li, Tuo; Rickman, Benjamin L. Schroeder, W. Andreas

    2015-04-07

    A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

  2. Analysis of Slice Transverse Emittance Evolution ina Photocathode RF Gun

    SciTech Connect

    Huang, Z.; Ding, Y.; Qiang, J.; /LBL, Berkeley

    2007-10-17

    The slice transverse emittance of an electron beam is of critical significance for an x-ray FEL. In a photocathode RF gun, the slice transverse emittance is not only determined by the emission process, but also influenced strongly by the non-linear space charge effect. In this paper, we study the slice transverse emittance evolution in a photocathode RF gun using a simple model that includes effects of RF acceleration, focusing, and space charge force. The results are compared with IMPACT-T space charge simulations and may be used to understand the development of the slice emittance in an RF gun.

  3. A photocathode rf gun design for a mm-wave linac-based FEL

    SciTech Connect

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  4. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect

    Sertore, Daniele Michelato, Paolo; Monaco, Laura; Manini, Paolo; Siviero, Fabrizio

    2014-05-15

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20 l s{sup −1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8⋅10{sup −8} Pa was achieved using only a sputter ion pump after a 6 day bake-out. With the addition of a NEG pump, a pressure of 2⋅10{sup −9} Pa was achieved after a 2 day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  5. A photocathode RF gun for x-ray FEL

    SciTech Connect

    Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-12-31

    A 1.6 cell photocathode RF gun was developed by a BNL/SLAC/UCLA collaboration for X-ray FEL and other applications. The objective of the collaboration is to develop a cost effective and more reliable photocathode RF gun based on the operational experience of the original BNL gun. The new photocathode RF gun is cable of producing 1 mm-mrad normalized rms emittance photocurrent with a peak current of 100 A. The half-cell length of the new RF gun was lengthened to reduce the peak field on the cavity surface, the side-coupled scheme for cavity and waveguide coupling was replaced by a symmetrized coupling to the full-cell. The cavity aperture was increased to improve the coupling between two cells and for flat beam application. The experimental results of cold testing the RF gun will be presented. We will also present an injector design based on the new photocathode RF gun and emittance compensation technique.

  6. SUPPRESSION OF AFTERPULSING IN PHOTOMULTIPLIERS BY GATING THE PHOTOCATHODE

    EPA Science Inventory

    A number of gating schemes to minimize the long-term afterpulse signal in photomultipliers have been evaluated. Blocking the excitation pulse by gating the photocathode was found to reduce the gate-on afterpulse background by a factor of 230 over that for nongated operation. Thi...

  7. New Photocathode materials for electron-ion-colliders

    SciTech Connect

    Lukaszew, Rosa A.

    2015-02-25

    Our aim has been to explore new photocathode materials and schemes to develop strategies and technologies for next generation nuclear physics accelerator capabilities, particularly for Electron Ion Colliders (EIC). Thus, we investigated thin film deposition and ensuing properties for several adequate magnetic materials applicable to spin-polarized photocathodes. We also implemented a full experimental setup for light incidence at an acute angle onto the photocathode surface in order to excite surface Plasmon resonance hence increasing light absorption by a metallic surface. We successfully tested the setup with a thermionic cathode as well as Plasmonic silver-MgO samples and obtained very encouraging results. Our first results are very encouraging since the photocurrent measured on this preliminary plasmonic Ag-MgO sample under low power (~ 1mW) cw red light from a HeNe laser was 256 pA, thus two orders magnitude larger than that reported by others following also plasmonic approaches. We extended our studies to shorter wavelengths and we also started preliminary work on chemically ordered MnAl thin films –a component of the tertiary Ag-Mn-Al (silmanal) alloy in order to develop spin-polarized photocathodes capable of sustaining surface Plasmon resonance. It is worthwhile mentioning that a graduate student has been directly involved during this project ensuring the training of next generation of scientists in this area of research.

  8. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  9. Emittance Studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun

    SciTech Connect

    Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; Yakimenko, V.; /Brookhaven

    2011-09-09

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 {mu}s. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, {epsilon}{sub o}, of the copper cathode has been measured.

  10. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    SciTech Connect

    Dowell, David H.; Schmerge, John F.; /SLAC

    2009-03-04

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others.

  11. Low-workfunction photocathodes based on acetylide compounds

    DOEpatents

    Terdik, Joseph Z; Spentzouris, Linda; Terry, Jr., Jeffrey H; Harkay, Katherine C; Nemeth, Karoly; Srajer, George

    2014-05-20

    A low-workfunction photocathode includes a photoemissive material employed as a coating on the photocathode. The photoemissive material includes A.sub.nMC.sub.2, where A is a first metal element, the first element is an alkali metal, an alkali-earth element or the element Al; n is an integer that is 0, 1, 2, 3 or 4; M is a second metal element, the second metal element is a transition metal or a metal stand-in; and C.sub.2 is the acetylide ion C.sub.2.sup.2-. The photoemissive material includes a crystalline structure or non-crystalline structure of rod-like or curvy 1-dimensional polymeric substructures with MC.sub.2 repeating units embedded in a matrix of A.

  12. Preliminary Results from a superconducting photocathode sample cavity

    SciTech Connect

    Peter Kneisel; Jacek Sekutowicz; R. Lefferts; A. Lipski

    2005-05-01

    Pure niobium has been proposed as a photocathode material to extract directly photo-currents from the surface of a RF-gun cavity [1]. However, the quantum efficiency of niobium is {approx}3 {center_dot} 10{sup -4}, whereas electro- or vacuum deposited lead has an {approx} 10 times higher quantum efficiency. We have designed and tested a photo-injector niobium cavity, which can be used to insert photo-cathodes made of different materials in the high electric field region of the cavity. Experiments have been conducted with niobium and lead, which show that neither the Q- values of the cavity nor the obtainable surface fields are significantly lowered. This paper reports about the results from these tests.

  13. Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Gaines, Geoffrey A.

    1990-01-01

    Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.

  14. Quantum Efficiency Enhancement in CsI/Metal Photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.

    2015-02-01

    High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(100), Ag(100), Au(111) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement

  15. High-Yield Metal Materials for Photocathode RF Gun

    SciTech Connect

    Wang, X.J.; Ben-Zvi, I.; Smedley, J.; Srinivasan-Rao, T.; Woodle, M.; Palmer, D.T.; Miller, R.H.

    1997-11-01

    Significant progress has been made in both improving the quantum efficiency and understanding the physics process of photoemission of metal photocathode materials under high electric field. Metal material, copper and magnesium were installed on the photocathode RF gun, and experimentally investigated using frequency quadrupled Nd:Yag laser (266 nm). A systemic procedure was developed for preparing cathode; this involves diamond polishing, ultrasonic cleaning and high temperature vacuum bake out. Using laser cleaning and explosive electron emission cleaning, the highest quantum efficiency measured for copper and magnesium are 0.02% and 0.3%, respectively. The Schottky effect was experimental investigated, the quantum efficiency of the Cu is dominated by the Schottky effect since the work function of the copper is almost equal to the photon energy used (4.66 eV). The quantum efficiency of the magnesium is significant enhanced by the Schottky effect.

  16. Preparation of graphene/polymer composite photocathode for QDSSC

    NASA Astrophysics Data System (ADS)

    Wang, Qiandi; Shen, Yue; Tan, Jie; Xu, Kai; Shen, Tan; Cao, Meng; Gu, Feng; Wang, Linjun

    2013-12-01

    Graphene (rGO) was fabricated by modified Hummers method and a reducing process. Conductive polymer/graphene films were obtained by scalpel technology and used as photocathode in CdS quantum dot-sensitized solar cell (QDSSC). Polymers used in this paper were ethyl cellulose (EC), polyphenyl vinyl (PPV) and polyvinyl butyral (PVB), respectively. The obtained composite films were investigated by X-ray diffraction, Raman spectroscopy technology and scanning electron microscope (SEM). The photoelectric properties of QDSSCs were tested under AM 1.5 irradiation. Test results show that the film performance of the EC/rGO and PPV/rGO photocathode have been improved effectively. Power conversion efficiency (PCE) of the relative QDSSCs under AM 1.5 irradiation were 0.81% and 0.86%, respectively.

  17. Temporal Response Measurements of GaAs-Based Photocathodes

    NASA Astrophysics Data System (ADS)

    Honda, Yosuke; Matsuba, Shunya; Jin, Xiuguang; Miyajima, Tsukasa; Yamamoto, Masahiro; Uchiyama, Takashi; Kuwahara, Makoto; Takeda, Yoshikazu

    2013-08-01

    It is well known that a negative electron affinity GaAs photocathode shows a moderate temporal response when excited by a laser pulse of wavelength close to its band gap energy. We show here that the temporal response can be estimated using a diffusion model that describes the internal transport of the conduction electrons. Using a transverse deflection cavity system, we measured the temporal profile of the electron bunch generated by a DC photocathode gun illuminated by a ps pulsed laser. A systematic set of measurements of GaAs cathodes with various active layer thicknesses and boundary conditions confirmed that the observed temporal response is well understood by the diffusion model calculation.

  18. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2016-03-01

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  19. Applications of Laser and Synchrotron Based ARPES to Photocathode Research

    SciTech Connect

    Rameau J.; Smedley J.; Muller, E.; Kidd, T.; Johnson, P.; Allen, P.; Carr, L.; Valla, T.

    2010-10-12

    Laser angle resolved photoelectron spectroscopy (ARPES) provides unique information about angle and energy distribution of photoelectrons. Laser ARPES gives unique insight into how NEA materials work. ARPES combined with some ancillary measurements gives a very complete picture of system electronic physics. For H:C[100] there is now a clear program for engineering as well as development analogous systems. ARPES well suited for identifying 'ideal' photocathodes with intrinsically low emittance and high QE.

  20. GaAs photocathodes for low light level imaging

    NASA Astrophysics Data System (ADS)

    André, J. P.; Guittard, P.; Hallais, J.; Piaget, C.

    1981-10-01

    The use of high efficiency GaAs transmission mode photocathodes in image tubes is an achievement which has been made possible thanks to the improvement of material technology and vacuum technology. As background into the description of the material technology, the device characteristics are used for the definition of the material criteria. Possible epitaxial structures and growth methods which have been studied for the preparation of the material are reviewed with emphasis on the GaAs/(Al,Ga)As/ transparent window type of structure. Recent progress in MOVPE shows that this technique is now capable of growing high quality GaAs(Al,Ga)As double heterostructures suitable for photocathode fabrication. The assessment of p-type GaAs active layers shows electron diffusion lengths of 5 to 7 μm for a doping level of 1 × 10 19cm-3 with neglectible interface recombination. Reproduvibility of the results and further development of MOVPE for large scale growth of photocathode materials is discussed.

  1. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A.; Bierman, John C.

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  2. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  3. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A. Elmustafa, A. A.; Hernandez-Garcia, C.; Poelker, M.

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  4. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  5. Development of high efficiency opaque photocathodes for the Region 900 angstrom to 1200 angstrom

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Siegmund, O.

    1988-01-01

    Progress in the following three areas is reported: investigation of the basic properties of candidate photocathode materials; measurement of the quantum detection efficiency (QDE) of KCl, RbBr, and CsBr as a function of wavelength and incident angle; and assessment of the stability of these photocathodes.

  6. The Boeing photocathode accelerator magnetic pulse compression and energy recovery experiment

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    An 18 MeV, photocathode accelerator operating at 433 MHz is being commissioned for FEL applications. The accelerator consists of a two-cell RF photocathode imjector followed by four new multicell cavities. The two cell injector has previously been operated at a micropulse repetition frequency of 27 MHz, a micropulse charge of 5 nC and 25% duty factor.

  7. Development and characterization of diamond film and compound metal surface high current photocathodes

    SciTech Connect

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.; Archuleta, T.A.

    1997-09-01

    High current photocathodes operating in vacuum environments as high as 8xE-5 torr are being developed at Los Alamos for use in a new generation of linear induction accelerators. We report quantum efficiencies in wide bandgap semiconductors, pure metals, and compound metal surfaces photocathode materials illuminated by ultraviolet laser radiation.

  8. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    SciTech Connect

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J.

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  9. Mean transverse energy and response time measurements of GaInP based photocathodes

    SciTech Connect

    Jin, Xiuguang; Yamamoto, Masahiro; Miyajima, Tsukasa; Honda, Yosuke; Uchiyama, Takashi; Tabuchi, Masao; Takeda, Yoshikazu

    2014-08-14

    GaInP, which has a wider band gap than GaAs, is introduced as a photocathode for energy recovery linac (ERL). The wide band gap of material is expected to reduce the heating effect in the thermal relaxation process after high energy excitation. GaInP photocathodes exhibited higher quantum efficiency than GaAs and low thermal emittance as the same as GaAs photocathodes under green laser light irradiation. A short picosecond electron pulse was also achieved with the GaInP photocathode under 532 nm pulse laser irradiation. These experimental results demonstrate that the GaInP photocathode is an important candidate for ERL.

  10. High power testing of a 17 GHz photocathode RF gun

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-12-31

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell ({pi} mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design.

  11. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  12. Thermal limit to the intrinsic emittance from metal photocathodes

    SciTech Connect

    Feng, Jun Nasiatka, J.; Wan, Weishi; Karkare, Siddharth; Padmore, Howard A.; Smedley, John

    2015-09-28

    Measurements of the intrinsic emittance and transverse momentum distributions obtained from a metal (antimony thin film) photocathode near and below the photoemission threshold are presented. Measurements show that the intrinsic emittance is limited by the lattice temperature of the cathode as the incident photon energy approaches the photoemission threshold. A theoretical model to calculate the transverse momentum distributions near this photoemission threshold is presented. An excellent match between the experimental measurements and the theoretical calculations is demonstrated. These measurements are relevant to low emittance electron sources for Free Electron Lasers and Ultrafast Electron Diffraction experiments.

  13. Polarization and charge limit studies of strained GaAs photocathodes

    SciTech Connect

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of {approximately} 2.5 A/cm{sup 2} at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don`t have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes.

  14. Photothermal cathode measurements at the Advanced Photon Source.

    SciTech Connect

    Sun, Y.-E.; Lewellen, J. W.; Feldman, D. W.; Univ. of Maryland

    2006-01-01

    The Advanced Photon Source (APS) ballistic bunch compression (BBC) gun in the Injector Test Stand (ITS) presently uses an M-type thermionic dispenser cathode as a photocathode. This photothermal cathode offers substantial advantages over conventional metal photocathodes, including easy replacement and easy cleaning via the cathode's built-in heater. We present the results of photoemission measurements as a function of cathode heater power, laser pulse energy, and applied rf field strength.

  15. AlGaN/InGaN Photocathode Development

    SciTech Connect

    Buckley, J. H.; Leopold, D. J.

    2008-12-24

    An increase in quantum efficiency in photodetectors could result in a proportional reduction in the area of atmospheric Cherenkov telescopes and an even larger reduction in cost. We report on the development of high quantum efficiency, high gain, UV/blue photon-counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy. This research could eventually result in nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, high VUV sensitivity and very low radioactive background levels for deep underground experiments, and high detection efficiency for the detection of individual VUV-visible photons. We are also developing photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices and eventually leading to a new type of all-solid-state photomultiplier device.

  16. A high average current DC GaAs photocathode gun for ERLs and FELs

    SciTech Connect

    C. Hernandez-Garcia; T. Siggins; S. Benson; D. Bullard; H. F. Dylla; K. Jordan; C. Murray; G. R. Neil; Michelle D. Shinn; R. Walker

    2005-05-01

    The Jefferson Lab (JLab) 10 kW IR Upgrade FEL DC GaAs photocathode gun is presently the highest average current electron source operational in the U.S., delivering a record 9.1 mA CW, 350 kV electron beam with 122 pC/bunch at 75 MHz rep rate. Pulsed operation has also been demonstrated with 8 mA per pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz rep rate. Routinely the gun delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations. The Upgrade DC photocathode gun is a direct evolution of the DC photocathode gun used in the previous JLab 1 kW IR Demo FEL. Improvements in the vacuum conditions, incorporation of two UHV motion mechanisms (a retractable cathode and a photocathode shield door) and a new way to add cesium to the GaAs photocathode surface have extended its lifetime to over 450 Coulombs delivered between re-cesiations (quantum efficiency replenishment). With each photocathode activation quantum efficiencies above 6% are routinely achieved. The photocathode activation and performance will be described in detail.

  17. Surface Science Analysis of GaAs Photocathodes Following Sustained Electron Beam Delivery

    SciTech Connect

    Shutthanandan, V.; Zhu, Zihua; Stutzman, Marcy L.; Hannon, Fay; Hernandez-Garcia, Carlos; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai; Hess, Wayne P.

    2012-06-12

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Several photocathode degradation processes are suspected, including defect formation by ion back bombardment, photochemistry of surface adsorbed species and irradiation-induced surface defect formation. To better understand the mechanisms of photocathode degradation, we have conducted surface and bulk analysis studies of two GaAs photocathodes removed from the FEL photoinjector after delivering electron beam for a few years. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, strained super-lattice GaAs photocathode samples, removed from the CEBAF photoinjector were analyzed using Transmission Electron Microscopy (TEM) and SIMS. This analysis of photocathode degradation during nominal photoinjector operating conditions represents first steps towards developing robust new photocathode designs necessary for generating sub-micron emittance electron beams required for both fourth generation light sources and intense polarized CW electron beams for nuclear and high energy physics facilities.

  18. Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Hull, Jeffrey S.; Siegmund, Oswald H. W.; McPhate, Jason B.; Vallerga, John V.; Dabiran, Amir M.; Mane, Anil; Elam, Jeff

    2013-09-01

    The optimization and performance of opaque Galium Nitride (GaN) photocathodes deposited directly on novel Microchannel Plates (MCPs) are presented in this paper. The novel borosilicate glass MCPs, which are manufactured with the help of Atomic Layer Deposition, can withstand higher temperatures enabling direct deposition of GaN films on their surfaces. The quantum efficiency of MBE-grown GaN photocathodes of various thickness and buffer layers was studied in the spectral range of ~200-400 nm for the films grown on different surface layers (such as Al2O3 or buffer AlN layer) in order to determine the optimal opaque photocathode configuration. The MCPs with the GaN photocathodes were activated with surface cesiation in order to achieve the negative Electron Affinity for the efficient photon detection. The opaque photocathodes enable substantial broadening of the spectral sensitivity range compared to the semitransparent configuration when the photocathodes are deposited on the input window. The design of currently processed sealed tube event counting detector with an opaque GaN photocathode are also described in this paper. Our experiments demonstrate that although there is still development work required the detection quantum efficiencies exceeding 20% level should be achievable in 200-400 nm range and <50% in 100-200 nm range for the event counting MCP detectors with high spatial resolution (better than 50 μm) and timing resolution of <100 ps and very low background levels of only few events cm-2 s-1.

  19. Properties of CsI and CsI-TMAE photocathodes

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Peskov, V.; Hoeneisen, B.

    1992-06-01

    The importance of heating the CsI or CsI-TMAE photocathodes during preparation, as well as the importance of the gas environment on the quantum efficiency is presented. The dependence of the aging characteristics of these photocathodes on the operating temperature, on the presence of gas, and on the charge amplification of the chamber is also discussed. For CsI photocathodes charges in excess of 2{times}10{sup 14} e{sup {minus}}/mm{sup 2} can be collected with little degradation of performance. A timing resolution of 0.55 ns is also achieved for single photoelectrons suggesting a possible time-of-flight detector.

  20. Atomic hydrogen cleaning of GaAS Photocathodes

    SciTech Connect

    M. Poelker; J. Price; C. Sinclair

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs.

  1. Enhanced quantum efficiency from hybrid cesium halide/copper photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency (QE) of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  2. Photocathode transfer and storage techniques using alkali vapor feedback control

    NASA Astrophysics Data System (ADS)

    Springer, R. W.; Cameron, B. J.

    1992-07-01

    Photocathodes of quantum efficiency (QE) above 1% at the doubled YAG frequency of 532 nm are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of ˜ 2V or less. As such, these surfaces are very reactive because they provide many surface states for the residual gases that have positive electron affinities such as oxygen and water. In addition to this problem it is found that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the CsAgBiO, the Cs3Sb and the K2CsSb. The most stable material found is the K2CsSb. The required vacuum conditions can be met by a variety of pumping schemes such as using sputter ion diode pumps and baking at 250°C or less for whatever time is required to reduce the pump currents to below 1 μA at room temperature. To obtain the required partial pressure of cesium, a simple, very sensitive, diagnostic gauge has been developed that can discriminate between free alkali atoms and other gases. This Pressure Alkali Monitor (PAM) can be used with cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vaccuum system and preserved for over 10 days with less than a 25% loss to the QE at 543.5 nm.

  3. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    SciTech Connect

    Montgomery, Eric J.; Pan Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-22

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  4. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    NASA Astrophysics Data System (ADS)

    Opachich, Y. P.; Bell, P. M.; Bradley, D. K.; Chen, N.; Feng, J.; Gopal, A.; Hatch, B.; Hilsabeck, T. J.; Huffman, E.; Koch, J. A.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R.; Udin, S.

    2016-11-01

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1-12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  5. Photoemission studies with barium and LaB6 photocathodes and polarized laser light

    NASA Astrophysics Data System (ADS)

    Conde, M. E.; Kwon, S. I.; Young, A. T.; Leung, K. N.; Kim, K.-J.

    1994-11-01

    In this paper, presented is a work on the optimization of the performance of barium photocathodes. Studies on the dependence of the quantum yield on the polarization and angle of incidence of the laser beam are conducted. Moreover, studies on single crystal LaB6 photocathodes are reported. This material possesses a lower quantum yield than barium, but chemically it is much less reactive and have a very good thermionic emission characteristics.

  6. Variation of spectral response curves of GaAs photocathodes in activation chamber

    NASA Astrophysics Data System (ADS)

    Zou, Jijun; Chang, Benkang; Yang, Zhi; Wang, Hui; Gao, Pin

    2006-09-01

    The spectral response curves of reflection-mode GaAs (100) photocathodes are measured in activation chamber by multi-information measurement system at RT, and by applying quantum efficiency formula, the variation of spectral response curves have been studied. Reflection-mode GaAs photocathodes materials are grown over GaAs wafer (100) by MBE with p-type beryllium doping, doping concentration is 1×10 19 cm -3 and the active layer thickness is 1.6μm. During the high-temperature activation process, the spectral response curves varied with activation time are measured. After the low-temperature activation, the photocathode is illuminated by a white light source, and the spectral response curves varied with illumination time are measured every other hour. Experimental results of both high-temperature and low-temperature activations show that the spectral response curve shape of photocathodes is a function of time. We use traditional quantum efficiency formulas of photocathodes, in which only the Γ photoemission is considered, to fit experimental spectral response curves, and find the theoretical curves are not in agreement with the experimental curves, the reason is other valley and hot-electron yields are necessary to be included in yields of reflection-mode photocathodes. Based on the two-minima diffusion model and the fit of escape probability, we modified the quantum efficiency formula of reflection-mode photocathodes, the modified formula can be used to explain the variation of yield curves of reflection-mode photocathodes very well.

  7. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Mulhollan, Gregory; /SLAC /Saxed Surface Science, Austin, TX

    2010-08-25

    We have developed an activation procedure by which the reactivity to CO{sub 2}, a principal cause of yield decay for GaAs photocathodes, is greatly reduced. The use of a second alkali in the activation process is responsible for the increased immunity of the activated surface. The best immunity was obtained by using a combination of Cs and Li without any loss in near bandgap yield. Optimally activated photocathodes have nearly equal quantities of both alkalis.

  8. Optical Design Considerations Relevant to Reflective UV Launch Gratings for Photocathode Irradiation

    SciTech Connect

    Bolton, Paul

    2010-12-07

    The characteristics of photoelectron microbunches emitted from a photocathode in response to laser irradiation determine many of the incident laser pulse requirements. RF photocathode designs based on grazing incidence of the irradiation benefit from the removal of launch optics from the electron beamline and enhanced absorption at Brewster angles. However, this also introduces two well known complexities in the laser pulse 'launch' requirements: (i) a transverse spatial anamorphism to guarantee that the projected transverse spatial profile of the irradiation is circular (in the plane of the photocathode) and (ii) a 'time slew' or tilted amplitude front on the laser pulse that is incident on the photocathode to guarantee that the temporal (longitudinal) profiles are synchronous across the entire transverse irradiation profile in the photocathode plane. A single diffraction grating can be used to fulfill these combined requirements. This reported work focuses on grating behavior only. It does not address imaging requirements associated with relayed optical transport from the grating to the photocathode. Because the grating is a highly dispersive optical element by design, the dispersive aspects of all launch requirements are important.

  9. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  10. Oxidatively Stable Nanoporous Silicon Photocathodes for Photoelectrochemical Hydrogen Evolution

    SciTech Connect

    Neale, Nathan R.; Zhao, Yixin; Zhu, Kai; Oh, Jihun; van de Lagemaat, Jao; Yuan, Hao-Chih; Branz, Howard M.

    2014-06-02

    Stable and high-performance nanoporous 'black silicon' photoelectrodes with electrolessly deposited Pt nanoparticle (NP) catalysts are made with two metal-assisted etching steps. Doubly etched samples exhibit >20 mA/cm2 photocurrent density at +0.2 V vs. reversible hydrogen electrode (RHE) for photoelectrochemical hydrogen evolution under 1 sun illumination. We find that the photocurrent onset voltage of black Si photocathodes prepared from single-crystal planar Si wafers increases in oxidative environments (e.g., aqueous electrolyte) owing to a positive flat-band potential shift caused by surface oxidation. However, this beneficial oxide layer becomes a kinetic barrier to proton reduction that inhibits hydrogen production after just 24 h. To mitigate this problem, we developed a novel second Pt-assisted etch process that buries the Pt NPs deeper into the nanoporous Si surface. This second etch shifts the onset voltage positively, from +0.25 V to +0.4 V vs. RHE, and reduces the charge-transfer resistance with no performance decrease seen for at least two months.

  11. Laser driver for a photocathode of an electron linear accelerator

    SciTech Connect

    Potemkin, A K; Gacheva, E I; Zelenogorskii, V V; Katin, E V; Kozhevatov, I E; Lozhkarev, V V; Luchinin, G A; Silin, D E; Khazanov, Efim A; Trubnikov, D V; Shirkov, G D; Kuriki, M; Urakava, J

    2011-01-24

    A laser system is designed for operation with a photocathode electron gun for a linear accelerator with the following parameters of radiation at a wavelength of 262 nm (the fourth harmonic of a Nd:YLF laser). The pulse trains (macropulses) with a repetition rate of 5 Hz and a duration of 900 {mu}s consist of 8-ps micropulses with an energy of 1.4 {mu}J and a repetition rate of 2.708 MHz. This repetition rate is variable within {+-}32 kHz and is stabilised by an external signal with an accuracy of 10 Hz. Due to the use of a feedback-controlled acousto-optic modulator, the root-mean-square deviation of the micropulse energy in the first and second harmonics is 2.5% and 3.6%, respectively. Using the decaying branch of the dependence of the second-to-fourth harmonic conversion efficiency on the second harmonic intensity, we decreased the root-mean-square deviation of the energy of the fourth-harmonic micropulses to 2.3% at the first-to-fourth harmonic conversion efficiency of 27%. (lasers and amplifiers)

  12. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    SciTech Connect

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K.

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  13. A mechanism of Cu work function reduction in CsBr/Cu photocathodes

    DOE PAGES

    Halliday, M. T. E.; Hess, W. P.; Shluger, A. L.

    2016-02-15

    Thin films of CsBr deposited on Cu(100) have been proposed as next-generation photocathode materials for applications in particle accelerators and free-electron lasers. However, the mechanisms underlying an improved photocathode performance remain poorly understood. We present density Functional Theory (DFT) calculations of the work function reduction following the application of CsBr thin film coatings to Cu photocathodes. The effects of structure and van der Waals forces are examined. Calculations suggest that CsBr films can reduce the work function by around 1.5 eV, which would explain the exponential increase in quantum efficiency (QE) of coated vs. uncoated photocathodes. In conclusion, a modelmore » explaining experimentally observed laser activation of photocathode is provided whereby the photo-induced creation of di-vacancies at the surface, and their subsequent diffusion throughout the lattice and segregation at the interface leads to a further increase in QE after a period of laser irradiation.« less

  14. In-situ multi-information measurement system for preparing gallium nitride photocathode

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Qian; Chang, Ben-Kang; Qian, Yun-Sheng; Zhang, Jun-Ju

    2012-03-01

    We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photocathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat cleaning temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during preparation. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 °C. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the in-situ multi-information measurement system the NEA GaN photocathode can be successfully prepared.

  15. A mechanism of Cu work function reduction in CsBr/Cu photocathodes.

    PubMed

    Halliday, M T E; Hess, W P; Shluger, A L

    2016-03-14

    Thin films of CsBr deposited on Cu(100) have been proposed as next-generation photocathode materials for applications in particle accelerators and free-electron lasers. However, the mechanisms underlying an improved photocathode performance as well as their long-term stability remain poorly understood. We present Density Functional Theory (DFT) calculations of the work function reduction following the application of CsBr thin film coatings to Cu photocathodes. The effects of both flat and rough interface and van der Waals forces are examined. Calculations suggest that CsBr films can reduce the Cu(100) work function by about 1.5 eV, which would explain the observed increase in quantum efficiency (QE) of coated vs. uncoated photocathodes. A model explaining the experimentally observed laser activation of photocathodes is provided whereby the photo-induced creation of Br vacancies and Cs-Br di-vacancies and their subsequent diffusion to the Cu/CsBr interface lead to a further increase in QE after a period of laser irradiation. PMID:26899524

  16. Development of Cs 2Te photocathode rf gun system for compact THz SASE-FEL

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Ogawa, H.; Sei, N.; Toyokawa, H.; Yagi-Watanabe, K.; Yasumoto, M.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.

    2008-08-01

    A compact terahertz (THz) SASE-FEL source has been developed with a compact S-band electron linac at AIST. The S-band linac has been improved using a Cs 2Te photocathode rf gun with a compact load-lock system. The 40 MeV electron beam which has a bunch charge of more than 2 nC/bunch was stably generated using our system with the Cs 2Te photocathode, and the quantum efficiency (QE) typically achieved was about 0.3%. The surface observation of the Cs 2Te photocathode to obtain the surface micrographs and QE mapping images was successfully performed with a photoelectron emission microscopy (PEEM).

  17. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    SciTech Connect

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao

    2015-08-28

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  18. High quantum efficiency photocathode simulation for the investigation of novel structured designs

    DOE PAGES

    MacPhee, A. G.; Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Landen, O. L.; Opachich, Y. P.; Ross, P. W.; Huffman, E.; Koch, J. A.; Hilsabeck, T. J.

    2014-09-02

    A computer model in CST Studio Suite has been developed to evaluate several novel geometrically enhanced photocathode designs. This work was aimed at identifying a structure that would increase the total electron yield by a factor of two or greater in the 1–30 keV range. The modeling software was used to simulate the electric field and generate particle tracking for several potential structures. The final photocathode structure has been tailored to meet a set of detector performance requirements, namely, a spatial resolution of <40 μm and a temporal spread of 1–10 ps. As a result, we present the details ofmore » the geometrically enhanced photocathode model and resulting static field and electron emission characteristics.« less

  19. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    SciTech Connect

    Zhou, F.; Bohler, D.; Ding, Y.; Gilevich, S.; Huang, Z.; Loos, H.; Ratner, D.; Vetter, S.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Light Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.

  20. Effect of Sb thickness on the performance of bialkali-antimonide photocathodes

    DOE PAGES

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Hernandez-Garcia, Carlos; Mammei, Russell; Poelker, Matthew

    2016-01-06

    The alkali species Cs and K were codeposited using an effusion source, onto relatively thick layers of Sb (50 nm to ~7 μm) grown on GaAs and Ta substrates inside a vacuum chamber that was baked and not-vented, and also baked and vented with clean dry nitrogen but not rebaked. The characteristics of the Sb films, including sticking probability, surface roughness, grain size, and crystal properties were very different for these conditions, yet comparable values of photocathode yield [or quantum efficiency (QE)] at 284 V were obtained following codeposition of the alkali materials. Photocathodes manufactured with comparatively thick Sb layersmore » exhibited the highest QE and the best 1/e lifetime. As last, the authors speculate that the alkali codeposition enabled optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali materials.« less

  1. High quantum efficiency photocathode simulation for the investigation of novel structured designs

    SciTech Connect

    MacPhee, A. G.; Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Landen, O. L.; Opachich, Y. P.; Ross, P. W.; Huffman, E.; Koch, J. A.; Hilsabeck, T. J.

    2014-09-02

    A computer model in CST Studio Suite has been developed to evaluate several novel geometrically enhanced photocathode designs. This work was aimed at identifying a structure that would increase the total electron yield by a factor of two or greater in the 1–30 keV range. The modeling software was used to simulate the electric field and generate particle tracking for several potential structures. The final photocathode structure has been tailored to meet a set of detector performance requirements, namely, a spatial resolution of <40 μm and a temporal spread of 1–10 ps. As a result, we present the details of the geometrically enhanced photocathode model and resulting static field and electron emission characteristics.

  2. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-03-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

  3. Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Warren, Emily L.; Boettcher, Shannon W.; McKone, James R.; Lewis, Nathan S.

    2010-08-01

    The development of low cost, scalable, renewable energy technologies is one of today's most pressing scientific challenges. We report on progress towards the development of a photoelectrochemical water-splitting system that will use sunlight and water as the inputs to produce renewable hydrogen with oxygen as a by-product. This system is based on the design principle of incorporating two separate, photosensitive inorganic semiconductor/liquid junctions to collectively generate the 1.7-1.9 V at open circuit needed to support both the oxidation of H2O (or OH-) and the reduction of H+ (or H2O). Si microwire arrays are a promising photocathode material because the high aspect-ratio electrode architecture allows for the use of low cost, earth-abundant materials without sacrificing energy-conversion efficiency, due to the orthogonalization of light absorption and charge-carrier collection. Additionally, the high surfacearea design of the rod-based semiconductor array inherently lowers the flux of charge carriers over the rod array surface relative to the projected geometric surface of the photoelectrode, thus lowering the photocurrent density at the solid/liquid junction and thereby relaxing the demands on the activity (and cost) of any electrocatalysts. Arrays of Si microwires grown using the Vapor Liquid Solid (VLS) mechanism have been shown to have desirable electronic light absorption properties. We have demonstrated that these arrays can be coated with earth-abundant metallic catalysts and used for photoelectrochemical production of hydrogen. This development is a step towards the demonstration of a complete artificial photosynthetic system, composed of only inexpensive, earth-abundant materials, that is simultaneously efficient, durable, and scalable.

  4. Enhanced Photocathodes for Astrophysics using Atomic Layer Deposition Techniques Deposition Techniques

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald

    The objective of this program is to exploit the recent availability of atomic layer deposition techniques to provide a new generation of high performance photocathodes. We intend to work on the enhancement of photocathodes by atomic layer deposition, and on atomic layer deposited substrate structures, and assess their performance (gain, lifetime, stability, image fidelity) in microchannel plate based detectors. This would enable detection efficiency and bandpass improvements for microchannel plate based spaceflight detectors for imaging and spectroscopic instruments in small and large formats. Applications include the detection of soft X-ray, and UV through NUV. Recent work has achieved considerable success in development of borosilicate substrate microchannel plates functionalized by atomic layer deposited resistive and photoemissive materials. These could provide stable, compatible, substrates for high efficiency photocathodes, although very limited work has been done to date on this aspect. This development addresses detector technologies for SALSO, and impending proposals for a number of other NASA sub-orbital and satellite instruments. Results with borosilicate substrate microchannel plates functionalized by atomic layer deposited surface layers has been impressive, providing economical devices with long term stable gain and low background in formats up to 20 cm. Atomic layer deposition provides a surface layer that is smooth, clean, and chemically compatible with photocathode materials, and withstands high temperatures. The substrates can also be made with larger open area ratios, and the atomic layer deposition nanofabrication processes provides high secondary emission coefficients that will enhance photocathode efficiencies. Photocathodes (GaN, etc) deposited by MOCVD or MBE processes may also be deposited using atomic layer deposition, with potential advantages in layer structuring and selective area coverage and penetration over large areas.

  5. Design and beam dynamics simulations of an S-band photocathode rf gun

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Pant, K. K.; Krishnagopal, S.

    2002-10-01

    We are building an S-band photocathode rf gun as an injector to a 30MeV electron linac for FEL applications. Here we discuss details of design simulations performed using superfish and gdfidl and compare with results of cold tests performed on prototype cells of the photocathode rf gun. We also discuss beam dynamics simulations performed using parmela and report results from simulations to achieve a normalized transverse rms emittance of about 1π mm mrad for a 10ps pulse with 1nC charge in the presence of a solenoid magnetic field used for emittance compensation.

  6. SRRC/ANL high current l-band single cell photocathode rf gun.

    SciTech Connect

    Ho, C. H.

    1998-07-16

    A high current L-band photocathode rf gun is under development at SRRC (Synchrotron Radiation Research Center, Taiwan) in collaboration with ANL (Argonne National Laboratory, USA). The goal is to produce up to 100 nC charge with the surface field gradient of over 90 MV/m at the center of the photocathode. In this report, they present the detailed design and initial test results. If successful, this gun will be used as the future AWA (Argonne Wakefield Accelerator)[1] high current gun.

  7. III-V photocathode with nitrogen doping for increased quantum efficiency

    NASA Technical Reports Server (NTRS)

    James, L. W. (Inventor)

    1976-01-01

    An increase in the quantum efficiency of a 3-5 photocathode is achieved by doping its semiconductor material with an acceptor and nitrogen, a column-5 isoelectronic element, that introduces a spatially localized energy level just below the conduction band similar to a donor level to which optical transitions can occur. This increases the absorption coefficient, alpha without compensation of the acceptor dopant. A layer of a suitable 1-5, 1-6 or 1-7 compound is included as an activation layer on the electron emission side to lower the work function of the photocathode.

  8. An in-situ photocathode loading system for the SLC Polarized Electron Gun

    SciTech Connect

    Kirby, R.E.; Collet, G.J.; Skarpaas, K.

    1992-12-01

    An ultra-high vacuum loadlock system capable of operating at high voltage has been added to the SLC Polarized Electron Gun. The unit incorporates facilities for heat cleaning, activating and measuring the quantum efficiency of photocathodes. A tray of up to four photocathodes can be exchanged without bringing the activation unit or gun up to atmosphere. Low voltage quantum efficiencies of 20% have been obtained for bulk GaAs at 633 nm and 6% for a 0.3 micron GaAs layer at 755 nm. Results for other cathodes as well as operational characteristics are discussed.

  9. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-07-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

  10. Enhanced Raman scattering from cesium suboxides on silver particles and the structure of S-1 photocathodes

    NASA Technical Reports Server (NTRS)

    Bates, C. W., Jr.

    1984-01-01

    An explanation is given for the results of recent enhanced Raman scattering studies of photomultiplier tubes with S-1 photocathode surfaces which indicated the presence of Cs11O3 but not Cs2O. The reason for the discrepancy between the currently accepted model of the S-1 and this recent result is discussed.

  11. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

    PubMed Central

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-01-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production. PMID:27431993

  12. Spectral response variation of a negative-electron-affinity photocathode in the preparation process

    SciTech Connect

    Liu Lei; Du Yujie; Chang Benkang; Yunsheng Qian

    2006-08-20

    In order to research the spectral response variation of a negative electron affinity (NEA) photocathode in the preparation process, we have done two experiments on a transmission-type GaAs photocathode.First, an automatic spectral response recording system is described, which is used to take spectral response curves during the activation procedure of the photocathode. By this system, the spectral response curves of a GaAs:Cs-Ophotocathode measured in situ are presented. Then, after the cathode is sealed with a microchannel plate and a fluorescence screen into the image tube, we measure the spectral response of the tube by another measurement instrument. By way of comparing and analyzing these curves, we can find the typical variation in spectral-responses.The reasons for the variation are discussed. Based on these curves, spectral matching factors of a GaAs cathode for green vegetation and rough concrete are calculated. The visual ranges of night-vision goggles under specific circumstances are estimated. The results show that the spectral response of the NEA photocathode degraded in the sealing process, especially at long wavelengths. The variation has also influenced the whole performance of the intensifier tube.

  13. NREL Improves Hole Transport in Sensitized CdS-NiO Nanoparticle Photocathodes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    Significantly improved charge-collection efficiencies result from a general chemical approach to synthesizing photocathodes. It has been reported that a dye-sensitized nickel oxide (NiO) photocathode, when coupled to a dye-sensitized photoanode, could significantly increase overall solar conversion efficiency. However, the conversion efficiencies of these cells are still low. There has been much effort to improve the conversion efficiency by fabricating films with improved properties and developing more effective sensitizing dyes for p-type NiO. One of the factors limiting the use of NiO for solar cell application is the low hole conductivity in p-NiO. A team of researchers from the National Renewable Energy Laboratory (NREL) developed a general chemical approach to synthesize NiO-cadmium sulfide (CdS) core-shell nanoparticle films as photocathodes for p-type semiconductor-sensitized solar cells. Compared to dye-sensitized NiO photocathodes, the CdS-sensitized NiO cathodes exhibited two orders of magnitude faster hole transport (attributable to the passivation of surface traps by the CdS) and almost 100% charge-collection efficiencies.

  14. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-01-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production. PMID:27431993

  15. Arsenic volatilization of GaAs photocathode at low temperature during thermal cleaning

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Feng; Miao, Zhuang; Gao, Xiang; Cheng, Hong-chang; Niu, Sen; Wang, Long; Chen, Chang

    2014-09-01

    The gallium arsenide (GaAs) photocathode was generally cleaned by radiant heating, direct heating, ion bombardment annealing, and so on. In this paper, the radiant heating method, namely thermal cleaning method, was adopted for GaAs photocathode surface purification. Using this method could obtain an atomic clean surface, ensure the integrity of the GaAs surface lattice, and guarantee the uniformity of surface cleaning effect at the same time. But because the accurate measurement of the GaAs photocathode surface temperature in the vacuum system was very difficult, the residual gas analyzer (RGA) was used in this experiment to monitor the residual gas composition in ultrahigh vacuum during the thermal cleaning process and determine the thermal cleaning temperature by the partial pressure curves of As and Ga. It was found that the first peaks of As and Ga elements both appeared after heating about one hour, accompanied with H2O, N2/CO, CO2 and other common gas. According to partial pressure curves of H2O, N2/CO, CO2 and the heating time, it could be judged that the temperature at that time was not high, which should be under 150°C.After thermal cleaning experiment of three GaAs photocathodes, it was found that the peak value of As partial pressure at low temperature was generally within 10-11mbar~10-10mbar, and the peak value was at 10-10mbar at high temperature. Sometimes it was appeared that the peak value of As partial pressure at low temperature was even higher than the peak value at high temperature. The As volatilization phenomenon occurred at low temperature indicated that the elemental As exist on the GaAs photocathode surface or near surface after the chemical etching process, and the As could volatilize from GaAs photocathode at low temperature in the beginning of thermal cleaning. This research has guiding significance for further understanding the thermal cleaning mechanism of GaAs photocathode and improving the thermal cleaning technology.

  16. p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer

    SciTech Connect

    Bakin, V. V.; Toropetsky, K. V.; Scheibler, H. E.; Terekhov, A. S.; Jones, L. B.; Militsyn, B. L.; Noakes, T. C. Q.

    2015-05-04

    The (Cs,O)-activation procedure for p-GaAs(Cs,O)-photocathodes was studied with the aim of demarcating the domains of validity for the two practical models of the (Cs,O)-activation layer: The dipole layer (DL) model and the heterojunction (HJ) model. To do this, the photocathode was activated far beyond the normal maximum of quantum efficiency, and several photocathode parameters were measured periodically during this process. In doing so, the data obtained enabled us to determine the domains of validity for the DL- and HJ-models, to define more precisely the characteristic parameters of the photocathode within both of these domains and thus to reveal the peculiarities of the influence of the (Cs,O)-layer on the photoelectron escape probability.

  17. Tests of photocathodes for high repetition rate x-ray FELs at the APEX facility at LBNL

    NASA Astrophysics Data System (ADS)

    Sannibale, Fernando; Filippetto, Daniele; Qian, Houjun; Papadopoulos, Christos F.; Wells, Russell; Kramasz, Toby; Padmore, Howard; Feng, Jun; Nasiatka, James; Huang, Ruixuan; Zolotorev, Max; Staples, John W.

    2015-05-01

    After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.

  18. In Situ Observation of Dark Current Emission in a High Gradient rf Photocathode Gun.

    PubMed

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P; Baryshev, Sergey V; Chen, Huaibi; Conde, Manoel; Gai, Wei; Ha, Gwanghui; Jing, Chunguang; Wang, Faya; Wisniewski, Eric

    2016-08-19

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (∼100  μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ∼100  MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. The postexaminations with scanning electron microscopy and white light interferometry reveal the origins of ∼75% strong emission areas overlap with the spots where rf breakdown has occurred. PMID:27588860

  19. In Situ Observation of Dark Current Emission in a High Gradient rf Photocathode Gun

    NASA Astrophysics Data System (ADS)

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; Baryshev, Sergey V.; Chen, Huaibi; Conde, Manoel; Gai, Wei; Ha, Gwanghui; Jing, Chunguang; Wang, Faya; Wisniewski, Eric

    2016-08-01

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (˜100 μ m ) dark current imaging experiment has been performed in an L -band photocathode gun operating at ˜100 MV /m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. The postexaminations with scanning electron microscopy and white light interferometry reveal the origins of ˜75 % strong emission areas overlap with the spots where rf breakdown has occurred.

  20. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Solombrino, L.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-11-01

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y.

  1. Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond

    DOEpatents

    Sumant, Anirudha V.; Baryshev, Sergey V.; Antipov, Sergey P.

    2016-08-16

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  2. Photo-cathode preparation system of the A0 photo-injector

    SciTech Connect

    Moyses Kuchnir et al.

    2002-08-23

    The A0 Photo-Injector is an electron accelerator located in the AZero high bay area of Fermilab. A pulsed laser system generates electron bunches by the photo-electric effect when hitting a photo-cathode in a 1.5-cell, 1.3 GHz RF gun. A 9-cell, 1.3 GHz superconducting resonant cavity then accelerates the electrons to 15 MeV. The 10 ps time resolved waveform of the laser pulses is transferred to the electron bunches. This report is focused on the first hardware component of this accelerator, the Photo-cathode Preparation System. The reason for its existence is in the nature of the photo-electric material film used: Cs{sub 2}Te (Cesium Telluride), a very reactive compound that once coated on the cathode requires that it be transported and used in ultra high vacuum (UHV), i.e. < 10{sup -9} Torr.

  3. Planar Field Emitters and High Efficiency Photocathodes Based on Ultrananocrystalline Diamond

    NASA Technical Reports Server (NTRS)

    Sumant, Anirudha V. (Inventor); Baryshev, Sergey V. (Inventor); Antipov, Sergey P. (Inventor)

    2016-01-01

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  4. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  5. Photoemission Studies of Metallic Photocathodes Prepared by Pulsed Laser Ablation Deposition Technique

    SciTech Connect

    Fasano, V.; Lorusso, A.; Perrone, A.; De Rosa, H.; Cultrera, L.

    2010-11-10

    We present the results of our investigation on metallic films as suitable photocathodes for the production of intense electron beams in RF photoinjector guns. Pulsed laser ablation deposition technique was used for growing Mg and Y thin films onto Si and Cu substrates in high vacuum and at room temperature.Different diagnostic methods were used to characterize the thin films deposited on Si with the aim to optimize the deposition process. Photoelectron performances were investigated on samples deposited on Cu substrate in an ultra high vacuum photodiode chamber at 10{sup -7} Pa. Relatively high quantum efficiencies have been obtained for the deposited films, comparable to those of corresponding bulks. Samples could stay for several months in humid open air before being tested in a photodiode cell. The deposition process and the role of the photocathode surface contamination and its influence on the photoelectron performances are presented and discussed.

  6. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  7. High-voltage testing of a 500-kV dc photocathode electron gun.

    PubMed

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Muto, Toshiya; Yamamoto, Masahiro; Honda, Yosuke; Miyajima, Tsukasa; Iijima, Hokuto; Kuriki, Masao; Kuwahara, Makoto; Okumi, Shoji; Nakanishi, Tsutomu

    2010-03-01

    A high-voltage dc photocathode electron gun was successfully conditioned up to a voltage of 550 kV and a long-time holding test for 8 h was demonstrated at an acceleration voltage of 500 kV. The dc photocathode electron gun is designed for future light sources based on energy-recovery linac and consists of a Cockcroft-Walton generator, a segmented cylindrical ceramic insulator, guard-ring electrodes, a support-rod electrode, a vacuum chamber, and a pressurized insulating gas tank. The segmented cylindrical ceramic insulator and the guard-ring electrodes were utilized to prevent any damage to the insulator from electrons emitted by the support-rod electrode.

  8. Silver Iodide-Chitosan Nanotag Induced Biocatalytic Precipitation for Self-Enhanced Ultrasensitive Photocathodic Immunosensor.

    PubMed

    Gong, Lingshan; Dai, Hong; Zhang, Shupei; Lin, Yanyu

    2016-06-01

    In this work, we first exposed that the application of p-type semiconductor, silver iodide-chitosan nanoparticle (SICNP), acted as peroxidase mimetic to catalyze the bioprecipitation reaction for signal-amplification photocathodic immunosensing of human interleukin-6 (IL-6). After immobilization of captured antibody onto a polyethylenimine-functionalized carbon nitride (CN) matrix, SICNPs as photoactive tags and peroxidase mimetics were labeled on secondary antibodies, which were subsequently introduced onto the sensing interface to construct sandwich immunoassay platform through antigen-antibody specific recognition. Due to the matched energy levels between CN and AgI, the photocurrent intensity and photostability of SICNP were dramatically improved with rapid separation and transportation of photogenerated carriers. Moreover, the insoluble product in effective biocatalytic precipitation reaction served as electron acceptor to scavenge the photoexcited electron, leading to great amplification of the photocurrent signal of SICNP again. With the help of multiamplification processes, this photocathodic immunosensor presented a turn-on photoelectrochemical performance for IL-6, which showed wide linear dynamic range from 10(-6) to 10 pg/mL with the ultralow detection limit of 0.737 ag/mL. This work also performed the promising application of SICNP in developing an ultrasensitive, cost-effective, and enzyme-free photocathodic immunosensor for biomarkers. PMID:27180822

  9. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    PubMed Central

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-01-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap. PMID:26997140

  10. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.

    PubMed

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P; Alford, Neil M; Riley, D Jason; Xie, Fang

    2016-01-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap. PMID:26997140

  11. InGaN: characterization and first photo-cathode results

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Han, B.; Wessels, Bruce W.; Siegmund, O. H. W.; Tremsin, A. S.

    2005-08-01

    We have made InGaN:Mg epitaxial layers and report for the first time the QE versus wavelength for a photo-cathode. The motivation for InGaN is to lower the band gap just enough to enable detection of nitrogen fluorescence 337 nm, 357 nm and 391nm for both Earth observing and for energetic cosmic ray studies. Homogeneous InGaN alloys are difficult to prepare as the indium rich alloy tends to coalesce into quantum dots. The transmission, X-ray, and photo-luminescence measurements of the films indicated a significant concentration of Mg acceptors was incorporated into the film and as such could be converted into a viable photo-cathode upon cessiation. We present our photo-luminescence, X-ray, and near-field scanning microscope (NSOM) and QE measurements of films and compare these with measurements of GaN:Mg. The spectral properties of the photo-cathodes will also be presented.

  12. Silver Iodide-Chitosan Nanotag Induced Biocatalytic Precipitation for Self-Enhanced Ultrasensitive Photocathodic Immunosensor.

    PubMed

    Gong, Lingshan; Dai, Hong; Zhang, Shupei; Lin, Yanyu

    2016-06-01

    In this work, we first exposed that the application of p-type semiconductor, silver iodide-chitosan nanoparticle (SICNP), acted as peroxidase mimetic to catalyze the bioprecipitation reaction for signal-amplification photocathodic immunosensing of human interleukin-6 (IL-6). After immobilization of captured antibody onto a polyethylenimine-functionalized carbon nitride (CN) matrix, SICNPs as photoactive tags and peroxidase mimetics were labeled on secondary antibodies, which were subsequently introduced onto the sensing interface to construct sandwich immunoassay platform through antigen-antibody specific recognition. Due to the matched energy levels between CN and AgI, the photocurrent intensity and photostability of SICNP were dramatically improved with rapid separation and transportation of photogenerated carriers. Moreover, the insoluble product in effective biocatalytic precipitation reaction served as electron acceptor to scavenge the photoexcited electron, leading to great amplification of the photocurrent signal of SICNP again. With the help of multiamplification processes, this photocathodic immunosensor presented a turn-on photoelectrochemical performance for IL-6, which showed wide linear dynamic range from 10(-6) to 10 pg/mL with the ultralow detection limit of 0.737 ag/mL. This work also performed the promising application of SICNP in developing an ultrasensitive, cost-effective, and enzyme-free photocathodic immunosensor for biomarkers.

  13. Bi-alkali antimonide photocathode growth: An X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Schubert, Susanne; Wong, Jared; Feng, Jun; Karkare, Siddharth; Padmore, Howard; Ruiz-Osés, Miguel; Smedley, John; Muller, Erik; Ding, Zihao; Gaowei, Mengjia; Attenkofer, Klaus; Liang, Xue; Xie, Junqi; Kühn, Julius

    2016-07-01

    Bi-alkali antimonide photocathodes are one of the best known sources of electrons for high current and/or high bunch charge applications like Energy Recovery Linacs or Free Electron Lasers. Despite their high quantum efficiency in visible light and low intrinsic emittance, the surface roughness of these photocathodes prohibits their use as low emittance cathodes in high accelerating gradient superconducting and normal conducting radio frequency photoguns and limits the minimum possible intrinsic emittance near the threshold. Also, the growth process for these materials is largely based on recipes obtained by trial and error and is very unreliable. In this paper, using X-ray diffraction, we investigate the different structural and chemical changes that take place during the growth process of the bi-alkali antimonide material K2CsSb. Our measurements give us a deeper understanding of the growth process of alkali-antimonide photocathodes allowing us to optimize it with the goal of minimizing the surface roughness to preserve the intrinsic emittance at high electric fields and increasing its reproducibility.

  14. Nonlinear response of the photocathode of an x-ray streak camera to UV light

    SciTech Connect

    Kyrala, G.A.; Oro, D.M.; Studebaker, J.K.; Wood, W.M.; Schappert, G.T.; Watts, S.; Fulton, R.D.

    1994-09-01

    We have found that a potassium-iodide photocathode of an x-ray streak camera responds to UV light at {lambda}=308 nm. The photocathode surface work function, 6.5 eV, is larger than the 4 eV energy of the UV photon, hence the source of the response is interesting. We will present results on the response of a transmission type potassium-iodide photocathode to the UV light from a {lambda}308 nm, subpicosecond XeCl laser and from a {lambda}=326 nm HeCd laser. We will test for the nonlinearity of the yield to measure of the number of photons that are needed to be absorbed before a signal is recorded. We will present data on the effect of the UV irradiance on the yield, as well as on the temporal width of the recorded signal. We will give an explanation of the observation and its effect on the dynamic-range response of the streak-camera. We will show that the response is linear with the incident irradiance, up to an incident irradiance of 10{sup 8} W/cm{sup 2} and we will explain the observation.

  15. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Madsen, Kristian; Andersen, Pål; Bao, Weining; Sun, Zhelin; Wang, Deli

    2012-05-01

    We report a systematic study of Si|ZnO and Si|ZnO| metal photocathodes for effective photoelectrochemical cells and hydrogen generation. Both ZnO nanocrystalline thin films and vertical nanowire arrays were studied. Si|ZnO electrodes showed increased cathodic photocurrents due to improved charge separation by the formation of a p/n junction, and Si|ZnO:Al (n+-ZnO) and Si|ZnO(N2) (thin films prepared in N2/Ar gas) lead to a further increase in cathodic photocurrents. Si|ZnONW (nanowire array) photocathodes dramatically increased the photocurrents and thus photoelectrochemical conversion efficiency due to the enhanced light absorption and enlarged surface area. The ZnO film thickness and ZnO nanowire length were important to the enhancements. A thin metal coating on ZnO showed increased photocurrent due to a catalyzed hydrogen evolution reaction and Ni metal showed comparable catalytic activities to those of Pt and Pd. Moreover, photoelectrochemical instability of Si|ZnO electrodes was minimized by metal co-catalysts. Our results indicate that the metal and ZnO on p-type Si serve as co-catalysts for photoelectrochemical water splitting, which can provide a possible low-cost and scalable method to fabricate high efficiency photocathodes for practical applications in clean solar energy harvesting.

  16. Dilute phosphide nitride materials as photocathodes for electrochemical solar energy conversion

    NASA Astrophysics Data System (ADS)

    Parameshwaran, Vijay; Xu, Xiaoqing; Kang, Yangsen; Harris, James; Wong, H.-S. Philip; Clemens, Bruce

    2013-03-01

    Dilute nitride materials have been used in a variety of III-V photonic devices, but have not been significantly explored in photoelectrochemical applications. This work focuses on using dilute phosphide nitride materials of the form (Al,In)P1-xNx as photocathodes for the generation of hydrogen fuel from solar energy. Heteroepitaxial MOCVD growth of AlPN thin films on GaP yields high quality material with a direct bandgap energy of 2.218 eV. Aligned epitaxial growth of InP and GaP nanowires on InP and Si substrates, respectively, provides a template for designing nanostructured photocathodes over a large area. Electrochemical testing of a AlPN/GaP heterostructure electrode yields up to a sixfold increase in photocurrent enhancement under blue light illumination as compared to a GaP electrode. Additionally, the AlPN/GaP electrodes exhibit no degradation in performance after galvanostatic biasing over time. These results show that (Al,In)P1-xNx is a promising materials system for use in nanoscale photocathode structures.

  17. Spectral response calibrations of x-ray diode photocathodes in the 50-5900 eV photon energy region

    NASA Astrophysics Data System (ADS)

    Bentley, C. D.; Simmons, A. C.

    2001-01-01

    X-ray diode photocathodes are employed in diagnostic instruments on the Helen laser at the Atomic Weapons Establishment (AWE) Aldermaston, UK. The photocathodes are mainly used in the Dante fast diode array and flat response diodes. These diagnostics enable the soft x-ray spectral emissions of laser irradiated targets to be determined. To derive quantitative spectral information, the quantum efficiency of the photocathodes must be known over the range of x-ray energies of interest. The photocathodes were manufactured in 1982, and were initially calibrated at that time. Since then further measurements have been performed in 1988 and 1999. The photocathodes have been exposed to a wide range of conditions during their lives, ranging from use in experiments to storage in a dry nitrogen environment. Reported here are the results of calibrations performed in 1999 at the soft x-ray calibration facility EXCALIBUR at AWE, Aldermaston, and at the National Synchrotron Light Source in Brookhaven NY. An assessment of their current condition and an evaluation of the change in their response over time, and the possible reasons for these changes, are made.

  18. Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies

    SciTech Connect

    Ruiz-Osés, M.; Ben-Zvi, I.; Liang, X.; Muller, E.; Schubert, S.; Attenkofer, K.; Rao, T.; Smedley, J.; Padmore, H.; Vecchione, T.; Wong, J.; Xie, J.

    2014-12-01

    Alkali antimonides have a long history as visible-light-sensitive photocathodes. This work focuses on the process of fabrication of the bi-alkali photocathodes, K{sub 2}CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 Å . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K{sub 2}CsSb upon cesium deposition, is correlated with changes in the quantum efficiency.

  19. Evaluation of the amperex 56 TVP photomultiplier. [characteristics: photoelectron time spread, anode pulse amplitude and photocathode sensing area

    NASA Technical Reports Server (NTRS)

    Lo, C. C.; Leskovar, B.

    1976-01-01

    Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.

  20. Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting

    NASA Astrophysics Data System (ADS)

    Bao, Zhijia; Xu, Xiaoyong; Zhou, Gang; Hu, Jingguo

    2016-07-01

    Developing ingenious heterostructure photoelectrodes in photoelectrochemical (PEC) cells to both harvest more solar photons and steer desired charge separation flow is a prerequisite challenge for PEC water splitting. Herein a hierarchical p-Si/n-ZnO@Au heterostructure was constructed via large-area growth of one-dimensional (1D) ZnO nanorod arrays (NRAs) on p-Si substrate followed by decorating with Au nanoparticles (NPs), which exhibited remarkably improved photocathode activity for PEC water splitting relative to the bare Si and Si/ZnO NRAs photocathodes. In addition to structural superiorities of 1D NRAs, a series of dynamic contributions from complementary band-gap structure, p–n heterojunctions and Au plasmon towards photon harvesting and charge separation were demonstrated to ensure a well-steered collection of photoelectrons at the exposed ZnO nanorods and Au NPs, enabling substantially improved photocathode performance.

  1. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell

    PubMed Central

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Laberty-Robert, Christel; Campidelli, Stéphane; de Bettignies, Rémi; Artero, Vincent; Palacin, Serge; Jousselme, Bruno

    2013-01-01

    An organic solar cell based on a poly-3-hexylthiophene (P3HT): phenyl-C61-butyric acid (PCBM) bulk hetero-junction was directly coupled with molybdenum sulfide resulting in the design of a new type of photocathode for the production of hydrogen. Both the light-harvesting system and the catalyst were deposited by low-cost solution-processed methods, i.e. spin coating and spray coating respectively. Spray-coated MoS3 films are catalytically active in strongly acidic aqueous solutions with the best efficiencies for thicknesses of 40 to 90 nm. The photocathodes display photocurrents higher than reference samples, without catalyst or without coupling with a solar cell. Analysis by gas chromatography confirms the light-induced hydrogen evolution. The addition of titanium dioxide in the MoS3 film enhances electron transport and collection within thick films and therefore the performance of the photocathode. PMID:24404434

  2. Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting

    NASA Astrophysics Data System (ADS)

    Bao, Zhijia; Xu, Xiaoyong; Zhou, Gang; Hu, Jingguo

    2016-07-01

    Developing ingenious heterostructure photoelectrodes in photoelectrochemical (PEC) cells to both harvest more solar photons and steer desired charge separation flow is a prerequisite challenge for PEC water splitting. Herein a hierarchical p-Si/n-ZnO@Au heterostructure was constructed via large-area growth of one-dimensional (1D) ZnO nanorod arrays (NRAs) on p-Si substrate followed by decorating with Au nanoparticles (NPs), which exhibited remarkably improved photocathode activity for PEC water splitting relative to the bare Si and Si/ZnO NRAs photocathodes. In addition to structural superiorities of 1D NRAs, a series of dynamic contributions from complementary band-gap structure, p-n heterojunctions and Au plasmon towards photon harvesting and charge separation were demonstrated to ensure a well-steered collection of photoelectrons at the exposed ZnO nanorods and Au NPs, enabling substantially improved photocathode performance.

  3. A polarized photoluminescence study of strained layer GaAs photocathodes

    SciTech Connect

    Mair, R.A.

    1996-07-01

    Photoluminescence measurements have been made on a set of epitaxially grown strained GaAs photocathode structures. The photocathodes are designed to exhibit a strain-induced enhancement of the electron spin polarization obtainable by optical pumping with circularly polarized radiation of near band gap energy. For the case of non-strained GaAs, the degree of spin polarization is limited to 50% by crystal symmetry. Under an appropriate uniaxial compression or tension, however, the valence band structure near the gap minimum is modified such that a spin polarization of 100% is theoretically possible. A total of nine samples with biaxial compressive strains ranging from zero to {approximately}0.8% are studied. X-ray diffraction analysis, utilizing Bragg reflections, is used to determine the crystal lattice structure of the samples. Luminescence spectra and luminescence circular polarization data are obtained at room temperature, {approx}78 K and {approx}12 K. The degree of luminescence circular polarization is used as a relative measure of the photo-excited electron spin polarization. The room temperature luminescence circular polarization data is compared with the measured electron spin polarization when the samples are used as electron photo-emitters with a negative electron affinity surface preparation. The luminescence data is also analyzed in conjunction with the crystal structure data with the goal of understanding the strain dependent valence band structure, optical pumping characteristics and spin depolarization mechanisms of the photocathode structures. A simple model is used to describe the luminescence data, obtained for the set of samples. Within the assumptions of the model, the deformation potentials a, b and d for GaAs are determined. The measured values are a = -10.16{+-}.21 eV, b = -2.00{+-}.05 eV and d = -4.87{+-}.29 eV. Good agreement with published values of the deformation potentials provides support for the model used to describe the data.

  4. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.; Krishnagopal, S.

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.

  5. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties.

    PubMed

    Lal, Shankar; Pant, K K; Krishnagopal, S

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (e(b)) ~1, resonant frequency f(π) = 2856 MHz, and waveguide-to-cavity coupling coefficient β(π) ~1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (f(f) and f(h)), and of the waveguide-to-full-cell coupling coefficient (β(f)). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL∕SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.

  6. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Morozan, A.; Bourgeteau, T.; Tondelier, D.; Geffroy, B.; Jousselme, B.; Artero, V.

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst.

  7. Electron quantum yields from a barium photocathode illuminated with polarized light

    SciTech Connect

    Conde, M.E.; Chattopadhyay, S.; Kim, K.J.; Kwon, S.I.; Leung, K.N.; Young, A.T.

    1993-05-01

    Photoemission measurements with a barium photo-cathode and a nitrogen laser are reported. The cathode is prepared by evaporating barium onto a copper disc. Radiation from a nitrogen laser (337 nm, 10 ns) is polarized and strikes the cathode surface at variable angles. An electron quantum yield as high as 1 {times} 10{sup {minus}3} is observed. The dependence of the quantum yield on the beam polarization and angle of incidence is investigated. The results indicate that higher quantum yields are achieved when the laser beam is incident at an angle of {approximately}55{degree} and is polarized perpendicular to the plane of incidence.

  8. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors.

    PubMed

    Morozan, A; Bourgeteau, T; Tondelier, D; Geffroy, B; Jousselme, B; Artero, V

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst. PMID:27455142

  9. Photoemission and optical constant measurements of a Cesium Iodide thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Gupta, Nikita; Jammal, Nabeel F. A.; Singh, B. K.

    2015-07-01

    The performance of cesium iodide as a reflective photocathode is presented. The absolute quantum efficiency of a 500 nm thick film of cesium iodide has been measured in the wavelength range 150 nm-200 nm. The optical absorbance has been analyzed in the wavelength range 190 nm-900 nm and the optical band gap energy has been calculated. The dispersion properties were determined from the refractive index using an envelope plot of the transmittance data. The morphological and elemental film composition have been investigated by atomic force microscopy and X-ray photo-electron spectroscopy techniques.

  10. Quantum Efficiency and Topography of Heated and Plasma-Cleaned Copper Photocathode Surfaces

    SciTech Connect

    Palmer, Dennis T.; Kirby, R.E.; King, F.K.; /SLAC

    2005-08-04

    We present measurements of photoemission quantum efficiency (QE) for copper photocathodes heated and cleaned by low energy argon and hydrogen ion plasma. The QE and surface roughness parameters were measured before and after processing and surface chemical composition was tracked in-situ with x-ray photoelectron spectroscopy (XPS). Thermal annealing at 230 C was sufficient to improve the QE by 3-4 orders of magnitude, depending on the initial QE. Exposure to residual gas slowly reduced the QE but it was easily restored by argon ion cleaning for a few minutes. XPS showed that the annealing or ion bombardment removed surface water and hydrocarbons.

  11. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    PubMed

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %). PMID:27128407

  12. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    PubMed

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %).

  13. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    SciTech Connect

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studies was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.

  14. Transmission photocathodes based on stainless steel mesh coated with deuterated diamond like carbon films

    NASA Astrophysics Data System (ADS)

    Huran, J.; Balalykin, N. I.; Feshchenko, A. A.; Kobzev, A. P.; Kleinová, A.; Sasinková, V.; Hrubčín, L.

    2014-07-01

    In this study we report on the dependence of electron emission properties on the transmission photocathodes DC gun based on stainless steel mesh coated with diamond like carbon films prepared at various technological conditions. Diamond like carbon films were deposited on the stainless steel mesh and silicon substrate by plasma enhanced chemical vapor deposition from gas mixtures CH4+D2+Ar, CH4+H2+Ar and reactive magnetron sputtering using a carbon target and gas mixtures Ar+D2, Ar+H2. The concentration of elements in films was determined by Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD) analytical methods simultaneously. Chemical compositions were analyzed by Fourier transform infrared spectroscopy (FT-IR). Raman spectroscopy at visible excitation wavelength was used for the intensity ratio determination of Gaussian fit D-peak and G-peak of Raman spectra. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. The quantum efficiency of a prepared transmission photocathode was increased with increasing intensity ratio of D-peak and G-peak, which was increased by adding deuterium to the gas mixture and using technology reactive magnetron sputtering.

  15. Organic-Inorganic Hybrid Solution-Processed H₂-Evolving Photocathodes.

    PubMed

    Lai, Lai-Hung; Gomulya, Widianta; Berghuis, Matthijs; Protesescu, Loredana; Detz, Remko J; Reek, Joost N H; Kovalenko, Maksym V; Loi, Maria A

    2015-09-01

    Here we report for the first time an H2-evolving photocathode fabricated by a solution-processed organic-inorganic hybrid composed of CdSe and P3HT. The CdSe:P3HT (10:1 (w/w)) hybrid bulk heterojunction treated with 1,2-ethanedithiol (EDT) showed efficient water reduction and hydrogen generation. A photocurrent of -1.24 mA/cm(2) at 0 V versus reversible hydrogen electrode (V(RHE)), EQE of 15%, and an unprecedented Voc of 0.85 V(RHE) under illumination of AM1.5G (100 mW/cm(2)) in mild electrolyte were observed. Time-resolved photoluminescence (TRPL), internal quantum efficiency (IQE), and transient photocurrent measurements were carried out to clarify the carrier dynamics of the hybrids. The exciton lifetime of CdSe was reduced by one order of magnitude in the hybrid blend, which is a sign of the fast charge separation upon illumination. By comparing the current magnitude of the solid-state devices and water-splitting devices made with identical active layers, we found that the interfaces of the water-splitting devices limit the device performance. The electron/hole transport properties investigated by comparing IQE spectra upon front- and back-side illumination evidenced balanced electron/hole transport. The Faradaic efficiency is 80-100% for the hybrid photocathodes with Pt catalysts and ∼70% for the one without Pt catalysts.

  16. Heat load of a P-doped GaAs photocathode in SRF electron gun

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-05-23

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  17. Performance Study of K2CsSb Photocathode Inside a DC High Voltage Gun

    SciTech Connect

    McCarter J. L.; Rao T.; Smedley, J.; Grames, J.; Mammei, R.; Poelker, M.; Suleiman, R.

    2011-09-01

    In the past decade, there has been considerable interest in the generation of tens of mA average current in a photoinjector. Until recently, GaAs:Cs cathodes and K{sub 2}CsSb cathodes have been tested successfully in DC and RF injectors respectively for this application. Our goal is to test the K{sub 2}CsSb photocathode inside a DC gun. Since the multialkali cathode is a compound with constant characteristics over its entire thickness, we anticipate that the lifetime issues seen in GaAs:Cs due to surface damage by ion bombardment would be minimized. Hence successful operation of the K{sub 2}CsSb cathode in a DC gun could lead to a relatively robust electron source capable of delivering ampere level currents. In order to test the performance of a K{sub 2}CsSb cathode in a DC gun, we have designed and built a load lock system that allows the fabrication of the cathode at Brookhaven National Lab (BNL) and its testing at Jefferson Lab (JLab). In this paper, we will present the performance of the K{sub 2}CsSb photocathode in the preparation chamber and in the DC gun.

  18. Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction.

    PubMed

    Schreier, Marcel; Luo, Jingshan; Gao, Peng; Moehl, Thomas; Mayer, Matthew T; Grätzel, Michael

    2016-02-17

    Sunlight-driven CO2 reduction is a promising way to close the anthropogenic carbon cycle. Integrating light harvester and electrocatalyst functions into a single photoelectrode, which converts solar energy and CO2 directly into reduced carbon species, is under extensive investigation. The immobilization of rhenium-containing CO2 reduction catalysts on the surface of a protected Cu2O-based photocathode allows for the design of a photofunctional unit combining the advantages of molecular catalysts with inorganic photoabsorbers. To achieve large current densities, a nanostructured TiO2 scaffold, processed at low temperature, was deposited on the surface of protected Cu2O photocathodes. This led to a 40-fold enhancement of the catalytic photocurrent as compared to planar devices, resulting in the sunlight-driven evolution of CO at large current densities and with high selectivity. Potentiodynamic and spectroelectrochemical measurements point toward a similar mechanism for the catalyst in the bound and unbound form, whereas no significant production of CO was observed from the scaffold in the absence of a molecular catalyst. PMID:26804626

  19. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  20. Comparative study of Al(x)Ga(1-x)As/GaAs photocathodes with different aluminum concentrations by surface photovoltage spectroscopy.

    PubMed

    Jiao, GangCheng; Hu, Canglu; Liu, Jian; Qian, Yunsheng

    2015-10-01

    The influence of aluminum concentration in an Al(x)Ga(1-x)As window layer on the performance of Al(x)Ga(1-x)As/GaAs photocathodes was investigated. Three types of transmission-mode photocathode materials with different aluminum concentrations were designed for the comparative research. The surface photovoltage technique was applied to prepare samples. After the Cs-O activation process, spectral response curves of Al(x)Ga(1-x)As/GaAs photocathodes were obtained. Comparative studies show that a higher aluminum composition in the window layer is beneficial to improve the response of Al(x)Ga(1-x)As/GaAs photocathodes in the shortwave region. The surface photovoltage calculation formula of photocathode materials was put forward and used to obtain key performance parameters of Al(x)Ga(1-x)As/GaAs photocathodes by fitting calculations. Through calculations, the Al(x)Ga(1-x)As/GaAs interface recombination velocity, the minority carrier diffusion length of the window layer, and the emission layer were deduced, and there is a positive correlation between the aluminum composition in the window layer and the Al(x)Ga(1-x)As/GaAs interface recombination velocity, which is negative with the performance of photocathodes.

  1. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    PubMed

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

  2. Soft X-ray and extreme utraviolet quantum detection efficiency of potassium chloride photocathode layers on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, Elaine; Hull, Jeff; Vallerga, John V.; Lampton, Michael

    1988-01-01

    The quantum detection efficiency (QDE) of KCl photocathodes in the 44-1460 A range was investigated. An opaque layer of KCl, about 15,000-A-thick, was evaporated and applied the surface of a microchannel plate (MCP), and the contribution of the photocathode material in the channels (and on the interchannel web) to the QDE was measured using a Z stack MCP detector. It is shown that KCl is a relatively stable photocathode material, with the QDE equal to 30-40 percent in the EUV. At wavelengths above 200 A, the QDE is slightly better than the QDE of CsI, as reported by Siegmund et al. (1986). While the shape of the QDE curve as a function of wavelength is similar to those reported for CsI and KBr, KCl was found to lack the high QDE peak found in the curves of CsI and KBr at about 100 A. A simple QDE model is described, the predictions of which were found to agree with the measurements on the KCl photocathode.

  3. Gated photocathode design for the P510 electron tube used in the National Ignition Facility (NIF) optical streak cameras

    NASA Astrophysics Data System (ADS)

    Datte, P.; James, G.; Celliers, P.; Kalantar, D.; Vergel de Dios, G.

    2015-08-01

    The optical streak cameras currently used at the National Ignition Facility (NIF) implement the P510 electron tube from Photonis1. The existing high voltage electronics provide DC bias voltages to the cathode, slot, and focusing electrodes. The sweep deflection plates are driven by a ramp voltage. This configuration has been very successful for the majority of measurements required at NIF. New experiments require that the photocathode be gated or blanked to reduce the effects of undesirable scattered light competing with low light level experimental data. The required ~2500V gate voltage is applied between the photocathode and the slot electrode in response to an external trigger to allow the electrons to flow. Otherwise the slot electrode is held approximately 100 Volts more negative than the potential of the photocathode, preventing electron flow. This article reviews the implementation and performance of the gating circuit that applies an electronic gate to the photocathode with a nominal 50ns rise and fall time, and a pulse width between 50ns and 2000ns.

  4. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  5. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Hui; Gao, Pin; Wang, Hong-Gang; Li, Biao; Chang, Ben-Kang

    2013-02-01

    GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%). The samples are activated by Cs/O after the same annealing process. X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows: sample 1 has the largest proportion of Ga, N, and O among the three samples, while its C content is the lowest. After activation the quantum efficiency curves show sample 1 has the best photocathode performance. We think the wet chemical cleaning method is a process which will mainly remove C contamination.

  6. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    PubMed Central

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  7. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    PubMed

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-01

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions. PMID:27196435

  8. Low energy Mott polarimetry of electrons from negative electron affinity photocathodes

    SciTech Connect

    Ciccacci, F.; De Rossi, S.; Campbell, D.M.

    1995-08-01

    We present data on the spin polarization {ital P} and quantum yield {ital Y} of electrons photoemitted from negative electron affinity semiconductors, including GaAs(100), GaAsP(100) alloy, and strained GaAs layer epitaxially grown on a GaAsP(100) buffer. Near photothreshold the following values for {ital P}({ital Y}) are, respectively, obtained: 26% (2.5{times}10{sup {minus}2}), 40% (1{times}10{sup {minus}3}), and 60% (1.5{times}10{sup {minus}4}). We describe in detail the apparatus used containing a low energy (10--25 keV) Mott polarimeter. The system, completely fitted in a small volume ({similar_to}10{sup 4} cm{sup 3}) ultrahigh vacuum chamber, is intended as a test facility for characterizing candidate photocathode materials for spin polarized electron sources. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. An Approximate Analytic Expression for the Flux Density of Scintillation Light at the Photocathode

    SciTech Connect

    Braverman, Joshua B; Harrison, Mark J; Ziock, Klaus-Peter

    2012-01-01

    The flux density of light exiting scintillator crystals is an important factor affecting the performance of radiation detectors, and is of particular importance for position sensitive instruments. Recent work by T. Woldemichael developed an analytic expression for the shape of the light spot at the bottom of a single crystal [1]. However, the results are of limited utility because there is generally a light pipe and photomultiplier entrance window between the bottom of the crystal and the photocathode. In this study, we expand Woldemichael s theory to include materials each with different indices of refraction and compare the adjusted light spot shape theory to GEANT 4 simulations [2]. Additionally, light reflection losses from index of refraction changes were also taken into account. We found that the simulations closely agree with the adjusted theory.

  10. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    PubMed

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-01

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  11. Experimental results from a DC photocathode electron gun for an IR FEL

    SciTech Connect

    Kehne, D.; Engwall, D.; Legg, R.; Shinn, M.

    1997-10-01

    A 350 keV DC photocathode gun capable of delivering the high-brightness CW electron beam necessary for Jefferson Lab`s infrared free-electron laser is described. The gun is to be used with a superconducting radiofrequency linac operating at 1.497 GHz and is mode-locked to the 40th subharmonic of the fundamental using a Nd:YLF drive laser. The gun provides 20--25 ps bunches at up to 135 pC/bunch. Experimental measurements of transverse and longitudinal beam properties are presented. Transverse emittance is measured using a slit-wire scanner emittance meter, and energy spread is measured using the slit and a spectrometer magnet. Longitudinal emittance is measured using a combination of sampling aperture, kicker cavity, slit and spectrometer. Measurements for bunch charges of 135 pC are described and compared with simulations.

  12. Optical and structural properties of CsI thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Singh, B. K.

    2015-06-01

    In the present work, the performance of a cesium iodide thin film photocathode is studied in detail. The optical absorbance of cesium iodide films has been analyzed in the spectral range from 190 nm to 900 nm. The optical band gap energy of 500 nm thick cesium iodide film is calculated from the absorbance data using a Tauc plot. The refractive index is estimated from the envelope plot of transmittance data using Swanepoel's method. The absolute quantum efficiency measurement has been carried out in the wavelength range from 150 nm to 200 nm. The crystallographic nature and surface morphology are investigated by X-ray diffraction and transmission electron microscopy techniques. In addition, the elemental composition result obtained by energy dispersive X-ray analysis is also reported in the present work.

  13. Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering.

    PubMed

    Gibson, Elizabeth A; Awais, Muhammad; Dini, Danilo; Dowling, Denis P; Pryce, Mary T; Vos, Johannes G; Boschloo, Gerrit; Hagfeldt, Anders

    2013-02-21

    Photoactive NiO electrodes for cathodic dye-sensitised solar cells (p-DSCs) have been prepared with thicknesses ranging between 0.4 and 3.0 μm by spray-depositing pre-formed NiO nanoparticles on fluorine-doped tin oxide (FTO) coated glass substrates. The larger thicknesses were obtained in sequential sintering steps using a conventional furnace (CS) and a newly developed rapid discharge sintering (RDS) method. The latter procedure is employed for the first time for the preparation of p-DSCs. In particular, RDS represents a scalable procedure that is based on microwave-assisted plasma formation that allows the production in series of mesoporous NiO electrodes with large surface areas for p-type cell photocathodes. RDS possesses the unique feature of transmitting heat from the bulk of the system towards its outer interfaces with controlled confinement of the heating zone. The use of RDS results in a drastic reduction of processing times with respect to other deposition methods that involve heating/calcination steps with associated reduced costs in terms of energy. P1-dye sensitized NiO electrodes obtained via the RDS procedure have been tested in DSC devices and their performances have been analysed and compared with those of cathodic DSCs derived from CS-deposited samples. The largest conversion efficiencies (0.12%) and incident photon-to-current conversion efficiencies, IPCEs (50%), were obtained with sintered NiO electrodes having thicknesses of ~1.5-2.0 μm. In all the devices, the photogenerated holes in NiO live significantly longer (τ(h) ~ 1 s) than have previously been reported for P1-sensitized NiO photocathodes. In addition, P1-sensitised sintered electrodes give rise to relatively high photovoltages (up to 135 mV) when the triiodide-iodide redox couple is used. PMID:23301246

  14. Quantum efficiency of transmission-mode AlxGa1-xAs/GaAs photocathodes with graded-composition and exponential-doping structure

    NASA Astrophysics Data System (ADS)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Xu, Yuan; Liu, Xinxin; Jiao, Gangcheng

    2016-06-01

    A transmission-mode AlxGa1-xAs/GaAs photocathode with the combination of composition-graded AlxGa1-xAs window layer and exponential-doping GaAs emission layer is developed to maximize the cathode performance. The theoretical quantum efficiency model with this complex structure containing twofold built-in electric fields is deduced by solving the one dimensional continuity equations combined with the three-step model. By comparison of spectral characteristics of photocathodes with different composition and doping structures, and through analysis of cathode structure parameters, it is found that the twofold built-in electric fields can effectively improve photoemission performance of AlxGa1-xAs/GaAs photocathode, which is related to Al proportion variation range and thicknesses of window layer and emission layer. The quantum efficiency model would provide theoretical guidance for better design of transmission-mode graded bandgap photocathodes.

  15. p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction.

    PubMed

    Berglund, Sean P; He, Huichao; Chemelewski, William D; Celio, Hugo; Dolocan, Andrei; Mullins, C Buddie

    2014-01-29

    p-Si/W2C photocathodes are synthesized by evaporating tungsten metal in an ambient of ethylene gas to form tungsten semicarbide (W2C) thin films on top of p-type silicon (p-Si) substrates. As deposited the thin films contain crystalline W2C with a bulk W:C atomic ratio of approximately 2:1. The W2C films demonstrate catalytic activity for the hydrogen evolution reaction (HER), and p-Si/W2C photocathodes produce cathodic photocurrent at potentials more positive than 0.0 V vs RHE while bare p-Si photocathodes do not. The W2C films are an effective support for Pt nanoparticles allowing for a considerable reduction in Pt loading. p-Si/W2C/Pt photocathodes with Pt nanoparticles achieve photocurrent onset potentials and limiting photocurrent densities that are comparable to p-Si/Pt photocathodes with Pt loading nine times higher. This makes W2C an earth abundant alternative to pure Pt for use as an electrocatalyst on photocathodes for the HER. PMID:24393053

  16. Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold

    SciTech Connect

    Maxson, Jared Cultrera, Luca; Gulliford, Colwyn; Bazarov, Ivan

    2015-06-08

    We measure the tradeoff between the quantum efficiency and intrinsic emittance from a NaKSb photocathode at three increasing wavelengths (635, 650, and 690 nm) at or below the energy of the bandgap plus the electron affinity, hν≤E{sub g}+E{sub a}. These measurements were performed using a high voltage dc gun for varied photocathode surface fields of 1.4−4.4 MV/m. Measurements of intrinsic emittance are performed using two different methods and were found to agree. At the longest wavelength available, 690 nm, the intrinsic emittance was 0.26 μm/mm-rms with a quantum efficiency of ∼10{sup −4}. The suitability of NaKSb emitting at threshold for various low emittance applications is discussed.

  17. Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold

    NASA Astrophysics Data System (ADS)

    Maxson, Jared; Cultrera, Luca; Gulliford, Colwyn; Bazarov, Ivan

    2015-06-01

    We measure the tradeoff between the quantum efficiency and intrinsic emittance from a NaKSb photocathode at three increasing wavelengths (635, 650, and 690 nm) at or below the energy of the bandgap plus the electron affinity, h ν≤Eg+Ea . These measurements were performed using a high voltage dc gun for varied photocathode surface fields of 1.4 -4.4 MV/m. Measurements of intrinsic emittance are performed using two different methods and were found to agree. At the longest wavelength available, 690 nm, the intrinsic emittance was 0.26 μm/mm-rms with a quantum efficiency of ˜10-4 . The suitability of NaKSb emitting at threshold for various low emittance applications is discussed.

  18. Review and present status of preparation of thin layer lead photocathodes for e- injectors of superconducting RF linacs

    NASA Astrophysics Data System (ADS)

    Lorkiewicz, Jerzy; Nietubyc, Robert; Sekutowicz, Jacek; Barlak, Marek; Kostin, Denis; Kosinska, Anna; Barday, Roman; Xiang, Rong; Mirowski, Robert; Grabowski, Wojciech; Witkowski, Jan

    2015-09-01

    Results are reported on using evaporation and UHV arc lead deposition to create thin-layer superconducting Pb photocathodes on niobium wall of electron gun. Evaporated photocathodes were prepared and tested for the first time in 2014. A complete XFEL-type photo-injector with an evaporated photocathode underwent successful quality check at DESY - an acceptable working point was reached. On the other hand poor adhesion to niobium proved to be the most serious shortcoming of the evaporated Pb layers. UHV arc deposition seems to be much more promising in this context as it allows energetic coating. Filtered arc coating lead to creation of uniform, 2 μm thick lead layers with casual spherical extrusions which enhance locally electric field and leads to high dark current. Conditioning in electric field is needed to reduce the field emission effects from these layers to acceptably low value. Using non-filtered UHV lead deposition enabled fast coating up to a thickness above 10 μm. Pb films obtained in this way require further post-processing in pulsed plasma ion beams in a rod plasma injector. In order to reach a sufficiently planar film surface the pulsed heat flow through a lead layer on niobium was modeled and computed.

  19. A Si Photocathode Protected and Activated with a Ti and Ni Composite Film for Solar Hydrogen Production

    PubMed Central

    Lai, Yi-Hsuan; Park, Hyun S; Zhang, Jenny Z; Matthews, Peter D; Wright, Dominic S; Reisner, Erwin

    2015-01-01

    An efficient, stable and scalable hybrid photoelectrode for visible-light-driven H2 generation in an aqueous pH 9.2 electrolyte solution is reported. The photocathode consists of a p-type Si substrate layered with a Ti and Ni-containing composite film, which acts as both a protection and electrocatalyst layer on the Si substrate. The film is prepared by the simple drop casting of the molecular single-source precursor, [{Ti2(OEt)9(NiCl)}2] (TiNipre), onto the p-Si surface at room temperature, followed by cathodic in situ activation to form the catalytically active TiNi film (TiNicat). The p-Si|TiNicat photocathode exhibits prolonged hydrogen generation with a stable photocurrent of approximately −5 mA cm−2 at 0 V vs. RHE in an aqueous pH 9.2 borate solution for several hours, and serves as a benchmark non-noble photocathode for solar H2 evolution that operates efficiently under neutral–alkaline conditions. PMID:25650832

  20. Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers

    NASA Astrophysics Data System (ADS)

    Li, Changli; Hisatomi, Takashi; Watanabe, Osamu; Nakabayashi, Mamiko; Shibata, Naoya; Domen, Kazunari; Delaunay, Jean-Jacques

    2016-07-01

    Coating n-type buffer and protective layers on Cu2O may be an effective means to improve the photoelectrochemical (PEC) water-splitting performance of Cu2O-based photocathodes. In this letter, the functions of the buffer layer and protective layer on Cu2O are examined. It is found that a Ga2O3 buffer layer can form a buried junction with Cu2O, which inhibits Cu2O self-reduction as well as increases the photovoltage through a small conduction band offset between the two semiconductors. The introduction of a TiO2 thin protective layer not only improves the stability of the photocathode but also enhances the electron transfer from the photocathode surface into the electrolyte, thus resulting in an increase in photocurrent at positive potentials. These results show that the selection of overlayers with appropriate conduction band positions provides an effective strategy for obtaining a high photovoltage and high photocurrent in PEC systems.

  1. Elucidating the sole contribution from electromagnetic near-fields in plasmon-enhanced Cu2O photocathodes

    DOE PAGES

    DuChene, Joseph S.; Williams, Benjamin P.; Johnston-Peck, Aaron C.; Qiu, Jingjing; Gomes, Mathieu; Amilhau, Maxime; Bejleri, Donald; Weng, Jiena; Su, Dong; Huo, Fengwei; et al

    2015-11-05

    Despite many promising reports of plasmon-enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, we construct a plasmonic photocathode comprised of Au@SiO2 (core@shell) nanoparticles embedded within a Cu2O nanowire network to exclusively examine the contribution from one such mechanism: electromagnetic near-field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall light-harvesting efficiency of the device through variation of the SiO2 shell thickness (5—22 nm) to systematically tailor the distance between the plasmonic Au nanoparticles and the Cu2Omore » nanowires. A three-fold increase in device photocurrent is achieved upon integrating the Au@SiO2 nanoparticles into the Cu2O nanowire network, further enabling a ~40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near-field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.« less

  2. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm‑2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  3. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    PubMed Central

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-01-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting. PMID:27748380

  4. Advanced infrared photomultiplier

    NASA Technical Reports Server (NTRS)

    Sonnenberg, H.; Taynal, J. D.

    1972-01-01

    Photocathode for the 8500 angstrom through 9000 angstrom range, improving efficiency by an order of magnitude, is achieved with a gallium arsenide cesium oxide photocathode. Protection of the GaAs surface from contamination during bake-out is another important function.

  5. Development of S-band photocathode RF guns at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Zheng, Lianmin; Du, Yingchao; Zhang, Zhe; Qian, Houjun; Yan, Lixin; Shi, Jiaru; Zhang, Zhen; Zhou, Zheng; Wu, Xiaowei; Su, Xiaolu; Wang, Dong; Tian, Qili; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2016-10-01

    This study aims to explain the development of S-band photocathode RF guns at Tsinghua University, with especial attention on the progress of guns developed after 2011. Two types of RF guns were developed based on the BNL/SLAC/UCLA gun prior 2011. These guns have been operated as electron sources for Tsinghua Thomson scattering X-ray source (TTX), MeV ultrafast electron diffraction, and Shanghai deep ultraviolet FEL test facility. Based on our operation experiences and other gun modifications worldwide, numerous improvements have been proposed, and seven third-type guns have been designed and fabricated since 2011. Cold tests of all third-type guns have been completed, confirming a significantly improved quality factor and mode separation. The first third-type gun has been installed on TTX and operated for four years, demonstrating high gradient, low dark current, stable quantum efficiency, and small emittances. The optimal transverse emittance was εx = 0.56 mm mrad , εy = 0.66 mm mrad for 200 pC with a peak current of 25 A, and εx = 0.78 mm mrad , εy = 0.92 mm mrad for 500 pC with a peak current of 62.5 A under a 110 MV/m gun gradient.

  6. First demonstration of a free-electron laser driven by electrons from a laser irradiated photocathode

    NASA Astrophysics Data System (ADS)

    Curtin, Mark; Bennett, Glenn; Burke, Robert; Benson, Stephen; Madey, J. M. J.

    Results are reported from the first observation of a free-electron laser (FEL) driven by an electron beam from a laser-irradiated photocathode. The Rocketdyne/Stanford FEL achieved sustained oscillations lasting over three hours and driven by photoelectrons accelerated by the Stanford Mark III radio-frequency linac. A LaB6 cathode, irradiated by a tripled Nd:YAG mode-locked drive laser, is the source of the photoelectrons. The drive laser, operating at 95.2 MHz, is phase-locked to the 30th subharmonic of the S-band linac. Peak currents in excess of 125 amps are observed and delivered to the Rocketdyne two-meter undulator, which is operated as a stand-alone oscillator. The electron beam has an energy spread of 0.8 percent (FWHM) at 38.5 MeV and an emittance, at the undulator, comparable to that observed for thermionic operation of the electron source. Small signal gain in excess of 150 percent is observed. Preliminary estimates of the electron beam brightness deliverable to the undulator range from 3.5 to 5.0 x 10 to the 11 amps/sq m.

  7. Synchronization Between the Laser and Electron Beam in a Photocathode RF Gun

    NASA Astrophysics Data System (ADS)

    Sakumi, A.; Iijima, H.; Uesaka, M.; Yoshii, K.; Ueda, T.; Muroya, Y.; Fukasawa, A.; Kumagai, N.; Tomizawa, H.; Urakawa, J.

    The chemical reactions of hot or room temperature and/or critical water in a time-range of picosecond and sub-picoseconds have been carried out by the 18 MeV S-band linac and a Mg photocathode RF gun with the irradiation of third harmonic Ti: Sapphire laser, at Nuclear Engineering Research Laboratory (NERL), the University of Tokyo. Although this short bunch and 100 fs laser light are enough to perform the experiment of radiation chemistry in the time-range of sub-picoseconds, the total time-resolution become worse by the instability of synchronization between laser and radio frequency of linac. We found that the fluctuation of room temperature causes the instability, particularly the cycle of turning on/off of the air-conditioner. When we decrease the fraction of the room temperature within 0.1 degrees, the timing drift in an hour reaches 600 fs, closed to the timing jitter of 340 fs than previous results.

  8. Femtosecond electron beam generation by S-band laser photocathode RF gun and linac

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Kinoshita, K.; Watanabe, T.; Ueda, T.; Yoshii, K.; Harano, H.; Sugahara, J.; Nakajima, K.; Ogata, A.; Sakai, F.; Dewa, H.; Kando, M.; Kotaki, H.; Kondo, S.

    1999-07-01

    A laser photocathode RF electron gun was installed in the second linac of the S-hand twin linac system of Nuclear Engineering Research Laboratory (NERL) of University of Tokyo in August in 1997. Since then, the behavior of the new gun has been tested and the characteristic parameters have been evaluated. At the exit of the gun, the energy is 3.5 MeV, the charge per bunch 1˜2 nC, the pulse width is 10 ps(FWHM), respectively, for 6 MW RF power supply from a klystron. The electron bunch is accelerated up to 17 MeV and horizontal and vertical normalized emittances of 3 π mm.mrad are achieved. Then, the bunch is compressed to be 440 fs(FWHM) with 0.35 nC by the chicane-type magnetic pulse compressor. The linac with the gun and a new femto- and picosecond laser system is planned to be installed for femtosecond pulseradiolysis for radiation chemistry in 1999.

  9. Synchronization Between the Laser and Electron Beam in a Photocathode RF Gun

    NASA Astrophysics Data System (ADS)

    Sakumi, A.; Iijima, H.; Uesaka, M.; Yoshii, K.; Ueda, T.; Muroya, Y.; Fukasawa, A.; Kumagai, N.; Tomizawa, H.; Urakawa, J.

    2007-09-01

    The chemical reactions of hot or room temperature and/or critical water in a time-range of picosecond and sub-picoseconds have been carried out by the 18 MeV S-band linac and a Mg photocathode RF gun with the irradiation of third harmonic Ti: Sapphire laser, at Nuclear Engineering Research Laboratory (NERL), the University of Tokyo. Although this short bunch and 100 fs laser light are enough to perform the experiment of radiation chemistry in the time-range of sub-picoseconds, the total time-resolution become worse by the instability of synchronization between laser and radio frequency of linac. We found that the fluctuation of room temperature causes the instability, particularly the cycle of turning on/off of the air-conditioner. When we decrease the fraction of the room temperature within 0.1 degrees, the timing drift in an hour reaches 600 fs, closed to the timing jitter of 340fs than previous results.

  10. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources

    SciTech Connect

    Polyakov, Aleksandr; Senft, Christoph; Thompson, K. F.; Feng, J.; Cabrini, S.; Schuck, P. J.; Padmore, Howard; Peppernick, Samuel J.; Hess, Wayne P.

    2013-02-11

    High brightness electron sources are at the heart of anew generation of x-ray sources based on the Free ElectronLaser (FEL) as well as in Energy Recovery Linac (ERL) and Inverse Compton Scattering (ICS) sources.The source of electrons consists of a photoinjector, comprised of a laser-driven photocathode in a high gradient electric field produced by an rf cavity. The function of the rf cavity is to provide a field sufficient for acceleration of electrons to relativistic velocity over a small distance, thus minimizing effects of the space-charge. Even so, the dense electron beam required for high brightness suffers from a space charge field that chirps and reshapes the electron pulse increasing beam emittance and thus reducing the overall brightness. This emittance growth can be avoided if the initial distribution of electrons is pancake shaped, with a semicircular transverse intensity profile. In this case, the electron distribution develops under its space charge field from a pancake into a uniformly filled ellipsoidal beam. This condition, referred to as the blowout regime, requires ultrashort pulses less than 100 fs long and has been successfully demonstrated recently in a high gradient photoinjector.

  11. A cesium bromide photocathode excited by 405 nm radiation

    SciTech Connect

    Maldonado, J. R.; Cheng, Y. T.; Pease, Fabian W.; Hesselink, L.; Pianetta, P.

    2014-07-14

    In several applications, such as electron beam lithography and X-ray differential phase contrast imaging, there is a need for a free electron source with a current density at least 10 A/cm{sup 2} yet can be shaped with a resolution down to 20 nm and pulsed. Additional requirements are that the source must operate in a practical demountable vacuum (>1e-9 Torr) and be reasonably compact. In prior work, a photocathode comprising a film of CsBr on metal film on a sapphire substrate met the requirements except it was bulky because it required a beam (>10 W/cm{sup 2}) of 257 nm radiation. Here, we describe an approach using a 405 nm laser which is far less bulky. The 405 nm laser, however, is not energetic enough to create color centers in CsBr films. The key to our approach is to bombard the CsBr film with a flood beam of about 1 keV electrons prior to operation. Photoelectron efficiencies in the range of 100–1000 nA/mW were demonstrated with lifetimes exceeding 50 h between electron bombardments. We suspect that the electron bombardment creates intraband color centers whence electrons can be excited by the 405 nm photons into the conduction band and thence into the vacuum.

  12. Revealing the semiconductor–catalyst interface in buried platinum black silicon photocathodes

    SciTech Connect

    Aguiar, Jeffery A.; Anderson, Nicholas C.; Neale, Nathan R.

    2016-01-01

    Nanoporous 'black' silicon semiconductors interfaced with buried platinum nanoparticle catalysts have exhibited stable activity for photoelectrochemical hydrogen evolution even after months of exposure to ambient conditions. The mechanism behind this stability has not been explained in detail, but is thought to involve a Pt/Si interface free from SiOx layer that would adversely affect interfacial charge transfer kinetics. In this paper, we resolve the chemical composition and structure of buried Pt/Si interfaces in black silicon photocathodes from a micron to sub-nanometer level using aberration corrected analytical scanning transmission electron microscopy. Through a controlled electrodeposition of copper on samples aged for one month in ambient conditions, we demonstrate that the main active catalytic sites are the buried Pt nanoparticles located below the 400-800 nm thick nanoporous SiOx layer. Though hydrogen production performance degrades over 100 h under photoelectrochemical operating conditions, this burying strategy preserves an atomically clean catalyst/Si interface free of oxide or other phases under air exposure and provides an example of a potential method for stabilizing silicon photoelectrodes from oxidative degradation in photoelectrochemical applications.

  13. Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting.

    PubMed

    Luo, Jingshan; Steier, Ludmilla; Son, Min-Kyu; Schreier, Marcel; Mayer, Matthew T; Grätzel, Michael

    2016-03-01

    Due to its abundance, scalability, and nontoxicity, Cu2O has attracted extensive attention toward solar energy conversion, and it is the best performing metal oxide material. Until now, the high efficiency devices are all planar in structure, and their photocurrent densities still fall well below the theoretical value of 14.5 mA cm(-2) due to the incompatible light absorption and charge carrier diffusion lengths. Nanowire structures have been considered as a rational and promising approach to solve this issue, but due to various challenges, performance improvements through the use of nanowires have rarely been achieved. In this work, we develop a new synthetic method to grow Cu2O nanowire arrays on conductive fluorine-doped tin oxide substrates with well-controlled phase and excellent electronic and photonic properties. Also, we introduce an innovative blocking layer strategy to enable high performance. Further, through material engineering by combining a conformal nanoscale p-n junction, durable protective overlayer, and uniform catalyst decoration, we have successfully fabricated Cu2O nanowire array photocathodes for hydrogen generation from solar water splitting delivering unprecedentedly high photocurrent densities of 10 mA cm(-2) and stable operation beyond 50 h, establishing a new benchmark for metal oxide based photoelectrodes. PMID:26866762

  14. Results From Cs Activated GaN Photocathode Development for MCP Detector Systems at GSFC

    NASA Technical Reports Server (NTRS)

    Norton, Tim; Woodgate, Bruce; Stock, Joe; Hilton, George; Ulmer, Mel; Aslam, Shahid; Vispute, R. D.

    2003-01-01

    We describe the development of high quantum efficiency W photocathodes for use in large area two dimensional microchannel plate based detector arrays to enable new W space astronomy missions. Future W missions will require improvements in detector sensitivity, which has the most leverage for cost-effective improvements in overall telescope/instrument sensitivity. We use new materials such as p-doped GaN, AIGaN, ZnMgO, Sic and diamond. We have currently obtained QE values > 40 % at 185 nm with Cesiated GaN, and hope to demonstrate higher values in the future. By using controlled internal fields and nano-structuring of the surfaces, we plan to provide field emission assistance for photoelectrons while maintaining their energy distinction from dark noise electrons. We will transfer these methods from GaN to ZnMgO, a new family of wide band-gap materials more compatible with microchannel plates. We also are exploring technical parameters such as doping profiles, internal and external field strengths, angle of incidence, field emission assistance, surface preparation, etc.

  15. Measuring the Effect of a Transmission Photocathode on Microchannel Plate Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Blankenship, Britney; Marion, Donna; Lowenstern, Mariano; Gamboa, Eliseo; Harding, Eric; Kuranz, Carolyn; Drake, R. P.

    2011-10-01

    Microchannel plates (MCPs) are a vital component in imaging for a variety of high-energy-density experiments. To ensure the highest quality images, particularly in low-photon environments, it is desirable to maximize the quantum efficiency (QE) of the MCP. When secondary electrons are released from the MCP as a result of photons colliding with the inter-pore regions, these electrons do not contribute to the signal. One way to increase the QE is by redirecting these secondary electrons back toward the MCP. By applying a voltage to a 50nm titanium transmission photocathode (TPC) in front of the MCP, theoretically we will create an electric field that will accelerate the electrons back toward the MCP. This is a continuation of similar work done with a nickel mesh grid in place of a TPC. The results presented are the effect of the Ti TPC on the QE of the microchannel plate. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  16. Tailoring the emissive properties of photocathodes through materials engineering: Ultra-thin multilayers

    NASA Astrophysics Data System (ADS)

    Velázquez, Daniel; Seibert, Rachel; Ganegoda, Hasitha; Olive, Daniel; Rice, Amy; Logan, Kevin; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff

    2016-01-01

    We report on an experimental verification that emission properties of photocathodes can be manipulated through the engineering of the surface electronic structure. Ultrathin multilayered MgO/Ag(0 0 1)/MgO films were grown by pulsed laser deposition, tuning the thickness n of the flanking MgO layers to 0, 2, 3, and 4 monolayers. We observed an increase in quantum efficiency and simultaneous decrease in work function with layer thickness. The scale and trend direction of measurements are in good but not excellent agreement with theory. Angle resolved photoemission data for the multilayered sample n = 3 showed that the emission profile has a metallic-like momentum dispersion. Deviations from theoretical predictions [K. Németh et al., PRL 104, 046801 (2010)] are attributed to imperfections of real surfaces in contrast with the ideal surfaces of the calculation. Photoemissive properties of cathodes are critical for electron beam applications such as photoinjectors for Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). An ideal photoemitter has a high quantum efficiency, low work function, low intrinsic emittance and long lifetime. It has been demonstrated here that emission properties may be systematically tailored by control of layer thickness in ultrathin multilayered structures. The reproducibility of the emission parameters under specific growth conditions is excellent, even though the interfaces themselves have varying degrees of roughness.

  17. Experimental Studies with Spatial Gaussian-Cut Laser for the LCLS Photocathode Gun

    SciTech Connect

    Zhou, F.; Brachmann, A.; Emma, P.; Gilevich, S.; Huang, Z.; /SLAC

    2011-12-13

    To simplify the LCLS operation and further enhance the injector performances, we are evaluating the various parameters including the photocathode drive laser system. Extensive simulations show that both the projected and time-sliced emittances with spatial Gaussian profiles having reasonable tail-cut are better than those with uniform one. The simulated results are also supported by theoretical analyses. In the LCLS, the spatial uniform or Gaussian-cut laser profiles are conveniently obtained by adjusting the optics of the telescope upstream of an iris, used to define laser size on the cathode. Preliminary beam studies at the LCLS injector show that both the projected and time-sliced emittances with spatial Gaussian-cut laser are almost as good as, although not better than, those with uniform one. In addition, the laser transmission through the iris with the Gaussian-cut profile is twice with uniform one, which can significantly ease LCLS copper cathode/laser operations and thus improve the LCLS operation efficiency. More beam studies are planned to measure FEL performances with the Gaussian-cut in comparison with the uniform one. All simulations and measurements are presented in the paper.

  18. Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting.

    PubMed

    Luo, Jingshan; Steier, Ludmilla; Son, Min-Kyu; Schreier, Marcel; Mayer, Matthew T; Grätzel, Michael

    2016-03-01

    Due to its abundance, scalability, and nontoxicity, Cu2O has attracted extensive attention toward solar energy conversion, and it is the best performing metal oxide material. Until now, the high efficiency devices are all planar in structure, and their photocurrent densities still fall well below the theoretical value of 14.5 mA cm(-2) due to the incompatible light absorption and charge carrier diffusion lengths. Nanowire structures have been considered as a rational and promising approach to solve this issue, but due to various challenges, performance improvements through the use of nanowires have rarely been achieved. In this work, we develop a new synthetic method to grow Cu2O nanowire arrays on conductive fluorine-doped tin oxide substrates with well-controlled phase and excellent electronic and photonic properties. Also, we introduce an innovative blocking layer strategy to enable high performance. Further, through material engineering by combining a conformal nanoscale p-n junction, durable protective overlayer, and uniform catalyst decoration, we have successfully fabricated Cu2O nanowire array photocathodes for hydrogen generation from solar water splitting delivering unprecedentedly high photocurrent densities of 10 mA cm(-2) and stable operation beyond 50 h, establishing a new benchmark for metal oxide based photoelectrodes.

  19. A low-voltage retarding-field Mott polarimeter for photocathode characterization

    NASA Astrophysics Data System (ADS)

    McCarter, J. L.; Stutzman, M. L.; Trantham, K. W.; Anderson, T. G.; Cook, A. M.; Gay, T. J.

    2010-06-01

    Nuclear physics experiments at Thomas Jefferson National Accelerator Facility's CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the detected count rate divided by the incident particle current, is 5.4(2)×10 -4, yielding a figure-of-merit, or analyzing power squared times efficiency, of 1.0(1)×10 -5. The operating parameters of this new polarimeter design are compared to previously published data for other compact Mott polarimeters of the retarding-field type.

  20. A low-voltage retarding-field Mott polarimeter for photocathode characterization

    SciTech Connect

    McCarter, J. L.; Stutzman, M. L.; Trantham, K. W.; Anderson, T. G.; Cook, A. M.; Gay, T. J.

    2010-02-26

    Nuclear physics experiments at Thomas Jefferson National Accelerator Facility's CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the detected count rate divided by the incident particle current, is 5.4(2)×10-4, yielding a figure-of-merit, or analyzing power squared times efficiency, of 1.0(1)×10-5. The operating parameters of this new polarimeter design are compared to previously published data for other compact Mott polarimeters of the retarding-field type.

  1. Simulation on a photocathode-based microtron using a 3D PIC code

    NASA Astrophysics Data System (ADS)

    Park, Sunjeong; Jeong, Young Uk; Park, Seong Hee; Jang, Kyu-Ha; Vinokurov, Nikolay A.; Kim, Eun-San

    2015-02-01

    The Korea Atomic Energy Research Institute (KAERI) has used a microtron accelerator based on a thermionic cathode for operating a compact terahertz (THz) FEL, where the electrons are emitted and accelerated automatically during the radio-frequency (RF) macro-pulse over threshold power for their emission. Usually a thermionic cathode is embedded inside the microtron cavity for electron-beam emission, and at the same time acceleration is due to the input RF source. In this case, the accelerator scheme is simple, but just a fraction of the emitted electrons are accelerated, and the electron bunch length is uncontrollable due to the RF phase condition for acceleration. In this paper, a photocathode-based microtron which is able to produce high peak (˜100 A) and ultrashort (˜1 ps) electron bunch is studied to adapt it for an electron injector of a THz generator. Especially, we analyzed the electron beam dynamics along the accelerating trajectory with a 3D PIC-code to find the optimized RF phase and laser input time.

  2. Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting

    NASA Astrophysics Data System (ADS)

    Zhou, Jungui; Dai, Song; Dong, Wen; Su, Xiaodong; Fang, Liang; Zheng, Fengang; Wang, Xiongdong; Shen, Mingrong

    2016-05-01

    MoS2 has been studied as an efficient and cheap hydrogen evolution reaction (HER) catalyst; however, its effective integration with a photocathode remains a challenge. Here, crystalline MoS2 catalyst was deposited on top of a ˜2 nm Al2O3 protected n+p-Si photocathode using a simple photoreduction method following a post-annealing. The amount of MoS2 is optimized for HER of the photocathode, balanced between its catalytic effect and light absorption. High efficiency with 0.35 V onset potential vs. reversible hydrogen electrode and 34.5 mA/cm2 saturated photocurrent and high stability after 2 min ultrasonication or under 40 h continuous HER were observed. Such properties are much superior to the corresponding photocathodes coated by the traditional electrodeposited amorphous MoS2. Furthermore, the MoS2 layer is also an effective support for Pt nanoparticles with considerable reduction in the Pt amount while keeping the photoelectrochemical reactivity. This study indicates that the cheap-made MoS2 can be an efficient and stable HER catalyst for the Si photocathode.

  3. Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy.

    PubMed

    Díez-García, María Isabel; Gómez, Roberto

    2016-08-24

    Artificial photosynthesis constitutes one of the most promising alternatives for harvesting solar energy in the form of fuels, such as hydrogen. Among the different devices that could be developed to achieve efficient water photosplitting, tandem photoelectrochemical cells show more flexibility and offer high theoretical conversion efficiency. The development of these cells depends on finding efficient and stable photoanodes and, particularly, photocathodes, which requires having reliable information on the mechanism of charge transfer at the semiconductor/solution interface. In this context, this work deals with the preparation of thin film calcium ferrite electrodes and their photoelectrochemical characterization for hydrogen generation by means of electrochemical impedance spectroscopy (EIS). A fully theoretical model that includes elementary steps for electron transfer to the electrolyte and surface recombination with photogenerated holes is presented. The model also takes into account the complexity of the semiconductor/solution interface by including the capacitances of the space charge region, the surface states and the Helmholtz layer (as a constant phase element). After illustrating the predicted Nyquist plots in a general manner, the experimental results for calcium ferrite electrodes at different applied potentials and under different illumination intensities are fitted to the model. The excellent agreement between the model and the experimental results is illustrated by the simultaneous fit of both Nyquist and Bode plots. The concordance between both theory and experiments allows us to conclude that a direct transfer of electrons from the conduction band to water prevails for hydrogen photogeneration on calcium ferrite electrodes and that most of the carrier recombination occurs in the material bulk. In more general vein, this study illustrates how the use of EIS may provide important clues about the behavior of photoelectrodes and the main strategies

  4. Perovskite BiFeO3 thin film photocathode performance with visible light activity

    NASA Astrophysics Data System (ADS)

    Yilmaz, P.; Yeo, D.; Chang, H.; Loh, L.; Dunn, S.

    2016-08-01

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ˜1.15 V (versus NHE). The photocathode produces a density of -0.004 mA cm-2 at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h-1 of O2 was produced at an external bias of -0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to -0.07 mA cm-2 at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h-1 for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV-vis spectroscopy, Mott-Schottky plots and j-v curve analysis.

  5. Design of the fundamental power coupler and photocathode inserts for the 112MHz superconducting electron gun

    SciTech Connect

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

    2011-07-25

    A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be the testing cavity for various photocathodes. In this paper, we present the design of the cathode stalks and a Fundamental Power Coupler (FPC) designated to the future experiments. Two types of cathode stalks are discussed. Special shape of the stalk is applied in order to minimize the RF power loss. The location of cathode plane is also optimized to enable the extraction of low emittance beam. The coaxial waveguide structure FPC has the properties of tunable coupling factor and small interference to the electron beam output. The optimization of the coupling factor and the location of the FPC are discussed in detail. Based on the transmission line theory, we designed a half wavelength cathode stalk which significantly brings down the voltage drop between the cavity and the stalk from more than 5.6 kV to 0.1 kV. The transverse field distribution on cathode has been optimized by carefully choosing the position of cathode stalk inside the cavity. Moreover, in order to decrease the RF power loss, a variable diameter design of cathode stalk has been applied. Compared to the uniform shape of stalk, this design gives us much smaller power losses in important locations. Besides that, we also proposed a fundamental power coupler based on the designed beam parameters for the future proof-of-principle CEC experiment. This FPC should give a strong enough coupling which has the Q external range from 1.5e7 to 2.6e8.

  6. Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy.

    PubMed

    Díez-García, María Isabel; Gómez, Roberto

    2016-08-24

    Artificial photosynthesis constitutes one of the most promising alternatives for harvesting solar energy in the form of fuels, such as hydrogen. Among the different devices that could be developed to achieve efficient water photosplitting, tandem photoelectrochemical cells show more flexibility and offer high theoretical conversion efficiency. The development of these cells depends on finding efficient and stable photoanodes and, particularly, photocathodes, which requires having reliable information on the mechanism of charge transfer at the semiconductor/solution interface. In this context, this work deals with the preparation of thin film calcium ferrite electrodes and their photoelectrochemical characterization for hydrogen generation by means of electrochemical impedance spectroscopy (EIS). A fully theoretical model that includes elementary steps for electron transfer to the electrolyte and surface recombination with photogenerated holes is presented. The model also takes into account the complexity of the semiconductor/solution interface by including the capacitances of the space charge region, the surface states and the Helmholtz layer (as a constant phase element). After illustrating the predicted Nyquist plots in a general manner, the experimental results for calcium ferrite electrodes at different applied potentials and under different illumination intensities are fitted to the model. The excellent agreement between the model and the experimental results is illustrated by the simultaneous fit of both Nyquist and Bode plots. The concordance between both theory and experiments allows us to conclude that a direct transfer of electrons from the conduction band to water prevails for hydrogen photogeneration on calcium ferrite electrodes and that most of the carrier recombination occurs in the material bulk. In more general vein, this study illustrates how the use of EIS may provide important clues about the behavior of photoelectrodes and the main strategies

  7. Perovskite BiFeO3 thin film photocathode performance with visible light activity

    NASA Astrophysics Data System (ADS)

    Yilmaz, P.; Yeo, D.; Chang, H.; Loh, L.; Dunn, S.

    2016-08-01

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ∼1.15 V (versus NHE). The photocathode produces a density of ‑0.004 mA cm‑2 at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h‑1 of O2 was produced at an external bias of ‑0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to ‑0.07 mA cm‑2 at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h‑1 for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV–vis spectroscopy, Mott–Schottky plots and j–v curve analysis.

  8. Perovskite BiFeO3 thin film photocathode performance with visible light activity.

    PubMed

    Yilmaz, P; Yeo, D; Chang, H; Loh, L; Dunn, S

    2016-08-26

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ∼1.15 V (versus NHE). The photocathode produces a density of -0.004 mA cm(-2) at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h(-1) of O2 was produced at an external bias of -0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to -0.07 mA cm(-2) at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h(-1) for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV-vis spectroscopy, Mott-Schottky plots and j-v curve analysis. PMID:27420393

  9. Single pass, THz spectral range free-electron laser driven by a photocathode hybrid rf linear accelerator

    NASA Astrophysics Data System (ADS)

    Lurie, Yu.; Friedman, A.; Pinhasi, Y.

    2015-07-01

    A single pass, THz spectral range free-electron laser (FEL) driven by a photocathode hybrid rf-LINAC is considered, taking the Israeli THz FEL project developed in Ariel University as an example. Two possible configurations of such FEL are discussed: an enhanced coherent spontaneous emission FEL, and a prebunched FEL utilizing periodically modulated short electron beam pulses. A general study of the FEL configurations is carried out in the framework of a space-frequency approach, realized in WB3D numerical code. The configurations are studied and compared based on preliminary parameters of a drive hybrid rf-LINAC gun under development in University of California, Los Angeles.

  10. High Power Beam Test and Measurement of Emittance Evolution of a 1.6-Cell Photocathode RF Gun at Pohang Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ho; Park, Sung-Ju; Kim, Changbum; Parc, Yong-Woon; Hong, Ju-Ho; Huang, Jung-Yun; Xiang, Dao; Wang, Xijie; Ko, In Soo

    2007-04-01

    A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femtosecond electron diffraction (FED), femtosecond far infrared radiation (fs-FIR) facility, and X-ray free electron laser (XFEL) facilities at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic components and auxiliary systems. We report here the measurement of the basic beam parameters which confirm a successful fabrication of the photocathode RF gun system. The emittance evolution is measured by an emittance meter and compared with the PARMELA simulation, which shows a good agreement.

  11. Observation and Measurement of Temperature Rise and Distribution on GaAs Photo-cathode Wafer with a 532nm Drive Laser and a Thermal Imaging Camera

    SciTech Connect

    Shukui Zhang, Stephen Benson, Carlos Hernandez-Garcia

    2011-03-01

    Significant temperature rise and gradient are observed from a GaAs photo-cathode wafer irradiated at various power levels with over 20W laser power at 532nm wavelength. The laser power absorption and dissipated thermal distribution are measured. The result shows a clear indication that proper removal of laser induced heat from the cathode needs to be considered seriously when designing a high average current or low quantum efficiency photo-cathode electron gun. The measurement method presented here provides a useful way to obtain information about both temperature and thermal profiles, it also applies to cathode heating study with other heating devices such as electrical heaters.

  12. Fe(III) doped and grafted PbTiO{sub 3} film photocathode with enhanced photoactivity for hydrogen production

    SciTech Connect

    Hu, Yuxiang; Dong, Wen; Zheng, Fengang; Fang, Liang; Shen, Mingrong

    2014-08-25

    The photoelectrochemical activity of the PbTiO{sub 3} film photocathode deposited on indium tin oxide-coated quartz substrate was significantly improved through modifying the film surface by both the Fe(III) doping and grafting. Doping the PbTiO{sub 3} with Fe(III) ions narrows its band gap thus increases the visible light utilization, while the surface-grafted Fe(III) ions on the doped PbTiO{sub 3} surface are helpful to improve the charge transfer on the photocathode/electrolyte interface. Consequently, the photocurrent was increased from 38 μA/cm{sup 2} to 220 μA/cm{sup 2} under the irradiation of 100 mW/cm{sup 2} Xe lamp by using 0.1M Na{sub 2}SO{sub 4} as an electrolyte and zero-potential versus saturated calomel as a reference electrode. The corresponding increase in open circuit voltage was 0.95–1.11 V.

  13. Engineering of Sub-Nanometer SiOx Thickness in Si Photocathodes for Optimized Open Circuit Potential.

    PubMed

    Das, Chittaranjan; Kot, Malgorzata; Henkel, Karsten; Schmeisser, Dieter

    2016-09-01

    Silicon is one of the most promising materials to be used for tandem-cell water-splitting devices. However, the electrochemical instability of bare Si makes it difficult to be used for stable devices. Besides that, the photovoltage loss in Si, caused by several factors (e.g., metal oxide protection layer and/or SiO2 /Si or catalyst/Si interface), limits its use in these devices. In this work, we present that an optimized open circuit potential (OCP) of Si can be obtained by controlling the SiOx thickness in sub-nanometer range. It can be done by means of a simple and cost-effective way using the combination of a wet chemical etching and the low temperature atomic layer deposition (ALD) of TiO2 . We have found that a certain thickness of the native SiOx is necessary to prevent further oxidation of the Si photocathode during the ALD growth of TiO2 . Moreover, covering the Si photocathode with an ALD TiO2 layer enhances its stability. PMID:27510311

  14. Engineering of Sub-Nanometer SiOx Thickness in Si Photocathodes for Optimized Open Circuit Potential.

    PubMed

    Das, Chittaranjan; Kot, Malgorzata; Henkel, Karsten; Schmeisser, Dieter

    2016-09-01

    Silicon is one of the most promising materials to be used for tandem-cell water-splitting devices. However, the electrochemical instability of bare Si makes it difficult to be used for stable devices. Besides that, the photovoltage loss in Si, caused by several factors (e.g., metal oxide protection layer and/or SiO2 /Si or catalyst/Si interface), limits its use in these devices. In this work, we present that an optimized open circuit potential (OCP) of Si can be obtained by controlling the SiOx thickness in sub-nanometer range. It can be done by means of a simple and cost-effective way using the combination of a wet chemical etching and the low temperature atomic layer deposition (ALD) of TiO2 . We have found that a certain thickness of the native SiOx is necessary to prevent further oxidation of the Si photocathode during the ALD growth of TiO2 . Moreover, covering the Si photocathode with an ALD TiO2 layer enhances its stability.

  15. Influence of the substrate surface texture on the photon-sensitivity stability of CsI thin film photocathodes

    NASA Astrophysics Data System (ADS)

    Nitti, M. A.; Tinti, A.; Valentini, A.; Nappi, E.; Acquafredda, P.; Fanizza, E.; Ingrosso, C.; Pistillo, B. R.; Sardella, E.

    2009-10-01

    A study on the influence of the substrate morphology on the photoemission properties of caesium iodide (CsI) thin film photocathodes, in the range 150-200 nm, has been performed. Various types of conductive substrates, patterned by colloidal lithography, have been compared to the standard printed circuit board (PCB), used for the ALICE experiment at CERN [M.A. Nitti, et al., Nucl. Instr. and Meth. A 523 (2004) 323.]. A correlation between the substrate surface texture and the photoemission stability of the films has been demonstrated. The combination of colloidal lithography and plasma etching, or physical evaporation, allows to create on substrates arrays of nanostructures whose shape and pitch can be controlled by changing some parameters during the patterning process. In order to be comparable with the CsI photoelectron escape length and to preserve the substrate morphology in the film, a layer of 20 nm has been deposited on all the samples. Scanning electron microscopy (SEM) investigations of the colloidal lithography patterned (CLP) substrates have been performed. Atomic force microscopy (AFM) topographic images of the CsI thin film evaporated on PCB and CLP substrates have also been acquired and compared, showing a clear difference in the surface texture. An ageing test, consisting of an air exposure with a relative humidity of about 45% for 24 h, resulted in a higher quantum efficiency stability of textured CsI thin film photocathodes evaporated on nanostructured substrates with respect to those grown on standard PCB ones.

  16. Efficient and Stable MoS2 /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water.

    PubMed

    Dong, Yuming; Chen, Yanmei; Jiang, Pingping; Wang, Guangli; Wu, Xiuming; Wu, Ruixian; Zhang, Chi

    2015-08-01

    A novel CdSe/NiO heteroarchitecture was designed, prepared, and used as a photocathode for hydrogen generation from water. The composite films were structurally, optically, and photoelectrochemically characterized. The deposition of CdSe on the NiO film enhanced light harvesting in the visible-light region and photoelectrochemical properties. Moreover, the CdSe/NiO photoelectrode showed superior stability both in nitrogen-saturated and air-saturated neutral environments. The CdSe/NiO photoelectrode after MoS2 modification retained the stability of the CdSe/NiO electrode and exhibited higher photocatalytic and photoelectrochemical performances than the unmodified CdSe/NiO electrode. In pH 6 buffer solution, an average hydrogen-evolution rate of 0.52 μmol h(-1)  cm(-2) at -0.131 V (versus reversible hydrogen electrode, RHE) was achieved on a MoS2 /CdSe/NiO photocathode, with almost 100 % faradaic efficiency.

  17. Visible-light responsive photocatalytic fuel cell based on WO(3)/W photoanode and Cu(2)O/Cu photocathode for simultaneous wastewater treatment and electricity generation.

    PubMed

    Chen, Quanpeng; Li, Jinhua; Li, Xuejin; Huang, Ke; Zhou, Baoxue; Cai, Weimin; Shangguan, Wenfeng

    2012-10-16

    A visible-light driven photocatalytic fuel cell (PFC) system comprised of WO(3)/W photoanode and Cu(2)O/Cu photocathode was established for organic compounds degradation with simultaneous electricity generation. The central idea for its operation is the mismatched Fermi levels between the two photoelectrodes. Under light illumination, the Fermi level of WO(3)/W photoanode is higher than that of Cu(2)O/Cu photocathode. An interior bias can be produced based on which the electrons of WO(3)/W photoanode can transfer from the external circuit to combine with the holes of Cu(2)O/Cu photocathode then generates the electricity. In this manner, the electron/hole pairs separations at two photoelectrodes are facilitated to release the holes of WO(3)/W photoanode and electrons of Cu(2)O/Cu photocathode. Organic compounds can be decomposed by the holes of WO(3)/W photoanode due to its high oxidation power (+3.1-3.2 V(NHE)). The results demonstrated that various model compounds including phenol, Rhodamine B, and Congo red can be successfully decomposed in this PFC system, with the degradation rate after 5 h operation were obtained to be 58%, 63%, and 74%, respectively. The consistent operation for continuous water treatment with the electricity generation at a long time scale was also confirmed from the result. The proposed PFC system provides a self-sustained and energy-saving way for simultaneous wastewater treatment and energy recovery.

  18. Designing Efficient Solar-Driven Hydrogen Evolution Photocathodes Using Semitransparent MoQxCly (Q = S, Se) Catalysts on Si Micropyramids.

    PubMed

    Ding, Qi; Zhai, Jianyuan; Cabán-Acevedo, Miguel; Shearer, Melinda J; Li, Linsen; Chang, Hung-Chih; Tsai, Meng-Lin; Ma, Dewei; Zhang, Xingwang; Hamers, Robert J; He, Jr-Hau; Jin, Song

    2015-11-01

    Silicon micropyramids with n(+) pp(+) junctions are demonstrated to be efficient absorbers for integrated solar-driven hydrogen production systems enabling significant improvements in both photocurrent and onset potential. When conformally coated with MoSx Cly , a catalyst that has excellent catalytic activity and high optical transparency, the highest photocurrent density for Si-based photocathodes with earth-abundant catalysts is achieved.

  19. Comparison of blue–green response between transmission-mode GaAsP- and GaAs-based photocathodes grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gang-Cheng, Jiao; Zheng-Tang, Liu; Hui, Guo; Yi-Jun, Zhang

    2016-04-01

    In order to develop the photodetector for effective blue–green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Al0.7Ga0.3As0.9 P 0.1/GaAs0.9 P 0.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter between the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue–green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue–green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μm–0.6 μm. Project supported by the National Natural Science Foundation of China (Grant No. 61301023) and the Science and Technology on Low-Light-Level Night Vision Laboratory Foundation, China (Grant No. BJ2014001).

  20. Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode

    SciTech Connect

    Wu,Q.

    2008-10-01

    The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond film to achieve high SEY and desired emission phase. The diamond amplifier also is capable of handling a large heat load by conduction and sub-nanosecond pulse input. The preparation of the diamond amplifier includes thinning and polishing, cleaning with acid etching, metallization, and hydrogenation. The best mechanical polishing available can provide high purity single crystal diamond films with no less than 100 {micro}m thickness and <15 nm Ra surface roughness. The ideal thickness for 700MHz beam is {approx}30 {micro}m, which requires further thinning with RIE or laser ablation. RIE can achieve atomic layer removal precision and roughness eventually, but the time consumption for this procedure is very significant. Laser ablation proved that with <266nm ps laser beam, the ablation process on the diamond can easily achieve removing a few microns per hour from the surface and <100nm roughness. For amplifier application, laser ablation is an adequate and efficient process to make ultra thin diamond wafers following mechanical polishing. Hydrogenation will terminate the diamond surface with monolayer of hydrogen, and form NEA so that secondary electrons in the conduction band can escape into the vacuum. The method is using hydrogen cracker to strike hydrogen atoms onto the bare diamond surface to form H-C bonds. Two independent

  1. Development of a laser driven photocathode injector and femtosecond scale laser electron synchronization for next generation light sources

    NASA Astrophysics Data System (ADS)

    Le Sage, G. P.; Cowan, T. E.; Ditmire, T. R.; Rosenzweig, J. B.

    1999-11-01

    A high brightness photoinjector has been developed at LLNL. This injector, combined with the 100 TW FALCON laser, and existing LLNL 100 MeV S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray probe for time-resolved material measurements. The photoinjector is based on the BNL-SLAC-UCLA 1.6 cell S-band photoinjector with several improvements which include: HIP Copper material to decrease field emission and improve the peak accelerating gradient; and a diamond-turned Copper cathode. The photoelectrons are generated with a Ti:sapphire laser, frequency tripled to 266 nm. The photocathode laser regenerative amplifier is seeded by light from the Falcon laser oscillator. The S-band RF clock is derived from the Falcon laser oscillator. Commissioning of the photoinjector RF system is complete, and initial results on the photoelectron beam will be reported.

  2. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2016-08-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  3. Temporal laser pulse shaping for RF photocathode guns : the cheap and easy way using UV birefringent crystals.

    SciTech Connect

    Power, J. G.; Jing, C.; High Energy Physics; Euclid Techlabs, LLC

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  4. Temporal Laser Pulse Shaping for RF Photocathode Guns: The Cheap and Easy way using UV Birefringent Crystals

    SciTech Connect

    Power, John G.; Jing Chunguang

    2009-01-22

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  5. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.

    PubMed

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming

    2014-08-01

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  6. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun

    SciTech Connect

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao Zhang, Jie; Cao, Jianming

    2014-08-15

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  7. Recent Progress at SLAC Extracting High Charge from Highly-Polarized Photocathodes for Future-Collider Applications

    SciTech Connect

    Clendenin, J

    2004-01-20

    Future colliders such as NLC and JLC will require a highly-polarized macropulse with charge that is more than an order of magnitude beyond that which could be produced for the SLC. The maximum charge from the SLC uniformly-doped GaAs photocathode was limited by the surface charge limit (SCL). The SCL effect can be overcome by using an extremely high ({ge}10{sup 19} cm{sup -3}) surface dopant concentration. When combined with a medium dopant concentration in the majority of the active layer (to avoid depolarization), the surface concentration has been found to degrade during normal heat cleaning (1 hour at 600 C). The Be dopant as typically used in an MBE-grown superlattice cathode is especially susceptible to this effect compared to Zn or C dopant. Some relief can be found by lowering the cleaning temperature, but the long-term general solution appears to be atomic hydrogen cleaning.

  8. Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer

    NASA Astrophysics Data System (ADS)

    Fan, Ronglei; Dong, Wen; Fang, Liang; Zheng, Fengang; Su, Xiaodong; Zou, Shuai; Huang, Jie; Wang, Xusheng; Shen, Mingrong

    2015-01-01

    When a Si photocathode is used in a photoelectrochemical cell for H2 production, an open nanostructure capable of enhanced light absorption, low surface recombination, and being fully protected by thin protective layer is highly desirable. Here, we explored a highly stable and efficient multi-crystalline (mc) n+p silicon photocathode. A pyramid-like surface nanostructure on mc-Si wafer was fulfilled through a two-step metal-catalyzed chemical etching process, and then a n+p junction photocathode protected by a thin Al2O3 layer was constructed. The photocathode exhibits a high stability of continuous photoelectrochemical H2 production for above 100 h after a thin layer of Al2O3 is coated on its surface, and its energy conversion efficiency can be up to 6.8% after Pt loading, due to the lowered surface light reflection, increased surface area and minority carrier life time on the electrode surface.

  9. New Photocathodic Analysis Platform with Quasi-Core/Shell-Structured TiO2@Cu2O for Sensitive Detection of H2O2 Release from Living Cells.

    PubMed

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai

    2015-10-20

    In this work, we clearly demonstrate for the first time the use of a p-type semiconductor, Cu2O, as the core unit of a photocathode to set up a new photocathodic analysis platform. With the help of a facile protection strategy, the Cu2O photocathode presented efficient photoelectrochemical performance for H2O2 sensing with a detection limit of 0.15 μM, which allowed the new photocathodic analysis platform to detect H2O2 released from living tumorigenic cells, thus demonstrating its potential application as a sensitive cancer detection probe. The protected TiO2 layer was coated on Cu2O to form a quasi-core/shell structure (TiO2@Cu2O) through a facile sol-gel method, which significantly enhanced the photostability, comparable to the TiO2@Cu2O samples prepared by a complicated atomic layer deposition method. In this new photocathodic analysis platform, the semiconductive metal oxides accomplish a job usually completed by conductive noble metals in an electroanalysis process. We believe that this photocathodic detection strategy opens up a new detection approach, extends the application range of semiconductor materials, and thus sheds light on the further fusing of photoelectrochemical technique with analytical methods.

  10. New Photocathodic Analysis Platform with Quasi-Core/Shell-Structured TiO2@Cu2O for Sensitive Detection of H2O2 Release from Living Cells.

    PubMed

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai

    2015-10-20

    In this work, we clearly demonstrate for the first time the use of a p-type semiconductor, Cu2O, as the core unit of a photocathode to set up a new photocathodic analysis platform. With the help of a facile protection strategy, the Cu2O photocathode presented efficient photoelectrochemical performance for H2O2 sensing with a detection limit of 0.15 μM, which allowed the new photocathodic analysis platform to detect H2O2 released from living tumorigenic cells, thus demonstrating its potential application as a sensitive cancer detection probe. The protected TiO2 layer was coated on Cu2O to form a quasi-core/shell structure (TiO2@Cu2O) through a facile sol-gel method, which significantly enhanced the photostability, comparable to the TiO2@Cu2O samples prepared by a complicated atomic layer deposition method. In this new photocathodic analysis platform, the semiconductive metal oxides accomplish a job usually completed by conductive noble metals in an electroanalysis process. We believe that this photocathodic detection strategy opens up a new detection approach, extends the application range of semiconductor materials, and thus sheds light on the further fusing of photoelectrochemical technique with analytical methods. PMID:26389972

  11. Photoelectron extraction efficiency from a CsI photocathode and THGEM operation in He-CF4 and He-CH4 mixtures

    NASA Astrophysics Data System (ADS)

    Coimbra, A. E. C.; Israelashvili, I.; dos Santos, J. M. F.

    2016-03-01

    This work presents the experimental measurements obtained for UV-induced photo-electron extraction efficiency from a CsI photocathode into He with CF4 and CH4 gas mixtures. A 1000Å CsI photocathode was deposited on a gold plated THGEM for photo-electron conversion. Charge-gain measurements were obtained with a Single-THGEM detector operating in these gas mixtures using a continuous UV lamp for the extraction of photo-electrons. Charge-gains in excess of 105 were obtained for gas mixtures containing percentages of quencher higher than 20% while photo-electron extraction efficiency achieved ~ 50% for He/CF4 and ~ 30% for He/CH4. Single photon electron measurements were also performed to assess the maximal gains reached in this regime. A discussion for future GPM cryogenic applications is presented.

  12. A water splitting system using an organo-photocathode and titanium dioxide photoanode capable of bias-free H2 and O2 evolution.

    PubMed

    Abe, Toshiyuki; Fukui, Katsuma; Kawai, Yuto; Nagai, Keiji; Kato, Hideki

    2016-06-01

    This study examined a water-splitting system comprising a TiO2 photoanode and an organo-photocathode consisting of a p-n bilayer. Stoichiometric decomposition of water into H2 and O2 successfully occurred at bias voltages lower than the theoretical value (i.e. 1.23 V). Compared to the conventional TiO2 and Pt systems, the proposed water-splitting system demonstrated water splitting without any externally applied bias.

  13. Transmission photocathodes based on stainless steel mesh and quartz glass coated with N-doped DLC thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Arbet, J.

    2016-03-01

    The influence was investigated of N-doped diamond-like carbon (DLC) films properties on the quantum efficiency of a prepared transmission photocathode. N-doped DLC thin films were deposited on a silicon substrate, a stainless steel mesh and quartz glass (coated with 5 nm thick Cr adhesion film) by reactive magnetron sputtering using a carbon target and gas mixture Ar, 90%N2+10%H2. The elements' concentration in the films was determined by RBS and ERD. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. For the study of the vectorial photoelectric effect, the quartz type photocathode was irradiated by intensive laser pulses to form pin-holes in the DLC film. The quantum efficiency (QE), calculated at a laser energy of 0.4 mJ, rose as the nitrogen concentration in the DLC films was increased and rose dramatically after the micron-size perforation in the quartz type photocathodes.

  14. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    PubMed

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.

  15. Elucidating the sole contribution from electromagnetic near-fields in plasmon-enhanced Cu2O photocathodes

    SciTech Connect

    DuChene, Joseph S.; Williams, Benjamin P.; Johnston-Peck, Aaron C.; Qiu, Jingjing; Gomes, Mathieu; Amilhau, Maxime; Bejleri, Donald; Weng, Jiena; Su, Dong; Huo, Fengwei; Stach, Eric A.; Wei, Wei David

    2015-11-05

    Despite many promising reports of plasmon-enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, we construct a plasmonic photocathode comprised of Au@SiO2 (core@shell) nanoparticles embedded within a Cu2O nanowire network to exclusively examine the contribution from one such mechanism: electromagnetic near-field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall light-harvesting efficiency of the device through variation of the SiO2 shell thickness (5—22 nm) to systematically tailor the distance between the plasmonic Au nanoparticles and the Cu2O nanowires. A three-fold increase in device photocurrent is achieved upon integrating the Au@SiO2 nanoparticles into the Cu2O nanowire network, further enabling a ~40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near-field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.

  16. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    PubMed

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product. PMID:27359299

  17. n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production

    NASA Astrophysics Data System (ADS)

    Fan, Ronglei; Min, Jiawei; Li, Yian; Su, Xiaodong; Zou, Shuai; Wang, Xusheng; Shen, Mingrong

    2015-05-01

    Currently, p-type silicon has been studied as a photocathode in a photoelectrochemical cell for water splitting where an n+ thin layer is usually fabricated on electrode surface in order to increase band bending at the n+p interface relative to the aqueous solution/p-Si interface. However, this leads to high Auger recombination on the reaction interface. We report herein an efficient and stable photocathode based on single-crystal n-type Si with a rear np+ junction, different from the conventional one on p-type Si with a front n+p junction. Using a thin Al2O3 surface protecting layer, it shows no loss in photoelectrochemical performance after 138 h of continuous operation, and the energy conversion efficiency can be nearly doubled to 8.68%, compared with 4.51% for the corresponding normal n+p electrode under 100 mW/cm2 simulated solar illumination and Pt catalyzing. Our np+ Si photocathodes improve the H2 production by providing: (1) high on-set potential due to the rear junction; (2) high carrier life time on the electrode surface due to the low doping level of n-type Si; and (3) excellent passivating effect of Al2O3 on the surface of n-type Si.

  18. Dye-sensitized photocathodes: efficient light-stimulated hole injection into p-GaP under depletion conditions.

    PubMed

    Chitambar, Michelle; Wang, Zhijie; Liu, Yiming; Rockett, Angus; Maldonado, Stephen

    2012-06-27

    The steady-state photoelectrochemical responses of p-GaP photoelectrodes immersed in aqueous electrolytes and sensitized separately by six triphenylmethane dyes (rose bengal, rhodamine B, crystal violet, ethyl violet, fast green fcf, and brilliant green) have been analyzed. Impedance measurements indicated that these p-GaP(100) photoelectrodes operated under depletion conditions with an electric field of ∼8.5 × 10(5) V cm(-1) at the p-GaP/solution interface. The set of collected wavelength-dependent quantum yield responses were consistent with sensitization occurring specifically from adsorbed triphenylmethane dyes. At high concentrations of dissolved dye, the measured steady-state photocurrent-potential responses collected at sub-bandgap wavelengths suggested unexpectedly high (>0.1) net internal quantum yields for sensitized hole injection. Separate measurements performed with rose bengal adsorbed on p-GaP surfaces pretreated with (NH(4))(2)S verified efficient sensitized hole injection. A modified version of wxAMPS, a finite-difference software package, was utilized to assess key operational features of the sensitized p-GaP photocathodes. The net analysis showed that the high internal quantum yield values inferred from the experimental data were most likely afforded by the internal electric field present within p-GaP, effectively sweeping injected holes away from the interface and minimizing their participation in deleterious pathways that could limit the net collection yield. These simulations defined effective threshold values for the charge carrier mobilities (≥10(-6) cm(2) V(-1) s(-1) and ≥10(-1) cm(2) V(-1) s(-1) at dopant densities of 10(18) and 10(13) cm(-3), respectively), hole injection rate constants (≥10(12) s(-1)), and surface trap densities (10(12) cm(-2)) needed to attain efficient hole collection with the quality of p-GaP materials used here. The cumulative experimental and modeling data thus provide insight on design strategies for

  19. Microwave measurements and beam dynamics simulations of the BNL/SLAC/UCLA emittance-compensated 1.6-cell photocathode rf gun

    NASA Astrophysics Data System (ADS)

    Palmer, Dennis T.; Miller, Roger H.; Winick, Herman; Wang, Xi J.; Batchelor, Kenneth; Woodle, Martin H.; Ben-Zvi, Ilan

    1995-09-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. Microwave measurements of the 1.6 cell photocathode RF gun have been conducted along with beam dynamics simulations of the emittance compensated low energy beam. These simulations indicate that the 1.6 cell photocathode RF gun in combination with solenoidal emittance compensation will be capable of producing a high brightness beam with a normalization rms emittance of (epsilon) n,rms approximately equals 1 (pi) mm mrad. The longitudinal accelerating field Ez has been measured as a function of azimuthal angle in the full cell of the cold test model for the 1.6 cell BNL/SLAC/UCLA #3 S-band RF Gun using a needle rotation/frequency perturbation technique. These measurements were conducted before and after symmetrizing the full cell with a vacuum pump out port and an adjustable short. Two different waveguide to full cell coupling schemes were studied. Experimental and theoretical studies of the field balance versus mode separation were conducted. The dipole mode of the full cell using the (theta) - coupling scheme is an order of magnitude less severe before symmetrization than the Z- coupling scheme. The multi-pole contribution to the longitudinal field asymmetry are calculated using standard Fourier series techniques for both coupling schemes. The Panofsky- Wenzel theorem is used in estimating the transverse emittance due to the multipole components of Ez. Detailed beam dynamics simulations were performed for the 1.6 cell photocathode RF gun injector using a solenoidal emittance compensation technique. The design of the experimental line along with a proposed experimental program using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. This experimental program includes measurements of beam loading caused

  20. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Lorusso, A.; Klini, A.; Manousaki, A.; Perrone, A.; Fotakis, C.

    2015-11-01

    In this work, the deposition of Cu thin films on Y substrates for photocathode applications by pulsed laser deposition employing picosecond laser pulses is reported and compared with the use of nanosecond pulses. The influence of power density (6-50 GW/cm2) on the ablation of the target material, as well as on the properties of the resulting film, is discussed. The material transfer from the target to the substrate surface was found to be rather efficient, in comparison to nanosecond ablation, leading to the growth of films with high thickness. Scanning electron microscope analysis indicated a quasi-continuous film morphology, at low power density values, becoming granular with increasing power density. The structural investigation, through X-ray diffraction, revealed the poly-crystalline nature of the films, with a preferential growth along the (111) crystallographic orientation of Cu cubic network. Finally, energy-dispersive X-ray spectroscopy showed a low contamination level of the grown films, demonstrating the potential of a PLD technique for the fabrication of Cu/Y patterned structures, with applications in radiofrequency electron gun technology.

  1. Ultra-fast pulse radiolysis system combined with a laser photocathode RF gun and a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Muroya, Y.; Lin, M.; Watanabe, T.; Wu, G.; Kobayashi, T.; Yoshii, K.; Ueda, T.; Uesaka, M.; Katsumura, Y.

    2002-08-01

    In order to study the early events in radiation physics and chemistry, two kinds of new pulse radiolysis systems with higher time resolution based on pump-and-probe method have been developed at the Nuclear Engineering Research Laboratory, the University of Tokyo. The first one, a few picosecond (2 ps at FWHM) electron beam (pump) from an 18 MeV S-band Linac using a laser photocathode RF gun (BNL/KEK/SHI type: GUN IV) was operated with a femtosecond laser pulse (100 fs at FWHM), which also acted as the analyzing light (probe). The synchronization precision between the pump and the probe was 1.7 ps (rms). In a 1.0 cm sample cell, a time resolution of 12 ps was achieved. The second one, a picosecond (4 ps at FWHM) electron pulse from a 35 MeV S-band Linac employing a conventional thermionic gun with a sub-harmonic buncher, was synchronized with the femtosecond laser pulse, with a synchronization jitter of 2.8 ps (rms). A time resolution of 22 ps was obtained with 2 cm cell. This makes it possible to do the pulse radiolysis experiments in the time range from picosecond to sub-microsecond.

  2. Nanocrystal Engineering of Sputter-Grown CuO Photocathode for Visible-Light-Driven Electrochemical Water Splitting.

    PubMed

    Masudy-Panah, Saeid; Siavash Moakhar, Roozbeh; Chua, Chin Sheng; Tan, Hui Ru; Wong, Ten It; Chi, Dongzhi; Dalapati, Goutam Kumar

    2016-01-20

    Cupric oxide (CuO) thin film was sputtered onto fluorine-doped tin oxide (FTO) coated glass substrate and incorporated into a photoelectrochemical (PEC) cell as a photocathode. Through in situ nanocrystal engineering, sputtered CuO film shows an improvement in its stability and photocurrent generation capability. For the same CuO film thickness (150 nm), films deposited at a sputtering power of 300 W exhibit a photocurrent of ∼0.92 mAcm(-2) (0 V vs RHE), which is significantly higher than those deposited at 30 W (∼0.58 mAcm(-2)). By increasing the film thickness to 500 nm, the photocurrent is further enhanced to 2.5 mAcm(-2), which represents a photocurrent conversion efficiency of 3.1%. Systematic characterization using Raman, XRD, and HR-TEM reveals that the high sputtering power results in an improvement in CuO film crystallinity, which enhances its charge transport property and, hence, its photocurrent generation capabilities. PMID:26694248

  3. Generation of Picosecond Electron-Bunch Trains with Variable Spacing Using a Multi-Pulse Photocathode Laser

    SciTech Connect

    Conde, M.; Gai, W.; Jing, C.; Konecny, R.; Liu, W.; Mihalcea, D.; Piot, P.; Power, J.G.; Rihaoui, M.; Yusof, Z.; /Argonne

    2012-07-08

    We demonstrate the generation of a train of electron bunches with variable spacing at the Argonne Wakefield Accelerator. The photocathode ultraviolet laser pulse consists of a train of four pulses produced via polarization splitting using two alpha-BBO crystals. The photoemitted electron bunches are then manipulated in a horizontally-bending dogleg with variable longitudinal dispersion. A downstream vertically-deflecting cavity is then used to diagnose the temporal profile of the electron beam. The generation of a train composed of four bunches with tunable spacing is demonstrated. Such a train of bunch could have application to, e.g., the resonant excitation of wakefield in dielectric-lined structures. We have presented preliminary measurements on a simple technique to generate a train of electron bunches with variable separation. In the initial experiment appreciable density modulation down to wavelengths of {approx}1.8 mm (corresponding to a temporal separation of {approx}6 ps) were achieved for a total charge of 0.5 nC. Finding ways to reach smaller separations is being explored with the help of numerical simulations and will be presented elsewhere.

  4. Electron beams from needle photocathodes and a new theory of the Smith-Purcell free-electron laser

    NASA Astrophysics Data System (ADS)

    Boulware, Charles Herbert, III

    A promising source of radiation in the important terahertz (THz) region of the spectrum is the Smith-Purcell free-electron laser (SPFEL). This dissertation presents a new theory of the SPFEL, taking into account dispersion of evanescent surface waves on the grating. From the dispersion relation for these waves, it is found that the device can operate as an amplifier or as an oscillator, The gain length is calculated in the amplifier regime, as well as the growth rate and start current in the oscillator regime. The theory is supported by published computer simulations, but in conflict with previous experiment. These devices require a high-quality electron beam, and this dissertation also presents developments in needle photocathodes designed to drive an SPFEL. Data on emission current are presented as a function of voltage for various drive laser wavelengths. A simplified model is used to interpret the data as variation in the emitting area with voltage for photon energies below the cathode workfunction. Data and a new scaling law for the divergence of the beam at high current are also presented.

  5. Solar Hydrogen Production Using Molecular Catalysts Immobilized on Gallium Phosphide (111)A and (111)B Polymer-Modified Photocathodes.

    PubMed

    Beiler, Anna M; Khusnutdinova, Diana; Jacob, Samuel I; Moore, Gary F

    2016-04-20

    We report the immobilization of hydrogen-producing cobaloxime catalysts onto p-type gallium phosphide (111)A and (111)B substrates via coordination to a surface-grafted polyvinylimidazole brush. Successful grafting of the polymeric interface and subsequent assembly of cobalt-containing catalysts are confirmed using grazing angle attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Photoelectrochemical testing in aqueous conditions at neutral pH shows that cobaloxime modification of either crystal face yields a similar enhancement of photoperformance, achieving a greater than 4-fold increase in current density and associated rates of hydrogen production as compared to results obtained using unfunctionalized electrodes tested under otherwise identical conditions. Under simulated solar illumination (100 mW cm(-2)), the catalyst-modified photocathodes achieve a current density ≈ 1 mA cm(-2) when polarized at 0 V vs the reversible hydrogen electrode reference and show near-unity Faradaic efficiency for hydrogen production as determined by gas chromatography analysis of the headspace. This work illustrates the modularity and versatility of the catalyst-polymer-semiconductor approach for directly coupling light harvesting to fuel production and the ability to export this chemistry across distinct crystal face orientations. PMID:26998554

  6. Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes.

    PubMed

    Lee, Jong Gun; Kim, Do-Yeon; Lee, Jong-Hyuk; Kim, Min-Woo; An, Seongpil; Jo, Hong Seok; Nervi, Carlo; Al-Deyab, Salem S; Swihart, Mark T; Yoon, Sam S

    2016-06-22

    We demonstrate production of nanotextured p-type cupric oxide (CuO) films via a low-cost scalable supersonic cold spray method in open air conditions. Simply sweeping the spray nozzle across a substrate produced a large-scale CuO film. When used as hydrogen evolution photocathodes, these films produced photocurrent densities (PCD) of up to 3.1 mA/cm(2) under AM1.5 illumination, without the use of a cocatalyst or any additional heterojunction layers. Cu2O particles were supersonically sprayed onto an indium tin oxide (ITO) coated soda lime glass (SLG) substrate, without any solvent or binder. Annealing in air converted the Cu2O films to CuO, with a corresponding decrease in the bandgap and increase in the fraction of the solar spectrum absorbed. Annealing at 600 °C maximized the PCD. Increasing the supersonic gas velocity from ∼450 to ∼700 m/s produced denser films with greater surface roughness, in turn producing higher PCD. The nanoscale texture of the films, which resembles the skin of a dinosaur, enhanced their performance, leading to one of the highest PCD values in the literature. We characterized the films by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy to elucidate the origins of their outstanding performance. This supersonic cold spraying deposition has the potential to be used on a commercial scale for low cost mass production.

  7. Advanced photoinjector experiment photogun commissioning results

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Filippetto, D.; Papadopoulos, C. F.; Staples, J.; Wells, R.; Bailey, B.; Baptiste, K.; Corlett, J.; Cork, C.; De Santis, S.; Dimaggio, S.; Doolittle, L.; Doyle, J.; Feng, J.; Garcia Quintas, D.; Huang, G.; Huang, H.; Kramasz, T.; Kwiatkowski, S.; Lellinger, R.; Moroz, V.; Norum, W. E.; Padmore, H.; Pappas, C.; Portmann, G.; Vecchione, T.; Vinco, M.; Zolotorev, M.; Zucca, F.

    2012-10-01

    The Advanced Photoinjector Experiment (APEX) at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class) electron injector for x-ray free-electron laser (FEL) and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC) cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw) mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.

  8. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-08-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as ‑0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at ‑0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under ‑0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination.

  9. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst

    NASA Astrophysics Data System (ADS)

    Ji, Li; McDaniel, Martin D.; Wang, Shijun; Posadas, Agham B.; Li, Xiaohan; Huang, Haiyu; Lee, Jack C.; Demkov, Alexander A.; Bard, Allen J.; Ekerdt, John G.; Yu, Edward T.

    2015-01-01

    The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal-insulator-semiconductor photocathode that, under a broad-spectrum illumination at 100 mW cm-2, exhibits a maximum photocurrent density of 35 mA cm-2 and an open circuit potential of 450 mV there was no observable decrease in performance after 35 hours of operation in 0.5 M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore, mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved.

  10. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    PubMed Central

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as −0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at −0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under −0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  11. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst.

    PubMed

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as -0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at -0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under -0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  12. Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes.

    PubMed

    Lee, Jong Gun; Kim, Do-Yeon; Lee, Jong-Hyuk; Kim, Min-Woo; An, Seongpil; Jo, Hong Seok; Nervi, Carlo; Al-Deyab, Salem S; Swihart, Mark T; Yoon, Sam S

    2016-06-22

    We demonstrate production of nanotextured p-type cupric oxide (CuO) films via a low-cost scalable supersonic cold spray method in open air conditions. Simply sweeping the spray nozzle across a substrate produced a large-scale CuO film. When used as hydrogen evolution photocathodes, these films produced photocurrent densities (PCD) of up to 3.1 mA/cm(2) under AM1.5 illumination, without the use of a cocatalyst or any additional heterojunction layers. Cu2O particles were supersonically sprayed onto an indium tin oxide (ITO) coated soda lime glass (SLG) substrate, without any solvent or binder. Annealing in air converted the Cu2O films to CuO, with a corresponding decrease in the bandgap and increase in the fraction of the solar spectrum absorbed. Annealing at 600 °C maximized the PCD. Increasing the supersonic gas velocity from ∼450 to ∼700 m/s produced denser films with greater surface roughness, in turn producing higher PCD. The nanoscale texture of the films, which resembles the skin of a dinosaur, enhanced their performance, leading to one of the highest PCD values in the literature. We characterized the films by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy to elucidate the origins of their outstanding performance. This supersonic cold spraying deposition has the potential to be used on a commercial scale for low cost mass production. PMID:27232695

  13. Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Qiang, Y. H.; Zhao, Y. L.; Gu, X. Q.

    2014-02-01

    A solvothermal method was used to synthesize Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) nanoparticles. CZTS/CZTSe bilayer films have been fabricated via a layer-by-layer blade coating process on the fluorine dope tin oxide (FTO) substrates. We converted conventional dye-sensitized solar cells (DSSCs) into double junction photoelectrochemical solar cells with the replacement of the Pt-coated counter electrode with the as-prepared films as composite photocathodes. Compared with conventional DSSCs, the cells show an increased short circuit current and power conversion efficiency.

  14. Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode

    SciTech Connect

    Jin, Xiuguang; Cotta, Alexandre A. C.; Chen, Gong; N'Diaye, Alpha T.; Schmid, Andreas K.; Yamamoto, Naoto

    2014-11-07

    Work function, photoemission yield, and Auger electron spectra were measured on (001) p-type GaAs during negative electron affinity (NEA) surface preparation, surface degradation, and heating processes. The emission current sensitively depends on work function change and its dependence allows us to determine that the shape of the vacuum barrier was close to double triangular. Regarding the NEA surface degradation during photoemission, we discuss the importance of residual gas components the oxygen and hydrogen. We also found that gentle annealing (≤100 °C) of aged photocathodes results in a lower work function and may offer a patch to reverse the performance degradation.

  15. Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice with Distributed Bragg Reflector

    SciTech Connect

    Gerchikov, L.G.; Aulenbacher, K.; Clendenin, J.E.; Kuz'michev, V.V.; Mamaev, Yu.A.; Maruyama, T.; Mikhrin, V.S.; Roberts, J.S.; Utstinov, V.M.; Vasiliev, D.A.; Vasiliev, A.P.; Yashin, Yu.P.; Zhukov, A.E.; /St. Petersburg Polytechnic Inst. /Mainz U., Inst. Kernphys. /SLAC /Ioffe Phys. Tech. Inst. /Sheffield U.

    2007-11-28

    Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

  16. High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode.

    PubMed

    Fan, Shizhao; AlOtaibi, Bandar; Woo, Steffi Y; Wang, Yongjie; Botton, Gianluigi A; Mi, Zetian

    2015-04-01

    H2 generation under sunlight offers great potential for a sustainable fuel production system. To achieve high efficiency solar-to-hydrogen conversion, multijunction photoelectrodes have been commonly employed to absorb a large portion of the solar spectrum and to provide energetic charge carriers for water splitting. However, the design and performance of such tandem devices has been fundamentally limited by the current matching between various absorbing layers. Here, by exploiting the lateral carrier extraction scheme of one-dimensional nanowire structures, we have demonstrated that a dual absorber photocathode, consisting of p-InGaN/tunnel junction/n-GaN nanowire arrays and a Si solar cell wafer, can operate efficiently without the strict current matching requirement. The monolithically integrated photocathode exhibits an applied bias photon-to-current efficiency of 8.7% at a potential of 0.33 V versus normal hydrogen electrode and nearly unity Faradaic efficiency for H2 generation. Such an adaptive multijunction architecture can surpass the design and performance restrictions of conventional tandem photoelectrodes.

  17. Enhanced photocathodic behaviors of Pb(Zr{sub 0.20}Ti{sub 0.80})O{sub 3} films on Si substrates for hydrogen production

    SciTech Connect

    Cheng, Xiaorong; Dong, Wen; Zheng, Fengang; Fang, Liang; Shen, Mingrong

    2015-06-15

    Wide bandgap ferroelectric Pb(Zr{sub 0.20}Ti{sub 0.80})O{sub 3} films were deposited on indium tin oxide (ITO) coated Si-pn{sup +} substrates with an intention to form efficient Si-pn{sup +}/ITO/Pb(Zr,Ti)O{sub 3} (PZT) photocathode for hydrogen production. Depolarization electric field generated in PZT film due to poling can drive the photogenerated electrons from Si-pn{sup +} junction to PZT film, resulting in enhanced photoelectrochemical activity of the photocathode. Comparing the electrode with as-prepared PZT film, the photocurrent increased from −100 μA cm{sup −2} to −1.2 mA cm{sup −2} at 0 V vs. reversible hydrogen electrode (RHE) and the onset potential from 0.36 V to 0.7 V vs. RHE under 100 mW cm{sup −2} illumination, manifesting the great advantage of depolarization electric field in driving the photogenerated carriers not only in the ferroelectric film but also on the interface of different semiconductors.

  18. Carbon-shell-decorated p-semiconductor PbMoO4 nanocrystals for efficient and stable photocathode of photoelectrochemical water reduction

    NASA Astrophysics Data System (ADS)

    Wang, Ligang; Tang, Hanqin; Tian, Yang

    2016-07-01

    Photoelectrochemical (PEC) water splitting using semiconductors is a promising method for the future scalable production of renewable hydrogen fuels. The critical issues in PEC water splitting include the development of the photoelectrode materials with high efficiency and long-term stability, especially for p-type semiconductor photocathodes. Herein, we report the use of citric acid (CA) pyrolysis to prepare carbon-shell-decorated PbMoO4 (C@PbMoO4) nanocrystals via a simple solvothermal method. Different carbon shell thicknesses below 10 nm were generated by varying the amount of CA in the precursor solution. In contrast, without using CA, bare PbMoO4 nanocrystals were obtained. The PEC experiments showed that 2-nm carbon shell could preferably improve the water splitting performance of PbMoO4: the photocurrent density of 2-nm C@PbMoO4 is nearly 2-fold high as that of bare PbMoO4 at 0 V versus reversible hydrogen electrode (RHE). The surface charge transfer efficiency of 2-nm C@PbMoO4 in the PEC process was tested to increase from 83% to 90.4%, the charge separation efficiency enhanced 56%, and the PEC stability also greatly increased compared to those of the bare PbMoO4 nanocrystals. This strategy could be applied to other p-type semiconducting photocathodes for low-cost solar-fuel-generation devices.

  19. An Efficient CuxO Photocathode for Hydrogen Production at Neutral pH: New Insights from Combined Spectroscopy and Electrochemistry.

    PubMed

    Baran, Tomasz; Wojtyła, Szymon; Lenardi, Cristina; Vertova, Alberto; Ghigna, Paolo; Achilli, Elisabetta; Fracchia, Martina; Rondinini, Sandra; Minguzzi, Alessandro

    2016-08-24

    Light-driven water splitting is one of the most promising approaches for using solar energy in light of more sustainable development. In this paper, a highly efficient p-type copper(II) oxide photocathode is studied. The material, prepared by thermal treatment of CuI nanoparticles, is initially partially reduced upon working conditions and soon reaches a stable form. Upon visible-light illumination, the material yields a photocurrent of 1.3 mA cm(-2) at a potential of 0.2 V vs a reversible hydrogen electrode at mild pH under illumination by AM 1.5 G and retains 30% of its photoactivity after 6 h. This represents an unprecedented result for a nonprotected Cu oxide photocathode at neutral pH. The photocurrent efficiency as a function of the applied potential was determined using scanning electrochemical microscopy. The material was characterized in terms of photoelectrochemical features; X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, fixed-energy X-ray absorption voltammetry, and extended X-ray absorption fine structure analyses were carried out on pristine and used samples, which were used to explain the photoelectrochemical behavior. The optical features of the oxide are evidenced by direct reflectance spectroscopy and fluorescence spectroscopy, and Mott-Schottky analysis at different pH values explains the exceptional activity at neutral pH.

  20. Enhancing the Charge Separation in Nanocrystalline Cu2ZnSnS4 Photocathodes for Photoelectrochemical Application: The Role of Surface Modifications.

    PubMed

    Guijarro, Néstor; Prévot, Mathieu S; Sivula, Kevin

    2014-11-01

    Cu2ZnSnS4 (CZTS) colloidal inks were employed to prepare thin-film photocathodes that served as a model system to interrogate the effect of different surface treatments, viz. CdS, CdSe, and ZnSe buffer layers along with methylviologen (MV) adsorption, on the photoelectrochemical (PEC) performance using aqueous Eu(3+) redox electrolyte. PEC experiments revealed that ZnSe and CdSe overlayers outperform traditional CdS, and the additional surface modification with MV was found to further boost the charge extraction. By analyzing the photocurrent onset behavior and measuring the open circuit photopotentials, insights are gained into the nature of the observed improvements. While a more favorable conduction band offset rationalizes the improvement offered by CdSe, charge transfer through midgap states is invoked for ZnSe. Improvement offered by MV treatment is clearly caused by both the shifting of the flat-band potential and a charge-transfer mediation effect. Overall, this work suggests promising alternative surface treatments for CZTS photocathodes for PEC energy conversion. PMID:26278767

  1. High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode.

    PubMed

    Fan, Shizhao; AlOtaibi, Bandar; Woo, Steffi Y; Wang, Yongjie; Botton, Gianluigi A; Mi, Zetian

    2015-04-01

    H2 generation under sunlight offers great potential for a sustainable fuel production system. To achieve high efficiency solar-to-hydrogen conversion, multijunction photoelectrodes have been commonly employed to absorb a large portion of the solar spectrum and to provide energetic charge carriers for water splitting. However, the design and performance of such tandem devices has been fundamentally limited by the current matching between various absorbing layers. Here, by exploiting the lateral carrier extraction scheme of one-dimensional nanowire structures, we have demonstrated that a dual absorber photocathode, consisting of p-InGaN/tunnel junction/n-GaN nanowire arrays and a Si solar cell wafer, can operate efficiently without the strict current matching requirement. The monolithically integrated photocathode exhibits an applied bias photon-to-current efficiency of 8.7% at a potential of 0.33 V versus normal hydrogen electrode and nearly unity Faradaic efficiency for H2 generation. Such an adaptive multijunction architecture can surpass the design and performance restrictions of conventional tandem photoelectrodes. PMID:25811636

  2. The possibly important role played by Ga{sub 2}O{sub 3} during the activation of GaN photocathode

    SciTech Connect

    Fu, Xiaoqian E-mail: 214808748@qq.com; Wang, Honggang; Zhang, Junju; Li, Zhiming; Cui, Shiyao; Zhang, Lejuan

    2015-08-14

    Three different chemical solutions are used to remove the possible contamination on GaN surface, while Ga{sub 2}O{sub 3} is still found at the surface. After thermal annealing at 710 °C in the ultrahigh vacuum (UHV) chamber and activated with Cs/O, all the GaN samples are successfully activated to the effective negative electron affinity (NEA) photocathodes. Among all samples, the GaN sample with the highest content of Ga{sub 2}O{sub 3} after chemical cleaning obtains the highest quantum efficiency. By analyzing the property of Ga{sub 2}O{sub 3}, the surface processing results, and electron affinity variations during Cs and Cs/O{sub 2} deposition on GaN of other groups, it is suggested that before the adsorption of Cs, Ga{sub 2}O{sub 3} is not completely removed from GaN surface in our samples, which will combine with Cs and lead to a large decrease in electron affinity. Furthermore, the effective NEA is formed for GaN photocathode, along with the surface downward band bending. Based on this assumption, a new dipole model Ga{sub 2}O{sub 3}-Cs is suggested, and the experimental effects are explained and discussed.

  3. Comparison of multialkali and GaAs photocathode detectors for Joint European Torus edge light detection and ranging Thomson scattering profiles

    SciTech Connect

    Kempenaars, M.; Nielsen, P.; Pasqualotto, R.; Gowers, C.; Beurskens, M.

    2004-10-01

    The Joint European Torus (JET) tokamak has two light detection and ranging (LIDAR) Thomson scattering systems, one for the core and one dedicated to the edge T{sub e} and n{sub e} profiles. The LIDAR scheme is unique to JET and is envisaged for use on ITER. The system's spatial resolution is defined by the convolution product of its components: laser pulse duration, detector response time, and digitizer speed. The original multialkali photocathode microchannel plate photomultipliers dictated the response time, resulting in a 12 cm spatial resolution along the line of sight. In the edge LIDAR system, this is improved by aligning the line of sight with the flux surfaces, thus improving the effective spatial resolution to 2 cm depending on the plasma configuration. To meet demands for better edge gradient resolution, an upgrade to higher quantum efficiency detectors was proposed. Four GaAs photocathode detectors have been procured, two of which surpass expectations. These detectors are shown to have a more than two times higher effective quantum efficiency and their response time is at least twice as fast as the multialkali detectors. Combined with a fast digitizer this improves the spatial resolution by a factor of two, down to one centimeter effective, depending on plasma configuration.

  4. A new approach to light up the application of semiconductor nanomaterials for photoelectrochemical biosensors: using self-operating photocathode as a highly selective enzyme sensor.

    PubMed

    Wang, Guang-Li; Liu, Kang-Li; Dong, Yu-Ming; Wu, Xiu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-12-15

    Due to the intrinsic hole oxidation reaction occurred on the photoanode surface, currently developed photoelectrochemical biosensors suffer from the interference from coexisting reductive species (acting as electron donor) and a novel design strategy of photoelectrode for photoelectrochemical detection is urgently required. In this paper, a self-operating photocathode based on CdS quantum dots sensitized three-dimensional (3D) nanoporous NiO was designed and created, which showed highly selective and reversible response to dissolved oxygen (acting as electron acceptor) in the electrolyte solution. Using glucose oxidase (GOD) as a biocatalyst, a novel photoelectrochemical sensor for glucose was developed. The commonly encountered interferents such as H2O2, ascorbic acid (AA), cysteine (Cys), dopamine (DA), etc., almost had no effect for the cathodic photocurrent of the 3D NiO/CdS electrode, though these substances were proved to greatly influence the photocurrent of photoanodes, which indicated greatly improved selectivity of the method. The method was applied to detect glucose in real samples including serum and glucose injections with satisfactory results. This study could provide a new train of thought on designing of self-operating photocathode in photoelectrochemical sensing, promoting the application of semiconductor nanomaterials in photoelectrochemistry. PMID:24984285

  5. Nanomechanical and electrical properties of Nb thin films deposited on Pb substrates by pulsed laser deposition as a new concept photocathode for superconductor cavities

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Lorusso, A.; Panareo, M.; Monteduro, A. G.; Maruccio, G.; Broitman, E.; Perrone, A.

    2015-12-01

    We report a design of photocathode, which combines the good photoemissive properties of lead (Pb) and the advantages of superconducting performance of niobium (Nb) when installed into a superconducting radio-frequency gun. The new configuration is obtained by a coating of Nb thin film grown on a disk of Pb via pulsed laser deposition. The central emitting area of Pb is masked by a shield to avoid the Nb deposition. The nanomechanical properties of the Nb film, obtained through nanoindentation measurements, reveal a hardness of 2.8±0.3 GPa, while the study of the electrical resistivity of the film shows the appearance of the superconducting transitions at 9.3 K and 7.3 K for Nb and Pb, respectively, very close to the bulk material values. Additionally, morphological, structural and contamination studies of Nb thin film expose a very low droplet density on the substrate surface, a small polycrystalline orientation of the films and a low contamination level. These results, together with the acceptable Pb quantum efficiency of 2×10-5 found at 266 nm, demonstrate the potentiality of the new concept photocathode.

  6. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  7. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  8. Nano-scale characterization of GaAsP/GaAs strained superlattice structure by nano-beam electron diffraction

    SciTech Connect

    Jin, Xiuguang; Nakahara, Hirotaka; Saitoh, Koh; Tanaka, Nobuo; Takeda, Yoshikazu

    2014-03-17

    Distribution of lattice strain in a GaAsP/GaAs superlattice with a periodicity of 10 nm thickness, deposited on a 100 nm GaAs basal layer has been measured by nano-beam electron diffraction. The superlattice on the (001) plane of the basal GaAs layer shows a constant lattice strain from the bottom to the top layers, whereas the superlattice on the basal GaAs surface sloped by 16° from the (001) plane shows a variation of the lattice strain and crystal orientation. The difference of the strain distributions was discussed from the viewpoint of average strain. This tilt was explained by an atomistic model.

  9. Near Infrared (NIR) Imaging Techniques Using Lasers and Nonlinear Crystal Optical Parametric Oscillator/Amplifier (OPO/OPA) Imaging and Transferred Electron (TE) Photocathode Image Intensifiers

    SciTech Connect

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; GREIVES,KENNETH H.; ZUTAVERN,FRED J.

    2000-12-20

    Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.

  10. Polypyrrole-Ru(2,2'-bipyridine)3(2+)/MoSx structured composite film as a photocathode for the hydrogen evolution reaction.

    PubMed

    Lattach, Youssef; Fortage, Jérôme; Deronzier, Alain; Moutet, Jean-Claude

    2015-03-01

    The development of photoelectrochemical devices for solar light-driven water splitting and H2 production requires new strategies for the fabrication of materials that combine the necessary photoredox and catalytic properties, to allow the hydrogen evolution reaction (HER) to take place at a low overvoltage under visible light irradiation. We report the first example of a structured composite, synthesized by electrodeposition of MoSx cocatalyst into a photosensitive Ru complex film deposited onto carbon electrodes by electropolymerization of a pyrrole-functionalized Ru(II)(2,2'-bipyridine)3(2+). Composite films show efficient photocatalytic activity for HER. Our study highlights the great simplicity of this versatile electrochemical procedure to synthesize photocathodes.

  11. Beam dynamics enhancement due to accelerating field symmetrization in the BNL/SLAC/UCLA 1.6 cell S-band photocathode RF gun

    SciTech Connect

    Palmer, D.T.; Miller, R.H.; Wang, X.J.; Ben-Zvi, I.

    1997-07-01

    A 1.6 cell photocathode S-Band gun developed by the BNL/SLAC/UCLA collaboration is now in operation at the Brookhaven Accelerator Test Facility (ATF). One of the main features of this RF gun is the symmetrization of the RF coupling iris with an identical vacuum pumping port located in the full cell. The effects of the asymmetry caused by the RF coupling iris were experimentally investigated by positioning a metallic plunger at the back wall of the vacuum port iris. The higher order modes produced were studied using electron beamlets with 8-fold symmetry. The 8-fold beamlets were produced by masking the laser beam. These experimental results indicate that the integrated electrical center and the geometrical center of the gun are within 175 {micro}m. Which is within the laser alignment tolerance of 250 {micro}m.

  12. Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications

    SciTech Connect

    Shverdin, M Y; Anderson, S G; Betts, S M; Gibson, D J; Hartemann, F V; Hernandez, J E; Johnson, M; Jovanovic, I; Messerly, M; Pruet, J; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-06-08

    The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps at full width of half-maximum (FWHM) and rise and fall times under 1 ps. The expected pulse energy is 50 {micro}J at 261.75 nm and the spot size diameter of the beam at the photocathode is 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. Spatial shaping is achieved by truncating the beam at the 20% energy level with an iris and relay-imaging the resulting beam profile onto the photocathode. The integration of the system, as well as preliminary laser measurements will be presented.

  13. Enhanced Photocurrent Density by Spin-Coated NiO Photocathodes for N-Annulated Perylene-Based p-Type Dye-Sensitized Solar Cells.

    PubMed

    Li, Xing; Yu, Fengtao; Stappert, Sebastian; Li, Chen; Zhou, Ying; Yu, Ying; Li, Xin; Ågren, Hans; Hua, Jianli; Tian, He

    2016-08-01

    The low photocurrent density of p-type dye-sensitized solar cells (p-DSSCs) has limited the development of high-efficiency tandem cells due to the inadequate light-harvesting ability of sensitizers and the low hole mobility of semiconductors. Hereby, two new "push-pull" type organic dyes (PQ-1 and PQ-2) containing N-annulated perylene as electron donor have been synthesized, where the PQ-2-based p-DSSCs show higher photoelectric conversion efficiency (PCE) of 0.316% owing to the higher molar extinction compared to of that PQ-1. Additionally, the photocurrent densities were remarkably increased from 2.20 to 5.85 mA cm(-2) for PQ-1 and 2.45 to 6.69 mA cm(-2) for PQ-2 by spin-coated NiO photocathode based-p-DSSCs, respectively. This results are ascribed to the enhancement of hole transport rate, dye-loading amounts and transparency of NiO films in comparison to that prepared by screen-printing method. Electrochemical impedance spectroscopy and theoretical calculations studies indicate that the molecular dipole moment approaching closer to the NiO surface shifts the quasi-Fermi level to more positive levels, improving open-circuit voltage (Voc). Intensity-modulated photocurrent spectroscopy illustrates that the hole transit time in NiO films prepared in spin-coating is shorter than that prepared by screen-printing method.

  14. Enhanced Photocurrent Density by Spin-Coated NiO Photocathodes for N-Annulated Perylene-Based p-Type Dye-Sensitized Solar Cells.

    PubMed

    Li, Xing; Yu, Fengtao; Stappert, Sebastian; Li, Chen; Zhou, Ying; Yu, Ying; Li, Xin; Ågren, Hans; Hua, Jianli; Tian, He

    2016-08-01

    The low photocurrent density of p-type dye-sensitized solar cells (p-DSSCs) has limited the development of high-efficiency tandem cells due to the inadequate light-harvesting ability of sensitizers and the low hole mobility of semiconductors. Hereby, two new "push-pull" type organic dyes (PQ-1 and PQ-2) containing N-annulated perylene as electron donor have been synthesized, where the PQ-2-based p-DSSCs show higher photoelectric conversion efficiency (PCE) of 0.316% owing to the higher molar extinction compared to of that PQ-1. Additionally, the photocurrent densities were remarkably increased from 2.20 to 5.85 mA cm(-2) for PQ-1 and 2.45 to 6.69 mA cm(-2) for PQ-2 by spin-coated NiO photocathode based-p-DSSCs, respectively. This results are ascribed to the enhancement of hole transport rate, dye-loading amounts and transparency of NiO films in comparison to that prepared by screen-printing method. Electrochemical impedance spectroscopy and theoretical calculations studies indicate that the molecular dipole moment approaching closer to the NiO surface shifts the quasi-Fermi level to more positive levels, improving open-circuit voltage (Voc). Intensity-modulated photocurrent spectroscopy illustrates that the hole transit time in NiO films prepared in spin-coating is shorter than that prepared by screen-printing method. PMID:27416960

  15. Preparation of porous TiO2/ZnO composite film and its photocathodic protection properties for 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Liu, Wei; Cao, Lixin; Su, Ge; Duan, Ruijing

    2014-05-01

    TiO2/ZnO composite films with porous structure were prepared on the 304 stainless steel (304SS) by the sol-gel method and heating treatment. The crystalline phase and morphology of as-prepared TiO2/ZnO composite films were characterized systematically by X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet-visible (UV-vis) spectroscopy, respectively. The influences of Ti/Zn molar ratio and the annealing temperature on the photoelectric property of the samples have been investigated and their photocathodic protection performances for 304 stainless steel under dark and UV conditions have also been evaluated in 3.0% NaCl solution by the electrochemical measurements. The results indicate that porous TiO2/ZnO composite film has a great enhancement of the light absorption and photoelectric property under UV illumination. This can be ascribed to the mutual effect of TiO2/ZnO heterojunctions and the porous structures in the composite films, which provide a better photogenerated cathodic protection for 304SS.

  16. Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties

    PubMed Central

    2014-01-01

    Nanostructured hybrid thin films of CuSCN and rhodamine B (RB) are electrochemically self-assembled (ESA) by cathodic electrolysis in an ethanol/water mixture containing Cu2+, SCN–, and RB. By selecting the solvent, Cu2+/SCN– ratio, and the concentration of RB, we demonstrate several control parameters in the film formation. High loading of RB into the film has been achieved to reach a CuSCN:RB volume ratio of approximately 2:1. The RB solid could almost completely be extracted from the hybrid film by soaking the film in dimethylacetamide (DMA), leading to a large increase of the surface area. The crystallographic orientation of the nanostructure with respect to the substrate can be controlled. Efficient quenching of fluorescence of RB has been observed for the CuSCN/RB hybrid film, implying hole injection from RB excited state to CuSCN. Photoelectrochemical study on the porous crystalline CuSCN obtained after the DMA treatment and sensitized with RB revealed sensitized photocathodic action under visible light illumination, indicating the potential usefulness of the porous CuSCN electrodes for construction of tandem dye-sensitized solar cells. PMID:25101148

  17. Advance care directives

    MedlinePlus

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  18. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  19. Advanced Composition

    ERIC Educational Resources Information Center

    Sarantos, R. L.

    1974-01-01

    This is an excerpt from a course for advanced students, designed to teach proficiency in English composition by providing activities specifically geared to the elimination of native language interference. (LG)

  20. Enhancing the performances of P3HT:PCBM – MoS3 based H2-evolving photocathodes with interfacial layers

    PubMed Central

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Cornut, Renaud; Artero, Vincent; Jousselme, Bruno

    2015-01-01

    Organic semiconductors have great potential for producing hydrogen in a durable and economically viable manner, as they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photo-electrochemical cells, we combined a noble metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly-(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3. Metallic Al\\Ti interfacial layers led to an increase of the photocurrent up to 8 mA cm−2 at reversible hydrogen electrode (RHE) potential with a 0.6 V anodic shift of the HER onset potential, a value close to the open circuit potential of the P3HT:PCBM solar cell. A 50 nm thick C60 layer also works as interfacial layer, with current density reaching 1 mA cm−2 at RHE potential. Moreover, two recently highlighted1 figures-of-merit, measuring the ratio of power saved, Φsaved,ideal and Φsaved,NPAC, were evaluated and discussed to compare the performances of various photocathodes assessed in a three-electrode configuration. Φsaved,ideal and Φsaved,NPAC use the RHE and a non-photoactive electrode with identical catalyst as dark electrode, respectively. They provide different information especially for the differentiation of the role of the photogenerating layer and the role of the catalyst. Best results were obtained with the Al\\Ti metallic interlayer, with Φsaved,ideal and Φsaved,NPAC reaching 0.64 % and 2.05 % respectively. PMID:26151685

  1. Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes.

    PubMed

    Wang, Huan; Zeng, Xianwei; Huang, Zhanfeng; Zhang, Wenjun; Qiao, Xianfeng; Hu, Bin; Zou, Xiaoping; Wang, Mingkui; Cheng, Yi-Bing; Chen, Wei

    2014-08-13

    The p-n tandem design of a sensitized solar cell is a novel concept holding the potential to overcome the efficiency limitation of conventional single-junction sensitized solar cells. Significant improvement of the photocurrent density (Jsc) of the p-type half-cell is a prerequisite for the realization of a highly efficient p-n tandem cell in the future. This study has demonstrated effective photocathodes based on novel organometal halide perovskite-sensitized mesoporous NiO in liquid-electrolyte-based p-type solar cells. An acceptably high Jsc up to 9.47 mA cm(-2) and efficiency up to 0.71% have been achieved on the basis of the CH3NH3PbI3/NiO solar cell at 100 mW cm(-2) light intensity, which are significantly higher than those of any previously reported liquid-electrolyte-based p-type solar cells based on sensitizers of organic dyes or inorganic quantum dots. The dense blocking layer made by spray pyrolysis of nickel acetylacetonate holds the key to determining the current flow direction of the solar cells. High hole injection efficiency at the perovskite/NiO interface and high hole collection efficiency through the mesoporous NiO network have been proved by time-resolved photoluminescence and transient photocurrent/photovoltage decay measurements. The limitation of these p-type solar cells primarily rests with the adverse light absorption by the NiO mesoporous film; the secondary limitation arises from the highly viscous ethyl acetate-based electrolyte, which is helpful for the solar cell stability but hinders fluent diffusion into the pore channels, giving rise to a nonlinear dependence of Jsc on the light intensity.

  2. Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation.

    PubMed

    Jiang, Feng; Gunawan; Harada, Takashi; Kuang, Yongbo; Minegishi, Tsutomu; Domen, Kazunari; Ikeda, Shigeru

    2015-10-28

    An electrodeposited Cu2ZnSnS4 (CZTS) compact thin film modified with an In2S3/CdS double layer and Pt deposits (Pt/In2S3/CdS/CZTS) was used as a photocathode for water splitting of hydrogen production under simulated sunlight (AM 1.5G) radiation. Compared to platinized electrodes based on a bare CZTS film (Pt/CZTS) and a CZTS film modified with a CdS single layer (Pt/CdS/CZTS), the Pt/In2S3/CdS/CZTS electrode exhibited a significantly high cathodic photocurrent. Moreover, the coverage of the In2S3 layer was found to be effective for stabilization against degradation induced by photocorrosion of the CdS layer. Bias-free water splitting with a power conversion efficiency of 0.28% was achieved by using a simple two-electrode cell consisting of the Pt/In2S3/CdS/CZTS photocathode and a BiVO4 photoanode. PMID:26479423

  3. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  4. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  5. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  6. Advanced computing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Advanced concepts in hardware, software and algorithms are being pursued for application in next generation space computers and for ground based analysis of space data. The research program focuses on massively parallel computation and neural networks, as well as optical processing and optical networking which are discussed under photonics. Also included are theoretical programs in neural and nonlinear science, and device development for magnetic and ferroelectric memories.

  7. Advanced Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  8. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  9. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  10. Sintered wire cesium dispenser photocathode

    SciTech Connect

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  11. Advanced Pacemaker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  12. Advanced Diagnostics for Developing High-Brightness Electron Beams

    SciTech Connect

    Ben-Zvi, I.; Babzien, M.; Malone, R.; Wang, X.-J.; Yakimenko, V.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  13. ADVANCED DIAGNOSTICS FOR DEVELOPING HIGH-BRIGHTNESS ELECTRON BEAMS.

    SciTech Connect

    BEN-ZVI,I.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  14. Performance characteristics of InGaAs/GaAs and GaAs/InGaAlAs coherently strained superlattice photodiodes

    NASA Technical Reports Server (NTRS)

    Das, Utpal; Zebda, Yousef; Bhattacharya, Pallab; Chin, Albert

    1987-01-01

    The properties of In(0.24)Ga(0.76)As/GaAs and GaAs/In(0.05)Ga(0.58)Al(0.37)As superlattice photodiodes grown by molecular beam epitaxy have been investigated. From the temporal response characteristics, deconvolved rise times about 60-100 ps are obtained. The measured responsivities of the photodiodes with dark currents of 5-10 nA at 10 V are about 0.4 A/W, which correspond to peak external quantum efficiencies of about 60 percent. These results indicate that very high performance photodiodes can be realized with strained layers.

  15. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  16. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Parker, R. D.; Buritz, R. S.; Taylor, A. R.; Bullwinkel, E. P.

    1982-11-01

    An experimental development program was conducted to develop and test advanced dielectric materials for capacitors for airborne power systems. High rep rate and low rate capacitors for use in pulse-forming networks, high voltage filter capacitors, and high frequency ac capacitors for series resonant inverters were considered. The initial goal was to develop an improved polysulfone film. Initially, low breakdown strength was thought to be related to inclusions of conductive particles. The effect of filtration of the casting solution was investigated. These experiments showed that more filtration was not the entire solution to low breakdown. The film samples were found to contain dissolved ionic impurities that move through the dielectric when voltage is applied and cause enhancement of the electric field. These contaminants enter the film via the resin and solvent, and can be partially removed. However, these treatments did not significantly improve the breakdown characteristics. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films. this is the first step toward a replacement for kraft paper.

  17. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  18. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  19. Efficient p-type dye-sensitized solar cells with all-nano-electrodes: NiCo2S4 mesoporous nanosheet counter electrodes directly converted from NiCo2O4 photocathodes

    PubMed Central

    2014-01-01

    We report the successful growth of NiCo2S4 nanosheet films converted from NiCo2O4 nanosheet films on fluorine-doped tin oxide substrates by a low-temperature solution process. Low-cost NiCo2S4 and NiCo2O4 nanosheet films were directly used for replacing conventional Pt and NiO as counter electrodes and photocathodes, respectively, to construct all-nano p-type dye-sensitized solar cells (p-DSSCs) with high performance. Compared to Pt, NiCo2S4 showed higher catalytic activity towards the I-/I3- redox in electrolyte, resulting in an improved photocurrent density up to 2.989 mA/cm2, which is the highest value in reported p-DSSCs. Present p-DSSCs demonstrated a cell efficiency of 0.248 % that is also comparable with typical NiO-based p-DSSCs. PMID:25489277

  20. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  1. Advanced midwifery practice or advancing midwifery practice?

    PubMed

    Smith, Rachel; Leap, Nicky; Homer, Caroline

    2010-09-01

    Advanced midwifery practice is a controversial notion in midwifery, particularly at present in Australia. The proposed changes in legislation around access to the publicly funded Medical Benefits Scheme (MBS) and the Pharmaceutical Benefits Scheme (PBS) in 2009-2010 have meant that the issue of advanced midwifery practice has again taken prominence. Linking midwifery access to MBS and PBS to a safety and quality framework that includes an 'advanced midwifery credentialling framework' is particularly challenging. The Haxton and Fahy paper in the December 2009 edition of Women and Birth is timely as it enables a reflection upon these issues and encourages debate and discussion about exactly what is midwifery, what are we educating our students for and is working to the full scope of practice practising at advanced level? This paper seeks to address some of these questions and open up the topic for further debate.

  2. Advance care planning.

    PubMed

    Lo, Bernard

    2004-01-01

    Advance directives allow patients to have some control over decisions even when they are no longer able to make decisions themselves. All states authorize written advance directives, such as the appointment of a health care proxy, but commonly impose procedural requirements. Some states have restricted the use of oral advance directives, although they are frequently used in everyday practice. Advance directives are limited because they are infrequently used, may not be informed, and may conflict with the patient's current best interests. Moreover, surrogates often cannot state patients' preferences accurately. Furthermore, discussions among physicians and patients about advance directives are flawed. Physicians can improve discussions about advance directives by asking the patient who should serve as proxy and by ascertaining the patient's values and general preferences before discussing specific clinical situations. PMID:15538068

  3. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  4. Advancing the educational agenda.

    PubMed

    Baker, Cynthia

    2010-12-01

    This timely paper provides a thought-provoking analysis of current advanced practice nursing education in Canada. It comes at a critical juncture in the evolution of Canadian healthcare services and the redefinition of nursing roles. Increasingly, multiple sectors of society are calling for more nurses with advanced practice preparation and for a wider range of advanced practice nursing specialties. Advanced practice nurses (APNs) are being proposed as a solution to a financially overburdened national healthcare system, the increasing complexity of healthcare services, and a crisis in access to primary healthcare. Thus, governments seeking greater fiscal efficiency, medical specialists needing sophisticated collaborative support, and healthcare consumers see APNs as the way forward.

  5. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  6. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  7. ADVANCED PLACEMENT IN OHIO.

    ERIC Educational Resources Information Center

    Ohio Council on Advanced Placement, Columbus.

    THE DOCUMENT PRESENTS A DESCRIPTION OF THE ADVANCED PLACEMENT PROGRAM IN OHIO. ANSWERS ARE GIVEN TO KEY QUESTIONS ON THE FUNCTION OF ADVANCED PLACEMENT, ACADEMIC AREAS COVERED, PROGRAM ADMINISTRATION, COSTS, BENEFITS, VARIOUS ORGANIZATIONAL PATTERNS, STUDENT PARTICIPANTS, COLLEGES AND UNIVERSITIES IN OHIO AND REPRESENTATIVE NATIONAL INSTITUTIONS…

  8. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  9. Advanced cryo propulsion systems

    NASA Technical Reports Server (NTRS)

    Tabata, William K.

    1991-01-01

    The following topics are presented in viewgraph form: (1) advanced space engine (ASE) chronology; (2) an ASE description; (3) a single expander; (4) a dual expander; (5) split expander; (6) launch vehicle start; (7) space start; (8) chemical transfer propulsion; and (9) an advanced expander test bed.

  10. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  11. Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2004-01-01

    Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.

  12. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  13. Advanced electron microscopy for advanced materials.

    PubMed

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-01

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  14. Advanced biostack experiment

    NASA Technical Reports Server (NTRS)

    Buecker, H.

    1981-01-01

    The Advanced Biostack Experiment is described. The objectives are: (1) to confirm, complement, and enlarge the information obtained from the previous experiments by applying improved and advanced methods of localization and physical and biological evaluation, performing advanced experiments based on these data, and including additional biological specimens and additional radiation detectors; (2) to determine the biological importance of nuclear disintegration stars; (3) to determine the interference of HZE particle induced effects with those of other space flight factors (e.g., weightlessness); and (4) to determine the distribution of HZE particles and of disintegration stars at different locations inside the module and on the pallet.

  15. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  16. Advanced information society(7)

    NASA Astrophysics Data System (ADS)

    Chiba, Toshihiro

    Various threats are hiding in advanced informationalized society. As we see car accident problems in motorization society light aspects necessarily accompy shady ones. Under the changing circumstances of advanced informationalization added values of information has become much higher. It causes computer crime, hacker, computer virus to come to the surface. In addition it can be said that infringement of intellectual property and privacy are threats brought by advanced information. Against these threats legal, institutional and insurance measures have been progressed, and newly security industry has been established. However, they are not adequate individually or totally. The future vision should be clarified, and countermeasures according to the visions have to be considered.

  17. Advances in cancer control

    SciTech Connect

    Anderson, P.N. ); Engstrom, P.F. ); Mortenson, L.E. )

    1989-01-01

    This book contains the proceedings of the sixth annual meeting on Advances in Cancer Control. Included are the following articles: Barriers and facilitators to compliance with routine mammographic screening, Preliminary report of an intervention to improve mammography skills of radiologists.

  18. Descendants and advance directives.

    PubMed

    Buford, Christopher

    2014-01-01

    Some of the concerns that have been raised in connection to the use of advance directives are of the epistemic variety. Such concerns highlight the possibility that adhering to an advance directive may conflict with what the author of the directive actually wants (or would want) at the time of treatment. However, at least one objection to the employment of advance directives is metaphysical in nature. The objection to be discussed here, first formulated by Rebecca Dresser and labeled by Allen Buchanan as the slavery argument and David DeGrazia the someone else problem, aims to undermine the legitimacy of certain uses of advance directives by concluding that such uses rest upon an incorrect assumption about the identity over time of those ostensibly governed by the directives. There have been numerous attempts to respond to this objection. This paper aims to assess two strategies that have been pursued to cope with the problem.

  19. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  20. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  1. Advanced Process Control Experiments.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.; And Others

    1980-01-01

    Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)

  2. Recent Advances in Vibroacoustics

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.

    2002-01-01

    Numerous vibroacoustics advances and impacts in the aerospace industry have occurred over the last 15 years. This article addresses some of these that developed from engineering programmatic task-work at the NASA Glenn Research Center at Lewis Field.

  3. Advanced information society(2)

    NASA Astrophysics Data System (ADS)

    Masuyama, Keiichi

    Our modern life is full of information and information infiltrates into our daily life. Networking of the telecommunication is extended to society, company, and individual level. Although we have just entered the advanced information society, business world and our daily life have been steadily transformed by the advancement of information network. This advancement of information brings a big influence on economy, and will play they the main role in the expansion of domestic demands. This paper tries to view the image of coming advanced information society, focusing on the transforming businessman's life and the situation of our daily life, which became wealthy by the spread of daily life information and the visual information by satellite system, in the development of the intelligent city.

  4. Advanced General Dentistry Program.

    ERIC Educational Resources Information Center

    Barnes, Douglas M.; And Others

    1988-01-01

    A description of the University of Maryland at Baltimore's one-year postdoctoral program in advanced general dentistry focuses on its goals and objectives, curriculum design, patient population, faculty and staff, finances, and program evaluation measures. (MSE)

  5. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  6. Descendants and advance directives.

    PubMed

    Buford, Christopher

    2014-01-01

    Some of the concerns that have been raised in connection to the use of advance directives are of the epistemic variety. Such concerns highlight the possibility that adhering to an advance directive may conflict with what the author of the directive actually wants (or would want) at the time of treatment. However, at least one objection to the employment of advance directives is metaphysical in nature. The objection to be discussed here, first formulated by Rebecca Dresser and labeled by Allen Buchanan as the slavery argument and David DeGrazia the someone else problem, aims to undermine the legitimacy of certain uses of advance directives by concluding that such uses rest upon an incorrect assumption about the identity over time of those ostensibly governed by the directives. There have been numerous attempts to respond to this objection. This paper aims to assess two strategies that have been pursued to cope with the problem. PMID:25743056

  7. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  8. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  9. [Advances in hormonal contraception].

    PubMed

    Villanueva Egan, Luis Alberto; Pichardo Cuevas, Mauricio

    2007-01-01

    This review provides an update regarding newer options in hormonal contraception that include the progestin-releasing intrauterine system, the contraceptive patch and ring, the single rod progestin-releasing implant, extended and emergency oral contraception and recent advances in hormonal male contraception. These methods represent a major advancement in this field, allowing for the development of more acceptable, safety and effective birth control regimens.

  10. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  11. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  12. A direct advance on advance directives.

    PubMed

    Shaw, David

    2012-06-01

    Advance directives (ADs), which are also sometimes referred to as 'living wills', are statements made by a person that indicate what treatment she should not be given in the event that she is not competent to consent or refuse at the future moment in question. As such, ADs provide a way for patients to make decisions in advance about what treatments they do not want to receive, without doctors having to find proxy decision-makers or having recourse to the doctrine of necessity. While patients can request particular treatments in an AD, only refusals are binding. This paper will examine whether ADs safeguard the autonomy and best interests of the incompetent patient, and whether legislating for the use of ADs is justified, using the specific context of the legal situation in the United Kingdom to illustrate the debate. The issue of whether the law should permit ADs is itself dependent on the issue of whether ADs are ethically justified; thus we must answer a normative question in order to answer the legislative one. It emerges that ADs suffer from two major problems, one related to autonomy and one to consent. First, ADs' emphasis on precedent autonomy effectively sentences some people who want to live to death. Second, many ADs might not meet the standard criteria for informed refusal of treatment, because they fail on the crucial criterion of sufficient information. Ultimately, it transpires that ADs are typically only appropriate for patients who temporarily lose physical or mental capacity.

  13. Recruit and ADVANCE

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.

    2007-04-01

    Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.

  14. Copper gallium diselenide photocathodes for solar photoelectrolysis

    NASA Astrophysics Data System (ADS)

    Marsen, Bjorn; Cole, Brian; Dorn, Susanne; Rocheleau, Richard E.; Miller, Eric L.

    2007-09-01

    Copper chalcopyrite films exhibit properties suitable for solar energy conversion processes such as direct bandgap, and excellent carrier transport. To explore the possibilities of solar-powered hydrogen production by photoelectrolysis using these materials, we have synthesized p-type polycrystalline CuGaSe II films by vacuum co-evaporation of the elemental constituents, and performed physical and electrochemical characterizations of the resulting films and electrodes. Based on CuGaSe II material with 1.65 eV bandgap, a 2.2 micron thick electrode exhibited an outdoor 1-sun photocurrent of 16 mA/cm2, while a 0.9 micron thin device still produced 12.6 mA/cm2 in conjunction with vigorous gas evolution. Flatband potential measurements and bias voltage requirements for saturation photocurrents indicate a valence band position to high for practical device implementation. Future photoelectrolysis devices may be based on copper chalcopyrites with lower valence band maximum in conjunction with a suitable auxiliary junction.

  15. Advanced transmission studies

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Bill, Robert C.

    1988-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command share an interest in advancing the technology for helicopter propulsion systems. In particular, this paper presents highlights from that portion of the program in drive train technology and the related mechanical components. The major goals of the program are to increase the life, reliability, and maintainability; reduce the weight, noise, and vibration; and maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for future transmission research is presented.

  16. Advanced Hydrogen Turbine Development

    SciTech Connect

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  17. Advances in craniofacial surgery.

    PubMed

    Tatum, Sherard A; Losquadro, William D

    2008-01-01

    The past 10 years have witnessed many advances in craniofacial surgery. Advances in surgical techniques, such as distraction osteogenesis and endoscopic procedures, combined with refinements in surgical equipment, such as resorbable plating and distractors, have improved surgical outcomes, while minimizing morbidity. Technological advances in 3-dimensional imaging, computer simulation, and intraoperative navigation facilitate diagnosis, preoperative planning, and surgical execution. Rising cases of deformational plagiocephaly owing to increased supine infant sleep positioning necessitated the development of appropriate diagnosis and treatment and the avoidance of unnecessary surgery. A greater understanding of the genetic basis of craniofacial disorders has allowed better preoperative assessment and counseling. Finally, efforts to develop better bone graft substitutes with gene therapy and nanotechnology are ongoing. PMID:19018057

  18. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.

    1974-01-01

    Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.

  19. Advanced servomanipulator development

    SciTech Connect

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  20. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  1. CONDOR Advanced Visionics System

    NASA Astrophysics Data System (ADS)

    Kanahele, David L.; Buckanin, Robert M.

    1996-06-01

    The Covert Night/Day Operations for Rotorcraft (CONDOR) program is a collaborative research and development program between the governments of the United States and the United Kingdom of Great Britain and Northern Ireland to develop and demonstrate an advanced visionics concept coupled with an advanced flight control system to improve rotorcraft mission effectiveness during day, night, and adverse weather conditions in the Nap- of-the-Earth environment. The Advanced Visionics System for CONDOR is the flight- ruggedized head mounted display and computer graphics generator with the intended use of exploring, developing, and evaluating proposed visionic concepts for rotorcraft including; the application of color displays, wide field-of-view, enhanced imagery, virtual displays, mission symbology, stereo imagery, and other graphical interfaces.

  2. Advanced quantum noise correlations

    NASA Astrophysics Data System (ADS)

    Vogl, Ulrich; Glasser, Ryan T.; Clark, Jeremy B.; Glorieux, Quentin; Li, Tian; Corzo, Neil V.; Lett, Paul D.

    2014-01-01

    We use the quantum correlations of twin beams of light to investigate the fundamental addition of noise when one of the beams propagates through a fast-light medium based on phase-insensitive gain. The experiment is based on two successive four-wave mixing processes in rubidium vapor, which allow for the generation of bright two-mode-squeezed twin beams followed by a controlled advancement while maintaining the shared quantum correlations between the beams. The demonstrated effect allows the study of irreversible decoherence in a medium exhibiting anomalous dispersion, and for the first time shows the advancement of a bright nonclassical state of light. The advancement and corresponding degradation of the quantum correlations are found to be operating near the fundamental quantum limit imposed by using a phase-insensitive amplifier.

  3. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  4. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  5. Advanced solar dynamic technology program

    NASA Technical Reports Server (NTRS)

    Calogeras, James

    1990-01-01

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  6. MR Neurography: Advances

    PubMed Central

    Chhabra, Avneesh; Zhao, Lianxin; Carrino, John A.; Trueblood, Eo; Koceski, Saso; Shteriev, Filip; Lenkinski, Lionel; Sinclair, Christopher D. J.; Andreisek, Gustav

    2013-01-01

    High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration. PMID:23589774

  7. Advances in attosecond science

    NASA Astrophysics Data System (ADS)

    Calegari, Francesca; Sansone, Giuseppe; Stagira, Salvatore; Vozzi, Caterina; Nisoli, Mauro

    2016-03-01

    Attosecond science offers formidable tools for the investigation of electronic processes at the heart of important physical processes in atomic, molecular and solid-state physics. In the last 15 years impressive advances have been obtained from both the experimental and theoretical points of view. Attosecond pulses, in the form of isolated pulses or of trains of pulses, are now routinely available in various laboratories. In this review recent advances in attosecond science are reported and important applications are discussed. After a brief presentation of various techniques that can be employed for the generation and diagnosis of sub-femtosecond pulses, various applications are reported in atomic, molecular and condensed-matter physics.

  8. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  9. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  10. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  11. Avionics advanced development strategy

    NASA Technical Reports Server (NTRS)

    Dyer, D.

    1990-01-01

    Discussed here is the problem of how to put together an integrated, phased, and affordable avionics advanced development program that links and applies to operational, evolving, and developing programs/vehicles, as well as those in the planning phases. Collecting technology needs from individual programs/vehicles and proposed technology items from individual developers usually results in a mismatch and something that is unaffordable. A strategy to address this problem is outlined with task definitions which will lead to avionics advanced development items that will fit within an overall framework, prioritized to support budgeting, and support the scope of NASA space transportations needs.

  12. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  13. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  14. Advanced Neuroimaging of Tinnitus.

    PubMed

    Raghavan, Prashant; Steven, Andrew; Rath, Tanya; Gandhi, Dheeraj

    2016-05-01

    Although tinnitus may originate in damage to the peripheral auditory apparatus, its perception and distressing symptomatology are consequences of alterations to auditory, sensory, and limbic neural networks. This has been described in several studies, some using advanced structural MR imaging techniques such as diffusion tensor imaging. An understanding of these complex changes could enable development of targeted treatment. New MR imaging techniques enabling detailed depiction of the labyrinth may be useful when diagnosis of Meniere disease is equivocal. Advances in computed tomography and MR imaging have enabled noninvasive diagnosis of dural arteriovenous fistulae. PMID:27154611

  15. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  16. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  17. Advanced subsonic transport propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Ciepluch, C. C.; Chamberlain, R.; Meleason, E. T.; Kraft, G. A.

    1981-01-01

    A brief review of the current NASA Energy Efficient Engine (E(3)) Project is presented. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E(3) engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. The potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented.

  18. Advances in surgery.

    PubMed

    Weder, W

    2012-09-01

    In the last decade, technological advances, new staging tools, better understanding the role of surgery within multimodal treatment concepts in advanced stages and progress in the functional assessment of surgical candidates improved the quality of surgery in the management of patients with lung cancer. Lung resection with video-assisted thoracoscopic access gained wide acceptance, the indication for lobectomy or sublobar resection in early stages was applied based on new data and selection for multimodal treatment in stage III is better understood based on the data. a major impact on the outcome of patients with lung cancer has the treatment in specialized high-volume centers.

  19. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  20. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  1. Advanced Cell Technology, Inc.

    PubMed

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  2. Advanced Combustion Engineering.

    ERIC Educational Resources Information Center

    Bartholomew, Calvin H.

    1987-01-01

    Describes the development of the Advanced Combustion Engineering Research Center (ACERC), which is a cooperative project of Brigham Young University, the University of Utah, and 25 governmental and industrial research laboratories. Discusses the research objectives, the academic program, the industrial relations and technology transfer program,…

  3. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  4. Oklahoma's Advanced School Funding.

    ERIC Educational Resources Information Center

    Green, Gary

    A new means of funding school operations known as advanced school funding allows Oklahoma schools financing during the temporary cash shortfalls. The program consists of the Oklahoma Development Authority issuing revenue bonds purchased by E. F. Hutton and Company, Inc., which then sells the tax free bonds to investors throughout the country. A…

  5. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  6. Advances in Distance Learning.

    ERIC Educational Resources Information Center

    1999

    This document contains three symposium papers on advances in distance learning. "The Adoption of Computer Technology and Telecommunications: A Case Study" (Larry M. Dooley, Teri Metcalf, Ann Martinez) reports on a study of the possible applications of two theoretical models (Rogers' Diffusion of Innovations model and the Concerns-Based Adoption…

  7. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  8. Advances in Helium Cryogenics

    NASA Astrophysics Data System (ADS)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  9. Advancing beyond AP Courses

    ERIC Educational Resources Information Center

    Hammond, Bruce G.

    2009-01-01

    A quiet revolution is picking up steam in the nation's private secondary schools, with broad implications for college admissions and for teaching and learning on both sides of the transition from high school to college. About 50 of the nation's leading college-preparatory schools have opted out of the College Board's Advanced Placement (AP)…

  10. The Advancement Checkup.

    ERIC Educational Resources Information Center

    Sanders, Joseph

    1993-01-01

    It is proposed that an external audit of a college advancement program is analogous to a periodic physical examination that offers objectivity and expertise. Audits are appropriate at the time of administrative transitions, performance difficulties, and even periods of sustained success. Guidelines and expectations are discussed. (MSE)

  11. Advanced intrarenal ureteroscopic procedures.

    PubMed

    Monga, Manoj; Beeman, William W

    2004-02-01

    The role of flexible ureteroscopy in the management of intrarenal pathology has undergone a dramatic evolution, powered by improvements in flexible ureteroscope design; deflection and image quality; diversification of small, disposable instrumentation; and the use of holmium laser lithotripsy. This article reviews the application of flexible ureteroscopy for advanced intrarenal procedures.

  12. Advanced Heart Failure

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Advanced Heart Failure Updated:Oct 8,2015 When heart failure (HF) ... content was last reviewed on 04/06/2015. Heart Failure • Home • About Heart Failure • Causes and Risks for ...

  13. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  14. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  15. Advanced Cardiac Life Support.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  16. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  17. The Teacher Advancement Program.

    ERIC Educational Resources Information Center

    Schiff, Tamara W.

    2002-01-01

    This publication contains two essays discussing the Teacher Advancement Program (TAP) and a criticism of merit pay for teachers. Today's schools are larger, often overcrowded, and frequently staffed by temporary or inexperienced teachers. TAP was created in response to the need for teacher-quality reform. It addresses challenges of teacher quality…

  18. Interfaces for Advanced Computing.

    ERIC Educational Resources Information Center

    Foley, James D.

    1987-01-01

    Discusses the coming generation of supercomputers that will have the power to make elaborate "artificial realities" that facilitate user-computer communication. Illustrates these technological advancements with examples of the use of head-mounted monitors which are connected to position and orientation sensors, and gloves that track finger and…

  19. Advancement's Sticky Issues

    ERIC Educational Resources Information Center

    Jackson, Patricia

    2011-01-01

    The author did not expect to be surprised or disturbed by the data from the latest Council for Advancement and Support of Education (CASE) salary survey; however, she was. CASE has been conducting the survey since 1982, so she assumed the findings would mirror her own salary history and those of her peers. While she suspected that older women…

  20. Advanced Gas Turbine (AGT)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.

  1. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  2. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  3. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  4. Infant Development: Recent Advances.

    ERIC Educational Resources Information Center

    Bremner, Gavin, Ed.; Slater, Alan, Ed.; Butterworth, George, Ed.

    Noting that the last 30 years have seen enormous increases in the understanding of infancy, this book examines the current state of knowledge regarding infant development. The book's contents stem from meetings of the British Infancy Research Group. Although the book was intended for advanced undergraduates, it would also be useful for advanced…

  5. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  6. Advances in fetal surgery

    PubMed Central

    Pedreira, Denise Araujo Lapa

    2016-01-01

    ABSTRACT This paper discusses the main advances in fetal surgical therapy aiming to inform health care professionals about the state-of-the-art techniques and future challenges in this field. We discuss the necessary steps of technical evolution from the initial open fetal surgery approach until the development of minimally invasive techniques of fetal endoscopic surgery (fetoscopy). PMID:27074241

  7. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  8. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  9. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  10. Therapeutic advances in dystonia.

    PubMed

    Albanese, Alberto; Romito, Luigi M; Calandrella, Daniela

    2015-09-15

    Knowledge on dystonia has greatly improved recently, because of a renewed effort in understanding its cause, pathophysiology, and clinical characterization. Different drug classes traditionally have been used for the symptomatic treatment of dystonia, more recently surpassed by the introduction of botulinum neurotoxins and deep brain stimulation. No curative or disease-modifying treatments are available. Recent knowledge regarding the pathophysiology of inherited dystonias is highlighting new potential treatment strategies. We review therapeutic advances in dystonia that have been published over the last 3 years, particularly regarding oral medications, local injections of botulinum neurotoxins, deep brain stimulation, and transcranial or epidural brain stimulations. We discuss evidence of efficacy, highlight recent advances, and focus on key areas under development. PMID:26301801

  11. Advances in Estuarine Physics

    NASA Astrophysics Data System (ADS)

    Maccready, Parker; Geyer, W. Rockwell

    2010-01-01

    Recent advances in our understanding of estuarine circulation and salinity structure are reviewed. We focus on well- and partially mixed systems that are long relative to the tidal excursion. Dynamics of the coupled system of width- and tidally averaged momentum and salt equations are now better understood owing to the development of simple numerical solution techniques. These have led to a greater appreciation of the key role played by the time dependency of the length of the salt intrusion. Improved realism in simplified tidally averaged physics has been driven by simultaneous advances in our understanding of the detailed dynamics within the tidal cycle and across irregular channel cross-sections. The complex interactions of turbulence, stratification, and advection are now understood well enough to motivate a new generation of physically plausible mixing parameterizations for the tidally averaged equations.

  12. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  13. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  14. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  15. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  16. Advanced Rotorcraft Transmission Program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The U.S. Army/NASA Advanced Rotorcraft Transmission (ART) program is charged with developing and demonstrating a light, quiet, and durable drivetrain for next-generation rotorcraft in two classes: a 10,000-20,000 Future Attack Air Vehicle capable of both tactical ground support and air-to-air missions, and a 60,000-80,000 lb Advanced Cargo Aircraft, for heavy-lift field-support operations. Specific ART objectives encompass a 25-percent reduction in drivetrain weight, a 10-dB noise level reduction at the transmission source, and the achievement of a 5000-hr MTBF. Four candidate drivetrain systems have been carried to a conceptual design stage, together with projections of their mission performance and life-cycle costs.

  17. Advanced steel reheat furnace

    SciTech Connect

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  18. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation. PMID:25345035

  19. Therapeutic advances in dystonia.

    PubMed

    Albanese, Alberto; Romito, Luigi M; Calandrella, Daniela

    2015-09-15

    Knowledge on dystonia has greatly improved recently, because of a renewed effort in understanding its cause, pathophysiology, and clinical characterization. Different drug classes traditionally have been used for the symptomatic treatment of dystonia, more recently surpassed by the introduction of botulinum neurotoxins and deep brain stimulation. No curative or disease-modifying treatments are available. Recent knowledge regarding the pathophysiology of inherited dystonias is highlighting new potential treatment strategies. We review therapeutic advances in dystonia that have been published over the last 3 years, particularly regarding oral medications, local injections of botulinum neurotoxins, deep brain stimulation, and transcranial or epidural brain stimulations. We discuss evidence of efficacy, highlight recent advances, and focus on key areas under development.

  20. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  1. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  2. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  3. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  4. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  5. Recent Advances in Voltammetry.

    PubMed

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-06-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'. PMID:26246984

  6. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  7. Advances in Oral Coagulants

    PubMed Central

    2013-01-01

    This article reviews current and future treatment practices concerning oral anticoagulants. In the second decade of the 21st millennium clinicians can finally treat thrombotic disease with long-awaited new oral anticoagulant medications. In addition, improvements have been made in managing warfarin, the traditional but far from obsolete medication. The first part of this review will cover current advances with warfarin treatment. The second portion will discuss specific active coagulation factor inhibitors, the new oral anticoagulants.

  8. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  9. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  10. Advances in photovoltaic technology

    NASA Technical Reports Server (NTRS)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  11. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  12. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  13. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  14. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  15. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  16. Therapeutic advances in immunosuppression.

    PubMed Central

    Thomson, A W; Forrester, J V

    1994-01-01

    Immunosuppressive therapy is appropriate for the prevention or reversal of allograft rejection, and for the treatment of autoimmune disorders and allergic disease. Recent advances in our understanding of the cellular and molecular mechanisms that regulate immune responses have paralleled elucidation of the modes of action of a variety of therapeutic immunosuppressive agents, both 'old' and new. These developments have identified potential targets for more refined and specific intervention strategies that are now being tested in the clinic. PMID:7994898

  17. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  18. Recent advances in dermoscopy

    PubMed Central

    Russo, Teresa; Piccolo, Vincenzo; Lallas, Aimilios; Argenziano, Giuseppe

    2016-01-01

    The use of dermoscopy has offered a new morphological dimension of skin lesions and has provided an effective diagnostic tool to differentiate melanoma from other benign or malignant skin tumors but also to support the clinical diagnosis in general dermatology. The aim of this article is to provide an overview of the most recent and important advances in the rising world of dermoscopy. PMID:26949523

  19. Advanced turboprop vibratory characteristics

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Fulton, G. B.

    1984-01-01

    The assembly of SR5 advanced turboprop blades to develop a structural dynamic data base for swept props is reported. Steady state blade deformation under centrifugal loading and vibratory characteristics of the rotor assembly were measured. Vibration was induced through a system of piezoelectric crystals attached to the blades. Data reduction procedures are used to provide deformation, mode shape, and frequencies of the assembly at predetermined speeds.

  20. Advanced concentrator panels

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Bedard, R. J., Jr.

    1981-01-01

    The prototype fabrication of a lightweight, high-quality cellular glass substrate reflective panel for use in an advanced point-focusing solar concentrator was completed. The reflective panel is a gore shaped segment of an 11-m paraboloidal dish. The overall concentrator design and the design of the reflective panels are described. prototype-specific panel design modifications are discussed and the fabrication approach and procedure outlined.

  1. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  2. Advances in Laryngoscopy.

    PubMed

    Aziz, Michael

    2015-01-01

    Recent technological advances have made airway management safer. Because difficult intubation remains challenging to predict, having tools readily available that can be used to manage a difficult airway in any setting is critical. Fortunately, video technology has resulted in improvements for intubation performance while using laryngoscopy by various means. These technologies have been applied to rigid optical stylets, flexible intubation scopes, and, most notably, rigid laryngoscopes. These tools have proven effective for the anticipated difficult airway as well as the unanticipated difficult airway.

  3. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  4. Advanced battery development

    SciTech Connect

    Diegle, R.B.; McWilliams, J.Y.

    1989-01-01

    In order to promote national security by ensuring that the United States has an adequate supply of safe, assured, affordable, and environmentally acceptable energy, the Storage Batteries Division at Sandia National Laboratories (SNL), Albuquerque, is responsible for engineering development of advanced rechargeable batteries for energy applications. This effort is conducted within the Exploratory Battery Technology Development and Testing (ETD) Lead center, whose activities are coordinated by staff within the Storage Batteries Division. The ETD Project, directed by SNL, is supported by the US Department of Energy, Office of Energy Systems Research, Energy Storage and Distribution Division (DOE/OESD). SNL is also responsible for technical management of the Electric Vehicle Advanced Battery Systems (EV-ABS) Development Project, which is supported by the US Department Of Energy's Office of Transportation Systems (OTS). The ETD Project is operated in conjunction with the Technology Base Research (TBR) Project, which is under the direction of Lawrence Berkeley Laboratory. Together these two projects seek to: establish the scientific feasibility of advanced electrochemical energy storage systems, and conduct the initial engineering development on systems suitable for mobile and stationary commercial applications. 6 figs.

  5. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  6. [Advanced sleep phase syndrome].

    PubMed

    Ondzé, B; Espa, F; Ming, L C; Chakkar, B; Besset, A; Billiard, M

    2001-11-01

    The Advanced Sleep Phase Syndrome (ASPS) is a sleep disorder characterized by an early sleep onset and early awakening without any disturbance of the sleep structure. The management of this disease requires clinical and laboratory investigations in an attempt to confirm the phase advance of body core temperature and melatonin rhythm. The use of light therapy, possibly associated with chronotherapy or melatonin intake has been proposed. The evolution is variable. Seven subjects, aged 15 to 72 were diagnosed in our sleep disorders unit by mean of sleep log, actigraphy, sleep and temperature recording. The sleep onset and sleep offset times were approximately the same according to sleep log, actigraphy and night polysomnography. The nadir of body core temperature was at 01:38 +/- 01:03. Two familial cases were identified of which 1 was investigated in constant routine condition with hourly blood sampling. An advanced phase of melatonin and cortisol was evidenced. The disease temporarily improved in 3 cases with light therapy and in one case with the association of light therapy and chronotherapy. These data show the difficulties of the management and the treatment of this rarely diagnosed disease. PMID:11924025

  7. Advanced Microturbine Systems

    SciTech Connect

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  8. Advanced gearbox technology

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

    1987-01-01

    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

  9. Accelerating advanced-materials commercialization

    NASA Astrophysics Data System (ADS)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  10. TIMSS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    The "TIMSS Advanced 2015 Assessment Frameworks" provides the foundation for the two international assessments to take place as part of the International Association for the Evaluation of Educational Achievement's TIMSS (Trends in International Mathematics and Science Study) Advanced 2015--Advanced Mathematics and Physics. Chapter 1 (Liv…

  11. TIMSS Advanced 2008 Assessment Frameworks

    ERIC Educational Resources Information Center

    Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka

    2006-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…

  12. Advances in ice mechanics - 1987

    SciTech Connect

    Chung, J.S.; Hallam, S.D.; Maatanen, M.; Sinha, N.K.; Sodhi, D.S.

    1987-01-01

    This book presents the papers given at a symposium on the interaction of icebergs with offshore platforms. Topics considered at the symposium included advances in ice mechanics in the United Kingdom, ice mechanics in Finland, recent advances in ice mechanics in Canada, advances in sea ice mechanics in the USA, foundations, monitoring, hazards, risk assessment, and deformation.

  13. Criteria for Evaluating Advancement Programs.

    ERIC Educational Resources Information Center

    Heemann, Warren, Ed.

    Criteria for evaluating college and university advancement programs are presented, based on the efforts of professional area trustees and advisory committees of the Council for Advancement and Support of Education (CASE). The criteria can be useful in three ways: as the basis of internal audits of advancement programs or program components; as the…

  14. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  15. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  16. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  17. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  18. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  19. Advanced PDV velocity extraction

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Ao, Tommy; Furnish, Michael

    2015-06-01

    While PDV has become a standard diagnostic, reliable velocity extraction remains challenging. Measurements with multiple real/apparent velocities are intrinsically difficult to analyze, and overlapping frequency components invalidate standard extraction methods. This presentation describes an advanced analysis technique where overlapping frequency components are resolved in the complex Fourier spectrum. Practical matters--multiple region of interest selection, component intersection, and shock transitions--will also be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  20. Advances in Therapeutic Cholangioscopy

    PubMed Central

    Moura, Renata Nobre; de Moura, Eduardo Guimarães Hourneaux

    2016-01-01

    Nowadays, cholangioscopy is an established modality in diagnostic and treatment of pancreaticobiliary diseases. The more widespread use and the recent development of new technologies and accessories had renewed the interest of endoscopic visualization of the biliary tract, increasing the range of indications and therapeutic procedures, such as diagnostic of indeterminate biliary strictures, lithotripsy of difficult bile duct stones, ablative techniques for intraductal malignancies, removal of foreign bodies and gallbladder drainage. These endoscopic interventions will probably be the last frontier in the near future. This paper presents the new advances in therapeutic cholangioscopy, focusing on the current clinical applications and on research areas. PMID:27403156

  1. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  2. Advances in Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Frois, B.

    2005-04-01

    This paper briefly reviews the next generations of nuclear reactors and the perspectives of development of nuclear energy. Advanced reactors will progressively replace the existing ones during the next two decades. Future systems of the fourth generation are planned to be built beyond 2030. These systems have been studied in the framework of the "Generation IV" International Forum. The goals of these systems is to have a considerable increase in safety, be economically competitive and produce a significantly reduced volume of nuclear wastes. The closed fuel cycle is preferred.

  3. Advanced Optical Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Michael, Xuejun

    The following article describes an advanced dense wavelength division multiplexing (DWDM) Optical Network developed by L-3 Photonics. The network, configured as an amplified optical bus, carries traffic simultaneously in both directions, using multiple wavelengths. As a result, data distribution is of the form peer-to-multi-peer, it is protocol independent, and it is scalable. The network leverages the rapid growth in commercial optical technologies, including wavelength division multiplexing (WDM), and when applied to military and commercial platforms such as aircraft, ships, unmanned and other vehicles, provides a cost-effective, low-weight, high-speed, and high noise-immune data distribution system.

  4. Horizontal Advanced Tensiometer

    SciTech Connect

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  5. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  6. Advances in optoelectronic oscillators

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain M.; Saleh, Khaldoun; Lin, Guoping; Matinenghi, Romain; Chembo, Yanne K.

    2016-02-01

    Optoelectronic oscillators are used for a wide variety of applications in microwave photonics. We here report the latest advances in this technology from our research group, with emphasis on the analysis of phase noise performance. We present a stochastic modelling approach for phase noise performance analysis of optoelectronic oscillators based on whispering gallery mode resonators and/or optical fiber delay lines, and the theory is complemented with experimental measurements. We provide a detailed theoretical analysis which enables us to find the stationary states of the system as well as their stability. Our calculations also permit to find explicit formulas for the phase noise spectra, thereby allowing for their optimization.

  7. Advanced soldering processes

    SciTech Connect

    Jellison, J.L.; Golden, J.; Frear, D.R.; Hosking, F.M.; Keicher, D.M.; Yost, F.G.

    1993-02-20

    Advanced soldering processes are discussed in a complete manner. The ability to meet the needs of electronic manufacturing, while addressing the environmental issues are challenging goals. Government regulations mandate the elimination of most solvents in solder flux removal. Alternative approaches to promoting wetting are discussed. Inert atmosphere soldering, acid vapor fluxless soldering, atomic and ionic hydrogen as reactive atmospheres, fluxless laser soldering in a controlled atmosphere are offered as soldering mechanisms for the future. Laser are discussed as alternate heat sources. Various types of lasers, advantages of lasers, and fiber optic beam delivery are considered.

  8. Advance Care Planning

    Cancer.gov

    The thirteenth module of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study: Cultural Considerations When Caring for African Americans explores the attitudes and practices of African Americans related to completion of advance directives, and recommends effective strategies to improve decision-making in the setting of serious, life-threatening illness, in ways that augment patient autonomy and support patient-centered goal-setting and decision-making among African American patients and their families.

  9. Advanced Turboprop Project

    NASA Technical Reports Server (NTRS)

    Hager, Roy D.; Vrabel, Deborah

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  10. Advanced turboprop project

    SciTech Connect

    Hager, R.D.; Vrabel, D.

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  11. Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris

    2007-01-01

    The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.

  12. The Milstar Advanced Processor

    NASA Astrophysics Data System (ADS)

    Tjia, Khiem-Hian; Heely, Stephen D.; Morphet, John P.; Wirick, Kevin S.

    The Milstar Advanced Processor (MAP) is a 'drop-in' replacement for its predecessor which preserves existing interfaces with other Milstar satellite processors and minimizes the impact of such upgrading to already-developed application software. In addition to flight software development, and hardware development that involves the application of VHSIC technology to the electrical design, the MAP project is developing two sophisticated and similar test environments. High density RAM and ROM are employed by the MAP memory array. Attention is given to the fine-pitch VHSIC design techniques and lead designs used, as well as the tole of TQM and concurrent engineering in the development of the MAP manufacturing process.

  13. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  14. Advanced PFBC transient analysis

    SciTech Connect

    White, J.S.; Bonk, D.L.

    1997-05-01

    Transient modeling and analysis of advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigation by the US Department of Energy`s Federal Energy Technology Center (FETC). The object of the effort is to identify key operating parameters that affect plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX{trademark}, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper describes the development of a series of TRAX-based transient models of advanced PFBC power plants. These power plants burn coal or other suitable fuel in a PFBC, and the high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When it is utilized, the low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to raise and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

  15. Advances in speech processing

    NASA Astrophysics Data System (ADS)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  16. Advanced geothermal technologies

    NASA Astrophysics Data System (ADS)

    Whetten, J. T.; Murphy, H. D.; Hanold, R. J.; Myers, C. W.; Dunn, J. C.

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the U.S. Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico was producing 10 MW thermal, and still climbing, proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction was demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive.

  17. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  18. Advances in Capsule Endoscopy

    PubMed Central

    Scott, Ryan

    2015-01-01

    Wireless video capsule endoscopy (VCE) is a minimally invasive technology that has revolutionized the approach to small intestinal disease investigation and management. Designed primarily to provide diagnostic imaging of the small intestine, VCE is used predominantly for obscure gastrointestinal bleeding and suspected Crohn’s disease; however, numerous other indications have been established, including the assessment of celiac disease, investigation of small bowel tumors, and surveillance of hereditary polyposis syndromes. Since the introduction of small bowel VCE in 2000, more than 1600 articles have been published describing the evolution of this technology. The main adverse outcome is capsule retention, which can potentially be avoided by careful patient selection or by using a patency capsule. Despite the numerous advances in the past 15 years, limitations such as incomplete VCE studies, missed lesions, and time-consuming reporting remain. The inability to control capsule movement for the application of targeted therapy or the acquisition of tissue for histologic analysis remains among the greatest challenges in the further development of capsule technology. This article outlines the recent technological and clinical advances in VCE and the future directions of research in this field. PMID:27482183

  19. Advances in Capsule Endoscopy.

    PubMed

    Scott, Ryan; Enns, Robert

    2015-09-01

    Wireless video capsule endoscopy (VCE) is a minimally invasive technology that has revolutionized the approach to small intestinal disease investigation and management. Designed primarily to provide diagnostic imaging of the small intestine, VCE is used predominantly for obscure gastrointestinal bleeding and suspected Crohn's disease; however, numerous other indications have been established, including the assessment of celiac disease, investigation of small bowel tumors, and surveillance of hereditary polyposis syndromes. Since the introduction of small bowel VCE in 2000, more than 1600 articles have been published describing the evolution of this technology. The main adverse outcome is capsule retention, which can potentially be avoided by careful patient selection or by using a patency capsule. Despite the numerous advances in the past 15 years, limitations such as incomplete VCE studies, missed lesions, and time-consuming reporting remain. The inability to control capsule movement for the application of targeted therapy or the acquisition of tissue for histologic analysis remains among the greatest challenges in the further development of capsule technology. This article outlines the recent technological and clinical advances in VCE and the future directions of research in this field. PMID:27482183

  20. Advanced Stirling Convertor Update

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  1. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  2. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  3. Advanced composites technology

    SciTech Connect

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  4. Advancing empirical resilience research.

    PubMed

    Kalisch, Raffael; Müller, Marianne B; Tüscher, Oliver

    2015-01-01

    We are delighted by the broad, intense, and fruitful discussion in reaction to our target article. A major point we take from the many comments is a prevailing feeling in the research community that we need significantly and urgently to advance resilience research, both by sharpening concepts and theories and by conducting empirical studies at a much larger scale and with a much more extended and sophisticated methodological arsenal than is the case currently. This advancement can be achieved only in a concerted international collaborative effort. In our response, we try to argue that an explicitly atheoretical, purely observational definition of resilience and a transdiagnostic, quantitative study framework can provide a suitable basis for empirically testing different competing resilience theories (sects. R1, R2, R6, R7). We are confident that it should be possible to unite resilience researchers from different schools, including from sociology and social psychology, behind such a pragmatic and theoretically neutral research strategy. In sections R3 to R5, we further specify and explain the positive appraisal style theory of resilience (PASTOR). We defend PASTOR as a comparatively parsimonious and translational theory that makes sufficiently concrete predictions to be evaluated empirically. PMID:26815844

  5. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  6. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  7. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  8. Advanced desiccant materials research

    SciTech Connect

    Czanderna, A.W.; Thomas, T.M.

    1986-05-01

    The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

  9. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  10. Advances in orthodontics.

    PubMed

    Cunningham, Susan J; Jones, Steven P; Hodges, Samantha J; Horrocks, Elisabeth N; Hunt, Nigel P; Moseley, Howard C; Noar, Joseph H

    2002-01-01

    There has been tremendous progress in orthodontics since Edward Angle first popularised the fixed orthodontic appliance at the turn of the century. Recent years have seen an increased demand for orthodontic treatment from both adolescents and adults and, in addition, patient and clinician expectations of treatment outcomes continue to rise. A desire for more aesthetic materials has resulted in both smaller and 'tooth-coloured' appliances. Improvements in technology, often outside orthodontics, have also led to the development of new materials. The best example of this was the development of nickel titanium alloy by the NASA space programme, which was subsequently adapted for use in nickel titanium archwires. Other technological advances adopted for use in orthodontics include magnets, computerised imaging systems and distraction osteogenesis. This review paper looks at some of the innovations in the fields of materials as well as in techniques and appliance systems.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  12. Advanced night vision goggles

    NASA Astrophysics Data System (ADS)

    Thacker, Clinton

    2003-02-01

    The Advanced Night Vision Goggle (ANVG) program is developing integrated wide field of view (WFOV) helmet-mounted image intensifier night vision goggle systems. ANVG will provide a FOV of approximately 40° (vertical) × 100° (horizontal) and an integrated heads-up display for overlay of flight symbology and/or FLIR imagery. The added FLIR complements the I2 imagery in out of the window or ground applications. ANVG will significantly improve safety, situational awareness, and mission capabilities in differing environments. ANVG achieves the ultra wide FOV using four image intensifier tubes in a head-mounted configuration. Additional features include a miniature flat panel display and a lightweight uncooled FLIR. The integrated design will demonstrate the capability of helmet-mounted I2 and FLIR image fusion. Fusion will be accomplished optically and will offer significant opportunities for ground applications. This paper summarizes the basic technologies, lessons learned, and program status.

  13. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  14. Advanced Telemetry Data Capturing

    SciTech Connect

    Paschke, G.A.

    2000-05-16

    This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

  15. Advanced laser image recorder.

    PubMed

    Gramenopoulos, N; Hartfield, E D

    1972-12-01

    A laser image recorder is described, which is unique because of its advanced design and the state-of-the-art components employed to achieve high performance and versatility. The critical components are the pyramidal mirror scanner and the beam focusing lens. The scanner has a six-facet, beryllium mirror accurate to 0.33 sec of arc and rotating at 0-50,000 rpm on air bearings. A rapid change in speed is an important feature of this scanner. The focusing lens is diffraction limited with a flat field of 54 degrees , allowing a 90% duty cycle and the use of photographic film transported by a cylindrical drum. The lens converts the constant angular velocity of the reflected beam to a constant scanning velocity of the focused spot with a linearity of 0.05%. Maximum number of picture elements per line is 36,800 over a format of 228.6 mm. PMID:20119408

  16. Advances in Bioconjugation

    PubMed Central

    Kalia, Jeet; Raines, Ronald T.

    2010-01-01

    Bioconjugation is a burgeoning field of research. Novel methods for the mild and site-specific derivatization of proteins, DNA, RNA, and carbohydrates have been developed for applications such as ligand discovery, disease diagnosis, and high-throughput screening. These powerful methods owe their existence to the discovery of chemoselective reactions that enable bioconjugation under physiological conditions—a tremendous achievement of modern organic chemistry. Here, we review recent advances in bioconjugation chemistry. Additionally, we discuss the stability of bioconjugation linkages—an important but often overlooked aspect of the field. We anticipate that this information will help investigators choose optimal linkages for their applications. Moreover, we hope that the noted limitations of existing bioconjugation methods will provide inspiration to modern organic chemists. PMID:20622973

  17. Biotechnological advances in Lilium.

    PubMed

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M

    2016-09-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.

  18. Recent advances in VECSELs

    NASA Astrophysics Data System (ADS)

    Rahimi-Iman, Arash

    2016-09-01

    Within the last two decades, vertical-external-cavity surface-emitting lasers (VECSELs) have attracted rising interest from both industry and science. They have proven to be versatile lasers which can be specifically designed for research and applications that require a particular regime of operation. Various emission schemes ranging from narrow-linewidth emission, pulsed light or multimode emission to a frequency-converted output are feasible owing to remarkable device features. Being composed of a semiconductor gain mirror and an external cavity, not only is a unique access to high-brightness output and a high-beam quality is provided, but also wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the accessible spectral range from the ultraviolet (UV) to the terahertz (THz). In this work, recent advances in the field of VECSELs are highlighted.

  19. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  20. Room for advancement

    SciTech Connect

    Carrio, L.A. ); Sharpe, R. ); Bizzarri, R.E. ); Wilson, T.E. )

    1993-12-01

    The advanced biological nutrient removal (ABNR) process is a viable nutrient removal choice for wastewater treatment plants where site limitations and energy costs are a concern. Specifically, ABNR plants: can remove more than 60% of total nitrogen; achieve a high degree of phosphorus removal - primarily by chemical additions; use step aeration (step feed) to save tank volume and site space and to eliminate mixed liquor recirculation requirements; use less energy; use a supplemental source of carbon (typically, methanol) in small quantities to achieve higher levels of nitrogen removal; take advantage of the highest denitrification rates of raw wastewater; allow nitrification of low alkalinity wastewater with no chemical supplement; can be created from existing step aeration plants with only minor modifications; and can retain all the flexibility and wet-weather flow stability of conventional step aeration systems. 5 figs., 2 tabs.